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– some glimpses into the multiplicity & subtlety of fluid-dynamical mechanisms. 

 

   (Will I be burnt at the stake? – more on my home page at the string “jets”.) 

                                            Also salutary, e.g. Thompson & Young (2007, JAS) 

                                                                                                 Esler (2008, JFM) 

Two main points in this talk:                                     Scott & Dritschel (2011) 

(1)  there’s more than one mechanism for atmosphere-ocean jet formation; 

(2)  oceanic strong jets induce diapycnal mixing  beneath  the mixed layer. 

                           (DIMBO  =  DIapycnal Mixing by Baroclinic Overturning.) 
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Feedback stronger in strong-jet cases: 
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By the way: 

 no  inverse 

   cascade 

is involved. 

(Surprise??) 
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Layerwise-2D mixing in the real 

stratosphere: 

CRISTA 

N2O in upper 

stratosphere, 

 

courtesy 

Martin 

Riese 

websearch “gyroscopic pump in action” 



2-layer channel.  PV animation showing the typical self-sharpening of a jet 

(antifrictional!).    Rossby waves 

   (a) undulate the jet core elastically, and 

   (b) break on both sides, mixing PV and sharpening the 

        jet’s velocity profile (consequence of PV inversion) 
The core acts as a fairly effective “eddy-transport barrier” against mixing. 

Note resemblance to tropopause jets and ocean jets  –  “veins &  arteries” 

Esler, G., 2008,  J. Fluid Mech. 599, 241 
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Oceanic counterparts: consider strong-jet models whose PV gradients are 

mainly in surface temperature (PV delta function, ignoring mixed layer): 
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 surface 

sea surface, ignoring 

mixed layer 

Statically unstable: 

    must convect. 



Summary: 2-level hierarchy of ideas for understanding the fluid dynamics of jets 

                                                                                    Taylor-Bretherton identity 

1. Generic ideas:           PV Phillips effect                    – div (eddy momentum flux) 

                                                                           Nonlinear, forced/free/self-excited 
2. Particular mechanisms: 

(iv) Downstream wind stress reinforcing strong ocean jets (e.g.Thomas & Lee’05 JPO) 

(iii) Repeated excitation of Kelvin sheared disturbances by small-scale 

      forcing weaker than in (i). (Kelvin 1887, Farrell and Ioannou 2007 & refs.). 

3. Additional point (new?): DIMBO a significant addition to the list of diapycnal 

    mixing mechanisms (internal-wave breaking, cabbeling, near-topographic etc)? 

(i) Rhines effect.  Re weak jets generated by strong small-scale forcing – strong 

   enough to create active small-scale vortices that merge or cluster, producing an 

   inverse cascade that is arrested or slowed when eddy velocities ~ plane Rossby- 

   wave phase speeds.  Wave-turbulence interaction is spatially homogeneous. 

(ii) Jet self-sharpening by Rossby-wave breaking.  Re jets strong enough to be 

      Rossby waveguides.  Wave-turbulence interaction spatially  inhomogeneous. 

Reprints, preprints & corrigenda: websearch ”lucidity principles”  

then back to my home page at the string “jets”. 




