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Conservable quantities measuring ‘wave activity ’ are discussed. The equation for the 
most fundamental such quantity, wave-action, is derived in a simple but very general 
form which does not depend on the approximations of slow amplitude modulation, 
linearization, or conservative motion. The derivation is elementary, in the sense that a 
variational formulation of the equations of fluid motion is not used. The result depends, 
however, on a description of the disturbance in terms of particle displacements rather 
than velocities. A corollary is an elementary but general derivation of the approximate 
form of the wave-action equation found by Bretherton & Garrett (1968) for slowly- 
varying, linear waves. 

The sense in which the general wave-action equation follows from the classical 
‘ energy-momentum-tensor ’ formalism is discussed, bringing in the concepts of 
pseudomomentum and pseudoenergy , which in turn are related to  special cases such 
as Blokhintsev’s conservation law in acoustics. Wave-action, pseudomomentum and 
pseudoenergy are the appropriate conservable measures of wave activity when waves ’ 
are defined respectively as departures from ensemble-, space- and time-averaged 
flows. 

The relationship between the wave drag on a moving boundary and the fluxes of 
momentum and pseudomomentum is discussed. 

1. Introduction 
It is known that the law of conservation of wave-action can be derived (in a very 

general form not dependent on any approximations such as slow modulations, in- 
finitesimal amplitude, etc.) by essentially the same mathematical procedure as the 
conservation law for the energy-momentum tensor TFy of classical theoretical physics. 
This idea can be traced back at least as far as Sturrock (1962), appears in a slightly 
different form in Whitham (1970), and has been systematically developed by Hayes 
(1970) and further clarified by Brotherton (1979). One considers an ensemble of 
disturbed-flow solutions labelled by a smoothly-varying parameter a, and the mean 
flow is defined by averaging over a. On replacing certain space and time differentiations 
occurring in the usual definition of qh,, by differentiations with respect t o  a, and 

t Present address : Meteorology Department, Massachusetts Institute of Technology, 
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averaging, one immediately obtains a conservable wave property associated with the 
invariance of the mean flow to changes in the value of a (0 5 below). By ‘wave property ’ 
is meant an expression which may be evaluated to a consistent first approximation 
from linearized theory, and so on at  higher orders in wave amplitude. 

The conservable wave property thus obtained depends on the way in which 
‘disturbance’ and ‘mean flow’ are defined. In  this note we show that a wave property 
of remarkable analytical simplicity, to be denoted in what follows by A and called 
‘the wave-action ’I, results from using the generalized Lagrangian-mean (GLM) des- 
cription of waves on a mean flow given in the preceding paper (Andrews & McIntyre 
1978b, hereafter denoted by IV). The fact that a simple yet exact result is obtained 
is related to the fact that the GLM description enables a suitable disturbance particle- 
displacement field 5(x, t ) ,  with zero mean, to be defined exactly. This provides the 
simplest way of expressing Hamilton’s variational principle for the disturbance ( 9  5 
below and references), and hence of defining a disturbance-associated analogue of 
q,,, exactly. 

The simple analytical form of A facilitates an alternative, elementary derivation of 
its equation direct from the general equations of motion, without referring to  any 
variational formulation; and this is done first, in 0 2. Such a derivation is especially 
convenient when departures from conservative motion, such as the effects of viscosity 
and heat conduction or radiation, are to be allowed for, as is crucial to some applica- 
tions. In  $ 3  we show generally that the flux of A across any undisturbed material 
boundary vanishes exactly. This is a desirable property when using the wave-action 
equation in problems involving reflexion of nonlinear waves from a boundary. The 
simplicity of these basic results is very appealing, and seems to support the view that 
A is, at  least from a theoretical standpoint, the most fundamental measure of ‘wave 
activity ’ for finite-amplitude disturbances on arbitrary mean flows. 

It is important to know how A reduces to more familiar, approximate forms; of 
particular interest in practice is the useful formula 

A s &/a (1.1) 

derived by Bretherton 8: Garrett (1968) for conservative, slowly-varying waves of 
infinitesimal amplitude, where D is intrinsic frequency and 8 is intrinsic wave-energy 
density (‘intrinsic ’, that is, to the local wave dynamics, as seen in a frame of reference 
moving with the local mean flow). To derive (1.1) we follow Sturrock, Whitham and 
Hayes (op. cit.) and identify a with phase shift, as is permissible as an approximation 
for slowly-varying wares. Essential to our derivation of (1.1) is a ‘ virial theorem ’ for 
the disturbance, obCained by scalarly multiplying the equation of motion by c. The 
resulting derivation of Bretherton & Garrett’s formula (0 4 below), although com- 
pletely elementary and dependent only on the usual approximate definition of 5 
appropriate to 1inea.rized wave theory, does not seem to have been given before. Our 
derivation shows moreover why a formula like (1.1) cannot generally be expected to 
hold at  finite amplitude, the reason being that the term resembling potential energy in 
the virial theorem is displacement times restoring force, which equals twice potential 
energy (as required to obtain Bretherton & Garrett’s formula) only in the case of a 
linear restoring force. 

As a corollary of our analysis, it  can be remarked that the conservation law of 
Blokhintsev (1945) for slowly-modulated acoustic waves may also be derived as a 
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special case of the basic equation for A ($5.3).  This casts fresh light on the physical 
interpretation of Blokhintsev’s conserved wave property, which is usually thought of 
as an ‘energy’. From a general viewpoint, pseudoenergy appears to  be the more 
closely relakd concept. This will emerge from the discussion of t h e  energy-momentum- 
tensor formalism and its relation t o  A, given in 3 5.  (The interesting relation between 
Blokhintsev’s invariant and energy which was established by Cantrell & Hart (1964) 
is apparently one of those special relations, often encountered in classical wave 
theories, which depend crucially on the fluid motion being irrotational.) 

Also in 3 5 we note that in the GLM description the fluxes of momentum and pseudo- 
momentum are closely related (although not identical). This seems to  be one of 
several reasons why momentum and pseudomomentum have sometimes been confused 
with one another. 

2. The general wave-action equation and its corollaries 
We use the same notation as in IV and distinguish equation numbers from that 

paper by the prefix IV. Following Hayes (1970) and Bretherton (1979) we suppose 
that (-) is an ensemble average and that each field y ( x ,  t ;  a )  depends differentiably 
upon the ensemble label a, so that 

= (cp,,) = 0, (2.1) 

where ( ),a stands for a/aa. The label a may have any dimensionality (Hayes 1970, 
3 10) but in most applications may be taken t o  be a single, real variable. It is convenient 
to leave its range of variation arbitrary for the present. 

I n  IV we showed that a finiteamplitude disturbance particle-displacement field 
{ ( x , t )  can be defined such that [IV (2.10b), (2.7)] 

- 
D ’ g  = UE, g = 0, (2 .2a,  b )  

where DL is the Lagrangian-mean material derivative a/at + iiL . V, and EL and ul are 
respectively the mean and disturbance velocities as measured in the GLM description. 
The relations (2.2) are basic to  our development. As in IV we introduce the notation, 
for any field y ( x ,  t ) ,  

@(x, t )  = q{x + E ( X ,  t ) ,  t } ;  
then by definition - 

(2.3) 

@L 7, qj  vs - @L) qll  = 0) (2.4a, b, c)  

so that uE = US - i i L  in (2.2a). 
Let the equation of motion for the total flow be [as in IV (3.2)] 

Du,/Dt + 2(sL x u), + a,, +p-lp,i +xi = 0. (2.5) 

For simplicity we restrict the gravitational potential @ to be a function of x alone. 
We assume also that 8 = @, thus excluding the possibility of a wave contribution to  
@, whether stationary or time-dependent; the self-gravitating case can be treated, as 
in IV, but involves considerable extra manipulation. 

The wave-action equation is obtained by scalar multiplication of (2.5)s by g,,. After 
manipulations, given in appendix A, which are quite like those familiar from the usual 
derivation of the kinetic energy equation from (2 .5 ) ,  the result takes the  form 

DLA + P-lV. B = 9, (2.6) 
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where 9, to be defined shortly, is zero for conservative motion. A, the wave-action 
per unit mass, is defined by 

A = E g p . ( ~ J + S L x 5 )  (2.7a) 

and B, the non-advective flux of wave-action, by 

(2.7 b )  

where K i j  is the (i,j)th cofactor of the Jacobian 

K ,  satisfies 
J = det (&, +ti,,). 

csjk * &,k) K j i  = Jsik = (&kj + Ek,j) K i j  (2.8a, b)  

and (IV, appendix A) 
K . .  . = 0, 

v.3 

gij = (1 + tm,m)  s i j  - tj,i + k i j ,  

F = - t+ xi + (P9p 99 

(2.10) 

where kij is the (i , j) th cofactor of ti,,. The right-hand side of (2.6) is given by 
-- 

(2.11) 

a wave property representing the rate of generation or dissipation of wave-action 
associated with departures from conservative motion, q in particular being the 
departure from adiabatic motion defined in I V  (3.5). That is, 

where 
(2.12) 

is the equation of state for the fluid and S is entropy per unit mass; we recall that for 
adiabatic motion S' = SL [IV (2.23)], so that q is indeed zero in that cam. The density 

p" appearing in (2.6) is a mean quantity, satisfying 

p " ~ p ' J = p "  (2.13 a, b )  
- 

(IV § 4), and also satisfying the mean-flow mass conservation equation 

DLp+pv.iiL = 0.  (2.14) 

This last relation enables (2.6) to be written in the alternative form 

a(pA) la t+v .~ to t  = p g  (2.15) 

involving the total flux of wave-action 

Btot  = @$A + 8, (2.16) 

the first term of which represents advection of wave-action by the mean flow iiL. 
Since by (2.7) and (2.10), A and its flux are wave properties, and satisfy a conserva- 

tion relation r(2.6) or (2.15)] whenever F i s  zero, A is an appropriate general measure 
of wave 'activity'. The generality is considerable. No special assumpbion is needed 
about the type of wave involved; indeed, no approximations whatever have been made. 

In  the case of small wave amplitude a, manipulations starting with (2.10) and 
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similar to those which led to I V  (8.1 1 )  show that 

(2.17) 

where it should be noticed that p’ is the Eulerian pressure disturbance, p - p .  Like 
the term Xi, in I V  (8.11), the second term of (2.17) is identically non-divergent 
[(jitrn&a),rn, = 01 because (2.1) shows that Exa = -t,cm,a. If A and B are required 
correct to O(aa) only, there is no need to  invoke the GLM description since g simply 
satisfies the usual linearized relations which comprise the leading approximations to 
(2.2) and (2 ‘3): 

(a/at+a.v)g I l l &  ut+g.vii; ( 2 . 1 8 ~ )  

g = 0, pv.5 & -p‘” -p’ -g .vp  (2.18b, c)  

[see I V  (2.28)) I V  (As)]. As would therefore be expected, it is straightforward to 
rederive (2.6) correct to O(aa), again without invoking the GLM description, by 
multiplying the linearized equation of motion scalarly by g,a and using (2.18) and 
IV (2.28); in that case, however, the equation of motion for the mean flow to zeroth 
order in a must be used as well (McTntyre 1978). The flux term arises immediately 
in the form given by the first term of (2.17), since the pressure term in the linearized 
equation involves Vp’. 

Evidently (2.6) and (2.15) have various corollaries when mean quantities are 
independent of a time or space co-ordinate, assuming that a suitable ergodic principle 
holds whereby ensemble averaging can be replaced by time or space averaging, as will 
often be the way in which (2.6) is applied in practice. Suppose for example that mean 
quantities are independent of xl. For a given (deterministic) wave solution we may 
generate the ensemble envisaged in the general theory by simply translating the 
disturbance pattern through a distance a in the x1 direction, for each value of a in 
the range ( - 03, co) (Bretherton 1979). Then from ( 2 . 7 ~ )  

- 

- 

A - ~ , ~ . ( u ’ + Q x X )  (2.19) 

(a/aa being replaced by -a/axl and (-) now being an average with respect to xl); 
it will be noticed that p1 is just the 1-component of the pseudomomentum per unit 
mass defined in IV(3.1). 

As pointed out by Peierls (1  976) in another context, pseudomomentum in theoretical 
physics is the quantity whose conservation is associated with translational invariance 
of the mean flow, as opposed to translational invariance of the whole physical problem 
(which latter invariance gives conservation of momentum). This will be made more 
precise in 9 5 below, but we can already see why the GLM description is the most 
natural formulation within which to express the pseudomomentum concept. Con- 
servation of pseudomomentum, as distinct from momentum, is connected with 
invariance to a translation of the disturbance pattern while mean particle positions are 
kept jixed, as distinct from a displacement of the whole system, particles as well as 
disturbance pattern (Peierls, op. cit.). A general expression of the pseudomomentum 
concept therefore depends on an equally general expression of bhe idea of ‘fixed mean 
particle positions’. This idea cannot be directly expressed within a purely field- 
theoretic or Eulerian description, which does not keep track of where fluid particles 
are. But it is precisely this idea that is expressed, without approximation, by the 
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GLM description, when we fix x but replace c(x, t ) ,  in our example, by g(x - aft, t )  
where is the unit vector ( 1 , O , O ) . t  

3. The flux of wave-action at an undisturbed boundary 
We now show that any undisturbed boundary impermeable to  the fluid is also 

impermeable to  the flux of wave-action. 
By ‘undisturbed boundary’ we do not  of course mean one where g or g . n vanishes, 

neither of which would be appropriate a t  a boundary which is reflecting finite- 
amplitude waves. An undisturbed boundary C will be defined, rather, as one which 
maps into itself under the mapping x --f x +c(x, t ) ;  that  is, the image XS of C is the same 
surface as C.. It follows that the shape of C is independent of the ensemble label a 
(expressing in a very general way the idea t,hat the boundary has no ‘undulations’). 
Now as a! varies, the tip of the vector p(x, t ) ,  whose tail is a t  a fixed point x, moves 
along C ; therefore 

where nS is a vector normal t o  Z a t  the point x +g. If n is normal t o  C at  x, we have 

c,,.nc = 0 on C, (3.1) 

nt oc K ,  nj 

by IV(A 12) et seq. Thus (3.1) implies that  

which in virtue of ( 2 . 7 b )  is the required statement, namely that the non-advective 
flux of A across C vanishes, B . n = 0. 

An important special case is that in which C is immobile as well as undisturbed; 
then by IV 54.2 we have iiL . n  = 0 on C so the total flux Btot of A given by (2.16) 
has zero normal component a t  each point x of C. If  on the other hand I: is moving, so 
that iiL . n  + 0, (3.3) and (2.16) imply that Bt0t.n =p”AiiL .n ,  which is simply an 
alternative way of stating the fact that  the moving, undisturbed boundary is im- 
permeable t o  wave-action. 

Finally, it is noted that 5. n = g , a .  n = O(a2) on C for small wave amplitude a ,  as 
is evident intuitively, or from (3.2) and (2.10). Thus the first term of the linear approxi- 
mation (2.17) t o  B vanishes on S ,  t o  leading order, as well as the full expression for B 
itself. 

t Similarly, the consorvable wave property derived from A when the mean flow is invariant 
under rotation (see Bretherton 1979; Andrews & McIntyre 1978a, i.e. paper I11 of the present 
series) may be called the angular pseudomomenturn. A co-ordinate-independent expression for it 
may straightforwardly be written down using the tensor definition of the azimuthal averaging 
operator given in the footnote to 0 2.1 of IV, identifying a with the angle h appearing there in the 
rotation tensor and noting that p,,JaPo = ekmn z, 2, P ) , ~  for any scalar field p, and 

for any vector field rpi. where the rotation axis is taken through the origin and parallel to the 
unit vector Z. Use of these relat,ions for pf, and g,a in (2.6) immediately gives the exact equation 
for angular pseudomomentum. (The O(a2) approximation to this, analogous to (2.6) after sub- 
stitution of (2.17), is given explicitly in Bretherton (1979) and also in our paper 111 [see 111 
(A 19)]. In those references polar co-ordinates were used, a device which simplifies the expression 
for angular pseudomomentum because d / a a  becomes just partial - not covaria.nt - differentia- 
tion with respect to the azimuthal angle - A ,  and vector fields may be averaged by na‘ively 
averaging their components.) 

q i ,a  I a-0 = ekmn zn xrn P)i.k - e iun  z n  pu 
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4. The virial theorem, and Bretherton & Garrett’s equation 
If ( 2 . 2 ~ )  is substituted into the identity 

ti DLUE = D(.& u:) - u: D L & ,  

‘ i p u l ,  = i(DL)“&)-uiui. 2 2  
there results 

Therefore scalarly multiplying (2.5)g by 5 and averaging, using the fact that  

(Du/Dt)g = DL(us), 

and noting (2.2b)) (2.4b, c),  (2.13) and (A7),  gives 

Following Eckart (1963, and references) we call this a ‘virial theorem’ for the dis- 
turbance, by analogy with the corresponding result in classical particle dynamics. 

Now for periodic, plane, conservative waves of infinitesimal amplitude a, on a 
uniform, steady ba,sic flow given by 

iiL = i i iO(a2) = constant+O(a2), 

ccc expi(k . x - wt - a) ,  
we may write 

where the real pa’rt is understood and where k and w are constants. By letting the 
phase a vary over the range (0 ,2n) ,  following Sturrock (1962), Hayes (1970) and 
Whitham (1970), we may generate an ensemble of wave solutions to  which the result 
(2.6) may be applied. I n  this simple case we have, correct to  O(a) ,  

(4.5a, b ,  c )  

(no summation over i), where D is the intrinsic wave frequency, defined as 

i2 = o-k . i i .  (4.6) 

(4.7) 

Still working correct t o  Ofa), we see from (4.5) and (2.18~~) that, since Vii = O(a2), 
- 

u’ = ul= DL6 = $5 ,a. 

A = 0 i - I ~ ’ .  (u‘ +S2 x 5) 

B .  1 = &1p’u’ i. 

So the leading approximation to  (2.7a) is 

(4.8) 

and the leading approximation t o  the first term of (2.17), 8, say, is 
A - 

(4.9) 

These formulae will usually remain true as leading approximations for slowly- 
varying, almost-plane waves on slightly unsteady, slightly non-uniform mean flows 
(the main exception t o  this statement being Rossby waves, as noted below). I n  the 
same approximation, the virial theorem (4.2) reduces to  

- 
l U ’ p + 2 u ’ . Q  X E  p-l&Ki,(pg),,, (4.10) 
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noting that (O,i)r = & O,ij + O(a2), since @’ = 0, and that O,ij is negligible for a slowly- 
varying gravitational acceleration. So (4.8) may be rewritten 

(4.11) 

Now it may be shown (appendix B) that, in t,he circumstances assumed, the second 
term within braces equals the ‘ acoustic ’ (compressibility) energy plus the available 
potential energy of the wave motion, per unit mass (so (4.10) generalizes the classical 
equipartition-of-energy theorem). Thus we recognize the expression within braces as 
j7-l times the density of wave-energy 8, correct to O(a2),  as defined by Bretherton & 
Garrett (1968). This is the resulh ( 1 . 1 ) .  

Provided that 8 can to leading order be consistently evaluated as for a plane wave 
in a homogeneous medium, we have 

0 f 6,pA (4.12) 

where E, is the intrinsic group velocity V, 0. An elementary proof (basedessentially on 
a generalization of Stokes’ classical argument) is given by Hayes (1977) . t  Therefore 
the generalized ware-action equation (2.6) reduces, in the conservative case 9 = 0, to 

D ( B / p 0 )  +P-’V . ( i g B / O )  = 0. (4.13) 

In  virtue of (2.14) (in which we may here consistently approximate p by jij and iiL 
by ii) we may rewrite (4.13) as 

&)+V.(Cg;) a 8  = o ,  

where the absolute group velocity 
cg = cg+ii. 

(4.14) 

(4.15) 

Equation (4.14) is equivalent to Bretherton & Garrett’s approximate form of the 
wave-ac2lion conservation law, and it justifies our use of the term ‘ wave-action ’ for 
the esnctly conserrable wave property A. Again we emphasize that the derivation of 
(4.11) is general, even though no variational formulation has been invoked. The 
generality stems from the description of the disturbance in terms of particle displace- 
ments. 

It can ea,sily be shown that essentially the same derivation applies to cases like 
classical ‘water waves ’ involving waveguide structure. The only additional con- 
sideration is that the divergence term then arising in the virial theorem (the first term 
on the right of (B 2), which is negligible for almost-plane waves) integrates to zero 
when 8 is defined in the usual way by integrating the three-dimensional wave- 
energy density across the waveguide. We assume that either 5. n = 0 or p’ = 0 at the 
waveguide boundary. 

It is noteworthy that the restriction to O(a2) is essential Go the relation (1.1) between 
A and wave-energy in Bretherton & Garrett’s sense. The pressure term in the virial 

t The circumstances assuined in Hayes’ proof and in (4.11) hold for most, types of wave, the 
main esreption being Rossby waves on a beta-plane, for which homogeneity of the medium and 
thus Hayes’ argument are vitiated by the effectively strong spatial variat,ion of the Coriolis 
parameter (Longuet-Higgins 1964). Howeyer it may be shown, following Longuet-Higgins (op.  c i t . ) ,  
t,hat even for Rossby waves we have V . B = V . ($,FA). An explanation for this at  a deeper level 
is given by Bretherton & Garrett [1968, equations (3.12), (3.13)]. 
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theorem does not generally represent potential energy when g is finite; this is clear 
by analogy with the fact that potential energy for a particle on a nonlinear spring 
is not half displacement times restoring force. [The main exception is the case of 
almost-plane waves in an incompressible, uniformly-stratified fluid, for which the 
dynamics is approximately linear even a t  amplitudes of order unity because u . V is 
small (e.g. Drazin 1969; Grimshaw 1975).] 

5. Pseudomomentum and pseudoenergy 
5.1. A and the energy-mmentum-tensor formalism 

For background see, for example, Landau & Lifshitz (1975) and Sturrock (1962). 
An extensive bibliography is given in Jones (1971). Let L(q, P , ~ )  be a Lagrangian 
density depending on a set of fields p ( x ,  t )  and their derivatives P , ~ ,  where y stands for 
xi (i = 1 , 2 , 3 )  or t. If the fields describe a conservative physical system governed by a 
variational principle 

S S L d x d t  = 0, (5.1) 

for variations Sp, which vanish outside some finite hypervolume in space-timb, then 
the canonical energy-momentum tensor (Landau & Lifshitz, op. cit., $32) is the 
four-dimensional tensor 

(5.2) q,,, = P.1, aL/aP,, - Ld,v, 

where summation over all the relevant fields is understood. Using the Euler-Lagrange 
equations for (5.1) and the chain rule for differentiation (Landau & Lifshitz, loc. cit.) 
it is readily shown that satisfies a conservation relation 

T,,v, = 0 (5.3) 

for each y such that L has no explicit dependence on the corresponding space or time 
co-ordinate. (The precise physical interpretation of the components of qLv will depend 
inter alia on the choice of variational principle.) 

Now as Bretherton (1 979) points out, the generalized Lagrangian-mean description 
enables us to treat the particle displacements & ( x , t )  formally as fields, and to use 
Hamilton's principle as the variational principle (5.1 ), taking 

L = L&, Ei,$, &; mean fields) (5.4) 

= P{&(iiL+DLg)'+!2x ( ~ + 5 ) . ( i i ~ + D ' c ) - @ ( ~ + g ) - ~ ( p " / J , S ~ ~ ) } .  (5 .5 )  

Here ~ ( p ,  8) is the internal energy per unit mass expressed as a function of p and S ;  
it should be noted that the last term in (5 .5 )  is just e ( p ~ , S ~ ) ;  this follows from (2.13a), 
together with the fact that SL = Sc for conservative motion [IV (2.23)]. The permitted 
variations of & ( x , t )  are unrestricted except as above, that is, they must vanish 
outside a finite hypervolume; but variations of %he mean fieIds GL, p", etc., are subject 
to the restrictions noted by Newcomb (1962), Bretherton (013. c i t . )  and Dewar (1970), 
expressing conservation of mass and entropy together with the ' Lin constraint ' 
arising from the underlying pure-Lagrangian description of the mean flow (see also 
Penfield 1966). This is the scheme given by Bretherton (1971), with the important 
difference that neither the slow-modulation nor the small-amplitude approximation 
is needed here; see also Bretherton (1979). 
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We now seek a mathematical analogue of T,,, for the disturbance problem, that  is t o  
say the problem in which we temporarily regard the mean fields, including p", as given, 
and vary only &(x, t ) .  Obviously (5.1) must still be true under any subclass of allowed 
variations, including this one. Also, (5.1) is still true (when only c(x, t )  is varied) if we 
replace L by L -Lo, where Lo is the 'undisturbed' Lagrangian, given by 

Lo = L(0, 0,O; mean fields) (5.6) 

in the notation of (5.4).  Note that  L - Lo is an O(a2) wave property. So if we define 

also an O(a2) wave property, we have as a corollary of (5.3) that  

T,"." = 0 

for each p such that the meanJEoio has no explicit dependence on the pth space-time 
co-ordinate. Since translational or temporal invariance of the mean flow, as opposed 
to  such invariance of the complete physical system, is involved, T,, is not physically 
an energy-momentum tensor, but instead involves the pseudoenergy, the pseudo- 
momentum, and their fluxes (Peierls 1976). 

It is easy to  check from (5 .5 ) ,  (5.7) and (2.19) that  in fact we have 

-Tit = p"pi (i = 1 , 2 , 3 ) .  ( 5 . 9 ~ )  

Recall from the remarks following IV (3.1) that  the sign was chosen for conformity 
with past convention, and also with the sign convention inherent in ( 5 . 2 ) ;  i t  makes 
the direction of p agree with the direction in which wave crests are moving, so that 
the analogue of (1.1) is 

p = +@k/O. (5.10) 

Similarly we have that the flux of pseudomomentum (with the same sign convention) is 

(5.9b) 

where in the last term of ( 5 . 5 )  we use the facts that  aJ/a& = Kmj,  that  p" and gL 
are mean fields, which are not being varied, and that as(p, X)/ap = p/p2.  

Moreover, if we now make a slight extension of the definition (5.7) of T,, to  include 
the case p = a [Sturrock 1962, equation (4.7); Hayes 1970, equation (11 ) ;  Whitham 
1970, equation (60)] we obtain 

Tat = PA, Taj = G;p"A+ Bi = BYt; (5.11 a,  b )  

and A is always conserved, i.e. 
T a , ,  = 0,  (5.12) 

simply because (2.1) insists that  mean quantities are always independent of a, and 
because extra terms of the form T,,,, = - ( L  - Lo),a arising from the extra dimensions 
of the extended space (x, t ;  01) are likewise identically zero. We have thus rederived 
(2.6) in the conservative case F = 0, and verified Hayes' (1970) result that  the 
mathematical structure leading t o  wave-action conservation is essentially that of the 
energy-momentum-tensor formalism. 
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The temporal analogue of (5.9a)) namely 

T,, = pe-(L-L,,), 
where [cf. (2.19)] 

e = & . ( u z + S 2 x ~ ) ,  

may be appropriately called the pseudoenergy. Its flux is 

T, = ;GEiL pe + p E  Cm,t Kmj, 

(5.13 a )  

(5.14) 

(5.13b) 

and it is conserved when the mean flow is steady. 
It should be noted from (5.13 b )  that the L - Lo term in (S.13a) is not advected by 

the mean flow. Hence e may be called the 'advected part' of the pseudoenergy; and it 
is the only part that matters if all mean quantities are time-invariant. In the exact 
theory this stipulation concerning all mean quantities is, however, almost the same 
as stipulating merely that the mean flow is time-invariant, i.e. steady, since the 
equations for the mean flow (IV $33, 5, 8)  generally forbid it to be exactly steady 
while mean wave properties such as e are not. 

However, when relations correct to O(a2) only are of interest, it is consistent to 
neglect O(a2) mean-flow changes in the invariance argument leading to (5.8), and so 
conservation of pseudoenergy holds to O(a2) even when the waves are not steady, 
provided the O(1) mean flow is steady. In  that case the L -  Lo term in (5.13a) can 
be significant, as can the L-Lo term in (5 .9b )  when the invariance in question is 
spatial rather than temporal. 

A useful approximate formula for L - Lo, showing that it is, however, often negligible 
to O(a2) in problems of slowly-varying waves, may be derived with the help of the virial 
theorem (4.2), after manipulations similar to those in appendix B: 

(assuming conservative motion, as elsewhere in this section). 

5.2. Relation between the $uxes of pseudomomentum and momentum 
I n  IV $ 8.1 it was shown that the wave-induced excess momentum flux in the GLM 
description (the wave property analogous to minus the Reynolds stress in the Eulerian- 
mean description) is given by 

-p'Cm,iKmj + p E ( J -  1) aij, (5.16) 

where J is the Jacobian defined in $ 2 .  The relation between the expression (5.16) 
and the radiation stress, in cases where the latter concept is definable, is discussed 
in IV $8.4.  Comparing (5.16) with the expression 

-P'Cm,iKmi + (L-LO) Jij (5.17) 

for the non-advective flux of pseudomomentum deducible from (5.9b), we note the 
interesting fact that they are equal for i =/= j; that is, the off-diagonal parts of (5.16) 
and (5.17) are equal. An analogous relation exists between the flux of pseudoenergy 
and the wave-induced excess flux of total energy. These facts lead to alternative 
derivations of some of the finite-amplitude results on mean-flow evolution given in 
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I V  $3 .  For example IV(3 .9) ,  i.a. corollary I of theorem I, follows immediately upon 
comparing the Lagrangian-mean equation of motion IV ( 8 . 7 ~ )  with the equation for 
pi. The latter is (5.8) with p = i ,  the L-Lo term in (5.9b) being irrelevant since 
corollary I assumes that all mean quantities are independent of xi. 

The equality of the off-diagonal partsof (5.16) and (5.17) explains moreover why a 
moving boundary, generating waves in an inviscid fluid, supplies to  the fluid a com- 
ponent of pseudomomentum transverse to  that  boundary at a rate just equal to the 
rate of supply of the corresponding component of momentum. This seems to be one 
of several reasons why momentum and pseudomomentum have sometimes been 
mistaken for one another (a misconception traceable back to  the time of Rayleigh 
and Poynting). An analysis of what actually happens in a simple example where 
internal gravity waves are generated by a moving boundary (McIntyre 1973, 5 3) is 
illuminating in this connexion, since i t  illustrates the fact that  the spatial location 
of the waves, and therefore of the pseudomomentum may be quite different from the 
spatial location either of the mean momentum or of the fluid impulse when the latter 
concept is applicable. The examples given by Gordon (1973), Robinson (1975) and 
Peierls (1976) illustrate the same point in a different physical context, as do the 
acoustic examples of Brillouin (1 936). 

Another misconception sometimes encountered is an expectation that the Sij term 
in the acoustic radiation stress (say) ihould equal minus that in the pseudomomentum 
flux (5.9b). It is true that by definition the radiation stress differs from the negative 
of (5.16) in its Sij term (for reasons which become clear as soon as the complete set 
of equations governing mean-flow evolution is considered; see IV Q 8.4). But the CO- 

efficient of the Sii term in the radiation stress does not, in fact, bear any analytical 
resemblance to  that in the pseudomomentum flux either. This can be seen a t  once 
from the differing ways in which they depend on the equation of state of the fluid to 
leading order. The Sij term in the acoustic radiation stress is proportional to the 
variation 2clap of sound speed with density (see, for example, IV §8.4),  while 
the corresponding term in the pseudomomentum flux involves L -Lo, and hence an 
elastic energy term, proportional to  c rather than to aclap. Moreover L - L o  itself 
is negligible for almost-plane waves, by (5.15), while &lap is not. Some further dis- 
cussion is given in McIntyre (1 977, § 5) .  

5.3.  Relationship with standard O(a2) results in acoustics 
A well-known result in acoustics is the conservation relation 

- 

2 (gpG+&C2c+m.ii = 0, (5.18) 
at P 

where C is the speed of sound. Equation (5.18) was shown by Blokhintsev (1945) t o  
hold correct t o  O(a2) in the geometric-acoustics (slow modulation) approximation for 
conservative waves on a steady mean flow. By using information about the structure 
of plane sound waves, Blokhintsev alsQ showed that the density and flux appearing 
in (5.18) can be written respectively as 

&"/G, cg &/a. (5.19a, b )  

This can, of course, be viewed as a corollary t o  Bretherton & Garrett's law (4.14), in 
virtue of the well-known ray-tracing equation (a/at + c, . V )  w = 0,  which holds for a 
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steady mean state. Alternatively, (5.19) may be derived from (5.8) and (5.13), i.e. 
direct from conservation of pseudoenergy, using ( 4 . 5 ~ )  instead of ( 4 . 5 ~ )  as in the 
derivation of Bretherton & Garrett’s law. The term L - Lo in ( 5 . 1 3 ~ )  is negligible, by 
(5.15) and the geometric-acoustics approximation [although interestingly enough it 
%urns out that if L -Lo is retained in the calculation there is no need to appeal to the 
virial theorem (4.2); cf. Hayes 1970, equation (27)]. This identifies Blokhintsev’s 
invariant as the pseudoenergy, to  within the geometric-acoustics approximation; and 
the negligibility of L -Lo shows why T,, equals its advected partpe to within the same 
approximation. 

NOW Cantrell & Hart (1964) showed for the special case of irrotational, homen- 
tropic motion (and steady mean flow) that Blokhintsev’s conservation relation (5.18) 
can be derived in that case from conservation of total energy together with conserva- 
tion of total mass and momentum. To this limited extent, then, energy and pseudo- 
energy a,re related for irrotational, homentropic motion, at least for slowly-modulated 
waves. The relationship is presumably a consequence, inter alia, of the exact relation- 
ship between the densities of pseudomomentum and momentum implied by the result 

V x ( i i L - p ) = O  (5.20) 

established in IV for the case of irrotational motion. Such special results should not 
distract attention, however, from the fact that in general it is only thefluxes, and 
not the densities, in T,i, and Tpw which are closely related, as remarked in Q 5.2. 

Cantrell & Hart’s lucid analysis revealed another interesting special result, again 
for irrotational, homentropic motion only, namely that (5.18) holds without the 
geometric-acoustics approximation in that case. Indeed it holds with the averaging 
operators removed: so Cantrell & Hart’s result appears to be different in nature from 
the general results of the present paper, which do depend on averaging, and in parti- 
cular upon the basic relation 4 = 0. It should nevertheless be asked whether (5.18) 
still corresponds to conservation of pseudoenergy, since steady mean flow is one of 
the assumptions essential to Cantrell & Hart’s analysis. The answer appears, however, 
to be ‘no’, even if the virial theorem is invoked. We have succeeded in showing that 
the average of Cantrell & Hart’s density, i.e. the first bracket in (5.18), is equal to the 
pseudoenergy density T,, (including the L -Lo contribution) plus an expression of the 
form V . F, where F is a lengthy expression representing an O(a2) wave property. But 
it appears from our calculations that the difference between theflux (5.13 b )  of pseudo- 
energy and the expression in braces in (5.18) is not reducible, without appealing 
explicitly to the equation of motion, to the form F,t plus an identically nondivergent 
contribution, as would have to be the ca.se in order for (5.18) to remain directly equiva- 
lent to pseudoenergy conservation when the geometric-acoustics approximation fails. 

6. Concluding remarks 
The generality of the basic wave-action equation (2.6) and its corollaries is again 

emphasized. It may be found useful in areas where the approximations commonly 
made in wave theory are invalid: for example as an aid to the theoretical study of 
nonlinear instability of time-dependent mean flows (Davis 1976). Two other examples 
of possible areas of application thab come to mind are planetary waves in the strato- 
sphere, and the scattering theory of acoustic modes in ducts in the presence of a shear 
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flow. Meteorologists studying stratospheric planetary waves are interested in such 
questions as the heights and latitudes to  which the waves propagate or a t  which they 
are dissipated; and diagrams representing the flux and density of a conservable wave 
property such as A (or its relative appearing in the ‘generalized Eliassen-Palm 
relation ’ ( 3 . 1 2 ~ ~ )  of Andrew & McIntyre 1978a) would help clarify such questions. I n  
acoustics, results for the scattering of duct modes incident on a constriction or some 
other obstacle are most compactly presented if the modes are normalized in terms of 
the flux of a suitable conservable wave property, as has been pointed oub by Mohring 
(1977); such a representation of the results also provides a check on their correctness. 
The ware-action (or more precisely its analogue when ensemble averaging is replaced 
by time averaging, namely the pseudoenergy) appears to  be the only suitable wave 
property for this purpose when the mean flow is either rotational or heterentropic. 

In  these applications as well as generally, it will be desirable to  have an answer to  
the following question: to  what extent are we entitled to  regard A as a uniquely 
defined entity 1 Apart from the trivial non-uniqueness stemming from a rescaling of a, 
the answer depends on whether 5 is uniquely defined. This in turn depends on con- 
sideration of a hypothetical initial state of no disturbance, starting from which it is 
kinematically possible to  set up the disturbed motion. (Such a state of no disturbance 
provides an initial condition, on the basis of which c(x, t )  can be computed in principle 
by integration along mean trajectories; see IV 9 2 .2 . )  Now in the case of a stratified 
fluid, the surfaces of constant density, entropy, potential vort’icity and fluid com- 
position must be taken to  be undisturbed in the initial state (IV, postulate (viii); 
see also I V  (2.23), (4.G) et seq.). For conservative mobion, under at least some circum- 
stances (e .g. those discussed in IV, appendix C), this does provide enough Lagrangian 
information to  ensure a unique instantaneous correspondence between C(X, t )  and 
the Eulerian disturbance fields. The same appears to hold for two-dimensional, homen- 
tropic shear flow with a non-vanishing mean vorticity gradient, in which vorticity 
divided by density carries Lagrangian information. The circumstances assumed in 
IV, appendix C, are not the most general possible, however, and the point needs further 
inrestigation (11’. Mohring, personal communication). 

is not uniquely related to  the fields of 
entropy, potential vorticity, etc., since that relation clearly depends on the history of 
the diabatic heating pattern associated with the disturbance, and on other departures 
from conservative motion. The implied non-uniqueness of 5, and therefore of A and 
its relatives, may in some cases be a necessary price for the great simplification and 
unification of the theory of nonlinear waves on mean flows which the GLM theory has 
provided. I n  other cases there appear to  be useful ways of modifying the theory t o  
eliminate the non-uniqueness problem, and these are currently being investigated. 

We thank F. P. Bretherton for pointing out the connexion between his and our 
results and those of Hayes (1970), which in turn led t o  an appreciation of their intimate 
connexion with various general concepts in classical theoretical physics. T. Matsuno 
independently and perceptively suggested thab a connexion be sought between the 
‘ generalized Eliassen-Palm relations ’ derived in our earlier papers, and some general- 
ization of the u-ave-action concept; and Sir Rudolf Peierls educated us on the closely- 
related concept of pseudomomentum (and the importance of distinguishing it from 
momentum, a point appreciated some time ago in solid-state physics). W. Mohring 

If the motion is not conservative, then 
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stimu1at)ed us to think about possible applications in acoustics, a matter still under 
investigation. The final version of this paper was written while DGA was supported 
by National Science Foundation grant NSF-g-76-20070 ATM, and while both authors 
enjoyed the hospitality of the Advanced Study Program a t  the National Center for 
Atmospheric Research. 

Appendix A. Derivation of the wave-action equation 

- Since 

we have 
(P,a = 0,  

LF= - ( P Z  

{(+)'>,a = (G,i)' (xq + 6 i ) , a  = (@,i)'si,a, 

for any (P and +. Also, for any mean field ij, the chain rule gives 

so that 

(@,i)'si,a = 0- (A 3) 

We multiply the first term of (2.5)' by 
ul = 0, and (DulDt)' = BL(u') [IV (2.14)]. This gives 

average, and use the facts that US = UL + uZ, - 

DLUZ = & a  D'JZ4. 
-- 

= D L ( 6 j , a  u:) - u; Psi,, 
= B T J ( s i , a U t ) ,  (A 4) 
- -  

since the second term in the penultimate line vanishes by virtue of ( A l )  and the 
relation U: = DL&. The Coriolis term gives 

202, 6 i jk  tii,, uk = 2Qj 6ijk  BLs,k 
= - 2Qi eiik DLsi since E~~~ = - E k j i  - 
= 2 Q j 6 i j k 6 k D L 6 i , a  by (A 2, 

= Rj € i j k  DL(6 i ,a  s k )  (A 5) 

by comparison of the first and penultimate lines. The term @,i ( =m,i) gives zero, by 
(A 3).  

To deal with the pressure term, first note that, again by the chain rule, 

((P'),j = ((P,k)' cskj + s k , j ) .  

(~ , i ) '  = (~'),j Kij /J* 

(A 6 )  

(A 7)  

On multiplying by K,,/J and using ( 2 . 8 b ) ,  we obtain the inverse relation 

In virtue of (2.9) this may be rewritten as 

since J a  = Kii&ia by the rule for differentiating determinants. The second term is 
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equal to + (p'),,/p' by (A 2) and ( 2 . 1 3 ~ ) .  Therefore the result of scalarly multiplying 
(2.5)5 by g,, and averaging, introducing the notation of (2.7), is 

- 
BLA -+p"-'BjJ + (@),Jpt = - [i,, Xi. (A 8) 

Now if q is defined as in (2.12) we have, noting that ($L),a = 0, 

(This is the case of (Al )  obtained by setting 9 equal to the indefinite integral of 
l/F(gL,pe) with respect to p') holding P constant.) 

Putting (A 8)  and (A 9) together and noting that & a  Xf = & a  Xt, we get the exact 
wave-action equation (2.6), noting the definition (2.1 1) .  

-- 

Appendix B. The pressure term in the virial theorem 
We have 

(B 1) 
1 

= - gi{sij(' + t m , d  - 6j,i + Jcij) @,j + (P' + t k r ) , k ) J ) ,  P 
correct to O(u2), by (2.4b), (2.10)) IV(2.25), IV(2.27), and IV(2.28). After a little 
manipulation this yields 

- 13,k -PI) + O(a3)7 (B 2) 

where the speed of sound i? is defined by C-2 = (aF(8, p)/@j}g. We have used the fact 
that, from ( 2 . 1 8 ~ )  and (2.12), 

1 

PC 
tm,m = -p ' /p  = -=@-jJq 

(P' + t j  F , j )  - P P ,  p2 (B 3) 
1 = -- 

correct to O(a). On the right of (B 2) the first term is negligible for almost-plane waves 
(or integrates out across a waveguide), the second is twice the acoustic energy, and the 
third reduces to 2p-l times Lorenz' (1 955) formula for the available potential energy 
when we assume a small disturbance about a hydrostatic mean state under a uniform 
gravitational field, with 1),3 G - g p  (g = JVOI, x3 taken parallel to VO), t3 = - S ' / S 8  
and 13,3, = - gF,3. For then 
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and the expression in braces is just - gg,3 aF(S, F)/%, as is shown by differentiation 
of the equation of state p = F(S ,p )  with respect to  x3; this is the appropriate measure 
of static stability to  give Lorenz’ formula. The last term in (B 2) involves q and there- 
fore vanishes for conservative motion, 
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