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ABSTRACT

A review is given that focuses on why the sideways mixing of potential vorticity (PV) across its back-
ground gradient tends to be inhomogeneous, arguably a reason why persistent jets are commonplace in
planetary atmospheres and oceans, and why such jets tend to sharpen themselves when disturbed. PV
mixing often produces a sideways layering or banding of the PV distribution and therefore a corresponding
number of jets, as dictated by PV inversion. There is a positive feedback in which mixing weakens the
“Rossby wave elasticity” associated with the sideways PV gradients, facilitating further mixing. A partial
analogy is drawn with the Phillips effect, the spontaneous layering of a stably stratified fluid, in which
vertically homogeneous stirring produces vertically inhomogeneous mixing of the background buoyancy
gradient. The Phillips effect has been extensively studied and has been clearly demonstrated in laboratory
experiments. However, the “eddy-transport barriers” and sharp jets characteristic of extreme PV inhomo-
geneity, associated with strong PV mixing and strong sideways layering into Jupiter-like “PV staircases,”
with sharp PV contrasts �qbarrier, say, involve two additional factors besides the Rossby wave elasticity
concentrated at the barriers. The first is shear straining by the colocated eastward jets. PV inversion implies
that the jets are an essential, not an incidental, part of the barrier structure. The shear straining increases
the barriers’ resilience and amplifies the positive feedback. The second is the role of the accompanying
radiation-stress field, which mediates the angular-momentum changes associated with PV mixing and points
to a new paradigm for Jupiter, in which the radiation stress is excited not by baroclinic instability but by
internal convective eddies nudging the Taylor–Proudman roots of the jets.

Some examples of the shear-straining effects for strongly nonlinear disturbances are presented, helping
to explain the observed resilience of eddy-transport barriers in the Jovian and terrestrial atmospheres. The
main focus is on the important case where the nonlinear disturbances are vortices with core sizes �LD, the
Rossby (deformation) length. Then a nonlinear shear-straining mechanism that seems significant for barrier
resilience is the shear-induced disruption of vortex pairs. A sufficiently strong vortex pair, with PV anoma-
lies ��qvortex, such that �qvortex k �qbarrier, can of course punch through the barrier. There is a threshold
for substantial penetration through the barrier, related to thresholds for vortex merging. Substantial pen-
etration requires �qvortex � �qbarrier, with an accuracy or fuzziness of order 10% when core size �LD, in a
shallow-water quasigeostrophic model. It is speculated that, radiation stress permitting, the barrier-
penetration threshold regulates jet spacing in a staircase situation. For instance, if a staircase is already
established by stirring and if the stirring is increased to produce �qvortex values well above threshold, then
the staircase steps will be widened (for given background PV gradient �) until the barriers hold firm again,
with �qbarrier increased to match the new threshold. With the strongest-vortex core size �LD this argument
predicts a jet spacing 2b � �qbarrier /� � L2

Rh (Uvortex)/LD in order of magnitude, where LRh(Uvortex) �
(Uvortex /�)1/2, the Rhines scale based on the peak vortex velocity Uvortex, when 2b � LD. The resulting jet
speeds Ujet are of the same order as Uvortex; thus also 2b � L2

Rh(Ujet)/LD. Weakly inhomogeneous turbu-
lence theory is inapplicable here because there is no scale separation between jets and vortices, both having
scales �LD in this situation.
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1. Introduction

Chaotic flows in stratified, rotating fluid systems like
planetary atmospheres and oceans are often called
“turbulent.” However, in such systems there is no such
thing as turbulence without waves, a point well brought
out in the celebrated paper of Rhines (1975). One way
to appreciate the point is to note that such systems
always have background gradients of potential vorticity
(PV) and then consider the implications for the mo-
mentum and angular momentum budgets. As will be
illustrated here, those budgets make no sense at all, in
realistic cases, unless one considers the wavelike and
turbulent aspects together.

As well as short-range turbulent momentum trans-
ports of the austausch or mixing-length kind, there are
long-range momentum transports due to Rossby waves
and other wave types—“radiation stresses” in the lan-
guage of physics. Indeed, the ubiquity and importance
of such stresses illustrates one of the grand themes of
physics, the “dynamical organization of fluctuations”
with systematic mean effects (also important in, e.g.,
biological molecular motors). By its very nature, a wave
propagation mechanism such as the Rossby wave
mechanism will organize the fluctuating fields, no mat-
ter how chaotic they may seem, in the sense of inducing
systematic correlations among them. The correlations
are shaped by the waves’ polarization relations and usu-
ally give rise to long-range stresses. They may produce
phenomena like planetary equatorial superrotation, or
gyroscopically pumped global-scale circulations such as
the Brewer–Dobson circulation of the terrestrial strato-
sphere.1 The range of such stresses is not limited to
mixing lengths, but can reach out as far as waves can

propagate. And, crucially, there is a strong dynamical
interplay between the more wavelike and the more tur-
bulent aspects, not unlike the wave–turbulence inter-
play and stress divergence that give rise to alongshore
currents in an ocean beach surf zone.

Among the consequences of such interplay, in strati-
fied, rotating systems, are three interrelated phenom-
ena on which this review will focus: first the spatial
inhomogeneity of PV mixing by layerwise-two-
dimensional turbulence, second the common occur-
rence of “antifrictional” or upgradient horizontal
stresses u���, and third the spontaneous creation and
self-sharpening, or narrowing, of jets.

The three phenomena are all illustrated by the typi-
cal jet-sharpening scenario sketched in Fig. 1. The
sketch was originally made to help understand the be-
havior of the terrestrial winter stratospheric polar-night
jet, or polar-vortex edge, during a so-called minor
warming. However, with appropriate rescaling it ap-
plies equally well to other cases such as that of the
subtropical tropopause jet in the late stages of a non-
linear baroclinic wave life cycle of type 1 (LC1; e.g.,
Thorncroft et al. 1993). In both cases the PV is strongly
mixed on the equatorward flank of the jet (Fig. 1a),
reshaping the large-scale PV distribution and causing
the velocity profile to sharpen, in the sense that its
lateral scale becomes narrower (Fig. 1b), with concomi-
tant changes in the angular momentum distribution.
Fundamentally similar jet-sharpening processes have
often been observed in laboratory and numerical ex-
periments, with PV mixing on one or both flanks of the
jet, going back to the pioneering work of Fultz et al.
(1959), Hide (1958), and N. A. Phillips (1956).2 More
recent work clearly showing jet sharpening in its sim-
plest, barotropic form includes, for instance, the beau-
tiful laboratory experiments of Sommeria et al. (1989,
1991), and many numerical experiments on the related
phenomenon of vortex erosion or stripping (e.g., Juckes
and McIntyre 1987; Legras et al. 2001). The reader may
gain entry to the most recent literature from, to pick a
very few, Vallis and Maltrud (1993), Rhines (1994),
Nozawa and Yoden (1997), Hughes (1996), Manfroi
and Young (1999), Huang et al. (2001), Robinson
(2006), McWilliams (2006, his chapter 5), Greenslade
and Haynes (2008), Scott and Polvani (2007), Sukori-
ansky et al. (2007), and Thompson and Young (2007),

1 Quantitative illustrations of the radiation stresses in action,
evaluated in the standard way as so-called Eliassen–Palm fluxes
[Eq. (A.2) below] may be found for mechanistic models and for
the real stratosphere in, for instance, Dunkerton et al. (1981),
Rosenlof (1995), and in very many other publications. The gyro-
scopic pumping mechanism is well understood and was thor-
oughly analyzed in Haynes et al. (1991). Ekman pumping is a
special case. [Websearch “gyroscopic pumping of the Brewer–
Dobson circulation” for a recent tutorial including online anima-
tions.] The vertical component of the Eliassen–Palm flux is what
oceanographers call the “form drag” or, more aptly, the “form
stress,” across undulating stratification surfaces (Bretherton
1969). It arises from correlations between pressure fluctuations
and surface slopes and typifies the dynamical organization of fluc-
tuations. Strictly speaking one should include not only radiation
but also diffraction stresses, for instance driving the summer
branch of the Brewer–Dobson circulation, or mediating the Eady
baroclinic instability viewed as a pair of counterpropagating, and
vertically diffracting, Rossby waves (Lighthill 1963, p. 93; Brether-
ton 1966b; Hoskins et al. 1985; Methven et al. 2005).

2 Norman A. Phillips, a great pioneer in atmospheric dynamics
and numerical weather prediction, then working at Princeton with
primitive computer technology, is not to be confused with Owen
M. Phillips of the “Phillips effect,” a great pioneer in ocean waves
and turbulence then working at Cambridge, United Kingdom.
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as well as from the other papers in this special collec-
tion.

The jet-sharpening and angular-momentum changes
are tied to the PV mixing via PV inversion (e.g., Hos-
kins et al. 1985; Robinson 1988). Specific illustrations
will be given in Eqs. (5.1)–(7.2) below. PV inversion is
usually robust for jets. Invertibility depends only on the
jets behaving as balanced flows. The imbalance repre-
sented by inertia–gravity and sound waves is negligible
in many cases, or unimportant after averaging (e.g.,
Viúdez and Dritschel 2004). It follows that the link be-
tween PV mixing and jet sharpening is very tight. Dur-
ing mixing, if it occurs, the stress pattern has no choice

but to fit in with the angular momentum changes dic-
tated by inversion. Conversely, if there is no way to set
up a suitable stress pattern, then PV mixing may be
modified or inhibited.

In quasigeostrophic models, with the Rossby wave
mechanism as the only available wave mechanism, the
way the stress pattern fits in is described by the well-
known Taylor identity relating stress divergences to
eddy PV fluxes, recalled in the appendix. The stresses
themselves extend between regions of PV mixing and,
in general, outside them as well. As already noted, in
principle they can extend as far as waves can propagate.
The stress pattern associated with the example in Fig. 1
(e.g., Edmon et al. 1980; Dunkerton et al. 1981) corre-
sponds mainly to Rossby waves propagating or diffract-
ing up the jet axis from below with their characteristic
upward–westward phase tilt, then refracting equator-
ward and breaking in the mixing region indicated in
Fig. 1a. That region can therefore be thought of as a
“Rossby wave surf zone.” A characteristic feature of
the stress pattern is the well-known antifrictional west-
ward–equatorward tilt of phase lines between the jet
and the adjacent surf zone, signaling positive values of
u���. As is well known, the existence and statistical per-
sistence of this feature used to be regarded as a major
enigma of atmospheric science (e.g., Lorenz 1967, 149–
151; Starr 1968).

Figure 1, then, can be taken as a reminder of the
main concepts needed to solve that enigma, indeed to
solve it in a remarkably robust and simple way. They
are (i) the PV invertibility principle and its corollaries
(which include making sense of the Rossby wave
mechanism itself), (ii) the fact that breaking Rossby
waves mix PV (though usually imperfectly), and (iii)
the Taylor identity, Eq. (A.3) below, helping to show
how the whole wave–turbulence jigsaw fits together.

Historically—perhaps because concept (i) was not
put together with scenarios like Fig. 1a—the solution
emerged only rather tortuously, over the second half of
the past century, in several parallel strands of research
that gradually broke away from the competing turbu-
lence-theoretic austausch paradigms of the first half
called “momentum transfer theory” and “vorticity
transfer theory.” Jeffreys, early in the century, was the
first to establish from the angular momentum principle
that an antifrictional stress u��� is required to explain
the surface westerlies (Jeffreys 1926). The actual exis-
tence of a stress with the right sign and magnitude was
confirmed midcentury, from the newly available upper-
tropospheric data, by Starr and others. Lewis (1998)
gives an excellent review. The first credible modeling
effort—a fully nonlinear baroclinic instability simula-
tion exhibiting antifrictional u��� and jet sharpening

FIG. 1. Schematic from McIntyre (1982), suggesting the robust-
ness of nonlinear jet sharpening by inhomogeneous PV mixing.
Here most of the mixing is on the equatorward flank of an ide-
alized stratospheric polar-night jet, in a broad midlatitude “surf
zone” due to the breaking of Rossby waves arriving from below.
The profiles can be thought of as giving a somewhat blurred,
zonally averaged picture. The light and heavy curves are for con-
ditions before and after the mixing event, where “after” means
“after the wave has largely decayed.” The difference between the
two zonal velocity curves on the right is dictated by inversion of
the difference between the two PV curves on the left, like
smoothed versions of Eq. (5.1) and Fig. 7b since over several scale
heights the middle stratosphere behaves qualitatively like a shal-
low-water model with LD roughly on the order of 2000 km (Rob-
inson 1988; Norton 1994). Vortex stretching associated with the
horizontally narrowing jet scale increases the relative vorticity at
the Pole (e.g., Dunkerton et al. 1981, Figs. 4, 5). Angular momen-
tum is reduced even though the jet is sharpened. Long-range ra-
diation stresses cannot be neglected. For Jovian and terrestrial
ocean jets, with their relatively smaller latitudinal scales, the mix-
ing is typically strong on both sides of each jet (e.g., Marcus 1993;
Hughes 1996). In the Jovian case the mixing is almost certainly
due to a different stirring mechanism altogether, namely, convec-
tion in the planet’s interior (see footnote 4 and section 8).
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within a simplified but dynamically consistent frame-
work, two-layer quasigeostrophy—was reported in the
landmark paper of Phillips (1956). That paper, along
with an increasingly clear recognition that neither of
the old austausch paradigms would work (Eady 1950,
1954), stimulated renewed efforts toward mechanistic
understanding.

There was first a long line of linear baroclinic insta-
bility studies showing that the fastest-growing modes on
broad jets usually exhibit antifrictional u��� (e.g., Eady
1954; Eliasen 1961; Pedlosky 1964; Eady as reported in
Green 1970; Stone 1969; McIntyre 1970; Simmons 1974;
Held 1975; Juckes 2000; Methven et al. 2005). Held’s
paper broke new ground by using the Taylor identity, in
its three-dimensional form (A.3) first published by
Bretherton (1966a), to demonstrate explicitly the ro-
bustness, within linear theory, of the u��� pattern with
phase lines tilting in what was sometimes called the
“obvious” way, as if advected by the horizontal shear,
even though “not really obvious without the analysis,
since the instability mode involves a subtle balance be-
tween advection and propagation effects” (McIntyre
1970, p. 285). Second, and still within linear theory, PV
invertibility was used to crystallize our understanding
of the Rossby wave mechanism and its role in baroclinic
instability viewed as counterpropagating Rossby waves
(Bretherton 1966b; see also, e.g., Hoskins et al. 1985;
Lighthill 1963, p. 93; Methven et al. 2005). Third, rec-
ognition dawned that Rossby wave radiation from non-
linear midlatitude disturbances would be likely to pro-
duce the required u��� pattern in a robust and statisti-
cally stable way.

In hindsight (e.g., Edmon et al. 1980; Thorncroft et
al. 1993; Hughes 1996) we can now recognize this third
idea as the most important of the three, as a contribu-
tion to mechanistic understanding of the simplest, most
robust, and most basic kind. It appears from Green
(1970) that the idea first occurred to Eady, though it
seems that Dickinson (1969) arrived at it independently
while working in Starr’s group at the Massachusetts
Institute of Technology and was the first to publish it.
Then at Woods Hole Thompson (1971) proposed it
again, it seems, independently, and Whitehead (1975)
demonstrated Rossby wave-induced u��� patterns and
momentum changes in an elegant and highly influen-
tial, laboratory experiment. Dickinson’s paper was re-
markable for the way in which, despite using nothing
but the apparatus of linear Rossby wave theory, it not
only postulated the nonlinear wave generation now fa-
miliar from the baroclinic life cycle studies and first
made conspicuous in the paper by Edmon et al. (1980),
but also pointed implicitly toward the final wave-
breaking stage. Rather than in a broad surf zone, the

latter was hidden inside an infinitesimal “critical line
singularity” in Dickinson’s analysis, a linear-theoretic
artifact whose real significance is that linear theory is
predicting its own breakdown. The implied wave–
turbulence interplay, involving antifrictional u��� fields,
was later verified and illuminated by the discovery of
idealized but fully consistent models of nonlinear
Rossby wave critical layers (Stewartson 1978; Warn and
Warn 1978; Killworth and McIntyre 1985; Haynes
1989). Such “layers” are finite, though narrow, surf
zones. Those models provided mechanistically clear
and explicit illustrations of the precise way in which PV
mixing can influence the wave-induced u��� field and
angular momentum budget well outside the mixing re-
gion, and the precise way in which the Taylor identity is
satisfied.

Complementing all this was yet another parallel
strand of history starting with the theoretical work of
Rhines (1977). It used weakly inhomogeneous turbu-
lence theory, assuming a scale separation between
large-scale mean fields and small-scale turbulent eddies
and Rossby waves, to build a model of the wave–
turbulence interplay within that limitation but again
recognizing the insight furnished by the Taylor identity.
The scale separation facilitated the inclusion of cases
with nontrivial zonal as well as meridional structure.

A typical feature of PV mixing scenarios like that of
Fig. 1 is, however, the strong inhomogeneity of the mix-
ing, which precludes scale separation (e.g., McIntyre
and Palmer 1983; Juckes and McIntyre 1987; Riese et
al. 2002). Today’s remote sensing techniques have
made this inhomogeneity more conspicuous than ever,
in the case of the real terrestrial winter stratosphere, by
showing in remarkable detail many examples of break-
ing Rossby waves with both their turbulent and their
wavelike aspects visible in sharply contrasted adjacent
regions. One typically sees the wavelike edge of the
polar vortex with its steep isentropic gradients of PV
colocated with the polar-night jet axis, immediately ad-
jacent to the surrounding surf zone, reminding us that
Fig. 1 gives only a blurred view of reality.3 And PV-
mixing scenarios of just this kind have become increas-

3 For the “remarkable detail” in today’s sharper view of reality,
websearch “gyroscopic pump in action” to see a movie of remote
sensing data from the work of Riese et al. (2002). Notice not only
the sharpness of the polar vortex edge but also the remarkable
completeness of the sideways mixing, in the surf zone on the
equatorward flank of the polar-night jet, as revealed by a nearly
passive chemical tracer, nitrous oxide. Tracers do not, of course,
behave in parallel with PV in all circumstances, but in this ex-
ample the PV distribution is almost certainly very similar. See
also, for instance, Waugh et al. (1994).
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ingly familiar from high-resolution chemical–dynamical
modeling motivated by the stratospheric ozone prob-
lem (e.g., within a vast literature; Manney et al. 1994;
Simmons et al. 2005; and the review by Haynes 2005).

In the next section of this review we argue that the
extreme inhomogeneity is itself a generic consequence
of the wave–turbulence interplay, in some circum-
stances at least. Thus we widen the scope to include not
only classic cases like Fig. 1 but also cases like Jupiter,
in which a stratified layer is stirred in what is almost
certainly a different way, namely by buoyant convec-
tion4 and associated radiation stresses. The central idea
is simply that of positive feedback, an unstable compe-
tition between wavelike and turbulent dynamics. It
leads us to expect, for instance, the spontaneous emer-
gence of quasi-permanent jets when an initially homo-
geneous system is stirred homogeneously.

Part of the feedback is due simply to the nature of the
Rossby wave restoring mechanism, which depends on
background PV gradients. To that extent it is like the
“Phillips effect” (O. M. Phillips 1972), the spontane-
ously inhomogeneous vertical mixing of the back-
ground buoyancy gradient in a stably stratified fluid.
However, in section 2 we argue as in Juckes and McIn-
tyre (1987) that jet shear, producing shear straining of
vortical disturbances, can greatly enhance the feedback.
The arguments are tested against some nonlinear nu-
merical experiments in sections 3 and 4. The experi-
ments provide further mechanistic insight not only into
the terrestrial but also, arguably, into aspects of the
Jovian case.

Despite the different stirring mechanism or mecha-
nisms, the Jovian case is like that of the terrestrial win-

ter stratosphere to the extent that the PV-mixing inho-
mogeneity appears to be at an extreme, with staircase-
like PV profiles of many steps in the Jovian case as
compared with a single step in the terrestrial case.
Strong arguments for a Jovian staircase have been
made by Marcus (1993), from the observed vortex-
interaction phenomenology. Sections 5 and 6 discuss
the implied scaling laws for step width, that is, for jet
spacing. Section 7 briefly reviews the way PV inversion
dictates angular-momentum changes, also pointing out
that channel and doubly periodic beta-plane models
may have artificial constraints on their angular momen-
tum that conceal those changes. Section 8 offers a few
concluding remarks including a new suggestion about
Jupiter. For completeness the Taylor identity is re-
viewed in a brief appendix.

2. The Phillips effect for buoyancy and PV, and
the formation of eddy-transport barriers

The Phillips effect for vertical buoyancy mixing was
clearly demonstrated in the classic experiment of Rud-
dick et al. (1989), in which stirring by an array of ver-
tical rods, setting no vertical scale, produced layering in
a stratified tank. See also, within an extensive litera-
ture, the original discussion by O. M. Phillips (1972)
and the elegant mathematical modeling studies by
Barenblatt et al. (1993) and Balmforth et al. (1998).
Those studies were, however, limited by vertical aus-
tausch or local flux-gradient assumptions. In a more
general way, not dependent on austausch assumptions,
one may argue heuristically that the observed layering
results simply from a positive feedback process. The
background buoyancy gradient and gravity wave elas-
ticity are weakened in a mixing layer, facilitating fur-
ther mixing across stratification surfaces. Conversely,
the gravity wave elasticity is strengthened wherever in-
terfaces are forming between the mixed layers, inhibit-
ing mixing across the interfaces.

In the case of the quasi-horizontal, lateral mixing of
PV along stratification surfaces, one can make a similar
positive-feedback argument in terms of the Rossby-
wave restoring mechanism, that is, the quasi-elasticity
of sideways undulating PV contours. The background
gradient and Rossby elasticity are weakened in a mix-
ing region, facilitating further mixing, and conversely
are strengthened wherever PV contours are bunched
together between mixed regions (e.g., McIntyre 1994,
p. 308). Thus, other things being equal, large-scale PV
gradients are liable to be weakened in some regions and
sharpened in others, making them more turbulent and
more wavelike respectively. The extreme, staircase-like
instances of this include the terrestrial stratosphere

4 The visible layer of vortical motion on Jupiter, marked by
ammonia cirrus clouds, is stably stratified and is presumed to
overlie deeper layers in which thermocompositional convection
transports the heat flux known to emanate from the planet’s in-
terior, ending up in plumes a bit like terrestrial cumulonimbus
clouds (e.g., Rogers 1995; Ingersoll et al. 2004, section 6.5). Solar
heating has a somewhat comparable magnitude, but would be
unlikely by itself to build a significant pole-to-equator tempera-
ture gradient, because of the “convective thermostat” effect (e.g.,
Ingersoll 1976a,b; Stone 1976; Ingersoll and Porco 1978; Rogers
1995, p. 275). A pole-to-equator temperature gradient such as that
assumed in Williams (2003) to support baroclinic instability would
seem unlikely to be sustainable. To have a continuous distribution
of potential temperature with such a gradient, while avoiding
gross static instability, there would have to be an underlying stably
stratified layer with its strongest stratification at the equator (Al-
lison 2000, Fig. 2; Williams 2003, Fig. 6). Such a layer would tend
to inhibit internal convection in such a way as to reduce the pole-
to-equator temperature gradient. That is presumably why hardly
any such gradient is observed in reality, in the upper layers most
strongly affected by solar radiation.
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where the wavelike regions of sharpened gradients
have been clearly shown, through a wealth of chemical
data, to be able to shut off the mixing almost com-
pletely. That is, the wavelike regions with their associ-
ated eastward jets act as “eddy-transport barriers” (e.g.,
Juckes and McIntyre 1987; Nakamura 1996; Haynes
and Shuckburgh 2000; Marshall et al. 2006; Haynes et
al. 2007). Other such examples include the laboratory
experiments of Sommeria et al. (1989, 1991)—
confirming the barrier and staircase structure both by
dye injection and by PV measurements using velocim-
etry—and the classic demonstration by Danielsen
(1968) of a sharp barrier at a tropopause-jet axis, strik-
ingly revealed by airborne observations of nuclear test
debris. Marcus (1993) argues persuasively for barriers
and staircases on Jupiter from model experiments
showing generically realistic vortex-interaction behav-
ior. In particular, the experiments show the eastward
jets acting as barriers against vortex excursions. All
these would appear to be extreme cases of the positive
feedback or PV Phillips effect in action.

However, Rossby elasticity is by no means the same
thing as the static stability or buoyancy elasticity acting
in the Ruddick et al. experiment. Furthermore, there is
no counterpart of PV inversion in the buoyancy case.
That is, buoyancy layering does not necessarily cause
jet formation and indeed does not, in fact, cause it in
the Ruddick et al. (1989) experiments. And, as noted by
Juckes and McIntyre (1987), in the PV case jet shear
can act to enhance the barrier effect, hence the positive
feedback effect, in an important way. In their words—
referring to an early high-resolution model of strato-
spheric Rossby wave breaking, jet sharpening, and bar-
rier formation in a scenario like that of Fig. 1—the
Rossby elasticity “works most effectively on the largest
spatial scales.” This is connected with the way Rossby
elasticity depends on PV inversion, which, in contrast
with the buoyancy case, is a nonlocal functional rela-
tion. Thus Rossby elasticity “cannot explain the re-
markable imperviousness of the main vortex even to
small-scale incursions.” That “remarkable impervious-
ness,” a clear-cut case of the barrier effect, is also, they
go on to say, “related . . . to the existence of strong
horizontal shear.”

At small enough scales, differential advection by the
shear overwhelms Rossby wave elasticity in the well-
known way (e.g., Yamagata 1976), leading to the pas-
sive-tracer-like behavior of weak small-scale PV
anomalies, conspicuous in the form of the filamentation
seen in Juckes and McIntyre’s model and in many other
high-resolution numerical experiments including, most
strikingly, experiments at infinite Reynolds number us-
ing accurate contour advection without “surgery” (e.g.,

Dritschel 1989). Such behavior is no more than would
be expected from the standard Kelvin–Orr theory of
“sheared disturbances” or “shear straining” (Thomson
1887; Orr 1907; Yamagata 1976). But the Rossby wave
and Kelvin–Orr theories are both linear, as is the more
recent “shear-sheltering” theory of Hunt and Durbin
(1999).

For all those theories can tell us, real nonlinear surf-
zone turbulence might make the vortex edge, for in-
stance, not barrier-like but sieve-like in the sense of
allowing the free exchange of material between the vor-
tex interior and exterior on scales too small to feel
Rossby elasticity. In any case, the effectiveness or oth-
erwise of eddy transport barriers is clearly a fundamen-
tal problem in dynamics as well as chemistry and, in
particular, intimately part of the whole question of why
the positive feedback seems so effective, why jets are
ubiquitous, and why, for instance, Jovian vortices be-
have as they do. To our knowledge, there has never
been a case of a real Jovian vortex crossing an eastward
jet (Rogers 1995; Rogers 2006, personal communica-
tion). In the next section, therefore, we revisit the eddy-
transport-barrier problem in a way that focuses on its
nonlinear aspects.

3. Barrier-penetration experiments

In this section we illustrate by simple numerical ex-
periments at near-infinite Reynolds number how the
barrier effect is crucially enhanced by the shear on the
flank of a jet, even in a highly nonlinear disturbance
regime. The standard quasigeostrophic shallow-water
model is used, with Lagrangian contour-dynamics
methods in a polar tangent plane approximation, with
the winter stratosphere in mind. We focus on realistic
values 1000–2000 km of the Rossby length LD, as
judged by nonlinear shallow-water behavior that best
mimics the real stratosphere (Norton 1994). Thus we
avoid rigidly bounded models, that is, nondivergent
barotropic dynamics, LD � �. Rigid upper boundaries
are of course unrealistic for atmospheres. And, though
realistic for some aspects of ocean dynamics, models
with LD � � are not closely relevant to oceanic layer-
wise-two-dimensional turbulence with bottom topogra-
phy, influenced as it is much more by baroclinic LD

values.
The model is defined by

Dq�Dt � 0 	3.1


where q � f � L (�), the quasigeostrophic PV, with
constant Coriolis parameter f and with L (�) � (
2 �
L�2

D )�. The domain is horizontally unbounded, so that
the PV inversion to find the streamfunction � is
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� � L�1	q � f 


� �
1

2�
��K0� |x � x� |

LD
��q	x�
 � f �d2x�,

	3.2


where K0(·) is the modified Bessel function decaying
exponentially for large argument. The two-dimensional
velocity field is (u, �) � (���/�y, ��/�x), so that the
material derivative D/Dt � �/�t � u�/�x � ��/�y, to
leading order.

We take an idealized version of the winter strato-
sphere with a perfectly developed “staircase step,” that
is, with a sharp-edged polar vortex. For simplicity it is
taken to be a large vortex patch of uniform PV, sur-
rounded by an idealized surf zone of infinite extent
having a smaller uniform PV value. This corresponds to
an exaggerated version of the heavy curves in Fig. 1,
with a discontinuous jump in PV on the left and a slope
discontinuity in zonal velocity on the right, like one of
the sharply peaked jets in Fig. 7 below. We take LD �
2000 km and polar-vortex radius 3000 km in the ex-
amples shown. Values LD � 1000 km and LD � 1500
km were also used, giving qualitatively similar results.
The PV contrast between the polar vortex and surf
zone is denoted by �qbarrier. We have found that
straightening out the vortex edge, making it into a chan-
nel-model jet with the same PV contrast, makes little
difference to the behavior.

We test the resilience of the barrier at the vortex
edge by bombarding it with the most powerful of co-
herent vortex structures, namely fast-propagating vor-
tex pairs. A sufficiently strong vortex pair will punch
through any given barrier, and a sufficiently weak one
will not. Many experiments were done with vortex pairs
of various strengths and sizes, incident from various
directions. In all cases where the incident vortex pair
gets anywhere near the barrier—which requires the
vortex pair to be sent in an upshear direction—the re-
sulting behavior can reasonably be called shear-induced
disruption of the vortex pair, a kind of “divide and
rule.” The experiment shown in Fig. 2 illustrates this
behavior.

The polar vortex is central in the top left panel. A
large, tightly spaced, fast-propagating vortex pair is in-
cident upshear at 225°. Its members have relative
strengths �qvortex /�qbarrier � �1.0; thus the strength of
the cyclonic member matches that of the barrier. This is
a strongly nonlinear situation in which the entire polar
vortex is violently disturbed. Nevertheless, the shear
outside the barrier quickly separates the two members
of the vortex pair, disrupting its ability to propagate.
Consequently—even though the barrier suffers a very

large Rossby wave distortion, comparable to that in a
minor stratospheric warming—only modest amounts of
vortex-pair and other surf-zone material penetrate well
inside. Figure 3 enlarges the ninth and twelfth panels of
Fig. 2 to show the detail more clearly. The grayscaling
distinguishes material from, in order from lightest to
darkest, the ambient surf zone, the incident anticy-
clone, the incident cyclone, and the polar vortex.

The shear-induced disruption of the incident vortex
pair involves more than just pulling it apart. The anti-
cyclonic member survives intact, staying well outside
the barrier and corotating with the ambient shear in the
manner familiar from classic vortex-interaction studies
(e.g., Kida 1981; Bell 1990). By contrast, most of the
material of the cyclonic member of the pair is sheared
out into a long filament, and most of the filament gets
wrapped round the edge of the polar vortex, itself cy-
clonic. Some of the cyclonic material is promptly
ejected back into the surf zone, in a familiar and typical
kind of Rossby wave-breaking or barrier-erosion event
(e.g., Juckes and McIntyre 1987; Polvani and Plumb
1992). That event is seen in the bottom row of Fig. 2. Of
the remaining incident-cyclone material, some of it
stays near the polar-vortex edge, though a modest
amount ends up deeper inside.

If we make the size of the incident vortex pair
smaller, keeping its relative strength at �1.0, then it
propagates more slowly, is disrupted sooner, and pen-
etrates less. The same occurs if the relative strength is
reduced below 1.0. Even for large, fast vortex pairs like
that of Fig. 2, the barrier is very resilient against deep
penetration for relative strengths �0.9. By contrast, for
relative strengths �1.1, substantial amounts of material
from the incident cyclone (though never from the an-
ticyclone in the cases considered) penetrate deeply into
the polar vortex. Figure 4 shows the most violent case
considered, like that of Figs. 2–3 except that the inci-
dent vortex pair has relative strength �1.4. Then a large
portion of the incident cyclone penetrates all the way
into the polar vortex. The incident anticyclone again
remains isolated. Similar results were obtained for LD

� 1000 km and LD � 1500 km.
For practical purposes it seems accurate enough to

summarize all these cases by saying, for incident vortex-
core sizes within a modest numerical factor of LD, that
the transition from very little penetration to substantial
penetration corresponds to

��qvortex

�qbarrier
�� 1.0 � 0.1. 	3.3


For core sizes more substantially different from LD, the
thresholds are somewhat higher. Also, we have found
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FIG. 2. Near-threshold barrier-penetration experiment (see section 3), viewed from above the North Pole of the
model stratospheric polar vortex in the unbounded tangent-plane model. Time increases rightward then downward
by increments 4�/�qbarrier, where �qbarrier is the quasigeostrophic PV contrast between the polar vortex and the
surf zone. The angle of incidence is 225° initially. The solid arrow shows the sense of the polar vortex, and the
dashed arrow shows the initial propagation of the vortex pair toward it. The vortex pair has relative strength exactly
�1.0, where “relative strength” means �qvortex /�qbarrier.
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following Bell (1990) that even without the boost from
vortex-pair propagation, lone cyclones can also ap-
proach and penetrate the barrier, even a straight bar-
rier, through a much slower and more subtle wave–
vortex interaction related to classic vortex-merging dy-
namics. The thresholds themselves are hardly changed,

except that the threshold values of |�qvortex ��qbarrier |
become somewhat higher, typically by factors of 2–3, in
the peripheral cases with core sizes substantially differ-
ent from LD. These are preliminary results only, for the
purposes of illustration, and we hope to present a more
systematic study in due course.

It might be asked why naturally occurring vortices in
staircases are usually below threshold. At least, vortices
are seldom if ever seen to cross an eastward jet either
on Jupiter or in the terrestrial winter stratosphere. The
answer could be that if such crossing events had ever
been common they would already have broken some of
the barriers, and thus widened the steps of the staircase
until the barrier strengths, as measured by their PV
contrasts, became comparable to or greater than those
of the strongest vortices. The vortex strengths will of
course be subject to some limitation arising from what-
ever stirring mechanism is in operation. If that mecha-
nism, with accompanying radiation stresses as needed,
is strong enough and effective enough to have created
the staircase in the first place—arguably the situation
on Jupiter—then the range of available vortex strengths
will influence the step size such that the strongest vor-
tices are only just below the threshold. Of course if the
staircase is formed by Rossby wave breaking alone,
then its strongest vortices initially have the same
strengths as the material eroded from the barrier, which
is automatically at or below the threshold.

4. Some decay experiments that illustrate the PV
Phillips effect

To the extent that the PV Phillips effect is generic, it
ought to be possible to demonstrate the resulting ten-
dency toward inhomogeneous PV mixing in turbulence-
decay experiments, with initial conditions statistically
uniform in y.

Of course many such experiments have been done in
the past, including the original Rhines (1975) experi-
ments, but for various reasons (including early limita-
tions on numerical resolution, and the privileging of
power-spectral diagnostics over, e.g., PV maps) there
has not always been a clear distinction between persis-
tent jets produced by inhomogeneous PV mixing on the
one hand and transient, migrating jets in the form of
zonally long Rossby waves on the other. Also, both
computer power and new numerical techniques now
provide an opportunity to carry out such experiments at
Reynolds numbers and effective resolutions vastly
higher than before.

To our knowledge, however, a systematic study has
yet to be completed at the level of today’s state of the
art. One reason is the difficulty of getting beyond the

FIG. 3. High-resolution views of (a) the 9th and (b) the 12th
panels of Fig. 2 (i.e., at times 32�/�qbarrier and 44�/�qbarrier). The
grayscaling distinguishes material from the ambient surf zone
(white), the incident anticyclone (light gray), the incident cyclone
(medium gray), and the polar vortex (darkest). Note that the last
two shades have the same PV values, since �qvortex and �qbarrier

are equal in this case.
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simple positive-feedback heuristic and of quantifying
the wave–turbulence interplay in this situation, includ-
ing the role of Rossby wave radiation stresses. In the
present review, therefore, we limit ourselves to just one
illustrative example that shows the PV Phillips effect
particularly clearly. The example is taken from an on-
going series of numerical experiments to be reported
elsewhere. These simulate freely decaying quasigeo-
strophic shallow-water turbulence in a beta-plane chan-
nel, starting with random vortices on an approximately
uniform background PV gradient �. The experiments
use a very accurate “contour-advective semi-
Lagrangian” (CASL) algorithm (Dritschel and Am-
baum 1997; Dritschel et al. 1999) able to simulate ex-
traordinarily complex ultrahigh Reynolds number flows
with great efficiency.

Not all such experiments provide equally clear illus-
trations of the PV Phillips effect. The tendency for PV
mixing to be inhomogeneous is always seen, but has

been found to range from very weak to very strong
depending upon parameter values. The dependence is
not only upon the background PV gradient and initial
turbulent energy but also, more sensitively than we had
expected, upon the Rossby length LD. This may well be
bound up with variations in the radiation-stress field
related to variations in Rossby wave excitation and dis-
persion.

The experiment shown here is conducted in a chan-
nel of nondimensional width and length 2� with LD �
1. Free-slip boundary conditions apply at y � ��, and
the flow is periodic in x (see Benilov et al. 2004 for the
use of the CASL algorithm in this geometry). The ini-
tial quasigeostrophic PV field q is built from a random
anomaly field q� of maximum amplitude |q� |max � 4�
superposed on a linear background PV gradient �y,
with � � 2�. The PV anomaly is correlated over a
length �0.28; more precisely, the autocorrelation func-
tion of the PV-anomaly distribution has a roughly

FIG. 4. Case of an incident vortex pair like that in Fig. 2, except with relative strength �1.4
instead of �1.0. Snapshot is at time 60�/�qvortex, equivalently 60�/1.4�qbarrier. The incident
cyclone (medium gray) has ended up almost entirely inside the polar vortex. The incident
anticyclone (light gray) remains outside, as before. The remaining material outside is almost
entirely from the polar vortex (darkest shading).
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Gaussian shape with a full width at half maximum of
0.28. The full PV (background plus anomaly) is dis-
cretized into steps with an initial mean step width �y �
�/16 � 0.196 � LD/5, corresponding to a small PV jump
�qdiscrete � (2�)2/31 � 1.27 across each contour [a tiny
fraction of the total planetary PV contrast across the
width of the channel, 2�� � (2�)2 � 39.5]. The Eule-
rian grid resolution used to invert the PV to find the
velocity field is 256 � 257; however, the PV is repre-
sented in a Lagrangian way, as contours, to permit
highly accurate advection.

To deal with the turbulent dissipation of fine-grain
PV gradients, surgery is applied at a twentieth of the
Eulerian grid size (i.e., at the scale � � 0.00123). This
apparent mismatch in the smallest scales used to rep-
resent the velocity and PV fields is justified (Dritschel
and Ambaum 1997; Dritschel et al. 1999; Dritschel and
Viúdez 2003, and references therein) by the steeper
spectral decay of velocity fluctuations with decreasing
scale.

Figure 5 shows the PV field at several stages in the
flow evolution. The grayscale shading is sawtooth linear
to make the detailed structure more visible. The flow
rapidly grows in complexity, as measured by the total
number of nodes on the contours. The complexity
peaks at dimensionless time t � 14 (the unit of time
being defined as 4�/ |q� |max). At that time, there are
over seven million contour nodes. The complexity
thereafter gradually decays as the flow becomes in-
creasingly zonal. The PV Phillips effect is plainly in
evidence in this case. Despite the statistical homogene-
ity of the initial conditions, the background PV field has
been mixed in a highly inhomogeneous way.

This is seen even more clearly in Fig. 6, whose left-
hand panel shows the time evolution of the mean y
position of those PV contours that wrap the domain
periodically in the x direction. As expected from the
positive-feedback heuristic, the contours are pushed
apart in some regions and squeezed together in others.
The corresponding jets are evident in the right-hand
panel of Fig. 6, which shows the zonally averaged zonal
velocity u(y, t) at the initial and final times t � 0, 84.

5. Staircase inversions and jet spacing

The jet profiles in the right-hand panel of Fig. 6 may
be compared, and contrasted, with the theoretical ve-
locity profiles u(y) for perfect PV staircases on an un-
bounded beta-plane. The theoretical expressions, ob-
tained by PV inversion, are given in (5.1) and the fol-
lowing text and in (5.3), (5.5), and (5.6). Some examples
are plotted in Fig. 7. For instance, the second curve
from the left shows the u(y) profile for a single step cut

into the uniform background PV gradient, in the form
of a perfectly mixed zone |y | � b of width 2b, in the
case b � LD. The leftmost curve shows the correspond-
ing mass shift expressed as the surface elevation change
h(y) � f0�/g, where g is gravity and f0 a constant rep-
resentative value of the Coriolis parameter. This mass
shift is dictated by geostrophic balance with u(y) �
���/�y. Notice that a smoothed version of the u(y)
curve qualitatively resembles the difference between
the two velocity curves in Fig. 1b.

For general LD, the u(y) and h(y) profiles within the
single mixed zone |y | � b are given by

u	y
 � �LD
2 ��1 � �1 �

b

LD
� exp��b

LD
� cosh� y

LD
��

for |y | � b, 	5.1


joining continuously to exponential tails � exp(�|y | /
LD) on each side |y | � b (Fig. 7b) and, with H0 �
f 2

0L2
D /g, the undisturbed layer depth,

h	y
 �
�LDH0

f0
� y

LD
� �1 �

b

LD
� exp��b

LD
� sinh� y

LD
��

for |y | � b, 	5.2


with values and first derivatives joining continuously to
side tails � exp(�|y |/LD) in |y | � b (Fig. 7a). The last
three curves in Fig. 7 are the u(y) profiles for staircases
of two, three, and an infinite number of steps or mixed
zones, constructed by the appropriate daisychaining of
(5.1), that is, by superposition of laterally shifted copies
of (5.1) and its side tails. Superposition is allowed be-
cause quasigeostrophic �-plane PV inversion (3.2), with
f now variable but LD still constant, is a linear opera-
tion. The limiting case of the perfect periodic staircase,
uniquely determined by construction as an infinite
daisy chain, has profiles that are readily shown to be

u	y
 � �LD
2 ��1 �

b

LD

cosh	y�LD


sinh	b�LD
�
� periodic extension 	5.3


and

h	y
 �
�LDH0

f0
� y

LD
�

b

LD

sinh	y�LD


sinh	b�LD
�
� periodic extension. 	5.4


The expressions shown explicitly are valid in |y | � b,
representing (5.1) and (5.2) plus infinite sums of side
tails from the other zones. The rightmost curve in Fig.
7 is (5.3) shifted laterally by a distance b.

In the rigidly bounded, nondivergent barotropic limit
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LD /b → �, (5.1) and (5.3) become, respectively, with
fractional error O(b/LD)3,

u	y
 �
1
2

�	y2 � b2
 for |y | � b, 	5.5


and

u	y
 �
1
2

��y2 �
1
3

b2� � periodic extension,

	5.6


a daisy chain of parabolas. Note that this is a case of
noninterchangeable limits. Equation (5.6) is not the re-
sult of daisychaining (5.5), because the infinite daisy
chain limit is not interchangeable with the limit LD /b →
�. The reason is that the side tails of the single-zone
solution (5.5) are infinitely weak and infinitely broad
but contain finite relative angular momentum. We dis-
cuss the corresponding absolute angular-momentum
changes in section 7 below. The staircase found by Da-
nilov and Gurarie (2004) and Danilov and Gryanik

FIG. 5. Simulation of a quasigeostrophic shallow-water turbulent flow in a channel (see section 4). Time evolves to the right and
downward, as labeled in units of 4�/ |q� | max. That is, the eddy turnaround time is unity for the initial maximum PV anomaly.
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(2004) in their rigidly bounded barotropic turbulence
model produces (5.6) almost exactly, apart from an ad-
ditive constant.

For all values of LD /b these examples show the ge-
neric feature of sharply peaked eastward jets with
broad westward flows in between, the more so in cases
with small LD /b. This asymmetry has often been re-
marked on. From (5.1) and (5.3) it is evident that for
small LD /b the eastward jets are thinner and still more
sharply peaked, with width scale LD, and the interven-
ing westward flows relatively still more broad.

The inversions (5.1) and (5.3) assume straight jets.
Recent work on shallow-water flows with a latitudinal
variation of LD like that expected on Jupiter (e.g.,
Theiss 2004; Scott and Polvani 2007), following ideas of
Salmon (1982), suggest that for the smaller values of
LD, as in modeling Jupiter’s high latitudes, the jets not
only become thinner but meander strongly as well,
while keeping themselves sharp. This is also reminis-
cent of many terrestrial ocean currents (e.g., Niiler et al.

2003). It is probably related to the relative “sloppiness”
of vortex interactions at small LD (e.g., Waugh and
Dritschel 1991) and to the smooth, stable behavior of
large-amplitude long Rossby waves on jets like (5.1) or
(5.3) at small LD (Nycander et al. 1993). Of course in
some cases the meanders may be due to, or increased
by, baroclinic instability, as with atmospheric tropo-
pause jets, taking us outside the scope of barotropic
shallow-water modeling.

It is worth emphasizing that the Rossby elasticity and
hence the Rhines and Phillips effects cannot be ex-
pected to be negligible even in the limit LD → 0. The
wave–turbulence interplay is still inescapable. Rossby
waves on thin jets have phase speeds of the same order
as the jet velocity scale. Therefore, in the staircase sce-
nario with vortex cores of size �LD, jet widths �LD,
and eddy velocities of the same order as jet velocities,
the order-of-magnitude regime is just that usually asso-
ciated with the Rhines effect understood as “cascade
arrest” or “cascade retardation” in wavenumber space,

FIG. 6. Diagnostics for the experiment of Fig. 5. The left-hand panel shows the time evolution of the zonal-mean
position y(q, t) of each PV contour that wraps the domain (i.e., that closes on itself only through the periodic
boundaries x � ��). The latitudinal coordinate y is in units of LD, and time t is in units of 4�/ |q� | max. PV mixing
(in which the turbulent dissipation of fine-grain PV gradients is achieved here by contour surgery) changes y(q, t)
in time, here leading to a highly inhomogeneous distribution of positions y at late times, as expected from the
positive-feedback heuristic. Broadly speaking, the bunching of curves corresponds to eastward jet formation and
the spreading of curves to westward jet formation. The right-hand panel shows the zonally averaged zonal velocity
u(y, t) at the initial and final times t � 0, 84. (See remark at the end of section 7.) The inhomogeneous PV mixing
has produced three strong eastward jets, two of them sharply peaked in the manner characteristic of well-developed
eddy-transport barriers in a shallow-water system, with PV distributions close to jump discontinuities. Such PV
distributions invert to velocity profiles locally resembling the idealized forms shown in Fig. 7, which correspond to
perfectly sharp PV jump discontinuities.
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or simply as “Rossby elasticity significant” or “waves
and turbulence both significant,” at the length scale LD.
For instance in the thin-jet limit LD → 0 with b finite it
is well known, and readily shown, that Rossby waves on
the jet (5.3) near y � b, say, all have phase speeds c
lying between maximum u and minimum u. This means
not only that Rossby elasticity is significant but also
that there are critical layers in the jet flanks—implying
a two-sided version of Fig. 1—hence, in reality, surf
zones that would mix PV there had it not been mixed
already and the jet already sharpened. Hughes (1996)
discusses this further. Once again we have turbulence
intimately and inescapably associated with waves, the
essence of the Rhines effect.

6. Rhines scales versus jet spacing

Even a cursory perusal of the literature shows that
the term “Rhines scale” is used with a plethora of
meanings; see, for instance, Dunkerton and Scott
(2008), who consider three different length scales,
which they call “dynamical Rhines scale,” “spectral
Rhines scale,” and “geometric Rhines scale.” Some au-
thors even define Rhines scale such that it can “fail to
exist” as a real number. Others appear to assume that it
always means the jet spacing.

Without presuming to say what the term “should”
mean, in a given dynamical context, we choose to de-

fine the Rhines scale here in its simplest possible sense.
If a velocity scale U is given, or arises naturally (as in
the staircase problem), then dimensional analysis tells
us that one of the length scales in the problem must be
(U/�)1/2, where � is the planetary absolute vorticity gra-
dient. We call this the Rhines scale based on U, and use
the symbol LRh(U) to denote simply that length scale,
by definition, recognizing of course that different ve-
locity scales U will arise and that the length scale
LRh(U) may or may not turn out to have a visible role
in one or another dynamical regime, viewed spectrally
or in any other way.

The Rhines scales LRh(Uvortex) and LRh(Ujet) based
respectively on vortex peak velocity Uvortex and jet
velocity Ujet � (max u � min u) are accordingly de-
fined by

LRh
2 	Uvortex
 � Uvortex ��, LRh

2 	Ujet
 � Ujet��.

	6.1


For our standard case of vortex core size �LD, and
assuming b � LD such that there is room for the vor-
tices between the jets, the threshold relation (3.3) tells
us that �qvortex � �qbarrier � �b. The inversions (5.1)
and (5.3) tell us that the jet velocity-profile width scale
is LD in this case. It follows that Ujet � LD�qbarrier �

FIG. 7. Idealized mass and velocity profiles for perfect PV staircase steps, as determined by PV inversion. Tick
marks are at intervals of y � b � LD. From left to right, the first two profiles are for a single step or mixed zone,
respectively the mass shift or surface elevation change given by (5.2) ff. and the velocity profile given by (5.1) ff.
The remaining profiles are the velocity profiles for two, three, and an infinite number of perfect steps, the last from
Eq. (5.3) shifted by b. Note that the angular momentum changes required to form these staircase structures are
nonvanishing, and are precisely dictated by the PV inversions, or equivalently by Eq. (7.2).
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LD�b � LD�qvortex � Uvortex, and therefore LRh(Ujet) �
LRh(Uvortex) and

b � LRh
2 	Uvortex
�LD . 	6.2


So the Rhines scale as defined here is not always the
same as the jet spacing, though the two length scales
coincide when LD /b � 1.

For vortex-core sizes differing substantially from LD,
the scaling is less simple. This is both because the
thresholds are then somewhat higher than (3.3) and
because, for vortices of given strength �qvortex but core
size K LD, the scaling Uvortex � �qvortexLD is replaced
by Uvortex � �qvortex � core size. However, we still have
a simple relation between b, LD, and LRh(Ujet) across
the whole range of parameter conditions. By putting
(6.1) together with (5.3) we get

�LRh	Ujet


LD
�2

�
b

LD

cosh	b�LD
 � 1
sinh	b�LD


�
b

LD
tanh� b

2LD
�.

	6.3


Figure 8 shows the implied relation between the jet
spacing 2b and LRh(Ujet). The left-hand portion of the
graph gives us the standard result b � LRh(Ujet) for
LD /b � 1, while the right-hand portion recovers the
behavior (6.2) for LD /b � 1.

7. Angular momentum changes due to PV mixing

The PV invertibility principle tells us that a PV mix-
ing event localized in y will produce a definite and un-
ambiguous total angular momentum change �M. The
single-zone inversion (5.1)–(5.2) illustrates that fact
very clearly, as will be shown next. It is one way of
seeing that radiation stresses—most directly and simply
those associated with Rossby wave radiation—must in-
evitably be associated with PV mixing as also shown by
the Taylor identity (see appendix). It also suggests that
PV mixing may be catalyzed by the stresses due to
other wave types.

Consider a conservative PV mixing event like that
required to create a single staircase step or surf zone, in
which the PV is changed by �q(y) where ��q(y) dy � 0.
For the case of a perfectly mixed step created from a
uniform background PV gradient �, the profile �q(y) is
N-shaped with slope ��. Inverting it gives the u(y)
profile (5.1) and the h(y) profile (5.2). The associated
angular momentum change, �M, can be shown as fol-
lows to be proportional to �y�q(y) dy, which is generi-
cally nonzero [e.g., �2⁄3 �b3 for the N-shaped �q(y)].

For the unbounded beta-plane model, in which the
distance to the rotation axis is infinite, it is natural to
define �M as the change in absolute zonal momentum
per unit x distance. For our shallow-water layer of un-

disturbed depth H0 and, say, constant mass density �0,
the absolute zonal momentum per unit horizontal area
is �0[H0 � h(y)][u(y) � f0y], which to quasigeostrophic
accuracy is changed by �0H0�u(y) � �0f0y�h(y) when u
changes by �u(y) and h by �h(y) so that, with

	u � �
		�
�
y, 	7.1


	M � �0�
��

�

�H0	u	y
 � f0y	h	y
� dy

� �0H0�
��

� ��

		�



y
� LD

� 2y	�� dy

� �0H0�
��

�

y�
2		�



y2 � LD
� 2	�� dy

� �0H0�
��

�

y	q	y
 dy. 	7.2


The last expression has an alternative interpretation as
the Kelvin impulse for the quasigeostrophic system. For
its general conservation relation see, for example,
Bühler and McIntyre (2005, section 8).

Notice from the steps leading from (7.1) to (7.2) that
all the angular momentum change is in the mass shift
and none in the relative velocity since �u � ��(��)/�y,
which integrates to zero by virtue of the evanescence of
the PV inversion-operator kernel, K0. That evanes-
cence is reflected, for instance, in the exponential decay

FIG. 8. Relation between jet spacing 2b in a perfect periodic
staircase and Rhines scale LRh � LRh(Ujet) based on jet velocity,
for different values of the Rossby length LD, from Eq. (6.3) rewritten
in parametric form as (LRh /LD, b /LRh) � {s1/2�tanh(s/2)]1/2,
s1/2�tanh(s/2)]�1/2} where s � b/LD runs over positive values. The
relation plotted is an immediate consequence of PV inversion as
shown by Eq. (5.3).
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of the side tails of h(y) � f0�/g associated with (5.2).
The fact that all the angular momentum change is in the
mass shift is one of the peculiarities of quasigeostrophic
theory. So a check on the correctness of (5.2) is to
multiply it by y and integrate (including the side tails),
whereupon one finds that all the terms in LD cancel, as
they must for consistency with (7.2) and the fact that
the N-shaped �q(y) profile is independent of LD. Spe-
cifically,

	M � �
2
3

�0H0�b3 	7.3


for the perfectly mixed step or surf zone. An alternative
derivation of the general result (7.2) is to integrate the
Taylor identity (A.1) with respect to y and t across the
PV mixing event.

We note in passing that channel and y-periodic nu-
merical beta-plane models may have artificial con-
straints on their absolute momentum, which may sup-
press or modify the globally integrated �M changes just
discussed. However, such artificiality is a price often
worth paying for numerical power and convenience.

8. Concluding remarks

The PV staircase, an extreme case of the inhomoge-
neity encouraged by the PV Phillips effect, can arise
when stirring is strong provided also that it is accom-
panied by a suitable radiation-stress field.

One of the simplest examples of such a stress field is
that described in connection with Fig. 1, where Rossby
waves propagate upward on the jet axis, setting up a
vertical Eliassen–Palm (EP) flux or form stress (A.2)
(see note 1), and then refract and break to one or both
sides of the jet causing PV mixing on its flanks. That is
one way to satisfy the Taylor identity, (A.3) below,
illustrating how breaking Rossby waves tend to be ef-
ficient at PV mixing and to produce the familiar anti-
frictional u��� patterns described variously as trailing
troughs, herringbone patterns, chevron shapes, and
so on.

On Jupiter, we may speculate that the eastward jets
may similarly carry upward-propagating Rossby waves
as a significant part of the whole wave–turbulence jig-
saw, helping the stirring and PV mixing on either side to
be efficient, and keeping the associated eddy-transport
barriers, acting as Rossby waveguides, as tight as the
observations suggest they are in reality. The eastward
jets may well have significant roots in the thermally
convecting interior, by virtue of the Taylor–Proudman
effect (expanding Rossby height as the static stability
evanesces beneath the stably stratified cloud layers).
Jostling or nudging by large, ponderous convective ed-
dies, beneath the clouds, could be a significant source of

upward-propagating Rossby waves on those jets and
could take the place of baroclinic instability (see note 4)
as the excitation mechanism whose radiation stress
catalyzes the PV mixing aloft.

Many terrestrial ocean jets can similarly be excited,
and thus self-sharpen, even when not baroclinically un-
stable (e.g., Hughes 1996). This is because such jets
often feel the bottom topography.

Complementing this picture are the barrier-penetra-
tion experiments of section 3, for established staircases,
and the decaying-turbulence experiments of section 4
and Figs. 5–6 to investigate the Phillips effect. Both are
in their infancy, and we make no pretence to having
done a definitive study in either case. We have done no
more than describe a few examples in the hope of il-
lustrating and pulling together some generic points that
are more or less well known. The issues thus high-
lighted are, however, a challenge for future work. The
results are suggestive, particularly the simple barrier-
penetration threshold (3.3) that is found for the most
effective vortices and vortex pairs, with core sizes on
the order of the Rossby length LD. In three-
dimensional, fully stratified problems, such vortices
correspond to those having core aspect ratios on the
order of Prandtl’s ratio f/N, where N is the buoyancy
frequency of the stratification. It is precisely such vor-
tices that are the most robust and stable according to a
number of recent studies (e.g., Reinaud et al. 2003 and
references therein).

In the experiments of section 4 we found a large
range of cases from weakly to strongly inhomogeneous
PV mixing, the latter illustrated by Fig. 6. Progress in
understanding them is bound to depend on finding
ways to analyze and quantify the Rossby wave radia-
tion-stress field that must coexist with the decaying tur-
bulence and catalyze PV mixing to varying degrees—
another challenge for the future, especially as we ex-
tend the work prior to attempting realistic forced
experiments that try to establish quasi-Jovian PV stair-
cases.

Finally, we note again that once a PV staircase is
established with step widths �LD, along with stirring by
the most effective vortices (core sizes � LD), the
threshold (3.3) and the PV inversion results of section 5
together imply that the “turbulent” Rhines scale
LRh(Uvortex) is related to the jet spacing or staircase
step width 2b by

2b � LRh
2 	Uvortex
�LD 	8.1


in order of magnitude.
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APPENDIX

The Taylor Identity

The well-known Taylor identity is valid for fully non-
linear quasigeostrophic motion, and has central impor-
tance by virtue of the way in which it relates PV fluxes,
due for instance to PV mixing, to Rossby wave radia-
tion-stress divergences. For the quasigeostrophic shal-
low-water model it reads


�q� � �




y
u�
�. 	A.1


The overbar denotes the zonal average as before and
primes denote departures from it. The identity follows
readily from the relations (u�, ��) � (����/�y, ���/�x)
and q� � L (��) � (
2 � L�2

D )��, the quasigeostrophic
shallow-water PV anomaly. The term in LD averages to
zero. The original version noted and used by Taylor
(1915) and Kuo (1951) was for the limit LD → �, that is,
for rigidly bounded, barotropic nondivergent vortex dy-
namics.

The generalization to three-dimensional quasigeo-
strophic dynamics is noted here for completeness. It
first appeared in print in Bretherton (1966a, p. 329) and
has also been attributed to Eady via Green (1970). The
Rossby wave radiation stresses are quantified as Elias-
sen–Palm fluxes whose meridional, y, and vertical, z,
components, with the standard sign convention (such
that flux directions correspond to Rossby wave group
velocities when applicable), are

	F, G
 � �0	z
	�u�
�, f0
����N2
, 	A.2


where � is the buoyancy acceleration, N the buoyancy
frequency, �0(z) a background density � exp(�z/
Hscale), and f0 a constant nominal value of the Coriolis
parameter as before. The vertical component G is the
form stress. Then the Taylor identity becomes


�q� �
1
�0
�
F


y
�


G


z �, 	A.3


with the PV anomaly now defined as

q� �

2��


x2 �

2��


y2 �
1
�0





z ��0 f 0
2

N2


��


z �. 	A.4


Equation (A.3) follows in almost the same way as be-
fore, from the standard relations (u�, ��, ��) � (����/�y,
���/�x, f0���/�z). The first-moment Eq. (7.2) for the ab-
solute momentum or Kelvin impulse change continues
to hold provided that, in the three-dimensional case,
one replaces �0H0 by �0(z)dz and integrates vertically
as well as meridionally across the zone of PV mixing.

Consistently with (A.3), G/�0 at a flat boundary rep-
resenting an oceanic upper or atmospheric lower sur-
face can be interpreted (Bretherton 1966a) as a bound-
ary delta-function contribution to ��q�, just above or
beneath which G is set to zero on the boundary. Since
at the boundary � is approximately a material invariant,
it is subject to mixing in the same way as the PV above
the boundary, with the same dynamical significance for
the wave–turbulence jigsaw and crucial, for instance, to
the workings of linear and nonlinear baroclinic insta-
bility including the upward launch of Rossby waves in
the first nonlinear stage of an LC1 baroclinic wave life
cycle. The elegant work of Plumb and Ferrari (2005)
extends the above to cases outside the scope of stan-
dard quasigeostrophic theory, able to encompass
steeply sloping stratification surfaces in, for instance,
oceanic mixed layers and atmospheric boundary layers.
The appropriate set of generalized Taylor identities are
presented in their Eqs. (22)–(27).
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