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Perturbation series are developed and mathematically justified, using a straight-
forward perturbation formalism (that is more widely applicable than those
given in standard textbooks), for the case of the two-dimensional inviscid Orr-
Sommerfeld-like eigenvalue problem describing quasi-geostrophic wave in-
stabilities of parallel flows in rotating stratified fluids.

The results are first used to examine the instability properties of the perturbed
Eady problem, in which the zonal velocity profile has the form « = z+ pu,(y, z)
where, formally, u# € 1. The connexion between baroclinic instability theories
with and without short wave cutoffs is clarified. In particular, it is established
rigorously that there is instability at short wavelengths in all cases for which
such instability would be expected from the ‘critical layer’ argument of
Bretherton. (Therefore the apparently conflicting results obtained earlier by
Pedlosky are in error.)

For the class of profiles of form u = z+ pu,(y), it is then shown from an examina-
tion of the O(u) eigenfunction correction why, under certain conditions, growing
baroclinic waves will always produce a counter-gradient horizontal eddy flux
of zonal momentum tending to reinforce the horizontal shear of such profiles.
Finally, by computing a sufficient number of the higher corrections, this first-
order result is shown to remain true, and its relationship to the actual rate of
change of the mean flow is also displayed, for a particular jet-like form of profile
with finite horizontal shear. The latter detailed results may help to explain at
least one interesting feature of the mean flow found in a recent numerical solution
for the wave régime in a heated rotating annulus.

1. Introductlon

This paper considers some fundamental aspects of the quasi-geostrophic
baroclinic instability problem. Apart from its frequent relevance in laboratory
situations involving slow motions of an inhomogeneous fluid in a rotating frame
of reference, this parallel-flow instability problem yields a theoretical description
of processes known to be important in the earth’s atmosphere. It has already
been studied extensively (see Pedlosky 1964a, Fowlis & Hide 1965). Simple
baroclinic instability theory accounts qualitatively for the way in which many
large-scale weather systems obtain their kinetic energy. For readers not familiar
with the type of dynamics involved, a brief description is given in appendix A.
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274 M. E. McIntyre

Of particular interest are forms of the relevant two-dimensional eigenvalue
problem, (2.1) below, that are non-separable because of the presence.of horizontal
as well as vertical shear in the mean zonal current {u(y, z), 0, 0}. It is precisely
such problems that can be expected to model the interesting kind of simultaneous
potential and kinetic energy transformation known to play a role in the main-
tenance of the mid-latitude westerlies, the associated horizontal eddy flux of
zonal momentum corresponding to a negative Austausch coefficient.

But the mathematical difficulties have for some time remained a serious theo-
retical obstacle. Valuable progress has been made with ‘two-level models’,
equivalent to use of the crudest possible finite differencing in the vertical (Eliasen
1961; Pedlosky 1964b); the important recent work of Stone (1969), using such
a model, will be mentioned later. Another approach that has been used, e.g. by
Eady (see Green 1970) and by Brown (1969a), is to solve for particular numerical
cagses by the use of purely finite-difference methods of relatively high resolution.
These avoid a priori assumptions about the vertical structure, but do not easily
yield generality or insight.

In this paper we present a perturbation formalism (§3) that was developed
in order to provide a flexible analytical approach to the non-separable eigenvalue
problem (2.1). The method is applied to a discussion of the perturbed Eady
problem, in which w(y,z) = z+uu,(y,2), # being the perturbation para-
meter.

The idea of perturbing about a simple form of (2.1) is not new, being implicit
for instance in some unpublished work of Stern & Magaard (see Magaard 1963),
and having also been put forward by Pedlosky (1965). In thelatter’sinvestigation,
first correction terms for the perturbed Eady problem were obtained for small z
by means of a somewhat elaborate initial-value approach, which brings in the
(singular) complete set of unperturbed eigenfunctions in a way reminiscent of
classical perturbation theory. By contrast, the present approach is relatlvely
straightforward, and we can obtain the higher corrections as well, yielding results
valid for a finite range of . An example for which such calculations were carried
out in detail is given in § 7 below. A more fundamental consequence is that know-
ledge of the higher corrections enables us to justify our procedure in a mathe-
matically rigorous way (§4).

The latter point gains added importance in view of the fact that Pedlosky’s
(1965) conclusions on the perturbed stability properties turn ‘out to be in error
(although that, indeed, becomes clear upon comparison with the numerical
results found by Green 1960, for a particular example).

In §5 we re-examine the perturbed stability properties. The main results
have already been predicted by Bretherton (1966«, p. 333), using an indirect but
powerful argument in which the idea of the ‘ critical layer’ plays a key role. Qur

. analysis can be looked upon as providing a mathematically rigorous expression

of, and so a clear justification of, Bretherton’s argument.

In §6 we go on to develop a linear-theory explanation of the prewously
mentioned negative Austausch coefficient, for profiles of the form u = z + pu, (y)
where u,(y} is an unspecified function. The discussion is based on the O(u) terms,
and identification of corresponding physical effects. Evidence that higher terms
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do not change the qualitative picture in cases of interest is then obtained (§ 7) by
computing a sufficient number of terms in two ‘realistic’ examples, for which

U = z+{g :} sin?zry (0 < (y,2) < 1).

Tt is worth mentioning that the results for the first example have recently
been compared, and show excellent detailed agreement, with corresponding
results independently obtained by Brown (personal communication), using his
finite-difference procedure (Brown 1969¢a).

2. The eigenvalue problem

Attention will be focused on a problem that is idealized but adequately
embodies the fundamental properties under discussion. As will become clear,
refinement would be essentially straightforward.

Consider small-amplitude frictionless adiabatic disturbances to a parallel
flow uly, z) of stably-stratified Boussinesq liquid, whose horizontally averaged
buoyancy or Brunt-Viiséli frequency is N(z). The flow is in the z-direction and
is limited by boundaries at z = 0, H and y = 0, L, on which the normal velocity
must vanish; x, 9,z are Cartesian co-ordinates in a frame of reference rotating
about the vertical z-axis with angular velocity }f. A dimensionless combination
of importance in the problem is L

G(Z) Ngﬂz:

which is formally of order unity, expressing the anticipated importance of both
buoyaney and Coriolis forces. (But with our definition of L, numerical values of €
are more like 772 in cages of interest.) Compressibility would introduce no essential
modification provided that H is very much less than the density scale height, and
the presence of a horizontal rotation component will have negligible effect if
H|L < 1. Also, very crudely, one could regard the rigid upper boundary as the
beginning of e.g. an idealized ‘stratosphere of infinite static stability’.
The well known eigenvalue problem for the perturbation pressure

Re ¢(y, z) eFe—e

of a quasi-geostrophic normal-mode wave disturbance can be written in dimen-
sionless form, as

(u—c) [(ewz)z+gpyy_k299.] +gy(y’ Z)¢ = 0, | (2.1&)
(u—c)p,—u,p=0 on z2=01, (2.1d)
g=0 on y=01, (2.1¢)

where the dimensionless wave-number k is real and the complex amplitude
o(y,2) and phase velocity ¢ are sought as eigenfunction and eigenvalue. The
function g,(y, z), a property of the basic flow analogous to the —u,,, of the classical
Orr—Sommerfeld problem, is defined in appendix A (ii), which briefly sketches
the derivation of (2.1). The boundary conditions (2.15) reflect the active role
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that can be played by horizontal boundaries in the present problem, due to the
importance of vertical vortex-tube stretching. .

Since (z—c)~1g, (see (A 6)) is not in general of the form func (y) + func (), nor
(u—¢)~1u, independent of y, the problem is generally non-separable in the co-
ordinates , z. Certain neutral separable solutions (c real) are possible if » is of
the form func (y) x func (z), and S (see (A 6)) is zero, but arenot of greatimportance
in themselves.

As is known from particular solutions, such a system can exhibit more than
one type of instability (Phillips 1963, § 3a), but in speaking of the ‘baroclinic
instability problem’ one is thinking of situations in which the vertical shear u;
is the most essential feature of the basic velocity profile. Because of hydrostatic
and geostrophic (pressure-Coriolis) balance, the vertical shear is associated with
a transverse horizontal density gradient, and thus represents a store of available
potential energy (Lorenz 1955). Under suitable conditions some of this mean-flow
energy can be released by a growing disturbance in the manner described in
appendix A (i), as was first clearly shown by the independent mathematical
analyses of Charney (1947), and Eady (1949) (see appendix A (iii)).

We shall take (2.1) as our starting point. Although, in view of the afore-
mentioned controversy, some care will be taken to construct solutions of (2.1)
in a mathematically rigorous way, one should remain aware that (2.1) is already
the result of several formal approximations. (But it can be noted that our per-
turbation approach could be used as the basis for a mathematical justification
of the latter too, if desired; in that connexion see the footnote to appendix D (ii).)

The assumption of normal-mode form for the solutions needs little discussion
here, because the results we shall be interested in concern positive cases of in-
stability. That the existence of instability in the normal-mode sense must imply
instability in the solution to the general initial-value problem hardly needs’
proof, but in any case the kind of analysis needed is not essentially different from
that given e.g. by Pedlosky (1964¢) and Burger (1966).

3. The perturbation formalism

The convergent perturbation series to be obtained below are based simply
upon the use of a generalized Green’s function (Courant & Hilbert 1953, p. 354).
This device seems more natural, and is certainly much more widely applicable,
than the standard eigenfunction expansions elaborated upon in textbooks on

_theoretical physics. In particular, it does not depend upon a complete set of
unperturbed eigenfunctions; cf. Courant & Hilbert (1953, p. 343), Morse &
Feshbach (1953, p. 1034), Pedlosky (1965, §1).

The problem to be considered in detail in this paper is that for which

U = z+ﬂm1(?/= Z), Qy = /’l’qu(yz Z), ) (31)

where 4 is the perturbation parameter. That is, we shall be perturbing about an
Eady solution, (A 7).

Note from (A 6) that a transverse gradient of the Coriolis parameter, or f-effect,
can be included, as long as 8 can be written in the form gf, within the radius of



Non-separable baroclinic instability 277

convergence of the perturbation scheme, For simplicity, e(z)} will be assumed to
remain constant. But it should be realized that there would be no formal difficulty
in writing € = const. + €, (2), or in perturbing about any other (e.g. a separable
neutral) solution, etc., ete.

Because of the branch points in the k-dependence of the Eady solutions at
k= ky (A 8), it turns out that two cases must be considered separately, namely
k& kyand k = ky.

(i) The case k =+ ky

It seems natural to pose
p @ = Qo+ pp, + 11rps+ ... (3.2a)

Regarding ¢ as the eigenvalue and the other parameters as fixed, one would also

expect that C = Co+ Gy + J2Cy + ... (3.2b)

On substituting (3.1) and (3.2)into {2.1) and equating like powers of 4, a suc-
cession of boundary value problems is obtained, whose details are given in
appendix B. Here we abbreviate the /th problem to

Lig) = I, (3.30)
_ _G% —0.1
D(¢I)_Bi+ ,=BI’ on z=0,1, (3'3b)
(z—cy)?
=0 on y=01, (3.3¢)
N YT
where _ L_@-I—e(ggﬁ—k),
=2 __1
Tz z—cy

Of course I, = B, = 0, so that {p,,¢,} is an Eady mode. For ! > 1, L'and B,
involve @, ..., 1 and ¢y, ..., ¢;,_, only, as can be verified from (B 2).

Now the homogeneous problem complementary to (3.3), for [ > 1, is the same
as the zero-order problem (and its adjoint), and has the non-trivial solution g¢.
This means that the inhomogeneous problem (3.3) has a solution only if the
inhomogeneity {I, B;} satisfies a certain condition of orthogonality to ¢, (more
generally, to the corresponding golution of the adjoint problem). It is that
condition, of course, that determines ¢; at each stage.

What the orthogonality condition must be can be found by formally multi-
plying (3.3a) by g,, integrating from 0 to 1 with respect to y and z, integrating by
parts twice, and then using the boundary conditions and the fact that L(g,) = 0.

Thence Te=1
_ff‘?’oﬂdy dz +fd?/ [%Bl = 0.

Referring to (3.3b) and using the identity (A 13) we canrewrite this as an explicit

formula for ¢;: I—c —l =1
o= U [[gtayae—{ay| o]~ ). (3.4a)

2=

Here @, is normalized as in (A 7). Forl =1 (3.4a) gives the first correction for ¢,
in terms of ¢, only; it will be discussed in detail in §5.
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Equation (3.4a) was derived as a necessary condition for (3.3) to have a
solution. It is also sufficient; when (3.4a) is satisfied a solution is

C—
o= [ [B05 1.0 50 g [an] . 50|~
where ®(y, z; 7, {)is a Green’s function in the genera]ized'sense {Courant & Hilbert
1953, p. 354). Here @ is a solution of

(3.4b)

L(®) = Agyly, 2) goln, ) — 8y —7) 8z — &), (3.50)
D®)=0 on z=0,1, (3.50)
=0 on y=0,1. . (3.5¢)

L and D are understood to operate on {y,z) and 4 is a constant defined so that
(3.5) is soluble. It can be seen that 4 is given by

’ Aﬂqagdydz=”1.

As yet there is arbitrariness in @ and g; to the extent that a constant multiple

of g, may be added. (This corresponds to multiplying ¢ = Z4'g; by a constant,

1+ O(g).) It seems natural in the present context to remove this arbitrariness
by requiring that ¢; be ‘as small as possible’, in terms of a norm such as

ot

The asterisk denotes the complex conjugate. That norm is minimized when ¢,

satisfies
Ufh gr = 0.
Correspondingly, we shall choose & so that, for all 7, &,
 [[owznomw =0 (3.6
® is uniquely defined by (3.5) and (3.8); an explicit representation is given in
appendix B.

In summary, the solution to the perturbed problem is given formally by
{p:c} = {%ﬂ‘% %ﬂ’cz},

where all the terms for I > 1 are defined by (3.4), together with the recursion
formulae written out in appendix B.

~

(ii) The case k = ky.

Equation (3.4a) shows that the series just derived fail if ¢, = %, i.e. at the critical
neutral wave-number k = ky. But expansions in powers of A = g} turn out to

.be appropriate: Cp=gf A A, - (3.7a)

=3+l + A%} +..., _ (3.75)
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where ¢ and ¢} are not to be confused with the previous Ith coefficients in the z
expansions. Although there are some features of interest, the essential ideas are
the same, and the details are relegated to appendix C.

Dependence of ¢, on the lower eigenfunction corrections

As is easy to verify, (3.4a) depends on g, ¢y, ..., ¢_;. Although (3.4a) is the
simplest and most convenient form for computational purposes, it can be
noted that as a consequence of the self-adjointness of L, ¢ may be found in terms
of @y, ..., Py only, where [4I] denotes the largest integer < 4I. That can be shown
by first forming the equation

-4
Jf j§0 {9;(8.3a)_;—q¢,4(3.3a);}dydz,

and then integrating by parts, using the boundary conditions. Alternatively and
more elegantly (L. Segel, private communication; Morse & Feshbach 1953), the
result can be derived from variational considerations. This generalizes a result
given by Joseph (1967).

4, Mathematical interpretation and justification of the formulae

Lissingular at z = ¢,, and so it is necessary to define the meaning of expressions
such as (3.4a,b) when the unperturbed eigenvalue c, is real, as is the case for
k> ky.

That is easy if we assume that %, and ¢,, are analytic functions. The whole
process can then be carried out in a domain & = I'; x I, where I, is the interval

0 <y <1, and T, is a contour in the complex z-plane which joins 0 and 1 and |
avoids z = ¢, (see figure 1). I, could depend on y, and must also be chosen so ;

that %; has no singularities between I', and the real axis (the shaded region).
Once an appropriate I', has been chosen, then (3.4) (and (C 6)) are unambiguous
even for real ¢,. Clearly & can be understood as being defined by (B 3) of appendix
B; it is convenient to suppose that both z and { lie on T',.

Having chosen an appropriate 2 (which need not be complex if ¢, is not real),
one can prove, for |¢| < some finite positive u,, that the ¢ expansion is con-
vergent, that the ¢ expansion is uniformly convergent over 2, and that the
expansions do in fact represent a solution in & of the original problem (2.1). The
proofis quite straightforward but somewhat tedious. It is given in appendix D for
k % ky; the proof for k = ky is similar.

After the perturbed ¢ = ) #'¢, has been found for given g within the radius
0

of convergence, it must then be asked whether any point z,(y) for which #(y,2) = ¢
falls within the shaded region or on the real axis. If so, the eigensolution on &
is generally not the continuation of a solution regular in the physical domain
of real y and z. If not, it is. (That the eigenfunction g, as opposed to the termsin
its representation Xu'p, cannot then be singular in, or on the boundary of, the
shaded region, will probably be obvious to the reader. In any case, it could be
proved using continuation, upon substituting for ¢ (now known) in (2.1a) and
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e.g. for (u—c) g, (known) in (2.13), thus considering (2.1) as an inhomogeneous
boundary value problem for ¢ in which (2—c)~g, can be taken as a known
regular analytic function of z for each y.) In this latter case, ¢ being smoothly
behaved for real ¥ and z in 0 < (y,2) < 1, it must represent a physically
meaningful solution, and we shall speak of an ‘admissible’ eigensolution. }

If the perturbed ¢ happened to fall exactly on the real axis, further discussion
would be needed. However, that possibility seems to be of little interest.

Im(2)
A

Re(z)

F1cURE 1. An example of an ‘admissible’ (for 4 > 0) configuration in the z plane; I',(y)
must be chosen so that u,, as a function of z, has no singularities in the shaded region for
any g in T,. Possible paths of the point z, as u varies are illustrated by the dotted lines.
Note that z,(z) will in general be multivalued, and that that might possibly require extrs
care in the choice of I', for a finite value of x.

5. The first-order instability properties of the perturbed Eady problem

As a first, simple application, we discuss the stability of the mean flow
u = z+ puy, for x < 1 and any sufficiently differentiable function u,(y, ). It will
appear below that the first-order results are qualitatively useful over a fair range
of p values of practical interest, especially for the short waves k>ky (A8).1
Tor k > ky it is also assumed that u; is analytic.

+ When solutions are found that have Im (¢) + 0 and are admissible by our definition,
they must occur in complex conjugate pairs, Im (¢) X 0, corresponding to two appro-
priate choices of I',. One solution is ‘damped * (but not dissipative!) and the other amplify-
ing. The latter solution is the physically interesting one, but to be self-consistent one
should also admit the former under the definition; we emphasize this point only because
confusion about it sometimes seems to occur in the literature. Any non-singular normal
mode of an approximate (e.g. non-dissipative) problem must of course be expected to
represent a physically meaningful approximate solution, in the natural sense that over
a finite time interval it approximates a solution (as opposed to a normal mode) of whatever
are being regarded as the exact equations, e.g. equations with small diffusion coefficients.
See the related discussion by Lin (1961).

t Tt is sometimes said that the basic quasi-geostrophic approximation (appendix A (i1))
becomes invalid at short wavelengths, However, it can be shown that that is not the case;
" the physical reason is that the height scale of the wave (see appendix A (i)}, and hence the
mean flow vertical velocity difference seen by the wave, diminishes as the wavelength
for large enough k. o
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When k # ky, (8.2b) is the appropriate expansion. Referring to (3.4a), we have

k1—cy)2—1 '
G=co+(7(oo—i)TK;&+0(ﬂ2), (5.1)
where, as can be verified from (B 2),
. - 6_1QI1;99% __f [_ U+ (z — Go) U1z o e=1
K= [[ 7Ry g |ay| =20 Al 6
From (A 6), ¢y, is related to u; by
Gy = ﬁl“mm_ulyyi (5-3)

with the obvious definition of the constant £,. Only the zero-order eigenfunction
9o, given by (A7), is involved in this first correction to .
When k = ky, (3.7b)is appropriate. More explicitly, it may be shown (appendix
C) that for k= ky 2 =12 0297
c=3}z [“—g’a—‘ Kw}ﬁ ow, TP e
N
where K, is defined by (5.2), with @, = ¢f’ and ¢, = }, as in (A 10).%

When ¢, is real these formulae must be interpreted in accordance with the
discussion of § 4. The most interesting thing about them is that, in the short-wave
neutral régime k > ky of the zero-order problem, Im (¢) is non-zero in general,
even though ¢, and g, are real. For k > ky the imaginary contribution to ¢ comes
entirely from the half-residue at z = ¢, of the first integrand in (5.2). Taking the

I', shown in figure 1, we hav;,, (.4d) (A13)

K2(1—cp)2—1 1
= 0_) D Joﬂﬁ‘l{qu¢§}z=cody+0(ﬂ2), when k> ky. (5.5)

Im(c) =—m (eg

Note that, to first order, Im (c) depends on g,, at z = ¢, only. Whenever (5.5) is
positive, we have an admissible amplifying mode (as well as its ‘damped’ conjugate,
by the conjugate choice of I;). If (5.5) is negative, there is no admissible normal
mode to which @, s a first approximation.

The half residue can be given an illuminating physical interpretation as a
critical-layer quasi-potential-vorticity flux, following the discussion given by
Bretherton (1966 a). His argument shows clearly why instability is to be expected
whenever f #4,, P4 dy has the appropriate sign at the unperturbed critical level
2 = ¢q. : : :

The factor multiplying the integral in (5.5) is positive for the lower wave
¢, < %, and negative for the upper wave ¢, > 4, as can most easily be seen from
(A 13). Therefore, the lower wave is destabilized by a positive weighted-average

1 The formula (5.1) could have been obtained very simply, although not rigorously, by
the Tollmien argument (Lin 1955, p. 122). One then has to assume the existence of neigh-
bouring eigensolutions. (Conversely, the present type of analysis justifies the Tollmien
argument). It is possible to derive (5.4) in a similarly simple way if one is prepared to
assume also, writing ¢ —} = Ak, x), that (9A%/op), = — (0A%/dk) , (Ok[Op) 5 &b the singular
point {k = kn, # = 0}. (The latter relation is thus true, but its truth does not seem
obvious a priori.)
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quasi-potential vorticity gradient f HE g1y 5=, SIN? My dy, such as might, especi-
ally for m = 1, be associated with a honzontally-get -like profile. The upper
wave is destabﬂlzed by a negative gradient. ,

With regard to the interpretation of (5.4), it is evident that in virtue of the
two sign possibilities in (5.4) for each I',, there is always, in general, exactly one
conjugate pair of admissible solutions at k = ky. An exception occurs when
Ky is real positive (which cannot be so unless f gy, 8in?mry dy = 0 at z = }).

These results and the related arguments of Bretherton (1966a) greatly clarify
the connexion between baroclinic instability theories with and without ‘short
wave cutoffs’; see also Bretherton (19665). (This connexion, or seeming lack
of it, had puzzled many investigators in the past.) They also show that the con-
clusion stated by Pedlosky (1965, abstract), that ‘only the vertically anti- *
symmetric and horizontally symmetric component of the velocity deviation
affects the stability of the flow’ (to O(x)), is incorrect. As can be seen from our
discussion, the vertically (and horizontally) symmetric component of ¢,,, and
hence of u, in general, is also involved, at short wavelengths.t

- Examples

It is of interest first of all to apply (5.1} and (5.4) to the simple case u, = 0,
14, = B = const., for comparison with the results of Green (1960; see also Garcia
& Norscini 1969). A comparison is presented in figure 2 for ue™1q,, (= ¢718) = 1.
The y-dependence has been suppressed by replacing sin?my by 1, and setting
m = 0 elsewhere, 50 as to correspond to Green’s y-independent formulation. The
sign of ¢,, is positive throughout the flow. Accordingly, the lower wave is de-
stablized and the upper wave disappears. The first-order formulae are quite
accurate for this finite perturbation, except at the longer wavelengths and, for
Re (c), at k& = ky. As can be shown from symmetry, the first-order change in
growth rate is zero for k < ky.

Tt is not surprising that perturbing about the Eady solution does not yield
the long-wave phenomena discovered by Green, since the f-effect is dominant
in these very long waves, and cannot be regarded as a perturbation. Indeed, it
may be verified in general that (5.1) is not uniformly valid near x = 0, the first
correction behaving like x—2. The ‘critical’ x (cf. Garcia & Norscini 1969) is,

+ Nor, it should be added, does the statement appear to be true for the long-wave end
of the spectrum considered in Pedlosky’s (6.6). It certainly seems inappropriate, in
prineiple, because of the fact that the perturbation method is not uniformly valid in the
limit of small total wave-number «, as will be remarked upon shortly. The corresponding
results of Gresn (1960) and Garcia & Norseini (1969) seem, in & practical sense, a sufficient
counter-example. (Pedlosky’s analysis does include the f-effect, via & trivial modification,
and hence should relate to Green’s problem for small £.}

It should perhaps be pointed out that the argument given in § 5 of Pedlosky’s paper
appears to be in error (F. P. Bretherton, private communication): It does not seem to be
8 stra.lghtforwa.rd matter to produce a corrected version. For instance, suppose that
(cy» €%} is the conjugate pair of admissible perturbed eigenvalues that is found in general
at k = kv, as was indicated above. Then (c¢f. (3.5), etc., of the paper in question) the
quantities — k2 chN, —ik(cy +c},), are not regular analytic functions of 4 at £ = 0 and
k = ky, except in certain speecial cases. That can be seen immediately from (5.4); see also
appendix C.
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however, qualitatively indicated by the condition Re (¢,+ ;) = 0, even though
the O(g) change in Im (¢) is zero. Note that if the y-dependence is reintroduced,
x cannot approach zero; the limit x— 0 implies infinite zonal and meridional
length scales, and so is not of very great interest in practice. (See footnote §6.)

0-5 ] I Z 1] I
' Eady, eq. (A7)

04
Eq. (5.9~

03

Re(c)

¢2

o1}

03

x Tm (c)

01}
‘Eady,eq. (A T)

]

10 20 ¢ ¥ky 30 40

Bcaled wave-number & = e~k

Fi1Ggure 2. Comparison of first correction results from (5.1) and (5.4) with some numerical
results of Green (1960}, for u = 2z, ¢ = 1, m = 0 (see text). Upper graphs: Re(c); lower:
scaled growth rate « Im (¢) = e~3% Im (c). Note that the first correction to the growth rate
is zero for k < ky, but not for k = kx(@) or k > ky. For accuracy of comparison, the
graphs of Green’s results have been re-drawn, using his original data; in the case ¢1f = }
(not shown) the agreement at short wavelengths is even closer, upon correcting an in-
accuracy in Green’s corresponding published figure (op. ¢if., p. 242; Green, private
communication).

The formulae are illustrated further by the calculations presented in figure 3. |
There =0, m=1, ¢=9, and (a) u = 2,(1 —2y3) and (b) » = z,—y%, where
_%): zs=(z_%)' ‘
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In the first example, (a), it happens that g, = 0 at z = }. There is a critical
neutral mode (which, incidentally, is a separable solution). The corresponding
wave-number ky in figure 3 was estimated from the formula

16K,

kR = ki —
N 2
&y

1+ 0(?), (5.6)

which can be established by the perturbation method (or again, obtained heuristi-
cally by the Tollmien argument). The perturbation formulae yield no admissible
perturbed normal modes for k& > ky, at O(y).
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Wave-number k E.N.P.

Fiaure 3. Examples of perturbed growth rate and phase velocity curves for the profiles
(@) u = z,{1-2y%)

- £ H < »
®) u = zs_y‘i 1< (4, zu).\ 3

calculated from (5.1), except at the Eady neutral point (E.N.P.}, where (5.4) and (5.6)
were used (@), Note that £ = 0 means that £ = ¢tn, not « = 0. In theso calculations
efa® = 0-912, and m = 1 (gravest mode).

That probably means, in this example, that there are indeed no eigensolutions
for k > ky, but that unstable modes exist for & < ky even though the Eady
neutral waves do not serve as first approximation to some of them. This tentative
interpretation is confirmed by perturbing about the neutral separable solution
(McIntyre 1967).

The second example (b)-has a non-zero potential vorticity gradient at z, = 0
as well as elsewhere. In this respect it is a less special case. The short wave in-
stability appears in the same way, and for the same reason, asin Green’s problem.
Again, the correction to the growth rate is zero for k < ky, by symmetry.

Ofu)
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6. The tendency of baroclinic waves to gemerate a counter-gradient
momentum flux '
Consider a mean flow that is baroclinically unstable when g = 0 (¢ > 72/4oy;

see (A 8)) with horizontal shear that is independent of height:

u(y, 2) = z+ pu(y).
} (6.1)

Then (5.3) reduces to G1y = B1—Vryy-

This includes the cases 4 = z+ (0-4, 0-5) sin? 71y examined in detail in § 7, which
bear sufficient qualitative resemblance (although that point should not be pushed
too far) to zonal mean profiles both in the atmosphere (Lorenz 1967) and in
laboratory analogues (Williams 1969; figure 75, ¢ below) for one tohopeforinsights
that are heuristically useful. For this mathematically simplest way of introducing
horizontal shear it will prove easy to see, in quite an elegant degree of generality,
its first-order effect on the horizontal wave structure and the associated momen-
tum flux or Reynolds stress component, — pu'y’.

The result that will be obtained below could be simply expressed by saying
that, to first order, the horizontal phase of a gravest (m = 1) unstable Eady mode
is distorted in the horizontal by the differential advection u,, in the ‘obvious’
sense (see figure 4), and that that effect is guaranteed to predominate, in any
given case, provided € is greater than some number ¢, (> m2f4a) formally of
order unity. (This last form of proviso is always sufficient, but is not necessary
in all cases, in particular when %, has the simple form ay*+ by implying that ¢,,
is constant. Since e occ L2 one may think of € > €, as meaning that the wave is not
too closely constrained laterally.)

The result and its physical interpretation are not really obvious without the
analysis, since the instability mode involves a subtle balance between advection
and propagation effects. (Recall in that connexion that for a barotropic, or
classical inviscid shear instability, the phase lines bend oppositely to the ‘obvious
way’.) The perturbation method permits an unambiguous discussion of how
that balance is altered, under various circumstances, by introducing horizontal
shear. ,

A horizontal structure of the kind illustrated in figure 4 is of interest because
the associated Reynolds stress - pu'v’ transports z-momentum against the
mean gradient u,, as can be seen immediately from figure 4c. Such a process
is known to be important in the large-scale atmospheric zonal momentum balance
in middle latitudes (Phillips 1963, p. 152).

The trend revealed by the O(u) terms will be borne out by the finite x calcula-
tions for u, = sin®my presented in §7.

Before turning to details, we should point out that the stress — pu'v’ is not
the only significant mechanism of zonal momentum transfer, in the type of
rotationally dominated flow under consideration. This point will be discussed
in §7. It is true, however, that for such flows the vertically averaged momentum

transfer is described completely by the vertical average of —pu's'.
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The expression (3.4b), with ! = 1, may be written

5= [[ G0 0= f T anax

>

_ —_ t=1
+ f dn [@5%(% 0) “‘T{iﬁfy ‘o) ““]H

= @it 1m (6.2)

say. We are perturbing about an unstable wave, with & < ky, and the expressions
are uniformly valid in the real, physical domain.

L = DL

—— el

e St

(a) y-dependence (h) Total (c) Disturbance
of velocity profile streamlines streamlines

FIGUBE 4. Schematic diagrams representing the wave pattern in some given horizontal
plane, for two hypothetical mean-fiow velocity profiles w = 2+ pu,(y) whose y-dependences
are depicted on the left.

In virtue of (A 2) and (A 5), the lines of constant phase in figure 4 are the same
a8 the lines of constant phase of Re {@ e~} in a horizontal plane. The shape of
the latter is given by the y dependence of —ph(g), = —ph (po + py) + O (1%,
at given z. It is convenient to consider the phase of (¢, + pup,) relative to the phase
of @, the latter phase being independent of y. Call this relative phase #®; then

*
10(,2) = P (@ + ;) — Ph. () = ﬂl‘iﬂlg'——jflhowy (6.3)

Consider the gravest mode m = 1. Take u1.= u,(y), and substitute (6.2) into
(6.3). The boundary contribution — @5 to — O, arising from the second term in
(6.2), may be written, using the form (B 3) for @ and recalling (A7), as

Im (g5 ¢15)
— P, =" L0
B |%|2 2
1

= 7Tyﬂgzﬁ’%(z) C, sin nmry + fune (z) + O(p), (6.4a)
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where C,=2 j [, (n) sin 7] sin nary dy, (6.4b)

Xi(2) 06 et
and bale) = Im[l?ﬁ(z”Z[ (e ¢) (€ Co)? ] } (840)

the second (and irrelevant) contribution to (6.4a) being the n = 1 term.

Now if all the 8, were positive and equal, (6.4a,b) would show atoncethat — @,
at each height 2, would be exactly proportional to ,(y) (to within an additive
function of z).

The 6, are not equal, but it is possible to show after some manipulation of
(6.4c), with the use of (B 3b) and (A 15), that for k < ky and given ¢, 2,

6y, > 03> 6, > ... > 0. - (6.5)

In words, the y-dependence of — ®p s quahtatwely similar to, but more ‘ smoothed
out’ than, the y-dependence of u,, for any sufficiently simple u;(y). Note also that
oDg/oy = 0aty = 0,1, as indeed must be true of 40/dy because of the boundary
conditions. (In establishing (6.5) we use among other things the fact that

p-2—p-leothp <0, and d(p—2—p~* cothp)/dp > 0 for p > 0.)

The remaining contribution to ®, namely ®;, is given by another expression
of the form (6.4a) with, say, CL, 61 instead of C,,, 8,. The C] are given by (6.4b)
with u,,, instead of %,, and @ ”

7o) — g1 Xit? n X1

OI(2) = e Im{ixl(z”z f @5 8) g_cﬂdg}. (6.6)
Let u,(y) be given, such that C, sinny (% 0) and ZC; sinnmy are uniformly
and absolutely convergent (a very mild restriction), and either let «; be held
constant such that Im (c,) + O or, alternatively, fix attention on the fastest
growing mode. Then we can prove that, uniformly in z, (max, ®;—min, ®;)/
(max, @5z —min, ®z) = O(c!) as ¢ > co. This can be interpreted as implying
that, for € > some ¢, independent of z, the qualitative result obtained for @5 also
applies to @, as was to be shown. (Here one starts by establishing that, as
¢ — o0 under the stipulated conditions, AL = O(1) uniformly in = > 2 and =z,
whereas, for any given »n > 2, 6, > ex a positive quantity dependent on # but
independent of ¢,2.)1

Note that the 4, contribution in (6.2) that gives rise to @y does come from
a term representing advection, by the mean flow, of the wave pattern; more
precisely, of the disturbance ‘boundary potential vorticity’ (Bretherton 19664,
§3). '

We did not investigate whether or not ®; actually does tend to oppose @
(as far as the y-dependence is concerned). A few numerical calculations suggest
that, when u; = sin?my, ®; does oppose @y, at some but not necessarily all

t We remark that the singular limiting behaviour of @ can be thought of as reflecting
the physical unreality of coherence over width L of an Eady mode (A7) when L>NH/f,
the dominant zonal wave-length. Even the slightest amount of horizontal differential
advection g, (y) will disorganize such a mode if the channel width is too large; conversely,
if there are modes in the presence of slight horizontal shear, (A7) will no longer represent
a first approximation to any of them (cf. Stone 1869). The same remark a,pphes to the
singular Iimit & - 0 mentioned in §5.
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heights 2. It is noted here that the part of ®©; due to an O(u) f-effect is y-inde-
pendent and therefore irrelevant. Also, if u, is of the special form ay?+ by, then
all of ®; is y-independent and so irrelevant.

7. Some finite-p. results, and the effect on the mean flow
A pertinent example of the simple type of profile discussed in §6 is

u = z+usin®my. (D

We take 8 = 0, ¢/m* = 1-62 (¢ = 16), and evaluate a number of terms of the series
defined by (3.4), etc., for m = 1 and &k = k;,, the zonal wave-number at which
the zero-order solution (A 7) has maximum growth rate & Im (c,) for the chosen
value of e. From appendix Af(iii), kp = 6-117, x = 1-719, ¢, = 3+ 0179,
Foe Im (cg) = 1-09.

The first few terms of the ¢ expa:nsmn are found to be

¢ =05+017% + 05914 —0-110iu2 + 0-0814% — 0-193ius+....  (7.2)

Thus the growth rate kj, Im(c) is reduced by O(u?), and the phase velocity -

is increased. (Most of the O(u) contribution to the latter, however, is merely:
a consequence of the increase in the average u as u increases.) Presumably the
wave we are considering is not the dominant wave for the modified profile.
But the discussion in §6 did not depend on the growth rate being maximized
with respect to k, and there seems no general reason to believe that any essential
features will be lost.

The ¢ and ¢ expansions were summed for x = 0-4 and g = 0-5, giving, in
particular, ¢ = 0-746+0-156; and ¢ = 0-82;+ 0-14,5 respectively. For com-
parison, truncation to the terms exhibited in (7.2) gives ¢ = 0-742 -+ 0-156¢ and
¢ = 0-806 4 0-139 respectively, which already come close. Eleven terms were
actually calculated, but the last few terms were not, and did not have to be,
obtained very accurately. (As one might expect, the higher eigenfunction cor-

rections take on an increasingly complicated spatial structure.) Their main use
was as a check on convergence, which appeared safe to an accuracy of 1 or 29/

for the u = 0-4 case,} although less good when s = 0-5. Only the # = 0-4 results
will be presented in detail; those for 4 = 0-5 are very similar.

t The independent finite-difference calculation by Brown mentioned in § 1, for 4 = 0-4,
was doneon a 20x 40 (0 < y < 3, 0 < 2z < 1) grid and agrees with our g = 0-4 results to
better than our roughly estimated accuracy. His ¢ agrees with our value (0-746 +0-1567) to
three figures. The more stringent test of fitting |@|,.., and then comparing detailed results
for —{u'v’), gave [ — (U )ylne = 80-3 (cf. our value 81-0, 19, higher) at bottom centre,
and, at top centre, — (u'v’), = 88-9 (cf. our value 38-8). The contour printout from which

the contours in figure 54 below were drawn has a resolution of 41 x 21 points for the half

space, and the contours it defines are consistent with Brown’s grid point values at each
point except for a negligible (0-2 9%, of max.) inconsistency at the point 80y = 5, 20z = 18.

It should be pointed out that Brown’s calculation shows one thmg that ours cannot,

_ namely that the wave under consideration is in fact the fastest growing quasi-geostrophic
instability at the given value of k. (Brown’s method amounts to integrating the linearized
Fourier-transformed initial value problem.)

[ ™ e
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For p = 0-4 the dimensionless growth rate is ky, Tm (¢) = 0-95;, and figures 5a
and 5b show the contours of modulus and negative relative phase of ¢(y, z). The
dotted line is the mean-flow isotach for which » = Re (¢}, i.e. the critical ‘level’.

Figure 5b is of particular interest. The surface represented by the contours can
be thought of as a constant-phase surface in physical space, the z-axis being
directed out of the paper, for disturbance pressure or streamfunction ¥ or,
equally well, transverse velocity ¢ = i,. The characteristic forwards—down-
wards slope is evident (cf. figure 8), indicating that the mode is still basically
a baroclinic instability, as one would expect. But for a pure Eady wave the phase -
contours would exhibit no other feature, being horizontal straight lines.

1-05,

© v,
Figure 5. Distributions in the meridional or yz plane of quantities associated with an
amplifying wave on the mean flow u = z+O-dsin’my; =0, ¢/72 =162, m =1,
% = kar = 6-12. In (a), (¢), and (d), the contour values are given as fractions of the maxi-
mum (dimensionless) value, shown on the left. The latter corresponds in each case to
normslization as in (A 7) of the zeroth approximation ¢, The dimensionalizing scales
may be deduced from appendix A (ii). In (d), the eddy contribution to du/éf, and (c}, the
transverse horizontal eddy flux of heat (i.e. buoyancy), the values are understood to be
multiplied by the square of the actual (small) amplitude, times a factor exp {2k Im (c)t}.
The thin dotted line in each diagram is the locus of points (y, z) such that u(y, z) = Re {¢).

The actual structure in the horizontal is of the same general nature as that
given by the first correction term (§ 6). The resulting Reynolds stress component
is indicated by figure 5d, which plots the convergence — (W)y or associated
contribution to the zonal momentum tendency u,. It is positive where the mean
flow is already strongest. ' _

Figure 5¢ shows the dimensionless transverse horizontal eddy heat flux vyl
It is in the positive y-direction, i.e. down the mean gradient, reflecting the fact
that the growing wave, being a baroclinic instability, is drawing on mean flow

potential energy.
19 ‘ FLM 40
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The sharpness and prominence of the maximum at z = 0, y = } in figure 54
is a higher order (finite 4) effect; in that respect the results go beyond what could
have been expected from § 6. The recently published results of Brown (1969a),
for a compressible atmosphere on a g-plane and a more complicated % profile in
which the horizontal shear increases with height, show a behaviour that is
gimilar in at least some respects. (Note the z-dependence of the y-average of
Brown’s C(K,, K,} = —u(w'v’), shown in his figure 5, in conjunction with u as
given by his figure 1 and equation (3.1).)

The zonal momentum tendency

Although calculations of —(u'v’), are suggestive by themselves, they do not
actually give the second-order (in wave amplitude) rate of change of u, even
though — (u'w’), is negligible within the quasi-geostrophic approximation. To
find u, one must also take into .account, explicitly or implicitly, the Coriolis
force due to the slow mean meridional circulation that arises ag a response to
the strong dynamical requirement that mean-flow geostrophic and hydrostatic
balance continue to hold (Eliassen 1952).

Calculations of u, and of the stream function E for the mean meridional
circulation have been carried out. Their gross features are very much as would
have been expected from the pioneering results of Phillips (1954) and Eliasen
(1961) for the cruder two-level model. The mathematical framework involved
is much the same as in those papers; details are given elsewhere (Meclntyre
1967).

For comparison with the eddy contribution — (u'v'), to it, u, for the case
% = z+0-4sin®my is given in figure 6a; figure 6b shows the associated E (see
caption for details); note that the main part of the latter is thermally indirect.t
Again, the results for x = 0-5 are qualitatively similar. -

The distribution of u, (figure 6a) is recognizably similar to that of the eddy
contribution (figure 5d). It is still positive around g = %, but considerably
reduced at the top, ¥ = %, z = 1, because of the Coriolis force associated with E.
The curiously sharp maximum at y = %,z = 0, i8 present also in the distribution
of .

This feature assumes considerable interest when we look at the mean zonal
velocity field found in a recent numerical solution for the wave regime in a heated
rotating annulus (Williams 1969). This is reproduced in figure 7¢ (see caption for
details). If our result of figure 6 is a representative one, it shows in particular that
baroclinic waves would initially tend to bring about a sharp peak in the horizontal

+ This corresponds to a small positive rate of transformation of zonal mean kinetic into
mean available potential energy, C(K,, A,) (in the notation of Brown 196%a) = 4 0-4,
per unit zonal distance, in dimensionless units. Calling the disturbance energies K, and 4.,
the other customarily-defined energetic quantities have the values C(A4, 4,) = 14+,
O, K,) = 63, C(K,, K,) = 1055 24,00t = 8 OK,[08 = 53y, 04,/00 = —14, and
8K ,jot = +0-6,, so that the waves are bringing about a net éncrease in zonal mean kinetic
energy, although at a rather small rate in this example. One might expect a greater rate
at larger horizontal shear. Similar energy transformations are known to take place in the

westerly wind systems of the earth’s atmosphere.




