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dependence of u near the bottom centre of the cross-section. That is exactly
what is seen in figure 7¢; notice the kinks in the isotachs. It should also be men-
tioned that the finite amplitude waves found in the numerical solution are indeed
very similar in spatial structure to the baroclinic waves of linearized theory
(Williams, op. cit.).

It would be interesting to extend the caloulations to incorporate the Ekman
suction due to a lower frictional boundary layer. That would be straightforward
(Barcilon 1964), but has not yet been done for this model (although the more
sophisticated model studied by Brown 19695 incorporates such an effect, among
many others). A significant gain in meteorological realism may however require
other refinements as well, including non-linear effects (Smagorinsky 1964, p. 3;
Thompson 1959, §1).
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Figuse 6. Effect of the amplifying wave on the mean flow, for the same case as in figure 5.
{a} Dimensionless rate of change u; of the mean zonal momentum. (&) Streamfunction E
of the associated mean meridional eirculation (w = B, v = —&,). The contour values are
to be understood in the same sense as in figure 5. The dimensionalizing scale for E is
Ro HU, x (amplitude)? x exp {2k Im (¢) #}.

To relate the above results to the large scale motions of the atmosphere, note
that if L is formally identified with 40° of latitude (although £ = 0 in these
calculations) and H = 10km, and if the wave amplitude is such that the north—
south velocity has amplitude 10msec— at the ‘tropopause’ and 12mesec! at
the ground, then u, has respective values of 0-7 and 5-6 msec—* day—2. This is of
the right order of magnitude to be invoked as a partial explanation of the
maintenance of the westerly winds (against the frictional retardation that is not
included in our model). The zonal wavelength is about 4500 x 277k, = 4500 km,
and if the vertical shear of the mean flow is U/H = 2-5msectkm—%, then the
doubling time is (In 2/kIm(c)) (L/U) = 1-5day. -

8. Concluding remarks _

The perturbation method has proved to be a powerful tool, having permitted
a significant degree of generalization of our precise mathematical knowledge of
the non-separable problem (2.1), (appendix D), the computation of accurate
and physically interesting solutions to it (§7) and, most important, physical
insight into aspects of the processes it describes (§§ 5, 6), through interpretation

of the first correction terms.
19-2
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(c)

Figure 7. Contours of the (steady) zonal averages of the meridionsl circulation (Stokes
stream function), temperature, and zonal velocity in the regular wave regime, with wave-
number 5, of convection in & rotating annulus, from a numerical solution obtained by
Williams (1969). The inner eylindrical cold wall # = 2 em (r' = 0) is on the left of the
meridional cross-section and is held at 17-5° C; the outer hot wall r = 5em (' = 1) on
the right, is held at 22-5° C. The contours are evenly spaced, between —0-05347 and
0:01759 cm? see—! in (a), and between —0-1090 and + 0-3027 cm sec™! in (¢). The thermally
insulated top and bottom boundaries are 3 cra apart; the top is stress-free while all the
other boundaries are no-slip. The rate of rotation is 0-8 rad sec~), and the viscosity,
thermal diffusivity and expansion coefficients are 1-008x 10-2 cm?®sec, 1:420x10-°
cm? sec-1, and 2-054 x 10—4 °C-1,
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The versatility of this kind of method, within its range of validity, is not con-
fined to the present problem; it is formally capable of handling any non-singular
perturbation to any well-posed conventional, or unconventional, differential-
equation eigenvalue problem. In the present problem, for instance, one could
incorporate the corrections to (2.1) representing higher approximations to Euler’s
equations of motion, as has recently been done for the non-geostrophic effects in
an independent study by Derome & Dolph (1969). In the latter type of connexion
especially, the automatic elimination of physically different modes from con-
sideration (e.g. inertia—gravity waves) is often an advantage, rather than
otherwise. ‘

Aswell as the calculations of § 7, the results of § 5 on perturbed stability proper-
ties bear upon the theoretical interpretation of the baroclinic wave motions
found in the heated rotating ennulus experiments (Fowlis & Hide 1965). The
lack of a well-defined inviscid short wave cutoff for a wide class of profiles u(y, z)
(as in (b), figure 3) shows that the concept of an inviscid limit for the so-called
upper transition curve is probably not well-defined theoretically. (It should be
mentioned that, worse still, recent theoretical considerations relevant to the
symmetric régime above the transition curve have indicated that the inviscid
limiting behaviour of the basic symmetric flow itself is exceedingly pathological
in many cases of interest (see McIntyre 19692).)

Two points are worth making about the non-uniform validity over 0 <2< 1
of the ¢ representation when k > k. One is that it is possible, although cumber-
some, to modify the perturbation scheme so as to give a uniformly valid repre-
sentation, if ¢y and ¢; are allowed to depend on g (McIntyre 1967, p. 202). We then
lose the convenience of having true power series in u. The otheris thatin any case,
the non-uniformity resulting from the present scheme may be quite mild in
practice, and the ¢ representation still useful. For a recent exploitation of that,
see McIntyre (1969¢).

In §6 we discussed the first-order effect of the horizontal shear of a profile of
form u = 2+ uu,(y) upon a growing Eady wave, and in § 7 we presented numerical
calculations to show that the O(x) trend persists up to g = 0-5 for the case
%,'= sin?7ry (0 < y < 1), and that it does in that case give a qualitative idea of
the actual mean flow change. Differential advection by any given reasonably
smooth u,(y) always brings about an O(u) eddy stress that transports zonal mo-
mentum against the mean flow gradient u,,, if the motion is not too closely con-
strained laterally. (But there is at least one kind of profile, namely parabolic
y-dependence, for which the latter proviso is not necessary.)

A qualitatively similar behaviour of the eddy stress is a feature of the recent
results of Stone (1969) for a model whose lateral constraints are deliberately
made ‘slight’; his basic approximation scheme, in contrast to ours, requires u,
to be small at the outset, via an assumption that the y-stale of the basic flow
u(y, z) is large (as in Miles 1964). Here ‘large’ implies comparison with the scale -
NH[f of the fastest growing waves, which emerges naturally as a y-scale, as
well as an z-scale, from Stone’s analysis. His velocity profiles are different from
ours, the horizontal shear being confined to the upper half of the two-level model
used.
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TFinally, it should not be forgotten that by our particular choice of zero-order
solution we have confined our attention to & particular kind of instability. The
reader is referred to Brown (196%4) for some interesting results not subject to
that restriction.
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Appendix A. Theoretical background

(i) Dynamics of the baroclinic instability
The following brief description is not novel, nor is it intended to replace dis-
cussions such as those given by Bretherton (1966 b) and, from a somewhat
different point of view, by Holmboe (1959). But it quickly makes the instability
plausible, and gives a substantially correct feel for the dynamics.

As was said in §2, the fluid is stably stratified with buoyancy frequency N,
~ but possesses available potential energy agsociated with a small slope (22/y), of
the lines of constant density in a meridional or g2 plane. To fix ideas, suppose
first that (8z/dy), is positive and constant.

Imagine an initial disturbance involving a small transverse horizontal velocity
o with a wave-like z-dependence, wavelength 2nL,, say. 1f, hypothetically,
buoyaney forees represented the only constraint on the disturbance, fluid ele-
ments drifting to the left or to the right of the main current would just tend to -
move along the sloping constant-density surfaces. But other effects are of course
present; it is only because of one of them, the Coriolis force, that the undisturbed
constant-density surfaces can slope at all. If these other effects were such as to
make fluid elements move more nearly horizontally, i.e. on paths with positive
slope less than (9z/8y),, then potential energy could clearly be released. The
buoyancy force could do work against whatever was causing the fluid particles
to move on their shallower trajectories.

Now the instability is possible because sideways-drifting fluid elements can
indeed be made to move along such paths, in the gimple situation we are con-
sidering, by a combination of two things. The first is the presence of rigid
boundaries that are either horizontal, or nearly so, with slope less than (22/2y),-
The second is the resistance to horizontal divergence that arises from a sufficiently
strong Coriolis effect f; this ‘potational stiffness’ has the effect of making the
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kinematical constraint due to a boundary felt throughout a substantial depth
(oc f) of fluid (although not in the simple Taylor—Proudman sense appropriate
to a homogeneous fluid). The penetration height scale is in fact fL, [N (Walin
1969).

Note that if (9z/8y), were allowed to vary with height, a level where (92/y),, is
relatively small could play the same role as a rigid boundary (see Green 1960,
§8; Mclntyre 1969¢). ‘

In either case, it is the resulting kinematical-rotational constraint that gives
rise to the pressure field against which the buoyancy force is enabled to do work.
From the point of view of vorticity, the buoyancy force can be thought of as
slowly stretching or compressing the very strong tubes of absolute vertical vor-
ticity of the rotation f, the effect of which is described by the dominant term
fow/éz in the vertical vorticity equation.

The work done by buoyancy, then, appears as kinetic energy of the horizontal
relative velocities associated with the resulting ‘spin-up’ relative vorticity. To
a first approximation, the Coriolis force does the actual accelerating. (One should
note the complete contrast with e.g. Solberg’s symmetric baroclinic instability
(see Mclntyre 1969a and references), a type of essentially non-geostrophic
sloping convection in which buoyancy can contribute directly to the acceleration
of a fluid element.)

The horizontal velocities produced by vortex-tube stretching can indeed re-
inforce the original disturbance, giving exponential growth, provided that there
is an appropriate phase change with height. It is found that the surfaces of con-
stant phase of + must slope forwards—downwards, so that dzféx < 0, i.e. they
slope in the sense ‘opposite to that of the velocity profile’. To see this, and to
understand among other things the necessary role of differential advection by
the vertical shear u,, a more detailed description is needed (see e.g. Bretherton
19665).

(ii} The basic formulation
This is well known (Phillips 1963; Pedlosky 1964a) and will be sketched only
briefly, for the Boussinesq liquid case. First, the hydrostatic and geostrophic
approximations are made. The latter signifies an approximate balance between
horizontal pressure and Coriolis forces, the condition for which is formally ex-
pressed by the smallness of the Rossby number,

Ro=U[fL <1, (A1)

where U is a characteristic horizontal velocity and L a horizontal length (taken
for convenience as the channel width, in the present problem). The time scale is
assumed 2 L/U. In this approximation the departure i from the horizontally-
averaged hydrostatic pressure becomes a stream function for the dimensionless
horizontal velocities, after ¢ is made dimensionless by the scale fp, UL, where p,
is an average density for the whole (Boussinesq) fluid. The approximate velocities

(scale U) are then | w=—iy, v=, (A 2)

in the x and y directions respectively. The vertical velocities are small of order
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(RoH|L) U, but important because of vortex-tube stretching. We assume
¢ = f2L?/N2H? ~ 1, in the formal limit Ro— 0 implied by (A 1).

Under all the above assumptions it can be shown that N2, and thus ¢, can be
taken as a horizontal and time average and thus as a function of height z only,
and that the vorticity equation for inviscid adiabatic motion can be reduced
to a single approximate equation involving the vertical component only of the
dimensionless absolute vorticity, Ro=1+ ..+ ¥, + O(Ro):

(B Vi + V) BB+ Yot i () = 43)
The e term represents the stretching of vertical vortex tubes. The vertical velocity
is related to i through the adiabatic equation. To sufficient accuracy,

w= _e('a%_l[ry_a%-i'gkm%) T)b-z' | (A4)

The secale for wis (RoH[L) U. In virtue of the hydrostatic relation, — i, represents
the local density anomaly due to the motion. In (A 3) the quantity in square
brackets is related to Ertel’s potential vorticity in the manner explained by
Charney & Stern (1962, p. 163) and will be called a ‘quasi-potential-vorticity’.

The eigenvalue problem for normal-mode disturbances to the mean flow
u(y, z) is now obtained by posing

gr=— f”uw, Ddn+ s P = Relply,z) eibe-0) (A5)

where, formally, |/'| < |¢|. The dimensionless wave-number % is considered
real, but ¢ and ¢(y, z) may be complex. Then (A 3) yields the linearized equation
(2.1a). The coefficient g, that appears in (2.1a) is the transverse gradient of
mean quasi-potential-vorticity,

qy = ﬂ_ (6’!62,)2— Uy s (A 6)

B = d(Ro)jdy= const. is included to represent the earth’s planetary vorticity
gradient or north-south variation of f, where relevant. The boundary conditions
for (2.1a) are that w and v = 1/, vanish on horizontal and vertical boundaries
respectively, which yields (2.15) and (2.1¢).

(iii) Eady’s solution . 7
When % = z, § = 0, €(z) = constant, so that g, = 0, it can easily be shown that
(2.1) has the following closed form solutions, which were first deseribed by Eady
(1949):
Pom(Y>2) = SIMMATY . Yo(2),
Com = %‘ + %a':;ll[(am —coth G‘m) (“m - té"nh “m)]és
(A7)

where Xml(?) = KpuCom cOsh i,z —sinh k,, 2
and K, = 2a, = e HEE+mit)t (m=1,2,..).

For each integer m these solutions represent either an amplifying-decaying pair




Non-separable baroclinic instability 297

of waves with ¢, = Re (¢,,) = 4, or a pair of neutral waves (¢ = ¢,, > and < }),
according as _ : &
&, < Or > ay, = 11997(xy = cothay). (A 8)

Thus there is a short-wave cut-off to the instability, at a critical neutral wave-
number k = ky = (4cad, —m2n?)}, if ky isreal. For any m such that ky isreal, there
is a well-marked maximum growth rate kc,[c; = Im(c,,)] at some k < ky:
k = ky, say. The largest of these maxima occurs, if any occur, for m = 1. Some
numerical values for m = 1 are shown in table 1.

efm? € kar K "y kare,
0-9119 9 4-392 1:800 0-1677 0:7366
1-6211 16 6-117 1-719 0-1787 1-0931
TaBLE 1

For the long waves in the atmosphere (wavelength 6000 km), these dimensionless
maximum growth rates typically correspond to doubling times in the vicinity
of 2 days. The structure in an zz plane of an unstable wave is shown in figure 8,
from Eady (1949). ‘

, aw' .
¥ ot e W z (b

A

Frcure 8.(a) Negative relative phases and (b) amplitudes of an amplifying baroeclinic
wave on the simple velocity profile w = z, from Eady (1949). The negative-phase diagrams
give the actual side view of the wave if the x axis points toward the right.
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Note that an unstable y,,(2) possesses symmetry about z = } that is obscured
by the otherwise convenient form given. If we define a symmetrical co-ordinate
2z, = z—}, then y,, is equal to a complex constant times

cosh k,,z, + (imaginary constant) X sinh &, 2,. ' (A9)
At a critical neutral point k = ky we have ¢, = 4, and
Fom = P = sinmary . (o} — 1)} cosh 2y 2, (A 10)

The short neutral waves (k > ky) are asymmetrical. For k > ky, each is associated
with one horizontal boundary exclusively, because of a small penetration height
scale fL /[N, < H.

Note that if generalized functions are admitted as solutions, there is also, for
each %, a continuous spectrum of singular neutral modes with 0 < ¢ € 1 (Ped-
losky 1964c). Atz = ¢, ¢, has a jump discontinuity. These resemble the singular
modes discovered by Rayleigh (1895) and used by Orr (1907) to solve the initial
value problem for small disturbanoces to plane Couette flow.

The following identities are useful; we drop the suffix m:

k%41 —¢p)+1 = kcothk, (A11)
{1— k%P {1 —k¥1—cp)?} = &* cosech?®k, (A12)
1 gy, PPt _ Ko=)

fody[ (z—co)? ]z=0'_ KP(l—cp)? =1’ (&.13)

11
_[ f {#¥(y,2)P dydz = T, (A 14)

0do

1 v(l—

x(_K()lx_iﬁ"’) = x(®), (A15)

where % denotes the result of replacing ¢, in y by (1—cy).

Appendix B
(i) Definition of B), §
It is convenient first to substitute the expansion (3.2b) into (2.1a,b), divide by

(z—¢,), and rearrange. (If ¢, is real it is necessary to assume that u, is analytic
in z and to go into the complex plane, as discussed in §4.) There results

L((p) = (pzz+€—1((pyv_k299) }
— gty + iy + pg t+ Y
- ] zic” : L(‘P)_ﬂze—gl?qg
andonz=0,1, ) 0 "
. __ ¥ (B1)
Dig) =, P—y
_ —pu e+ pPest . Kby,
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‘We then introduce (3.2a) and require that (B 1) be satisfied separately at each
order @ (1 =0, 1,...), giving (3.3). The right-hand sides I, B; are defined re-
cursively by I, = By = 0 and, for I > 1

-1
(z—co) = jglcj Lj—u 0y, — e? Q1yPr-1- (B2a)

(2 —co) By = (z—¢g) B+ (2 — ¢o) 10, 7 (B 2b)

-1
T A PR -1 I Y
f 2—Cy

(Jz gives zero, by conventlon) For convenience, derivatives of ¢, have been

- eliminated at each stage by the use of (3.3), as happens to be possible in this
problem.
(ii) The generalized Green’s function

Itisa stra.1ghtforward task to obtain the solution to (3.5) and (3.6) as a sine
series in y, whose coefficients are functions of z with discontinuities in their first
derivatives at z = {. Note that & depends on m, both through the operator D,
in which the value of ¢, is given by (A 7), and through the presence of ¢, in (3.5a)
and (3.6); thus we write

& =6,z =2 Z sin nory sinnay G%(z; §). (B3a)
For n * m, 1t is found that
Gn(z; §)

_ [KnComc0sh k2 —sinh k2 ][k, (1 —Cyp) cOsh ik, (1 -2, ) —sinh &, (1—z>)]
&3 sinh k, e, (1 — o)+ Kkp2— k5 Leothk,]

(B3b)
where z-=min(z,§{), =z, =max(z{), (B 3¢)

with the obvious interpretation if z and { both lie on a complex contour T', such
as that in figure 1, and where (cf, (A 7))

ek = k2 + il
This is a one-dimensional Green’s function in the usual sense. For n = m,

Gm(% g) = A’x.m(z) [chggmgsinh ng_ (g—' cOm) cosh Ko g]
- (llxm) Xm(z<) cosh Kn#s + XM(g) x func (Z)’ (B 3d)

- N 1 —1
where A4'= {2xm f Xm xﬁ,dz} ,
0

1 ' _
3 =3 ! , if ¢g,, s complex,
3 Km|00m| k5 Com(L = Com)
(1l — o) — 1

, ifcg, is real,
th[’cfncgm(l - Com)2 + 300m(1 - C’Om) - 1] om

The contribution to G, not exijlicitly written out may be ignored when &,, is
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" used asin (3.4b), that is, with £ as the dummy variable, in virtue of the golubility
condition. (The extra contribution consists of the symmetrizing complement of
the first line of (B 3d), plus a further term proportional to X,,(2) Xn(£).)

Appendix C. The expansion at the Eady neutral point k = ky
Posing the expansions (3.7) leads to the sequence, dropping the superscript WV,

Lig) =1, (Cla)
D(@)=58 on 2z2=01, {C1d)
= 0 on y =0,1, (0 16)

in{which, this time, [, = I, = By =0, and 2,B, = 19y where z, = 2—}. The
formula (A 10) gives @, The first-order problem is now automatically soluble
for p,, because of the same symmetry that was associated with the breakdown
of the u expansion. In fact, noting that (Cla) for I =118 satisfied by ¢,,, and
recalling (A 8), we find that

C1 %oz 2otyCy

2Rl i VR 1)%smmny.smh 20ty 2 (C2)

A point of interest that now emerges is that ¢, will not be determined until the
problem for ¢, is considered, and so on. ,

Tn the same way as before, recursion formulae give  and B; for I > 1. With
the convention ¢_; = I_, = I, = B, = 0, we can show that for I > 1

-2
2]y = ;,;1 o h_y— uh_o—€71, 9 (C3a)

2By = 2, B0 + 00 (C30)

(As before, summations with reversed limits are zero; (Cla) has been used.)
B@ will be defined below, by (C 3¢,d). It is zero for [ = 1, and for I > 2 it will
involve ¢_, but not ¢, and will turn out to be completely determined at the
current (Ith) stage. The term ¢;¢,, will not be determined, since ¢, disappears from
the solubility condition by symmetry, as before. That condition is

. z=1
_JJ‘%Ld?/ dz +fdy [%Bl(d)]‘ﬁo =0, ' (C4)

But we are free to choose ¢;_,, since by the same token it could not have been
determined previously. It will turn out that (C4) can always be satisfied by just
one such choice (apart from a sign ambiguity when ! = 2). The solution ¢, which
then exists can be split into two parts. One arises from the ¢, term in (C 3b), and
is just' ¢/c, times (C2). The remaining part ¢{® is independent of ¢;, and will thus
be determinate at the present stage:

ot = {[10. 0 ar+ ] n [650.0]

{=1
. (C5)
L=
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The whole solution, then, is c,gv _
9 = ¥ N_"”l- . (Céa)

This agrees with (C2), since ¢{® = 0.
We can now complete the recursive definition of B, by supplymg the definition
of B{®. It will be convenient to define first, for I >

2,Bf = cl(Béi’l+z;1¢L1)+j=226f(BH+z; p14)

— Uy (B g +250g) + U1, s. (C3c)
Then, using (C 6a) above, (C3b), (C2), and (C 1), we may define B® and thence
B, by B@® = 0,
2, B{® = ZSB$C)+h'CIG‘“1(oT£fi_1) %35 (1= 2) } (C34d)
where h,={1 _if b=2
2 if 1=>3

Finally (C4) can be re-written, after a little more manipulation, to give ¢_,

explicitly: 1
€101 = aN {ff%lr,dydz fdy[% Sc)]} (= 2). (C6b)

The expansions (3.7 ) are now completely defined by (C6a,b), the recursive
definitions (C 3a—d), and the definition (A 10) of ¢,. It may be verified that the
formulae are all explicit at each stage. (Note that By does not depend on c,.)
After the Ith stage we know @g, @1, ..., @1, ¢i*, and ¢y, ¢4, ..., ¢4 (but not ¢;).

Appendix D. Some mathematical details

We give here some of the details, for k = ky, of the mathematical justification
that is possible using elementary analysis. First, uniform convergencet is estab-
lished for |z| < some sufficiently small #, > 0. Then we prove that the result of
substituting the series back into (2.1) is meaningful, and thence that the series
do actually represent a solution of (2.1) for appropriate « and g, of the form (3.1).

We thereby prove, incidentally, the existence of solutions to (2.1), under much
more general conditions than those permitting explicit separable solutions.

When c, is not real (k < ky in the present problem), nothing is assumed about
u, (y,2) except sufficient differentiability, implying boundedness in the closed
domain of the problem. When ¢, is real (k > ky), u, is further assumed analytic
in z, and the domain of the eigenvalue problem and of the variousintegrals under-
stood to be some suitable complex & (§4).

+ The author did not see the possibility of a straightforward proof of convergence until
after the completion of much of the work reported in this paper, when he came across the
essential idea in the book by Titchmarsh (1958, p. 226). Titchmarsh also states & perturba-
tion formula that amocunts to a generalized Green’s representation ((19.5.5), p. 224),
although he does not indicate either its conceptuslly simple nature, or its practical im-
portance for non-standard types of eigenvalue problem..
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(i) Uniform convergence in & for sufficiently smoil l#|

The proof is straightforward, although to obtain sharp estimates for the radius
of convergence of, say, the ¢ expansion, and to avoid obscuring the fact that the
latter cannot, obviously, depend upon details of the choice of & if u, is analytic,
one would have to use methods deeper than the direct one used here. Therefore
no attempt is made to estimate particular radii of convergence nurerically, or
to construct refined inequalities.

The essence of the proof is to start by considering a series like Za; 4!, where the
o, are defined recursively by specifying a, > 0 and then defining

-1
o =M _Zlajaq_ﬁNaz_l (t>1) (b1)
e

M and N being positive constants. The radius of convergencé of Zejit is at least
1/(4Ma, + 2N) as will now be shown.
First, consider the function

o) = ﬁ[l—[l—-%}ﬂ, (D2)

which has the expansion ©
9= lgl G

say, whose radius of convergence is evidently p. Now from (D 2),

a___ P 9
9 = a5
e 1 S
=—m+ﬂl=zldx# (e < p). (D3)

But for g < p the coefficients of the above power series expansion of g2 may also
be obtained by multiplying the (absolutely convergent) series for g by itself.
Comparison with (D 3) then gives the relations d, = (4} pytand

d = MI—Zldjd,_j (= 2). (D 4)
i=1

This shows that the power series whose coefficients are defined by (D 4), with d,
specified, has radius of convergence p = (4Md,)™". (The function g was of course
arrived at in the first place by considering the formal product (Zdyu!).)

If now we choose d; = (a; + N/2M)(> 0), then (D1) and (D 4) imply

(@, < dy), G <dy; a3<ds,....

Therefore the radius of convergence of Za;i¢, where the positive coefficients
dy, dg, ... are related to a; by (D 1), is at least

1 |

4Ma, + 2N’ -

as was agserted. (Clearly this is already a crude estimate.) To apply these ideas
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to prove convergence of Zulg, Zu'c;, we construct first the series Zayu!, Tt
defined by a scheme slightly more general than (D 1), of the form

a; = Mg') Eaja,,_j -+ .Mg) Zaj bl—(i + Mg) Ebj bl—j E Ng')a]_l + N‘(Zz)bz_l,
b= M0, ,+ MOSab, ;+MPTbb_+ NDa,+ NP8,

where a, > 0, b, > 0 have been specified, and the summations are taken from
Jj=1%oj=1-1. 1t is then easy to verify that the radii of convergence of the
series Zayut, 3h it are each at least

} (D5)

1 \
4 M max (a,,b,)+ 2N’

(D 6)

-

3
where M = ¥ max (MP, M),
i=1

- |
N = 3 max (N, N§)

i=1

Y

We are now ready to consider the formulae (3.4), (B 2), giving ¢, and ¢,. A hat
over a symbol, as in [, will indicate an upper bound, taken over all (y,2)in &
where relevant: for example, |L| < I, (= const.). In estimating the Green’s
representations (3.4b) we note that although ®&(y,z;%,{) has a logarithmic
infinity at (9, {) = (v,2), its integral with respect to # or y is finite, and likewise
the integral of |@|. Indeed, there are finite constants Gy, G5 such that for all (y, z)

in & 1
[[181aac< e, [ans)ol<es D7)
Then from (3.4d)
l@| < G L;+GpBy =, say, appropriately. (D8)

The other bounds &, £, B,, B;, are defined in a similar way, using the straight-
forward estimates that can be written down from (B2) and (3.4). Writing
Z = (z—¢o)~* and using (D 8) to eliminate reference to §, we have the following
relations, which define the bounds recursively:

o] < &= Ef(f+2By, (D9)
ATl-1 .
B <h=2 [jgléj Bly+ (@ +679,,Gy) f1_1+e—191;,031§z_1], (D 10)
A -1 AA i-1
|B)| < B} = 26 3 ¢ L+ Z(ZGg+ P &8,
2 M2
+ 26ty + ) By + By + G (Bt + )} By, (D11)
|B) < B, = 2243 B L+ (1 +22°2E) B, (D12)
K31 —cy)2— 1‘
kHco—%) |

In (D 12), reference to ¢ has been eliminated by means of (D 9).
All we need do now is to note that the pair of recursion relations (D 10) and
(D 11) are of the form (D 5), after elimination of &; and B; using (D 9) and (D 12).

where E =




304 M. E. McIntyre

(If 1, is identified with @, and B with b, then M is zero but the remaining M’s
and N’s are not.) Thisshows that f;and Bjand, in virtue of (D 8), (D 9), and (D 12),
& and &, are the (constant) coefficients of majorant series with finite (and constant)
radii of convergence. Thus uniform convergence is proved, for | 4| < some finite x.

(i) Proof that the series solve the perturbed problem

The analysis just given can be extended to prove that {Zulg,, Tu'c)}, for any |u| <
some finite x,, does solve the eigenvalue problem associated with u = z+pu,,
g, = 44y, (Note the corollary that existence of a solution is then proved.)

The formalism already ensures that the series satisfy the equation and the
boundary conditions term by term. It is sufficient, then, to show that all the
infinite series that arise on back substitution are absolutely and uniformly con-
vergent over &, since they are then immediately meaningful in the context of
the boundary-value problem.f For the z boundary condition this follows from
the term-by-term balance, since there is‘only one series involved, Zu'g,,, whose
convergence has not been investigated. But in connexion with the differential
equation we must show independently that one of Iy, |, Z|php,,|is uniformly
convergent. It would be straightforward, if tedious, to do this by extending
the foregoing proof to include bounds on |g;,| and [gy,,| say, as well as on [g)].
A little more care is needed in estimating the Green’s representations for the
derivatives; bounds on the first and second y-derivatives of u; and ¢;, willnow be
involved.

Alternatively, suppose that %,(y,z) is an analytic function of z whose singu-
larities are bounded away from T',, uniformly over &. Then, since also (y, ¢,) can

be supposed bounded away from 2, the formulae show by induction that ¢,(y,2)

is analytic in z and that its z-singularities are also bounded away from I',, uni-
formly in 2, and in ! also. Thus for any z' on I',, ¢, has an expansion in powers of
(z—2') whose radius of convergence > some number that is non-zero and inde-
pendent of 7 as well as of ¥ and 2’. Also, by a trivial extension of the previous
analysis, Tulp(z) has p-radius of convergence greater than some constant u,
for any z within some neighbourhood of z’. Therefore X u'p, can be further expanded
as a double series in powers of g and (z—2'), absolutely convergent for [u| < s,
and small but finite |z—2’|. Term-by-term differentiation with respect to z,

holding p at any value within |#| < ,, then gives the second (or any) derivative.

with respect to z near z = z,, as another absolutely convergent double power
series. Since this can be rewritten as Xply,,,, the latter must also be absolutely
convergent for || < fy, when z = 2’ in particular. The convergence is uniform
over & as required, since g, can be taken independent of y and z’.

t+ If the perturbation method were being used to account for higher approximations to
the equations of motion, justification would not be quite so straightforward. In the inde-
pendent analysis of non-geostrophic effects by Derome & Dolph (1969), for instance, the
boundary conditions force non-uniformity of convergence at corners such as y = z = 0.
Although the series are not then immediately meaningful globally, one would still expect
pointwise convergence to a solution of the full problem. Indeed, under suitable assump-
tions, this would follow from considerations of analytic continuation in u.

.
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