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Chapter 1

The Atmospheric Wave–Turbulence
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Dept. of Applied Mathematics & Theoretical Physics, University of Cambridge

In Rotation and Momentum Transport in Magnetized Plasmas, edited by

P. H. Diamond, X. Garbet, P. Ghendrih, Y. Sarazin. World Scientific (2015), pp. 1–43.

1.1 Introduction

It was a huge honour to be asked to give the Marshall Rosenbluth Memo-

rial Lecture. Having never worked on plasma physics, though, I also feel

some diffidence! The closest I’ve ever come has been involvement in some

peculiar MHD problems that promise an improved understanding of the

solar tachocline — more about confining a magnetic field within a plasma

than a plasma within a magnetic field. Before proceeding I want to thank

Drs Laurène Jouve and Chris McDevitt for producing the first draft of this

chapter following my lecture. Chris also kindly lent assistance with the

source files and graphics. However, the final responsibility for this chapter

and any errors it may contain is mine alone.

What I do know about is the kind of fluid dynamics that has helped us to

understand the Earth’s atmosphere and oceans. We still have an enormous

phase space, albeit with fewer degrees of freedom than for plasma physics.

Thanks to countless observations and to the peculiarities of flow heav-

ily constrained by Coriolis effects and stable density stratification, great

progress has been made in penetrating the nonlinear dynamics. Indeed,

and quite surprisingly, researchers into atmosphere–ocean dynamics have

gained insight in a way that cuts straight to strong nonlinearity, avoiding

the standard paradigms. And an even greater surprise, to me at least, has

been what Pat Diamond, Paul Terry and others have been saying in recent

years, namely that some insights from atmosphere–ocean dynamics are rel-
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evant to some aspects of plasma behaviour in tokamaks and stellarators —

henceforth “tokamaks” for brevity — especially the self-organizing zonal or

quasi-zonal flows that appear so important for plasma heat confinement.

See, e.g., [1], [2], [3] and references therein.

The standard paradigms avoided include those of weak nonlinearity,

strong scale separation, “cascades” in the strict sense of being local in

wavenumber space, and indeed homogeneous turbulence theory in all its

flavours. Ever since the 1980s when infrared remote sensing from space

began to give us global-scale views of, especially, stratospheric fluid flow,

it has become apparent that we are dealing with a highly inhomogeneous

“wave–turbulence jigsaw puzzle” with no scale separation but with weakly

and strongly nonlinear regions closely adjacent and intimately interdepen-

dent [4], [5]. One of the tools that have helped us to make sense of this

has been the finite-amplitude “wave–mean interaction theory” developed

over many years and recently summarized in a beautiful new book by my

colleague Oliver Bühler [6].

For instance a typical phenomenon, once completely mysterious but

now well understood, and understood in a very simple way, is the self-

organization and the peculiar persistence and quasi-elasticity of the great

atmosphere–ocean jet streams. They can persist over surprisingly large

distances. If ordinary, domestic-scale jets behaved similarly, you could

blow out your birthday candles from the far end of the room. There are

“anti-frictional” effects that prevent the great jets from spreading out dis-

sipatively, tending to re-sharpen their velocity profiles if something smears

them out. As recorded in the famous books by Edward N. Lorenz, the

father of chaos theory, and Victor P. Starr, the pioneer of postwar global

upper-air data analysis, this behaviour used to be called “negative viscos-

ity” and regarded as a profound enigma [7], [8]. Such was the state of things

when I became Jule G. Charney’s postdoc at MIT in the late 1960s.

The most conspicuous jets include the Gulf Stream, the Kuroshio Cur-

rent, and the atmospheric jet streams that are typically found at airliner

cruise altitudes, fast-flowing rivers of air a a few kilometres deep and a few

hundred kilometres wide, roughly speaking. As airline operators know very

well, these atmospheric jet streams — which are among the most compre-

hensively observed of natural phenomena — can persist for thousands of

kilometres and can have wind speeds sometimes exceeding even 100ms−1

or 200knot. The cores of these thin jets may meander, river-like, with

large amplitudes, but nevertheless form resilient, flexible barriers tending

to inhibit the turbulent transport of material across them — by contrast
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with the high-speed advective transport along them — making these jets

almost the “veins and arteries of the climate system”. Equally spectacu-

lar, though far less well understood, are the prograde jets and associated

transport barriers in the visible weather layer of the planet Jupiter.

I find myself wondering whether tokamak zonal flows are closer to the

terrestrial or Jovian cases. Our relatively poor understanding of Jupiter

makes this a hard question to answer at present. For Jupiter there are

relatively few observational constraints, apart from the wind fields derived

from cloud-top motions and the peculiar straightness of the prograde jets

that makes them, as it were, so conspicuously unearthly. It might be good

news if the zonal jets in big tokamaks were more Jupiter-like than Earth-

like, because less meandering might mean better confinement.

It cannot be too strongly emphasized that, for all the prolific literature,

our understanding of the Jovian problem is indeed in its infancy. For one

thing, progress has been impeded by a tendency to forget that in the real

planet, as distinct from many models of it that have been studied, there is no

solid surface or phase change sufficiently near the visible surface to support

the type of baroclinic instabilities that excite terrestrial atmospheric jets.

There is a “convective thermostat” mechanism — see [9] and references

therein, also footnote 4 of [10] — that pretty much precludes any major

role for such baroclinic instabilities. And our understanding of the most

basic aspect of all, namely the coupling between Jupiter’s weather layer

and the underlying deep-convection layer is very poor indeed. Here I think

there are some interesting paradigm changes in progress. But let me come

back to Earth and to things we know much more about.

1.2 On eddy-transport barriers

The turbulent transport inhibition or “eddy-transport barrier” effect at

jet cores goes hand-in-hand with the anti-frictional effects. It depends on

the strong, self-maintaining horizontal shears adjacent to the jet core as

well as on the potential-vorticity gradients — see below — that are con-

centrated at the jet core. The importance of shear was pointed out in

[11]. So although we used to speak of “potential-vorticity barriers”, the

tendency in the atmosphere–ocean community these days is to call them

“eddy-transport barriers”. Their dynamics involves both wave propagation

and turbulence — strongly nonlinear and strongly inhomogeneous spatially,

with no spatial scale separation. As already hinted, this is far beyond the
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reach both of homogeneous turbulence theory and of weakly-nonlinear wave

or weak-turbulence theory, also called “wave-turbulence” theory.

The eddy-transport-barrier effect has been demonstrated again and

again from observations, from laboratory experiments, and from high-

resolution numerical models. An early and very striking observational

demonstration came from studies of the radioactive debris from atmospheric

nuclear tests published in 1968. Using an instrumented aircraft, two ma-

terial air masses well characterized by differing radioactive properties were

observed flowing side by side in close proximity, without mixing, on either

side of a jet core [12].

Another striking demonstration came from a laboratory experiment in

Harry Swinney’s big rotating tank at the University of Texas at Austin

[13], [14]; see Fig. 1.1. Dye injected on one side of a jet stayed there, after

more than 500 tank revolutions — almost perfectly confined despite the

meandering of the jet. The jet core and velocity maximum were found to

be almost coincident with the dye boundary.

And again, there has been a huge amount of observational and numer-

ical modelling work in connection with the concern over the ozone hole in

the Antarctic stratosphere, where the polar-night jet, or polar-vortex edge,

keeps itself sharp and acts as an eddy-transport barrier within which the

ozone chemistry proceeds differently from the chemistry outside. This has

been studied using intensive observations and a large hierarchy of models

for over two decades now; among the many landmarks we may note a re-

markable pair of papers by Norton [15] and Waugh and Plumb [16]. My

website has a movie from Norton’s work that visualizes the barrier effect

rather spectacularly — websearch "dynamics that is significant for

chemistry".

One might ask why there should be any comparison between the above-

mentioned laboratory experiment and the atmosphere. Admittedly both

are rapidly-rotating systems, in the sense that Coriolis effects are strong.

However, stable stratification is very important in the atmosphere, and

in the oceanic examples too, whereas the laboratory experiment used an

unstratified fluid. The answer is, I’ve always thought, a rather surpris-

ing one. The kind of dynamics involved in all these systems has the same

generic structure, explaining the many qualitative similarities between the

systems. Even more surprisingly, the same generic structure is found in

the tokamak models of Hasegawa, Mima and Wakatani. As we’ll see, it is

well illustrated by the simplest such model defined by the Hasegawa–Mima

equation (Sec. 1.8 below). And it is this structure that allows the insight
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Fig. 1.1 From the laboratory study of Sommeria et al. [13]. For a colour version see
Fig. 6.1. Courtesy Dr Joël Sommeria.

into strong nonlinearity.

1.3 The generic dynamics, also called PV dynamics

The generic dynamics is shared by a whole hierarchy of models of strati-

fied, rotating atmosphere–ocean dynamics and their unstratified laboratory

counterparts, including some remarkably accurate stratified models that

easily explain, for instance, the characteristic cross-sectional structure of

jet streams that has long been familiar to observational meteorologists [17],

[18]; see Fig. 1.3 below. In all these models one has a single scalar field

Q(x, t) that is a material invariant for ideal fluid flow — that is, Q is ma-

terially conserved, i.e. constant on each material particle — expressing the

advective nonlinearity in a way that is easy to understand and to visualize.

And more than that, the evolution of the Q field captures everything about

the advective nonlinearity because, to the extent that these models are ac-

curate, the Q field contains all the dynamical information at each instant.

So if for example u(x, t) is the velocity field, which for definiteness we’ll

take relative to the rotating Earth, then u can be deduced at each instant

from the Q field alone.

Q, to be defined shortly, is called the potential vorticity (PV) of the

model, and the mathematical process of deducing the u field from the Q

field is called PV inversion. The hierarchy of models arises because there is
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an array of different PV inversion operators. They are inverse elliptic oper-

ators, hence nonlocal. They differ among themselves for two reasons. One

is simply to accommodate the different physical systems that might be of

interest, for example the atmosphere, or the laboratory system of Fig. 1.1,

or the tokamak. The other is that, for a given physical system, some PV

inversion operators are more accurate than others. In atmosphere–ocean

dynamics, at least, there is always a tradeoff between simplicity and accu-

racy. Anyone who is curious as to what a highly accurate inversion operator

looks like — the technicalities are nontrivial — may consult a little review

that I wrote for Advances in Geosciences [19]. The property shared by the

whole hierarchy, that the Q field contains all the dynamical information, is

sometimes called the “PV invertibility principle”.

Using the notations D/Dt := ∂/∂t + u · ∇ for the material derivative

and I for the inversion operator, we can write the generic dynamics in

great generality as the following pair of equations:

DQ/Dt = forcing + dissipation , (1.1a)

u(x, t) = I[Qa( · , t) ] , (1.1b)

where Qa(x, t) is the PV anomaly field relative to a background state at

relative rest in the rotating system, u ≡ 0, whose PV is Qb, say:

Qa := Q − Qb (1.1c)

The dot in (1.1b) signals that the inversion operator acts nonlocally on the

Qa field. We have I[Qa] ≡ 0 if and only if Qa ≡ 0 everywhere. Dissipation

in (1.1a) may include negative dissipation, i.e. self-excitation.

PV inversion is a diagnostic, as distinct from a prognostic, operation.

Diagnostic means that (1.1b) contains neither time derivatives nor history

integrals. The single time derivative in (1.1a) is the only time derivative

in the problem. The forcing and dissipation or self-excitation terms in

(1.1a) will of course depend on the particular physical system and model

assumptions, but may often be considered small for practical purposes.

The single time derivative has strange and interesting consequences.

It tells us at once that the only possible wave propagation in this kind of

system will be one-way propagation, in the sense that the dispersion relation

can have only a single frequency branch. These are the famous westward-

propagating Rossby or vorticity waves of atmosphere–ocean dynamics and

the equally famous electrostatic drift waves of tokamak dynamics, arising

from gradients in the background state Qb. The waves seen in Fig. 1.1 are

Rossby waves. They are very different from the classical types of waves
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Fig. 1.2 Two stratification surfaces θ = constant in stratified, rotating flow. The mate-

rial invariance of Q for ideal-fluid flow, in other words the constancy of absolute Kelvin
circulation for an infinitesimal material circuit Γ lying in a stratification surface, exactly
captures how the component of vorticity normal to each stratification surface changes
under vortex stretching and vortex tilting.

having pairs of opposite-signed dispersion-relation branches, coming from

pairs of time derivatives and reflecting time reversibility. Rossby waves and

drift waves have their own peculiar arrow of time.

How do these waves know which way to go? In the atmosphere–ocean

case it’s in part because they notice which way the Earth, or the laboratory

tank, is rotating, along with certain background gradients in the thermody-

namic variables. In the tokamak case, they notice which way the azimuthal

magnetic field component is pointing, along with the facts that the ions are

positively charged and much heavier than the electrons, and that there are

background density and pressure gradients. This one-wayness has conse-

quences reaching far beyond small-amplitude wave theory. The single time

derivative in (1.1a) is still there, no matter how strongly nonlinear things

become.

Of the various definitions of Q the most accurate and general, in

atmosphere–ocean dynamics, can be stated as follows. Up to a constant

normalizing factor, Q is the absolute Kelvin circulation around an infinites-

imally small circuit Γ lying in a stratification surface. That is, Q is pro-

portional to the loop integral
∮

Γ
(u + Ω× x) · dx where Ω is the Earth’s

angular velocity. Stratification surfaces are surfaces of constant θ, where θ

is a thermodynamic material invariant for ideal-fluid flow, more generally

Dθ/Dt = forcing + dissipation . (1.2)

For instance we can take θ to be the specific entropy or the so-called poten-

tial temperature. Figure 1.2 shows two of the stratification surfaces, which

are usually close to horizontal in practice. Also shown are two of the small

circuits Γ. The material invariance of Q for ideal-fluid flow, i.e. (1.1a) with

right-hand side exactly zero, is an immediate corollary of Kelvin’s circula-

tion theorem. In the ideal-fluid limit, (1.2) also has right-hand side zero

and the stratification surfaces become material surfaces; so the Γ’s can be
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taken as material circuits and Kelvin’s circulation theorem applies.

An equivalent definition of Q can be written in terms of the mass density

field ρ, the absolute vorticity 2Ω + ∇×u and the stratification field θ as

follows:
Q := ρ−1(2Ω + ∇×u) · ∇θ . (1.3)

Let ∆θ be the θ-increment between the two stratification surfaces, taken

infinitesimally small, and ∆m the mass of the infinitesimally small pillbox-

shaped fluid element defined by the pair of Γ’s in Fig. 1.2. Using Stokes’

theorem we see at once that (1.3) is the Kelvin circulation multiplied by

∆θ/∆m. For ideal-fluid flow, ∆θ, ∆m, the Kelvin circulation, and hence

(1.3) are all exact material invariants. Yet another demonstration starts

with the vorticity equation, i.e. the curl of the momentum equation, taking

its scalar product with ∇θ to annihilate the baroclinic vector product ∇ρ×

∇p involving the pressure p, noting that θ is a thermodynamic function of

ρ and p alone. That is the route taken in most textbooks.

In the unstratified laboratory case, almost the same picture applies ex-

cept that the two stratification surfaces in Fig. 1.2 are replaced by the

top and bottom boundaries of the tank. The layer now has finite thick-

ness, a function of radius in the case of Fig. 1.1. But because there is no

stratification the rapid rotation of the tank keeps the flow approximately

two-dimensional — the so-called Taylor–Proudman effect — causing the

material circuits Γ to move in parallel.

Historically, the central importance of Q to atmosphere–ocean dynamics

was first recognized by Carl-Gustaf Rossby in his seminal papers of 1936,

1938 and 1940 [20], [21], [22]. Rossby’s 1938 paper recognized the exact

equivalence to the Kelvin circulation and thus showed, in principle, how to

define Q exactly both for continuous stratification and for layered systems,

including the tank system of Fig. 1.1. Rossby also presented hydrostatic

approximations to (1.3) for use with weather data. The formula (1.3) was

itself first published by Hans Ertel in 1942 [23], after visiting Rossby at

MIT in 1937. The PV invertibility principle, implicit in Rossby’s work, was

articulated with increasing explicitness from the late 1940s onward through

the work of Jule G. Charney [24], Aleksandr Mikhailovich Obukhov [25],

and Ernst Kleinschmidt [26].

1.4 Cyclone and jet structure

To complete the generic picture we need a qualitative feel for what PV

inversion is like. Illustrative formulae are given in Sec. 1.8; but one way to
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Fig. 1.3 Vertical section through an axisymmetric model of an upper-air cyclone; see
text. Calculation by Dr A. J. Thorpe, from the review [27]. The entire structure comes

from inverting a single positive PV anomaly located in the central stippled region. The
heavy curve is the model tropopause, and the closed contours show the wind-speed
profile, typical of atmospheric jets. Stronger jets go with steeper, or even reversed or

“folded”, tropopause slopes, but their structure is otherwise similar.

gain generic insight is to say that on each stratification surface the operator

I delivers a horizontal velocity field u qualitatively like the electric field

E in a horizontally two-dimensional electrostatics problem, but rotated

through a right angle, with Qa in the role of minus the excess charge density

— not quite the tokamak case, but qualitatively similar especially as regards

rotating the E vector. (“Horizontal” corresponds to a cross-sectional plane

of the tokamak, with the background magnetic field B nearly “vertical”.)

In realistic, stably-stratified atmospheric models, the electrostatic anal-

ogy is “layerwise-two-dimensional” insofar as one takes the horizontal com-

ponent of E on each stratification surface and ignores the vertical com-

ponent. The rotation of E about the vertical to get u is in a clockwise

sense when viewed from above, i.e. compass-wise, in the northern hemi-

sphere, corresponding to upward B. However, thanks to Coriolis effects

the field corresponding to the electrostatic potential needs to be calculated

in three dimensions, inverting an elliptic operator resembling a modified

three-dimensional rather than two-dimensional Laplacian, e.g. Eq. (1.6c)

below. Thus the flow on one stratification surface is influenced by the

notional charge distributions Qa on other such surfaces over a significant

depth of the atmosphere.

Figure 1.3 refines this rough picture by showing the result of an accurate

three-dimensional inversion, taken from the 1985 review by Hoskins et al
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[27]; q.v. for technical detail. The stratification surfaces θ = constant are

the light curves that tend toward the horizontal at the periphery. They are

more crowded above the tropopause, i.e. in the stratosphere which, as its

name suggests, is more stably stratified, increasing the magnitude of |∇θ|

in (1.3). The heavy curve represents the tropopause, dipping down from

altitudes around 10km down to 5km, corresponding to pressure-altitudes

(right-hand scale) ranging from around 250 to 500 millibar. The vertical

scale is stretched in the conventional way, to make the structure visible. In

this case, which uses realistic atmospheric parameter values, the horizontal

extent of Fig. 1.3 is 5000km. So the stratification surfaces are actually very

close to being horizontal. The exact (Rossby–Ertel) Q field (1.3) has an

axisymmetric positive anomaly1 located in the central stippled region. In

the electrostatic analogy we can think of it as a concentration of negative

charge, making E point inward.

The remaining light curves in Fig. 1.3 are the contours of constant wind

speed, into the paper on the right and out of the paper on the left as ex-

pected from the inward-pointing E vector in the layerwise-two-dimensional

electrostatic analogy. The maximum wind speed occurs at the tropopause

around 8km altitude, showing a jet structure that is very typical. In this

case the maximum wind speed has a rather modest value, just over 20ms−1.

Stronger PV anomalies produce stronger jets with the same structure ex-

cept that the tropopause, defined as the PV anomaly boundary, tends to

slope more steeply and indeed can become vertical or overturned, producing

what is famously called a “tropopause fold”, e.g. Fig. 9b of [27].

I should explain that in order to do the inversion in this kind of problem

one has to prescribe the mass under each stratification surface. That is

how one tells the model to have a stratosphere with larger values of |∇θ|

than the troposphere beneath [27]. One also has to impose what is called

a balance condition. In this case it is enough to say that the flow is in

hydrostatic and cyclostrophic balance. Cyclostrophic means that horizontal

pressure gradients are in balance with the Coriolis force plus the centrifugal

force |u|2/r of the relative motion where r is horizontal distance from the

symmetry axis. Thus pressures p are low at the centre of the structure.

1As explained in the review [27], accurate inversion operators I require the anomaly
Qa — there referred to as an “IPV anomaly” — to be defined relative to values on the

same stratification surface θ = constant, or “isentropic surface” in atmospheric-science
language. This term arises because θ can be taken to be the specific entropy. So “IPV
anomaly” means “isentropic anomaly of PV”. In the example of Figure 1.3 the positive

anomaly is due mainly to the large magnitude of the factor ∇θ in (1.3), i.e. to the
presence of stratospheric rather than tropospheric air, in the central stippled region.
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Although it is left implicit in (1.1b), inversion delivers the p, ρ and θ fields

as well as the u field, as the invertibility principle says it must. In more

complicated, non-axisymmetric cases, accurate balance conditions can still

be imposed over a surprisingly large range of parameter values, but at the

cost of becoming technically much more complicated; see [19] and references

therein.

Notice the power of the invertibility principle. The entire structure in

Fig. 1.3, long familiar and easily recognizable from the zoological annals

of observational meteorology — under such names as “upper-air cutoff cy-

clone” or “cutoff low”, e.g. Fig. 10.8 of [18] or Fig. 8 of [27] — follows

from having just a single positive PV anomaly on stratification surfaces

intersecting the tropopause. “Cutoff” refers to the way in which such PV

anomalies are formed in reality, by a mass of high-Q stratospheric air being

advected into lower-Q surroundings and then wrapping itself up into a cy-

clonic vortex (e.g. the near-circular patch of air over the Balkans in Fig. 1.4

below, also examples in [27]). The idea that a PV anomaly can wrap itself

up makes perfect sense if the invertibility principle holds.

As already suggested, the jet structure illustrated in Fig. 1.3 is typical

and very robust, over a large range of jet speeds and tropopause steepnesses.

Although the example in Fig. 1.3 is idealized as being axisymmetric, one

gets the same jet structure in more complicated cases whenever there is a

concentrated gradient of Q on stratification surfaces, with high values ad-

jacent to low values. The way in which such “isentropic” gradients arise —

and observations repeatedly show that they are commonplace — is precisely

through the strong nonlinearity I have been hinting at. As I’ll explain, the

way in which the concentrated gradients arise can be viewed as a rather

simple kind of strongly-nonlinear saturation. The oft-observed jet structure

is telling us that, in reality, saturated states are often approached.

It is worth pointing out for later reference that even without relative

motion u there may well be pre-existing large-scale gradients in Qb, the

background PV distribution. For the tokamak they come from the radial

density and pressure gradients. For realistic atmosphere–ocean dynamics

they come from the fact that, in the formula (1.3), horizontal stratification

surfaces pick out the vertical component, f say, of the planetary vorticity

2Ω. At latitude λ we have to good accuracy

f = 2|Ω| sinλ ; (1.4)

f is called the Coriolis parameter. Its northward gradient is conventionally

denoted by β and also by the phrase “beta effect”, not to be confused with
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plasma beta.

Before leaving this topic I should point out that if one wants to cover a

wider range of significant cases then one has to count as part of the Q field

the distribution of θ at the Earth’s surface. This last behaves somewhat like

a Dirac delta function in the vertical distribution of Q, and is important in

some dynamical processes. A prime example is the baroclinic instability and

the associated wrapping-up and “frontogenesis” in the surface-θ field that’s

so important in the terrestrial atmosphere [28], even though absent in the

Jovian. The Earth’s large-scale surface-θ gradient across latitudes provides

an effective southward PV gradient, opposite to that of the beta effect.

The opposing gradients mediate a powerful shear instability, the baroclinic

instability in question. See §1.6 below. The resulting frontogenesis in the

surface θ distribution is another variation on the theme of saturation. This

baroclinic instability is the atmosphere–ocean counterpart to plasma drift

wave self-excitation by resistive instability, negative dissipation in (1.1a).

1.5 Strong nonlinearity is ubiquitous

Why should concentrated isentropic gradients of PV be so commonplace

along with their inversion signatures, the great jet streams, and indeed

surface fronts as well, and what justifies associating them with a satura-

tion process? What produces the accompanying anti-frictional or “negative

viscosity” effects that used to be thought so mysterious? The answer lies

in the idea of inhomogeneous PV mixing — more precisely, in the idea

of spatially inhomogeneous, layerwise-two-dimensional, turbulent PV mix-

ing, the mixing of PV along stratification surfaces in some regions but not

in others. Mixing is a strongly nonlinear process because it involves not

weak distortions or resonant-triad interactions but, rather, drastic advec-

tive rearrangements of large-scale into smaller-scale PV fields. It has the

potential to weaken PV gradients in some places on stratification surfaces,

and to strengthen them in others to form jets and eddy-transport barriers;

see Secs. 1.6–1.7 below.

Neither mixing nor eddy-transport barriers need be perfect. Indeed in

many cases the vortex dynamics produces new coherent structures on dif-

ferent spatial scales, as illustrated in Fig. 1.4. On the other hand, whenever

perfect or near-perfect mixing is achieved within some region, we have a

rather simple kind of strongly nonlinear saturation because, once we have

a well-mixed region, further mixing has little further effect.

Equation (1.1a) with its advective nonlinearity tells us that we can,
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Fig. 1.4 Estimated map of Q, the exact PV defined by Eq. (1.3), on a stratification
surface near 10km altitude. For a colour version see Fig. 6.2. From [29]. The compu-
tation assumes that material invariance of Q is a good approximation over a 4-day time
interval, and uses a state-of-the-art advection algorithm and weather-forecasting data to
trace the flow of high-Q stratospheric air (shaded) and low-Q tropospheric air (clear).
The main boundary between stratospheric and tropospheric air marks a jet core showing
large-amplitude meandering, from Greenland toward Spain and then back to northern

Norway. The leakage of stratospheric air into the troposphere signals intermittent attri-
tion of the eddy-transport barrier at the jet core. The different chemical signatures of the
stratospheric and tropospheric air are easily detectable and have been demonstrated in

meaurement campaigns, even for fine filamentary structures like those shown [16]. The
high-Q anomaly over the Balkans illustrates the “cutoff” or self-wrapping-up process
that occurs when sufficiently large masses of stratospheric air overcome the barrier. The
wrapping-up produces structures like that in Fig. 1.3.

indeed, reasonably regard Q as a mixable quantity, to that extent like a

chemical tracer consisting of notional charged particles. (Moreover, there

is an exact “impermeability theorem” stating that the notional particles

behave as if trapped on each stratification surface [30] even if air is crossing

the surface diabatically.)

Today the reality of PV mixing, and the tendency toward piecewise-

saturated, piecewise-well-mixed states in many cases, in the real atmo-

sphere, has extremely strong observational support. We can routinely

map real atmospheric Q fields through the highly sophisticated (space-
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time Bayesian) observational data-assimilation technology that underpins

operational weather forecasting. The results support Eq. (1.1a) with small

right-hand side as a key to understanding the ubiquity of real jets, upper-air

cyclones, surface fronts and many other meteorological phenomena.

Examples like that of Fig. 1.4 are scrutinized in [29] and [31]. Other

examples come from higher altitudes, in the winter stratosphere. They

have been intensively studied in connection with the ozone-hole problem

already mentioned. Again and again, we see large regions on stratification

surfaces within which Q is roughly constant as a result of mixing, bor-

dered by concentrated gradients marking the eddy-transport barriers at jet

cores. We can see the mixing taking place in more and more detail, over

an increasingly large range of spatial scales as computer power increases.

Reference [5] includes a movie from state-of-the-art data-assimilation, for

a much-studied stratospheric case. These situations are at an opposite ex-

treme from those assumed in classical homogeneous turbulence theory. In

a nutshell, reality is highly inhomogeneous.

Numerical experiments tell the same story in a variety of cases, e.g. [32]

and [33], as does the laboratory experiment of Fig. 1.1. In the latter case the

laboratory data were good enough to enable the experimenters to map the

PV field. The resulting PV maps [13], [14] closely resemble the dye pattern

in Fig. 1.1, with well-mixed regions on either side of the jet core. Even

though the visible wavy pattern might suggest the validity of linearized or

weakly-nonlinear Rossby-wave theory, the suggestion is misleading because

the fluid motion has already nonlinearly rearranged its PV distribution

to be close to piecewise uniform, uniform to either side of the jet core,

with a concentrated PV gradient at the core. Strong nonlinearity did most

of its work before the dye was injected. At the instant shown in Fig. 1.1,

piecewise regional mixing continues on either side of the jet but has become

invisible, since there were no further dye injections. As far as the dynamics

is concerned, the mixing process has saturated.

Figure 1.1 well illustrates what I mean by the inhomogeneous “wave–

turbulence jigsaw”. We have a wavy, weakly nonlinear jet-core region ad-

jacent to strongly nonlinear mixing regions on either side of the jet core.

The different regions are coupled dynamically to each other, in a manner

to be further analysed in Sec. 1.11 below. The jigsaw has to fit together

dynamically as well as geometrically.

A recent numerical model study [34] finesses these inhomogeneous PV-

mixing ideas through numerical experiments showing the co-development

of jets, well-mixed areas and coherent vortices, with the vortices actively
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Fig. 1.5 Plan view of an x-periodic Rossby wave, where x points toward the right in

the figure. The plus and minus signs respectively indicate the centres of the cyclonic
and anticyclonic PV anomalies due to southward and northward air-parcel displacements
across a basic northward PV gradient. For a tokamak drift wave, “cyclonic” means a
vorticity vector pointing in the +B direction, toward the viewer in this case. The plus

signs then correspond to negative net charge, and minimal density, and in the background
gradients high Q corresponds to low background pressure and density.

contributing to the mixing, an idealized version of Fig. 1.4. The discussion

of strongly-nonlinear coherent structures in Diamond et al. (this volume)

hints that we might end up with a similar picture for real drift-wave tur-

bulence in big tokamaks.

1.6 Rossby waves and drift waves

Figure 1.5 shows the generic propagation mechanism for Rossby and drift

waves. The background rotation Ω and azimuthal magnetic field B point

toward the viewer. Propagation occurs whenever the Q field has a back-

ground gradient. We consider a background Q field Qb = Qb(y), where in

atmosphere–ocean cases we take y as pointing northward, in the direction

of increasing Qb, and in tokamak cases as pointing radially toward decreas-

ing background pressure and mass density. The y direction is toward the

top of the figure and the x direction toward the right; please note that

this is not the usual coordinate convention for tokamaks. For the stratified

atmosphere dQb/dy > 0 is the isentropic gradient, i.e., the gradient along

a stratification surface as already mentioned.

With no disturbance the constant-Q contours would be straight and
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parallel to the x axis. We imagine that a small disturbance makes them

wavy, as shown. We assume ideal-fluid motion, i.e., zero on the right of

Eq. (1.1a). Then the wavy Q contours are also material contours. Lin-

earized wave theory requires the undulations to be gentle: their sideways

slopes must be much smaller than unity. We have a row of PV anomalies

Qa = Q−Qb of alternating sign, as suggested by the plus and minus signs

enclosed by circular arrows. In the electrostatic analogy — be careful —

plus means a negative charge and vice versa. (If only the world were made

of antimatter, it would be easier to be lucid here.)

Inversion gives a velocity field u (∝ E×B for the tokamak) whose north-

south component is a quarter wavelength out of phase with the north-south

displacement field, as suggested by the big dark arrows in Fig. 1.5. (In the

meteorological literature the velocity field resulting from a PV inversion is

sometimes called the wind field “induced” by the PV anomalies.2)

So to understand Rossby-wave and drift-wave propagation — generi-

cally, and not just in textbook cases — one need only use one’s visual

imagination to turn Fig. 1.5 into a movie. With velocity a quarter wave-

length out of phase with displacement, the pattern will start to propagate

to the left. But invertibility, Eq. (1.1b), says that the velocity pattern must

remain phase-locked to the displacement pattern! So the propagation con-

tinues indefinitely. With the signs shown, the propagation is in the negative

x direction — the famous westward, or quasi-westward, or high-Q-on-the-

right phase propagation, relative of course to any mean flow. We may think

of the Q contours as possessing a peculiar Rossby-wave “quasi-elasticity”.

This shows up spectacularly in Norton’s movie mentioned in Sec. 1.2.

If we do a thought-experiment in which all the signs are changed in

Fig. 1.5, replacing westward phase propagation by eastward, then we are

describing the effect of the large-scale gradient in surface θ noted at the end

of Sec. 1.4. The simplest and most powerful baroclinic-instability mode can

be thought of as a pair of counterpropagating Rossby waves on the opposing

interior and surface PV gradients, phase-locked with the help of the mean

vertical shear [27].

The propagation mechanism works similarly for uneven Q contour spac-

ing, including the case of a jet with most of the Q contours bunched up

2Here meteorologists are following the language of aerodynamics dating from the pi-
oneering days of Frederick Lanchester and Ludwig Prandtl, where three-dimensional
vorticity inversion using a Biot–Savart integral has long been a basic conceptual tool.

As an aerodynamicist would put it, aeroplanes stay up thanks to the downward velocity
“induced” by the trailing wingtip vortices.
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at the jet core. This means that jets can act as Rossby waveguides, with

quasi-elastic cores. Figure 1.1 is an example. Some atmospheric examples

are discussed in [31]. Explicit toy-model solutions will illustrate the same

point in Sec. 1.11.

If the Q contours in Fig. 1.5 were deforming irreversibly rather than

gently undulating, then we would say that the Rossby waves are breaking.

Indeed, for strong reasons grounded in wave–mean interaction theory we

may regard such irreversible deformation as the defining property of wave

breaking [6], [35]. In the atmosphere, at least, there is no doubt that the

breaking of Rossby waves is Nature’s principal way of causing PV mix-

ing and its typical consequences, anti-frictional jet sharpening and eddy-

transport-barrier reinforcement. In many cases the associated radiation

stress or wave-induced momentum transport is an essential part of how the

wave–turbulence jigsaw fits together [19], [10], [36]. One way of seeing more

precisely how it fits together is through what is called the Taylor identity ;

see (1.9) and (1.10)ff. below.

In Sec. 1.11 we’ll see that jet-guided Rossby waves have a strong ten-

dency to break on one or both sides of the jet, leaving the jet core intact.

That is, there is a systematic tendency for PV mixing to occur preferen-

tially on the flanks of a jet — sharpening the jet anti-frictionally, reinforcing

the eddy-transport-barrier effect, and keeping the wave–turbulence jigsaw

highly inhomogeneous. We may think of jets almost as self-sustaining elas-

tic structures; the only help they need is for their Rossby waves to be

excited now and again, for instance by baroclinic instabilities.

1.7 The PV Phillips effect

There is an even simpler, and independent, argument suggesting that the

spatial inhomogeneity or regionality I keep talking about is generically

likely. Imagine a large-scale, initially uniform PV gradient subject to ran-

dom disturbances. Suppose that these disturbances produce PV mixing

along stratification surfaces, the mixing being slightly stronger in some re-

gions than others. The regions where the mixing is stronger will have their

overall PV gradients weakened. But then those regions will have weaker

Rossby-wave quasi-elasticity, and will be even easier to mix. Other things

being equal, there is a positive feedback that tends to push PV contours

apart in some regions and bunch them together in others.

I like to call this the “PV Phillips effect”, after Owen M. Phillips’ orig-

inal suggestion in 1972 that the same thing happens with vertical gradi-
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Phillips Effect

wave elasticity

reduces/increases
PV mixing

reduces/increases
density mixing

strengthens/weakens
wave elasticity

local increase/decrease
in density gradients

local increase/decrease
in PV gradients

PV Phillips Effect

strengthens/weakens

Fig. 1.6 Schematic of the positive feedback loops for the original Phillips effect and

its PV counterpart. Courtesy of Drs Jouve and McDevitt. In the PV case the positive
feedback is reinforced by jet shear, leading to the formation of eddy-transport barriers
such as that illustrated in Fig. 1.1. Further reinforcement can come from the preferred

phase speeds of disturbances, as discussed in Sec. 1.11.

ents of θ, i.e. with stable stratification [37]; see also [10], [38] and refer-

ences therein. In that case the suggestion was beautifully verified in a

non-rotating, stratified laboratory tank experiment [39]. One starts with

the uniform stratification created by a smooth vertical gradient of salinity.

Salinity is a convenient laboratory counterpart to θ, or rather to −θ because

more salinity means more density and less buoyancy. One stirs the tank

with smooth vertical rods. This imposes no vertical scale of motion smaller

than the depth of the tank. Nevertheless the stratification rearranges it-

self into horizontal layers. Layers with weak stratification, relatively small

|∇θ|, are sandwiched between horizontal interfaces with strong stratifica-

tion, relatively large |∇θ|. The vertical scale depends on how vigorously

one stirs. With sufficiently vigorous stirring one can of course homogenize

the whole tank. Otherwise, we have — guess what — yet another example

of the tendency for real turbulence to be highly inhomogeneous and for

eddy-transport barriers to form.

The original Phillips effect and its PV counterpart are summarized in

Fig. 1.6, courtesy of Drs Jouve and McDevitt. In the original Phillips effect

the relevant wave elasticity is the elasticity associated with internal gravity

waves — the waves that owe their existence to the stable stratification ∇θ.

Notice by the way that the positive-feedback argument does not depend

on whether the mixing can be described as Fickian eddy diffusion, i.e.
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as a random walk with short steps. The argument transcends any such

restrictive modelling assumptions.

In the case of PV the positive feedback tends to be reinforced by the

jet shear effects [10], [11], contributing to eddy-transport-barrier formation

as suggested in Sec. 1.2. Wherever PV contours bunch together, inversion

gives jetlike velocity profiles hence shear. It turns out that the shearing

of small-scale disturbances is just as important as the Rossby-wave quasi-

elasticity felt by larger-scale disturbances. There is a smoothing effect or

scale effect, coming from the inverse-Laplacian-like character of the inver-

sion operator, that weakens the u field of the smallest-scale PV anomalies.

So the small-scale behaviour tends to be passive-tracer-like, as indeed was

suggested by the filamentary structures in Fig. 1.4.

1.8 Some simple inversion operators

To check our insights we often use models with simplified but qualitatively

reasonable inversion operators I . The most important of these models are

the so-called quasi-geostrophic models. They are not quantitatively accu-

rate but are conceptually important because their dynamics still has the

generic form (1.1a)–(1.1c) and, at a good qualitative level — better than

that of the crude electrostatic analogy of Sec. 1.4 — they describe phenom-

ena such as the scale effect, Rossby-wave propagation, and Rossby-wave

breaking and other strongly nonlinear phenomena such as vortex interac-

tions and so-called “cascades”.

PV inversion, which generically is a mildly nonlinear operation, albeit a

smoothing operation because of the scale effect, becomes strictly linear in

these models. This allows free use of the superposition principle and helps

to expand the repertoire of mathematically precise illustrative solutions.

The advective nonlinearity is the only nonlinearity. The quasi-geostrophic

models come in a number of versions, including single-layer, multi-layer,

and continuously stratified. The standard single-layer or “shallow-water”

version is isomorphic to the standard Hasagawa–Mima tokamak model.

The term quasi-geostrophic comes from the balance condition used to

contruct the inversion operator I , geostrophic balance, in which we entirely

neglect the relative centrifugal and other small terms in the momentum

equation. Geostrophic balance means simply a balance between Coriolis

forces and horizontal pressure gradients. It is valid as an asymptotic ap-

proximation in the limit of small Rossby number Ro := f−1 ‖ ẑ · ∇ × u ‖
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where f is the Coriolis parameter as before, ẑ is a unit vertical vector, and

‖ ‖ denotes a typical magnitude.

In these models it is convenient to use modified definitions of the PV,

to be denoted by q, with background qb. Within the asymptotic approxi-

mation schemes that lead to the models, which originated in the indepen-

dent pioneering work of Charney [24] and Obukhov [25] and are described

in many textbooks, we may regard the velocity field as purely horizontal

and nondivergent to leading order. An O(Ro) correction is implicit, allow-

ing weak vertical motion and horizontal divergence. So to leading order

we can introduce a streamfunction φ(x, t), which is a suitably Coriolis-

scaled pressure anomaly such that, to leading order, u = ug := ẑ×∇φ =

(−φy, φx, 0), expressing geostrophic balance. Suffixes x and y denote par-

tial differentiation. In terms of the corresponding “geostrophic material

derivative” Dg/Dt := ∂/∂t + ug · ∇ the dynamics takes the form

Dgq/Dt = forcing + dissipation , (1.5a)

ug(x, t) = I[qa( · , t) ] := ẑ×∇L−1qa , (1.5b)

qa := q − qb , (1.5c)

where again “dissipation” includes negative dissipation, i.e. self-excitation,

and where L is a linear elliptic operator given by the horizontal Laplacian

∇2
H = ∂xx + ∂yy plus extra terms that vary from model to model. These

operators have well-behaved inverses L−1 if reasonable boundary conditions

are given. Of course (1.5b)–(1.5c) amount to saying that in each case the

definition of q is qb+Lφ. However, saying it via (1.5b)–(1.5c) emphasizes

that these models are indeed examples of the generic dynamics.

Examples include the following three. The first two are single-layer, two-

dimensional models with φ = φ(x, y, t), involving a fixed lengthscale LD to

be specified shortly. The third is three-dimensional with φ = φ(x, y, z, t),

taking account of continuous background stratification:

Model 1: Lφ := ∇2
Hφ − L−2

D φ , (1.6a)

Model 2: Lφ := ∇2
Hφ − L−2

D φ̃ , (1.6b)

Model 3: Lφ := ∇2
Hφ +

1

ρ0

∂

∂z

(

ρ0f
2
0

N2

∂φ

∂z

)

. (1.6c)



May 4, 2015 16:13 World Scientific Book - 9in x 6in aix

The Atmospheric Wave–Turbulence Jigsaw 21

Model 2 is exclusive to the tokamak, having no atmosphere–ocean counter-

part beyond its conformity to the generic dynamics, whose most important

implication, for our purposes, is PV mixability. The tilde in model 2 de-

notes the departure from a zonal or x-average: φ̃ := φ− 〈φ〉.

In models 1 and 3, the extra terms added to the Laplacian represent

hydrostatic balance together with vortex stretching by the implicit, O(Ro)

vertical motion, essentially the ballerina effect from the accompanying hor-

izontal convergence. The continuous background stratification in model 3

is represented approximately in terms of background profiles ρ = ρ0(z) and

θ = θ0(z), with the buoyancy frequency N(z) defined in terms of the grav-

ity acceleration g by N2 := gd ln θ0/dz. Coriolis effects are represented

by a domain-average Coriolis parameter f = f0 = constant. In model 1

the lengthscale LD, called the Rossby deformation length, is f−1
0 times the

gravity-wave speed for the layer, which has a free top surface. More pre-

cisely, one uses the notional gravity-wave speed that would apply if f0 were

zero, measuring the hydrostatic free-surface gravitational elasticity.

Since model 1 is often called the Hasegawa–Mima model or sometimes,

for the sake of historical justice, the Charney–Obukhov–Hasegawa–Mima

model, it is reasonable to call model 2 with the tilde a “generalized”, or

“modified”, or “extended” Hasegawa–Mima model, e.g. [40], [41]. Model 1

in its atmosphere–ocean applications is given the self-explanatory name

“shallow-water quasi-geostrophic model” and sometimes, less transparently,

“equivalent barotropic model”. Notice that we can turn model 3 into

model 1 by assuming a fixed vertical structure with a single vertical scaleH.

Then a scale analysis applied to the extra term with the vertical derivatives

gives LD = NH/f0, related to the notional internal-gravity-wave speed NH

for f0 = 0. Typical extratropical LD values range between ∼103 km–102 km

for the atmosphere and ∼102 km–101 km for the oceans, with H in the ball-

park of say 5–10km.

Model 3 requires a boundary condition φz = 0 at a flat lower boundary,

say z = 0, idealizing the Earth’s surface. (In otherwise-unbounded domains

we take evanescent boundary conditions.) For model 3 one can show from

hydrostatic balance that φz = g/f0 times the anomaly in ln θ (φz having

dimensions of velocity, like φx and φy). So the nonvanishing θ anomalies

at z = 0, which as already mentioned are critical to baroclinic instability

and frontogenesis, correspond to nonvanishing φz at z = 0. As hinted at

the end of Sec. 1.4, we can regard this situation as equivalent to φz = 0

at z = 0 together with a compensating delta function in the last term of

(1.6c), coming from a jump discontinuity in φz [42].
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In model 2 the ballerina effect is replaced by spinup via the magnetic

Lorentz force u × B when ions converge, u being the ion flow component

normal to a background magnetic field B = |B|ẑ. Geostrophic balance is

replaced by the leading-order force balance u × B ≈ −E, implying that

the disturbance streamfunction φ̃ is now |B|−1 times the disturbance to

the electrostatic potential. In other words the pressure-gradient force is re-

placed by the electrostatic force and the Coriolis parameter by |B|, suitably

normalized — most conveniently as the ion gyrofrequency ωci given by |B|

times the ions’ charge-to-mass ratio. Model 2 assumes that ion tempera-

tures are much lower than electron temperatures so that the ion pressure

gradient is relatively unimportant in the ion flow dynamics.

Also implicit in the dynamics of model 2 are assumptions that a typical

disturbance φ̃, while treated as two-dimensional in the cross-sectional plane

of the tokamak, actually has a finite wavenumber component k‖ parallel to

B, allowing the electrons to adjust quasi-statically along the B lines en-

circling the tokamak. More precisely, with thermalized, hence Boltzmann-

distributed, electrons at fixed temperature Te there is a mutual adjustment

between φ̃ and the electron density anomaly ñe such that ñe ∝ φ̃. For

an insightful discussion see [43]. Together with quasineutrality this mutual

adjustment gives rise to a notional isothermal sound speed cs based on elec-

tron temperature but ion mass, corresponding to the notional shallow-water

gravity-wave speed in model 1; c2s is of the order of the electron-to-ion mass

ratio times the square of the electrons’ thermal speed ve. The corresponding

LD value cs/ωci is conventionally denoted by ρs and is small in comparison

with tokamak dimensions. It would be equal to the ions’ gyroradius if the

ions were heated up to temperature Te, as indeed happens in models more

realistic than model 2. Also implicit in model 2 is an assumption that the

zonal-mean flow 〈φ〉 does, by contrast, have k‖ = 0, suppressing the mu-

tual adjustment between φ̃ and ñe and giving rise to the tilde in Eq. (1.6b).

In more realistic tokamak models 〈 〉 becomes an average over an entire

torus-shaped magnetic flux surface encircling the tokamak.

The Rossby number is replaced by the small parameter ω−1
ci ‖ ẑ ·∇×u‖ .

For the background PV gradient the atmosphere–ocean β, with dimensions

vorticity/length, is replaced by ωci/L where L is the lengthscale of the

background electron-pressure gradient, with signs as in Fig. 1.5. Also,

“dissipation” in Eq. (1.5a) includes the negative dissipation from resistive

self-excitation of drift waves [44], predominantly at scales of the order of

LD = ρs = cs/ωci and coming from a slight time delay in the mutual

adjustment between φ̃ and ñe.
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Omitted from the list above are various two-layer and higher multi-layer

atmosphere–ocean models that also conform to the generic dynamics, and

for which the PV-mixing paradigm is also robust. They are essentially

stacks of shallow water quasi-geostrophic models and are popular because

they capture some aspects of continuous stratification, model 3, but with a

reduced computational burden. There is a rigidly-bounded two-layer model

that might, however, be worth exploration as a more consistent version

of model 2 for the tokamak. In its atmosphere–ocean interpretation it

represents a physically consistent thought-experiment with two LD values,

one finite and the other infinite, that might be put into correspondence

with the tokamak’s finite-k‖ and zero-k‖ modes. It has been intensively

studied, e.g. [45] & refs.

Such a two-layer model might well, on the other hand, fail to improve on

model 2 especially if PV mixing turns out to be important in real tokamaks.

This is because mixing due to advection by a chaotic disturbance velocity

field ũ is insensitive to sign changes ũ → −ũ. So mixing by finite-k‖
disturbances in a real tokamak should be well able to robustly generate

and maintain jets in the flux-surface-averaged, zero-k‖ velocity field 〈u〉, a

scenario that is implicit in model 2 despite its being heavily idealized.

Taking qb = βy + constant as the background PV, with constant gra-

dient β, we can easily check that models 1–3 possess waves that propa-

gate in the manner sketched in Fig. 1.5. For instance both model 1 and

model 2 linearized about relative rest have the same elementary wave so-

lutions φ̃ ∝ exp(ikx+ ily − iωt) with the same, single-branched dispersion

relation

ω =
−βk

k2 + l2 + L−2
D

, (1.7)

where the denominator comes from qa = q̃ = Lφ̃ = −(k2 + l2 + L−2
D )φ̃

in the linearized (1.5a) with right-hand side zero, ∂q̃/∂t + Dgqb/Dt =

∂(Lφ̃)/∂t + β∂φ̃/∂x = 0. Notice the scale effect: wave propagation is

weakened as scales become smaller and k2 + l2 larger. In the long-wave

limit (k2 + l2) → 0 the phase velocity asymptotes to −βL2
D, which in the

tokamak case coincides with the background diamagnetic drift velocity, not

of ions but of electrons.

The laboratory flow in Fig. 1.1 has a rigid lid and is well described by

model 1 with LD = ∞. This is ordinary (Euler, inertial) two-dimensional

vortex dynamics except that there is a nontrivial background qb = βy +

constant. This comes from a gently sloping cone-shaped tank bottom,

where now y is radial distance toward the tank centre.
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For model 1 in an unbounded domain with finite LD one has the explicit

inversion formula

φ(x, t) = L−1qa := −
1

2π

∫ ∫

K0

(

|x− x′|

LD

)

qa(x
′, t)dx′dy′ (1.8)

where |x−x′|2 = (x− x′)2 + (y− y′)2 and where K0 is the modified Bessel

function [25]. Its exponential decay shows that both linear and nonlinear

interactions become very weak at distances significantly greater than LD.

Aphoristically speaking, we have action at a distance but not too great a

distance, which helps to explain the surprising robustness of the generic

dynamics [19] which, in effect, through the balance condition, assumes that

gravity-wave propagation is instantaneous. In model 2 this corresponds to

instantaneous acoustic propagation cs = ∞.

1.9 Pseudomomentum and the Taylor identity

Models 1–3 and their multi-layer counterparts all possess what are called

pseudomomentum theorems and Taylor identities. All these theorems and

identities stem from the seminal 1915 work of Sir Geoffrey Ingram Tay-

lor [46] and its further development in the 1960s by Jule G. Charney and

Melvin E. Stern [47] and by Francis P. Bretherton [48]. (I’m almost a direct

intellectual descendant because Taylor was Bretherton’s PhD advisor and

Bretherton was mine.) Taylor’s results apply to models 1 and 2. Char-

ney, Stern and Bretherton extended them to model 3, leading in turn to a

milestone 1969 paper by Robert E. Dickinson [49]. Dickinson’s paper took

what I regard as the decisive step toward solving the “negative viscosity”

enigma for the real atmosphere, though further work was needed to see how

simply it could be understood using the concept of Rossby-wave breaking.

For more history see [10].

In their usual forms the pseudomomentum theorems depend on lin-

earization and so apply to small-amplitude waves only. The Taylor iden-

tity, by contrast, is valid at any amplitude, and so applies to the whole

wave–turbulence jigsaw.

Consider an arbitrary zonal-mean state 〈q〉 = qb + 〈qa〉. The non-

background part 〈qa〉 might for instance represent a jet flow. Take the

disturbance part q̃ = Lφ̃ of (1.6a) or (1.6b). Multiply it by φ̃x and take the

zonal mean. The LD terms disappear, because
〈

φ̃xφ̃
〉

=
〈

1
2
(φ̃2)x

〉

= 0.

From the horizontal Laplacian we have
〈

φ̃xφ̃xx

〉

=
〈

1
2
(φ̃2

x)x
〉

= 0 and

so, noting also that
〈

φ̃xyφ̃y

〉

=
〈

1
2
(φ̃2

y)x
〉

= 0 and writing ṽ = ṽg = φ̃x,
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ũ = ũg = −φ̃y, dropping the suffix g from now on, we have
〈

ṽq̃
〉

= −∂
〈

ũṽ
〉

/∂y . (1.9)

This is the Taylor identity for models 1 and 2. It is valid at any amplitude

and is indifferent to whether the dynamics is ideal-fluid or not: Eq. (1.5a)

was never used. It was derived by Taylor for the nondivergent barotropic

case LD = ∞. As just shown, however, it extends trivially to any value

of LD. It tells us that in these models the eddy flux of PV, including any

contributions due to strongly nonlinear processes like wave breaking and

PV mixing, is directly tied to the eddy flux of momentum and hence to the

self-sharpening, anti-frictional jet dynamics. The negative-viscosity enigma

has vanished in a puff of insight! It is the mixable quantity PV that tends

to go down its mean gradient — not momentum, which there is no reason

to suppose is mixable.

For model 3 one replaces the momentum-flux convergence on the right

of (1.9) by its counterpart in the yz plane, the convergence of an effective

momentum flux whose vertical component is minus what oceanographers

call the form stress across an undulating stratification surface due to corre-

lations between pressure fluctuations and stratification-surface slopes. This

gives the Taylor identity for model 3:

〈

ṽq̃
〉

= −
∂〈ũṽ〉

∂y
+

1

ρ0

∂

∂z

(

ρ0f
2
0

N2

〈

∂φ̃

∂x

∂φ̃

∂z

〉)

. (1.10)

To see that the last term contains the form stress, within the round brackets,

note that 〈φ̃xφ̃z〉 = −〈φ̃φ̃zx〉 and that ρ0f0φ̃ is the pressure fluctuation

while, thanks to hydrostatic balance, −f0N
−2φ̃z is the stratification-surface

displacement and −f0N
−2φ̃zx its slope. For historical reasons this effective

momentum flux has often been defined with a perverse sign convention and

labelled the Eliassen–Palm flux. By the usual conventions, −〈ũṽ〉 ought

to be minus the momentum flux or plus the stress, and similarly for the

vertical, form-stress term. Like (1.9), the identity (1.10) holds whether

the dynamics is ideal-fluid or not and for disturbances of any amplitude

whatever, wavelike, or turbulent, or both.

The small-amplitude pseudomomentum theorems were also derived

by Taylor and Bretherton albeit in slightly disguised form. As things

panned out historically, full clarity (in the atmosphere–ocean community)

had to await introduction of what are usually called the “transformed

Eulerian-mean equations” [50], shortly after which the conceptual connec-

tion with theoretical-physics principles — translational invariance, quasi-
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particle gases and so on — was finally made, helped by a correspondence I

had with Sir Rudolf Peierls. An in-depth discussion is given in [6].

Here we define the pseudomomentum P per unit mass for small-

amplitude fluctuations q̃ about the translationally-invariant mean state 〈q〉,

for all three models, as

P := − 1
2
〈q̃2〉/〈q〉y . (1.11)

The sign convention is chosen to make P agree with the usual ray-theoretic

pseudomomentum or quasimomentum, i.e. wave action times wave vector.

We expect a minus sign precisely because of the one-wayness of Rossby and

drift waves.

Linearizing (1.5a) with right-hand side zero, about the mean state 〈q〉,

we easily find, on multiplication by q̃ and taking the zonal mean, the dis-

turbance potential-enstrophy equation ∂t
1
2
〈q̃2〉 = −〈q〉y〈ṽq̃〉 for all three

models. The Taylor identity says that we can turn the potential-enstrophy

equation into a conservation theorem if we divide it by −〈q〉y and use the

fact that, at small amplitude, we may consistently neglect the rate of mean-

state evolution 〈q〉yt. Thus for models 1 and 2, for instance,

∂P

∂t
+

∂〈ũṽ〉

∂y
= 0 (1.12)

which is indeed in conservation form, as is the corresponding result for

model 3 for which we need only replace the second term of (1.12) by minus

the right-hand side of (1.10):

∂P

∂t
+

∂〈ũṽ〉

∂y
−

1

ρ0

∂

∂z

(

ρ0f
2
0

N2

〈

∂φ̃

∂x

∂φ̃

∂z

〉)

= 0. (1.13)

Of course one can usefully repeat these derivations with the forcing or dis-

sipation terms explicitly included on the right of (1.5a) whenever one has a

particular model for those terms, such as a viscous term, or infrared radia-

tive damping, or drift-wave self-excitation. Then one has sources and sinks

of pseudomomentum P . Such sources and sinks do not necessarily require

external forces to be exerted. They require only that waves be generated

or dissipated somehow. This underlines the fact that pseudomomentum is

not the same thing as momentum, despite sharing the same flux terms.

The small-amplitude pseudomomentum conservation theorems are

sometimes called Charney–Drazin theorems, even though they originated

in the 1915 work of Taylor [46]. The 1961 work of Charney and Drazin [51]
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restricted attention to steady, nondissipating waves on a special mean flow

〈u〉(z) with vertical shear only, and vanishing horizontal shear 〈u〉y and

vanishing Reynolds stress 〈ũṽ〉, in model 3. Their theorem, Eqs. (8.13)ff.

of [51], though influential in its time, said only that, in this special steady-

waves case, the ∂/∂z term of (1.13) vanishes — the counterpart to saying

that ∂〈ũṽ〉/∂y vanishes for the steady-waves case of (1.12). Unlike Taylor,

they did not consider time-dependent waves and so did not find any results

like (1.12) and (1.13) involving ∂P/∂t.

The reader interested in deeper aspects of the theory is recommended to

read the penetrating account in Bühler’s book [6]. For instance the assump-

tion 〈q〉yt = 0 used above, in order to derive (1.12) and (1.13), is consistent

with the mean state being not only translationally but also temporally

invariant. Then pseudoenergy as well as pseudomomentum is conserved

for ideal-fluid flow. Generically, the pseudoenergy E in a particular frame

of reference can be defined as 〈u〉P plus the positive-definite wave-energy

of the linearized disturbance equations. This holds for arbitrarily-sheared

mean flows 〈u〉.

Domain-integrated P and E conservation immediately give us the well

known Rayleigh–Kuo–Charney–Stern and Fjørtoft shear stability theorems.

The first implies stability whenever P is inherently one-signed, i.e. whenever

〈q〉y is one-signed, and the second whenever a translating frame of reference

can be found that makes 〈u〉P positive definite, i.e. 〈u〉〈q〉y negative defi-

nite, even if 〈q〉y is two-signed. This last points to the role of counterprop-

agating Rossby waves in shear instabilities mentioned in Sec. 1.6. States

in which 〈q〉y is only just one-signed (e.g. Fig. 1.1, also “PV staircases”,

next section) are sometimes called “states of Rayleigh–Kuo–Charney–Stern

marginal stability”, or for brevity “states of Rayleigh–Kuo marginal stabil-

ity”. Beautiful generalizations and extensions of all the stability theorems

were discovered by V. I. Arnol’d; see e.g. [36], [52], and references therein.

Bühler’s book [6] also makes clear to what extent one can general-

ize small-amplitude results like (1.12) and (1.13) to finite amplitude, for

atmosphere–ocean models at least. The finite-amplitude counterparts,

though conceptually important, are computationally impractical in the

cases that interest us here because they require retention of Lagrangian

flow information — more precisely, the shapes of originally-zonal material

contours entering Kelvin’s circulation theorem. That is no great problem

for waves that are not breaking, like the waves in Fig. 1.5, but becomes

hopelessly complicated in turbulent zones where the waves are breaking,

meaning that the material contours are deforming irreversibly. It is perhaps
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worth noting that this difficulty has, nevertheless, been circumvented in a

recent proof of a finite-amplitude version of the Rayleigh–Kuo–Charney–

Stern stability theorem that is even more general than Arnol’d’s version,

allowing fully-turbulent wave breaking and PV mixing [36], in models 1–3.

(But the Fjørtoft theorem then fails: it is easy to find counterexamples.)

It is Kelvin’s circulation theorem applied to originally-zonal material

contours that accounts for the otherwise mysterious fact that, even though

momentum and pseudomomentum are different physical quantities related

to different translational symmetry operations, they share the same off-

diagonal flux terms. Kelvin’s circulation theorem is exactly the ideal-flow

constraint preventing what Diamond et al. (this volume) call “the slippage

of a quasi-particle gas” of drift waves relative to the zonal flow.

We may think of the momentum-flux convergences that appear in (1.12),

(1.13) and their generalizations, including the generalizations to finite dis-

turbance amplitude, as effective wave-induced forces felt by the mean state.

Such effective forces may or may not be equal to the actual mean-flow ac-

celeration ∂〈u〉/∂t. If they are, then we have simply

∂t (〈u〉 − P ) = 0 (1.14)

for ideal-fluid flow. It can be shown that this always holds in model 2,

and in model 1 for LD = ∞. It is not true more generally because the

response to the effective mean force normally includes implicit O(Ro) mean

motions and mass fluxes in the y direction, whose Coriolis forces contribute

to ∂〈u〉/∂t. In the case LD = ∞, and in model 2 for all LD, such mean

mass fluxes are shut down by the kinematic constraints. LD = ∞ models

are two-dimensionally nondivergent to sufficient accuracy since with gravity

g = ∞ we have replaced the free upper surface with a rigid lid. Otherwise

it is simplest to think directly in terms of eddy fluxes of PV, focusing on the

left-hand sides of the Taylor identity (1.9) or (1.10), and using PV inversion

to calculate ∂〈u〉/∂t. Inversion implicitly takes full account of the implicit

O(Ro) mean motions and mass fluxes.

For models 1–3 there are actually four momentum-like quantities that

are liable to be conflated but need to be distinguished, namely (1) mo-

mentum, (2) Eulerian pseudomomentum (of which P is a simple example),

(3) Lagrangian pseudomomentum (definable at finite amplitude), and (4)

Kelvin impulse. Adding to the potential for confusion, the word impulse

often means momentum in some European languages.

Bühler’s book [6] keeps these distinctions clear at all stages. It also lays

out in full detail exactly how (1.14) generalizes to finite amplitude, and to
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Fig. 1.7 Profiles of φ and u for perfect, zonally-symmetric PV staircases with step size

L, in model 1. Tick marks are at intervals of y = 1
2
L = LD. From left to right, the first

profile is that of φ for a single step and the second is the corresponding u profile. The
remaining profiles are those of u = −φy for two, three and the limiting case of an infinite

number of perfect steps. From [10]; q.v. for mathematical details of the inversions.

atmosphere–ocean models more accurate than quasi-geostrophic, and spells

out the price to be paid for such generalizations in terms of retaining the

accurate Lagrangian flow information required to keep track of the shapes

of material contours.

It is a nontrivial question whether or not model 2 admits any corre-

sponding finite-amplitude results. The reason is that, in the atmosphere–

ocean cases, the application of Kelvin’s circulation theorem to originally-

zonal material contours requires the implicit O(Ro) mean motions and mass

fluxes to be taken into account — that is, it requires consideration of the

O(Ro) corrections to the leading-order velocity field ẑ × ∇φ. My current

conjecture is that, since the zonal-mean kinematics of model 2 would ap-

pear to constrain such corrections to be zero, at least in the zonal mean,

there may well be a finite-amplitude counterpart to (1.14) though, if so,

there is still the question of how far the Lagrangian information required

might limit its usefulness in practice. However, all this would need to be

checked in detail and preferably by someone who understands the plasma

physics better than I do.

1.10 PV staircases

Focusing again on our main theme of strong nonlinearity, we note that

the PV Phillips effect, Fig. 1.6, suggests the possible relevance of idealized
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saturated states consisting of perfectly mixed zones cut out of a background

y-profile qb(y) having a constant gradient β (again, not to be confused

with plasma beta). We take qb = βy as before. The graph of q against y

then looks like a staircase cut out of a sloping hillside. So these idealized

saturated, marginally Rayleigh–Kuo–Charney–Stern stable states are often

called “PV staircases”.

The corresponding qa profile is a zigzag. Inverting this we get an array

of zonally symmetric jets whose profiles depend on the PV jump qj at each

step, as well as on the step size L, i.e. the jet spacing, in units of LD.

Some examples are shown in Fig. 1.7 above, for model 1 with L/LD = 2

and for staircases of one, two, and three steps along with the limiting case

of an infinite number of steps. The two profiles on the left are the φ and

u profiles for the case of one step, an idealized version of the terrestrial

winter stratosphere in its usual wintertime state. The others are all u

profiles. Recall that u = −φy. The solutions are taken from [10], q.v. for

mathematical details as well as for caveats regarding the conflicting uses of

the term “Rhines scale”, whose relation, if any, to the jet spacing L is not

as straightforward as is sometimes assumed.3

Some researchers think that the PV-staircase idealization provides a

good model for Jupiter’s weather layer in extratropical latitudes — a per-

suasive case is made in the review article by Marcus [54] — though, hardly

surprisingly, in view of our generally poor understanding of Jovian fluid dy-

namics, this is controversial. Alternatives have been put forward, notably

by Dowling [55]. What is not in doubt is that staircase-like structures of

one, two and sometimes three steps are well observed and well documented

in the Earth’s atmosphere [31]. The observed states are not zonally sym-

metric; what they share with the simple staircase idealization are large,

zonally-extensive regions of fairly well mixed PV on stratification surfaces.

Those regions are bordered by narrow bands of concentrated PV gradients,

the meandering jets already noted. If PV contours on a stratification surface

are splayed out by mixing in some places, then they must be bunched up in

others. (The only simple alternative consistent with (1.3) and its conserva-

tion properties [30] is an overwhelmingly improbable alternative, namely,

3One problem, sometimes forgotten, is that Rhines’ original concept came from a variant
of homogeneous turbulence theory in which an upscale energy “cascade” is all-important,

yet the Rossby waves feel only the background PV gradient β, and therefore obey the
dispersion relation (1.7). Also, LD = ∞ is often assumed, as in Rhines’ original work
[53]. We shall see shortly that Rossby waves on PV staircases can have dispersion

properties that differ substantially from (1.7), and in a way that can drastically reshape
the wave–turbulence interactions.
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u profileqy

c

profile

Fig. 1.8 Sketch of PV discontinuity and the corresponding velocity profile obtained by
PV inversion. The step size or jet spacing L is much larger than the jet scale LD, and

we can ignore β and equate qa and q. The solid velocity profile is from Eq. (1.15). The
angle between the dashed lines is governed by the strength of the delta function qjδ(y).

to wipe out the entire pole-to-pole planetary PV gradient and thus kill the

atmosphere’s rotation Ω altogether.) The simplest and clearest example

of the splaying-out and bunching-up that I’m talking about is the winter

stratosphere [5], [56], often resembling a single-step staircase idealizable as

the left-hand case in Fig. 1.7.

As L/LD varies, the jets retain their peaked profiles, corresponding to

the infinitely tight bunching of PV contours in this idealization. They

change their shapes in other ways. For large L/LD we get isolated jets, still

Rayleigh–Kuo–Charney–Stern marginally stable. Figure 1.8 zooms in on

one such jet, near which the qa zigzag looks like a simple jump discontinuity,

at y = 0, say, as shown in the right-hand graph. The zonally-symmetric

inversion problem for u then simplifies to Lu = uyy − L−2
D u = −〈qa〉y =

−〈q〉y = −qjδ(y) and delivers the velocity profile shown in the left-hand

graph,
u = 〈u〉 = uj exp (−|y|/LD) (1.15)

where uj :=
1
2
LDqj. The dashed lines in Fig. 1.8 mark the jump in the slope

uy at the jet peak, determined by the strength of the delta function qjδ(y)

in the inversion problem. Integration of uyy−L−2
D u = −qjδ(y) across y = 0

gives
[

uy

]y=0+

y=0−
= −qj.

Staircase models are no more than an idealization, for one thing being

much more deterministic than current models of the fluctuating zonal flows

in tokamaks. However, it may be interesting to speculate whether, for
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strong nonlinearity, the staircase idealization has some relevance to the

saturation problem in real tokamaks.

There is an ill-understood dependence on how the turbulence is excited.

In the vast literature on numerical forced-dissipative versions of model 1

(the “beta-turbulence” literature, mostly on model 1 with qb = βy and

LD = ∞), it seems that some of the numerical experiments produce sharp

staircases, e.g. [57], while others produce only a faint “washboard” (e.g. B.

Galperin, personal communication). This could be partly due to the fact

that differing choices of artificial forcing will disrupt PV mixing to differing

extents.

Most of these studies use a prescribed stochastic external force field,

rather than self-excitation. We have the same difficulty in the Jupiter

problem — a lack of clarity as to what kind of forcing or self-excitation

best mimicks reality. There is also great uncertainty as to when or whether

upscale energy “cascades” are involved and when, by contrast, the passive

shearing of repeated PV-anomaly injections is more important [58], [59],

[60]. In “cascade” language this last produces an enstrophy cascade but

not an energy cascade. It also disrupts simple PV mixing.

The laboratory flows exemplified by Fig. 1.1 are forced in several ways

that all contrive to preserve the material invariance of PV to good approx-

imation, giving PV mixing a chance to predominate. In the experiments

that produced Fig. 1.1 and similar flows, the forcings are non-stochastic,

though spatially variable. In a variety of runs the outcome, in these exper-

iments, always seems to be robustly a flow like that in Fig. 1.1, a prograde

jet that is “staircase-like” in the same sense as the flow in Fig. 1.8.

In these experiments, forcing and dissipation are kept far weaker than

in most laboratory and numerical experiments. The tank in Fig. 1.1 is

unusually large — 86.4cm in diameter — and can be rotated unusually

fast without disintegrating, up to 4 revolutions per second. Figure 1.1 used

3 per second, |Ω| = 18.8s−1. The wave–turbulence interactions that shape

the flow are almost free of forcing and dissipation, and strongly nonlinear.

See [13] and [14] for more details of these remarkable experiments.

The only other laboratory experiments with comparable weakness of

forcing and dissipation, of which I’m aware, are those of Read et al. [61].

They use an ingenious quasi-stochastic forcing method in an extremely large

tank, 13m diameter, though at much smaller |Ω|. Meandering jets are ob-

tained, and temporary local reversals of PV gradients “indicative of Rossby

wave breaking”, though in the absence of PV maps like those in [13] and [14]

it is hard to make a closer assessment. It appears, however, that in these
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experiments the turbulence is too weak to bring the system close to a well

developed staircase-like regime. In this connection some recent numerical

experiments by R. K. Scott and D. G. Dritschel are noteworthy, in that

with increased computing power they can reach further into the weakly-

excited, weakly-dissipative, strongly-nonlinear parameter ranges conducive

to staircasing [33].

T. E. Dowling and co-workers have argued that Jupiter may be different

again, possibly close to a state that is marginal not by the Rayleigh–Kuo–

Charney–Stern stability criterion but, rather, by that of Arnol’d’s Second

Theorem. The q profiles would then be “hyperstaircase-like” to the ex-

tent that they have reversed PV gradients. There is some indirect, but I

think persuasive, observational evidence that Jupiter’s weather layer may

be close to such a state [55]. But the question of what forcing or self-

excitation mechanisms might lead to it does not yet seem to have been

clearly answered — though an extremely promising candidate, direct ex-

ternal forcing by moist (thunderstorm) convection, has been put forward

from time to time and is now under intensive investigation, e.g. [62], [63],

and references therein. At first sight this would seem to suggest a leading

role for the passive shearing of repeated PV-anomaly injections [58]–[60],

the simplest mechanism potentially able to overcome PV-mixing tendencies

and produce a hyperstaircase.

1.11 Jet self-sharpening and meandering: a toy model

The single isolated jet in Fig. 1.8 is the simplest of all Rossby waveg-

uides. Its dispersion relation differs substantially from (1.7), and in a way

that will prove interesting. It signals a kind of wave–turbulence, linear–

nonlinear coupling that differs greatly from the standard homogeneous-

turbulent Rhines picture.

Linearizing (1.5a) with right-hand side zero about the profiles in Fig. 1.8,

with L defined as in (1.6a), and continuing to drop the suffix g, we have

q̃t + 〈u〉q̃x + 〈q〉yφ̃x = 0 (1.16)

where 〈u〉 is given by (1.15), and 〈q〉y = qjδ(y) as before. For a disturbance

of the standard form φ̃ ∝ φ̂(y) exp{ik(x− ct)}, with phase velocity c and

wavenumber k along the jet, we have from (1.6a)

q̃ = Lφ̃ = φ̃yy − (k2 + L−2
D )φ̃ . (1.17)

So, with q̂ := φ̂yy − (k2 + L−2
D )φ̂, (1.16) implies when k 6= 0 that
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(〈u〉 − c ) q̂ + qjδ(y)φ̂ = 0 , (1.18)

integration of which across y = 0 gives

(uj − c )
[

φ̂y

]y=0+

y=0−
+ qj φ̂

∣

∣

y=0
= 0 (1.19)

for the jump in φ̂y across y = 0. Away from y = 0, we have 〈q〉y = 0 hence

q̂ = 0 and therefore

φ̂(y) ∝ exp
{

−(k2 + L−2
D )1/2|y|

}

. (1.20)

For (1.19) and (1.20) to be compatible we must have, with uj =
1
2
LDqj,

c = uj

{

1−
(

1 + L2
Dk2

)−1/2}
, (1.21)

which may be compared with (1.7), which has no square root in its denom-

inator L−2
D + k2 + l2. The square root in (1.21) arises from the infinite

bunching of PV contours at the jet core, giving dispersion properties dis-

tinctly different from those where the background PV contours are evenly

spread out, as assumed in (1.7) and in its limiting case L2
D → ∞ used in

the standard Rhines-scale argument.

In (1.21) notice especially that, as k varies monotonically between 0

and ∞, c varies monotonically between 0 and uj. That is, for this jet there

are always “critical lines” — that is, y values such that 〈u〉 = c — on

each flank of the jet as indicated in Fig. 1.8. Thus, whenever the jet is

disturbed, the undulations of its core will inevitably give rise to PV mixing

on either side. In a frame of reference moving with the wave at speed c, one

sees Kelvin-cat’s-eye flow patterns in the jet flanks, which must twist up

any stray PV contours like spaghetti on a fork. Whenever the undulations

increase in amplitude, the widths of the mixing regions expand, tending on

average to keep the PV contours bunched up in the core and maintaining

the eddy-transport barrier there, in the typical way.

The presence of more than one zonal wavenumber k complicates the

kinematical details, going over to Kelvin sheared-disturbance kinematics

[58] for broad spectra. But none of this can suppress the PV mixing in the

jet flanks. This is the typical anti-frictional jet self-sharpening process and,

broadly speaking, is the kind of kinematics already encountered in Fig. 1.1

and in the other examples mentioned. It is typical of the real, highly inho-

mogeneous wave–turbulence interactions observed in the atmosphere and

oceans — see also [64] for a good discussion of some oceanic examples
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— with linear, wavelike regions closely adjacent to fully nonlinear, wave-

breaking regions. It is well verified in fully nonlinear numerical experiments,

e.g. [65], [32]. As already emphasized, it is at an opposite extreme from

a homogeneous-turbulence scenario using (1.7) as the Rossby-wave disper-

sion relation. Further discussion and further illustrations can be found for

instance in [19], [34], and [36].

The long-wave behaviour is relevant to the issue of meandering. If we

take k2 ≪ L−2
D in (1.21) we find phase and group velocities

c ≈ 1
2
ujL

2
Dk

2 , cgroup ≈ 3
2
ujL

2
Dk

2 (1.22)

that match the jet’s surrounding flow velocity 〈u〉 ≈ 0 for sufficiently small

k2. This says that a meandering jet flows through its surroundings almost

like a river. Large-scale meanders have very little propensity to propagate

upstream or downstream. The same thing holds even for large-amplitude

meanders, and for generalizations of model 1 beyond quasi-geostrophic the-

ory, as shown in [66]. The meandering behaviour of a nonlinear version

of our isolated-jet model is strikingly reminiscent of the large-scale, large-

amplitude meandering of real atmosphere–ocean jets. The nonlinear model

even succeeds in mimicking the cutoff behaviour that sheds Gulf-stream

rings. Again, further discussion is in [19].

It is worth remarking that the long-wave dispersion properties just de-

scribed do not depend on having an idealized, perfectly sharp jet, with

infinitely close bunching of its PV contours — at least not within linear

theory. As long as 〈q〉y = 〈u〉yy − L−2
D 〈u〉 to sufficient accuracy — which

means continuing to neglect the planetary-scale background contribution

β — and as long as the jet velocity profile 〈u〉 approaches zero on either

side of the jet core, we always find phase speeds c that also approach zero

as k2 → 0. This can be seen by inspection of (1.16)–(1.17). As long as k2

can be neglected in (1.17), the disturbance problem (1.16) evidently has a

solution φ̂ ∝ 〈u〉 with c = 0. This fact was pointed out in [67] and ex-

tensively exploited for planetary-scale Rossby waves on a strongly-sheared

stratospheric polar-night jet in [68]. The physical reason is that the long-

wavelength meanders tend to take place with all the jet’s PV contours

moving as one, as long as they are sufficiently bunched to avoid further

mixing by the wave breaking on either side.

How much of this carries over to model 2? The general long-wave solu-

tion just described fails; but in the idealized sharp-jet case we get precisely

the same dispersion properties, (1.21)–(1.22), as in model 1, despite having

a very different jet velocity profile. In model 2 the sharp-jet velocity profile
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is given by the pair of dashed lines on the left of Fig. 1.8. (Model 2, with the

same PV jump qj, requires us to set LD = ∞ in the local inversion problem

for the jet profile, i.e. to set LD = ∞ in 〈u〉yy −L−2
D 〈u〉 = 〈u〉yy = −qjδ(y),

which is satisfied by the pair of dashed lines.)

The derivation (1.16)–(1.22) of the linear wave theory applies word for

word and symbol for symbol, provided that uj still denotes the maximum

jet velocity. With q̂ = 0 everywhere except for the delta function at y = 0,

advection 〈u〉∂x by the the mean flow 〈u〉 has no role away from y = 0.

The dashed lines in Fig. 1.8 are of course only a local approximation

within a full staircase with large step size L; it is easy to show by restor-

ing the β contribution to qy that the dashed lines are really part of a set

of larger-scale parabolic profiles, qualitatively like the profiles in Fig. 1.7

though shifted to the left. Again, details are given in [10]. All that matters

for the present discussion is that the range of 〈u〉 values expands when we

go from model 1 to model 2, and in particular that model 2 still has the

property noted above that critical lines 〈u〉 = c will always be present.

1.12 Concluding remarks

The most important idea to have emerged from our excursion into

atmosphere–ocean dynamics is, I’d argue, the apparent robustness of the

inhomogeneous PV-mixing paradigm in strongly nonlinear two-dimensional

and layerwise-two-dimensional turbulence, whose weakly-excited, weakly-

dissipative parameter regimes exhibiting PV mixing are now beginning to

be reached thanks to today’s computing power (e.g. [33]). It is perhaps

worth saying that model 2, the extended Hasegawa–Mima model, seems

to point toward a similar conclusion for real tokamaks. Model 2 is heavily

idealized, to be sure — for instance in assuming unrealistically low ion tem-

peratures — but a process as robust as inhomogeneous PV mixing might

well have counterparts in more realistic plasma models.

At first sight model 2 presents us with a strangely inconsistent-looking

mélange of the real tokamak’s zero-k‖ and nonzero-k‖ modes of motion.

Zonal averages 〈φ〉 in model 2 are associated with zero k‖ because 〈 · 〉 is

a surrogate for averaging over one of the magnetic flux surfaces within

the real tokamak — these toroidal surfaces being approximately fixed in

space, providing a peculiar spiral scaffolding that constrains, among other

things, the mutual adjustment between ñe and φ̃ in the nonzero-k‖ modes.

The zonal average 〈φ〉 within a single two-dimensional cross-section of the
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torus is close to the zonal average within another such cross-section, both

being close to the full flux-surface average especially in cases where each

spiral field line intersects most neighbourhoods on the flux surface. By con-

trast, the fluctuating velocity fields ũ(x, t) about such a zonal average tend

to have nonzero values of k‖, subjecting them to the mutual adjustment

between ñe and φ̃ and making them different in different cross-sections.

However, as already suggested in Sec. 1.8, a key point about advec-

tive mixing processes is that they are insensitive to details in the fluc-

tuating velocity fields responsible for the mixing. Thus, for instance, if

in model 2 a two-dimensional fluctuating velocity field ũ(x, t) were to be

replaced by −ũ(x, t), then mixing could still be expected to occur. A

random walk remains a random walk when all the displacements are mul-

tiplied by −1. Thus if model 2 exhibits inhomogeneous PV mixing, then

its entire behaviour could be a surprisingly good surrogate for the real,

three-dimensional behaviour.

Of course the PV field is not a passively-advected scalar, even though

the scale effect (Sec. 1.7) tends to make the PV almost passive and the

velocity field effective at mixing, to a remarkable extent in many observed

atmosphere–ocean cases. These often have the character of breaking Rossby

waves, involving quasi-passive mixing by a u field whose scale is generally

larger than the rapidly-shrinking scale of the advected PV features. It

seems possible, then, that similar ideas might help toward understanding

the dynamics of strongly nonlinear drift-wave turbulence.

In summary, we might reasonably expect that the zonally-averaged —

in reality flux-surface-averaged — zonal flows in tokamaks will be strongly

affected by inhomogeneous PV mixing even though the details of the mixing

process must change as we go around the torus. It would be of great

interest to see in detail what model 2’s PV fields actually look like in the

strongly nonlinear, weakly-excited, weakly-dissipative cases accessible to

today’s computers. To my knowledge there are no such fields published,

though zonal-flow generation in model 2 has been clearly demonstrated in

reference [41]. If we were to zoom in to look at the fine details, would the

PV look anything remotely like Fig. 1.4 above?

Note added May 2013: Jupiter now looks like a different case again. From

current work with my graduate student Stephen Thomson an impression is

growing that Jupiter has an altogether stronger “scaffolding” in the form

of deep, relatively steady, zonally symmetric jets generated in the mas-

sive cloud-free convection layer that underlies the weather layer. It now
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seems likely that such steady deep jets exist in reality and guide the upper,

weather-layer jets, suppressing what would otherwise be their tendency to

meander. This is despite Jupiter’s weather layer being in a regime similar

to that discussed in Sec. 1.11, in which long-wavelength meandering would

be very easy to excite, in the absence of the deep jets.
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