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Abstract Recent progress in understanding the balance—imbalaabkepn is high-
lighted, with emphasis on spontaneous-imbalance phenamssociated with the
exponentially fast “wave capture” of inertia—gravity wavd hese phenomena are
excluded from shallow-water models and are outside the esafpthe classical
Lighthill theory. Also discussed is progress on a differeqic, an effort to extend
the Paparella—Youngpsilon theorem to realistic ocean models. The theorem con-
strains turbulent dissipation ratesn horizontal-convection thought-experiments,
in which mechanically-driven stirring is switched off. Tlieeorem bears on the
so-called “ocean heat engine” and “ocean desert” contsie®r The original the-
orem (2002) applied only to very idealized ocean modelse&g\vestrictions on
the original proof can now be lifted including the restrigtito a linear, thermal-
only equation of state. The theorem can now be proved fdyfegalistic equations
of state that include thermobaric effects, and nonlinganitooth temperature and
salinity. The restriction to Boussinesq flow can also bediftThe increased realism
comes at some cost in terms of weakening the constrairt dime constraint is
further weakened if one allows for the finite depth of pertédraof solar radiation.
This is collaborative work with Francesco Paparella andisivii Young.

Reprinted fromTurbulence in the Atmosphere and Oceans (Proc. International IUTAM/Newton
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1 Introduction

Following the organizers’ aims, | had originally undertake talk only about the
first topic in this paper, spontaneous imbalance and ace®\t(potential vorticity)
inversion. Recent progress in that field has been remarkgioteving a clear light
on where the Lighthill paradigm is relevant and where it i$, @s well as finding
the first accurate and completely self-consistent PV inwareperators. However,
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most of what | had to say about this is already in print else@h#2; 13]. Here |
give only a quick summary, in Section 2, then move on to thersetopic.

The second topic concerns the oceanic MOC, the meridionattawning cir-
culation. It is sometimes called the thermohaline “convelelt” despite having
nothing like the inextensibility of a real mechanical coyeebelt. The aspect cru-
cial to questions such as the desertification, or not, of fpeeuocean under global
warming is the rising branch relative to the stratificatiomfaces in the main ther-
mocline and elsewhere. It is upward material transportgsiratification surfaces
that is germane to questions about the supply of nutrientisepper ocean [21],
and hence about desertification or not.

It has sometimes been thought that buoyancy forcing alome“deve the
conveyor belt”, a scenario much discussed under the hedHorizontal convec-
tion”. The idea seems to be that the cooling of the sea suifabigh latitudes is
the main control, not only driving the deep-convective pasnand gravity currents
of which the downward branch is composed but also supplyirfificgent stirring,
hence diapycnal mixing, to sustain the upward branch ag#iesstable stratifica-
tion N2 Clearly the plumes and gravity currents must cause a oea@iount of
stirring and mixing.

Such a picture might tempt one to suppose that the “convesitt tirculation
is something that can be shut off entirely by reducing theyanoy forcing — by
either warming or freshening the high-latitude sea surfaceoth. A contrary view
is that theupward branch depends, rather, on mechanical stirring by windssti
and possibly biota [2; 15; 25; 28]. In that case the upwardhdnavould hardly
be affected by shutting off the few tens of sverdrups [5] oWfio the downward
branch. The sole effect would be to make the stratificatiofasas drift downward,
very gradually, without much affecting the upward matetiahsport across thefh.

The theorem of Paparella and Young published in 2002 [19dfter PY02,
puts important and mathematically rigorous constraintsarthinking about these
questions. It does so by placing a severe upper bound on #éragevturbulent dis-
sipation rateg attainable in a horizontal-convection scenario for smadlenular
diffusivities. If one accepts the usual empirical (Ellis@ritter—Osborn) relation
betweere values and diapycnal mixing rates

K, ~ yg/N2 1)

wherekK; is the vertical eddy diffusivity describing the mixing, apct 0.2, see e.g.
[17], also [11], then one can strengthen the arguments @irtiportance of me-

1 For instance “very gradually” would mean a downward driffust under a kilometre per millen-
nium for every ten sverdrups of downward flow that remainedt siff. This downward drift of the
stratification surfaces would not, however, detach the rtt@mmocline from its Southern Ocean
outcrop and therefore would not shut off the wind-driven heedcal stirring and Ekman transport
across the outcropping stratification surfaces, contriiguto the “upward” branch [25, & refs.].
This is because of the way in which the speed of the AntardticuBpolar Current is regulated
internally, almost independently of wind stress but verycimtavouring the outcropping, e.g. [22]
& refs. — a very different circumstance from that in the hatbe climate of the early Eocene 50
million years ago, when the Sun was about half a percent cbatehe Drake Passage still closed.
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chanical stirring to the upward branch [14; 15; 28], inchglthe superficial stirring

and Ekman transport across the Southern Ocean outcrop [28fs8], and hence

to the transports of nutrients across the ocean’s stratiicaurfaces into the upper
ocean, along with other questions about the oceanic getiezalation.

However, PY02'’s epsilon theorem applies only to a highlyald®d Boussinesq
ocean model, in a rectangular domain, with a linear equaifasiate that neglects
salinity altogether. In my talk at the international Workgon 10 December 2008
| described a generalization in which all these restrictiorere lifted except the
Boussinesq approximation. (A video of the talk, “Beyondfitigjll...”, was made
publicly available viaht t p: / / sns. cam ac. uk/ nedi a/ 518985/ f or mat s
later that month.) In particular, the new epsilon theorelovetd for arbitrary bot-
tom topography, curved geopotentials and an equation ¢é #tat included not
only salinity, but also the two main nonlinearities of reahwater, the thermal and
thermobaric nonlinearities. This was work in collaboratisith Francesco Papar-
ella and William R. Young. Young had earlier reported ourtfireeakthrough, the
first result for a nonlinear equation of state, to the Stodkh®andstrom Centennial
Meeting on 3 November 2008.

As shown in Sects. 3 and 4 below, the key to proving these géned epsilon
theorems, and further generalizations arrived at afteitbekshop, was to exploit
Young’s formulation of Boussinesq energetics. The formiatais a simple way of
handling thermobaricity and is essentially that givenhwiitie acknowledgement, on
p. 73 of the textbook by Vallis [26]. Young (personal comnuation and ref. [30])
beautifully clarifies the way in which a vestige of the thedyoamic energies sur-
vives in the Boussinesq limit, adding to the gravitationatigmtial energy.

Armed with Young’s formulation, we were able to go on to pr@gsilon theo-
rems for still more realistic equations of state, includthgse being standardized
by the international SCOR/IAPSO Working Group 127 on Tiermodynamics
and Equation of State of Seawater. The accuracies are state of the art, comparable
to those in recent publications such as [3; 7]. In additioa,were able to lift the
Boussinesq restriction and thereby shed a fundamentalligat on the subject.
A full report is in preparation, whose first part is to be sutied to theJournal of
Fluid Mechanics, hereafter “JFM”.

A few days before submission of the present paper, we leatr@dlonas Ny-
cander [16] had independently arrived at a generalized@p#iieorem based on
Young’s Boussinesq energy equation, (13) below, and a neatiequation of state
almost the same as (20) below. Nycander’s Boussinesq raisudist exactly par-
allels the result to be described in Sect. 4 below, and redari my December
Workshop talk.

2 Spontaneous Imbalance

The recent progress in this area concerns spontaneousanueadf the kind dis-
covered in the 1990s by O’Sullivan and Dunkerton [18], intdwnously stratified
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flows. In particular, it is now clear why these continuoudhasfied scenarios — let
us call them OSD-type scenarios — are at an opposite extreméat would be
expected from the Lighthill theory [9], which applies notipito Lighthill's origi-
nal case of acoustic imbalance but also to typical shall@tewscenarios [4]. The
Lighthill theory is the classic milestone in the field. Wheémas published in 1952
it offered profound new insights. These were the first geniesights into the na-
ture of spontaneous imbalance, even though not all-emigaas it now turns out.
A review and historical perspective may be found in [12].

In brief, the continuously stratified, OSD-type scenaridfeddrastically from
Lighthill-type scenarios in three respects. First, theiaddn reaction on the wave
generation region is substantial. In a Lighthill scenabip,contrast, the radiation
reaction is weak, permitting non-iterative computatiortiué spontaneous imbal-
ance and the resulting wave emission after first computiagdhmtical motion using
PV inversion, i.e. altogether neglecting the wave emissitiis was Lighthill's most
fundamental point. The vortical motion can be regarded asvkrbefore computing
the wave emission.

Such non-iterative computation is impossible in an OSDetypenario. The vor-
tical motion and wave emission are intimately part of eadieothroughout the
wave source region. As pointed outin [12], the wave emispiocess is fundamen-
tally similar to mountain-wave generation except in onec@lrespect. In order for
the analogy to be accurate, recognizing the substantiatiad reaction, one must
consider the notional mountain to be made of an elastic anbstso pliable that
the wave emission process substantially changes the shdpe imountain, hence
substantially changes the vertical velocity field.

The second and related respect is the lack of scale separatioe wave source
region, in an OSD-type scenario. The reason why the spooten@ave emission
is weak in a Lighthill scenario is the destructive interfece arising from scale
separation. The emitted waves have typical scales, ormaapwavenumbers, that
greatly exceed typical vortex scales. In an OSD scenariophyjrast, the waves arise
in the source region with reciprocal wavenumbers indigtiagable from typical
scales of the vortex motion. As they propagate away from thece region the
waves undergo “wave capture”, or strain-enhanced critepgdr absorption, with
wavenumbers increasing exponentially fast [20, & refsHisTensures that back-
reflection and resonance phenomena are negligible andhthatdiation reaction
on the source is similar to that of waves satisfying a radiationdition.

The third respect is unsteadiness versus quasi-steadifidlss wave emission
process. In a Lighthill scenario, unsteadiness of the alrtinotion is a crucial part
of the spontaneous-imbalance mechanism. In an OSD scenéthadts mountain-
wave-like character, it is now clear that one can have iaegiavity wave emission
from a steady vortical flow. Perhaps the first work to poinadheto that fact was the
study reported in [24], in which a surface temperature frgas prevented from col-
lapsing by applying an artificial diffusivity, holding theoint approximately steady.
Recently, examples have come to light for which perfectiyady flow is a natural

2 Also available frommww. at m dant p. cam ac. uk/ peopl e/ mem #i nbal ance
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idealization. These are the propagating vortex dipolesrite=d in several recent
papers including [23] and [27]. They were discovered thtobgh-resolution nu-
merical experiments. The review in [12] gives a careful dipsion and comparison
between the two best-resolved cases, including the evidien@ substantial radia-
tion reaction.

3 Epsilon theorems for realistic ocean models

PY02’'s epsilon theorem [19] constrains the turbulent gisson rates attainable
in an idealized horizontal-convection scenario. A Boussnliquid in a rigid, ther-
mally insulating, box-shaped container of depthwith gravity uniform and the
top surface exactly horizontal, is set in motion purely byimtgining a nonuniform
temperaturé® at the top surface. The buoyancy acceleralti@ga linear function of
2 alone. No mechanical stirring is allowed. A statisticallgazly state is assumed.
For this scenario PYO02 rigorously established a bound ptapwl to the rangé\b

of buoyancy-acceleration values at the top surface,

(&) < kAb/H ()

where the double angle brackets denote the domain and tieragerand wherg

is the thermal molecular diffusivity. Therefore, in pattiar, {(¢)) goes to zero as the
first power ofk in the limit of small molecular diffusivities, for instan¢®lding the
Prandtl numbew/k constant where is the molecular diffusivity of momentum.
The vanishing of(e)) in that limit was at first called an “anti-turbulence theotem
However, we now prefer to call it an “epsilon theorem” for treasons, first because
the theorem does not rule out locally finkevalues in the limit, in shrinking sub-
volumes of the domain, and second because, evenwiére to go to zero at the
same rate ag¢)) in all locations, it would still be possible to have weak yeltyf-
developed turbulence in the sense of having a Richards@adasind a vanishingly
small Kolmogorov scalév¥/¢)Y/4 0 /2

Now the key to proving epsilon theorems is to avoid consitethe complete
energetics. Indeed, one must dissect the complete enesget certain way. This
happens automatically for the Boussinesq equations amgkisfathe facts implicitly
exploited in PY02's proof, along with the linearity of theweion of stateb 0 3.

In the Boussinesq equations the internal and chemical Eseof seawater are rel-
egated to an almost passive role. For the full equations tthefjis harder to spot
because the complete energetics must, of course, takergaafdhe full thermody-
namics including the internal and chemical energies.

Even within the Boussinesq equations there are nontrig@irical obstacles to
be overcome, beyond making the geometry and the centrifggalitational field
more realistic. They concern the nonlinearities in reglistjuations of state for sea-
water. The first steps toward overcoming these obstacles ta&en by Francesco
Paparella, William R. Young and myself, working togethestlgear. The key was
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to recognize first that a mathematical device used in PY0Rsisting of two suc-
cessive integrations with respect to altiturle the steps leading from (2.1b,c) to
(2.3) and then to (3.3), in ref. [19] — could be replaced byralsi integration after
multiplication byz. The second step was to recognize that this integration was a
pointer toward using the Boussinesq energy formulatioaalisred by Young (per-
sonal communication and ref. [30]), working on a differerdgldem after PY02 was
published. For a general, nonlinear equation of state theiarstep is to introduce
a quantity most aptly called thdynamic enthalpy, which in this context takes on
the superficial appearance of a buoyancy-associated tenergy, the quantity
denoted byT in Eq. (2.116) of Vallis [26] but here denoted h¥in order to flag the
connection with enthalpy. That connection is carefullylakged in [30]. It clarifies
the “almost passive” role of the internal and chemical eissig

Consider a domain like that in Fig. 1 with arbitrary topodmgjand curved geopo-
tentials. Itis now easiest to take the Boussinesq equatiamordinate-independent
form

Du/Dt+2Q xu+0p—bdZ = 0.0, 3)
DS /Dt = —0O-Jy, 4)

DS/Dt = —0.Js, (5)

Ou =0, (6)

whereQ is the Earth’s angular velocity, /Dt the material derivativg /dt +u -0,
u(x,t) the relative velocityp(x,t) the pressure anomaly with the reference density
p = po =1 in suitable unitsZ = Z(x) a scaled geopotential height to be defined
below, with its zero level at the top surfa@ethe viscous stress tensor with compo-
nentsoi; = gj; while Sandd are salinity and conservative temperature [10], dgd

Heat In Heat Out

Fig. 1 Schematic of a model ocean. Instead of PY02's idealizecdamgetiar domain, arbitrary
topography is allowed, across which there are no salt or th@ats. The geothermal heat flux is
assumed negligible. Salinity as well as temperature variatare allowed, as is a fully nonlinear
equation of state. The effective geopotentials (grawteti plus centrifugal) are allowed to curve
realistically, with gravity plus centrifugal force nondioim, andZ the geopotential altitude.
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andJy their molecular-diffusive fluxes in suitable units. Thesayninclude cross-
diffusivities arising from the Soret and Dufour effects amither thermodynamic
dependences. The nonlinear equation of state has the géoreni

b=hb(9,Z9). (1)

To help formalize the Boussinesq limit, it is convenient &fide Z as the actual
geopotential relative to the top surface divided by a cortsteference valugp

of the gravity acceleratioy, so thatZ is approximately the geometric altitude
andOZ approximately a unit vertical vector. Them is —gp times the fractional
density anomaly. Thermobaric nonlinearities are reprieskwithin the Boussinesq
framework by the dependence lofon Z, since the background reference pressure
= — pogoZ + (surface pressure). Definiy := DZ/Dt ande := Ou:0 = u; jgjj,

the local per-unit-mass viscous rate of conversion of meiciahenergy into thermal
energy, and taking the scalar product of (3) wittve have, using incompressibility

(6),

%(%MZ) ~ Wb+ 0-{u(}uP+p)-ua} = — (8)

wherell-(u-0) = (i gij) ;. The problem now is what to do with the buoyancy term
Wh. Standard ways to turn it into a rate of change of potentialgyfail because
of thermobaricity. The difficulty can be overcome by intrathg Young’s dynamic

enthalpyh* (personal communication and ref. [30]), whose definition is

0
+ .
h9,29) = /Z b(3,Z,9)dZ . ©)
Then, by the chain rule,
+
% — Wb+ 2(9,29 (10)

where the dissipative contribution

hfD9  9h*DS
2(9,Z9) = 55t T 35Dt (11)

oh* oh*
= g 055

Then from (6), (8) and (10) we have an equation whose leftisihe is in conser-
vation form,

9
5t (

and whose domain and time average is, for the statisticabdy state,

0-Js. (12)

Hu2+h") + 0-{u(3uP+p+h¥)—uo} = —e+2(8,29), (13)
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(&) — (2(9,29) =0, (14)

there being no mass flow across the boundary) = 0 wherei is the outward
normal, and no work done by surface viscous stresses siaee ifhino mechanical
stirring e.g. by wind stress at the top surface. Using (12haw have

(&) — (J9-0(0N*/09) + Js-O(h*/d9) ) = 0 (15)

after integrating by parts. This last step produces no bapnterms — the most
crucial step in proving an epsilon theorem — because of @)yémishing oflg-f
andJs A on the topography and (b) the vanishingdsf'/d9 anddh*/dS, thanks
to (9), on the top surface whege= 0. On the top surfacég-n andJs-f need not
vanish, indeed cannot both vanish if the system is to be fbirde® motion without
mechanical stirring.

Now the most accurate models of seawater all assume, withgsfustification,
that conditions are everywhere close to local thermodyoamquilibrium. Thus the
temperaturd is well defined, andy andJs can be expressed as linear combina-
tions ofOT andOpu wherep is the chemical potential of salt relative to water [8].
The expressions falty andJs include the Dufour and Soret cross-diffusive terms.
Respectively, those terms represent a contributiofistdrom Ou and toJs from
OT. SinceT andu are functions of state we may write

T=T8,29 and p=u@.29 (16)

where the functional dependence, expressing local theynadic equilibrium,
may reasonably be assumed smooth. ThemandJs become linear combinations
of 09, 0Zandds, and the second term in (15) a quadratic form in the compenent
of 09, OZ anddS. That s, (15) has the form

(&) + ko (AlD9[*+BOS-OS + C|OS +
+ DO9-0Z+ EOSOZ + F|OZ2) =0,  (17)

where the coefficientd, B,.. are smooth functions af, Z, andS. The coefficient
Ko is a reference diffusivity, whose ratio to each actual molacdiffusivity and
cross-diffusivity (includingv, the molecular diffusivity of momentum) will be held
constant in the small-diffusivities limikg — 0. This is the natural generalization of
PYO02’s constant Prandtl number. The coefficieit8,... F are bounded asy — 0.

As illustrated in the next section, the terms on the second 6f (17) can
be bounded agy, — 0, under reasonable assumptions, using the factZhata
smoothly-varying field independent af. An epsilon theoreni(e)) = O(Kp) can
then be proved whenever the first line of (17) is non-negatafenite, which is true
if

A>0, C>0, and B°—~4AC <0 (18)

for all oceanographically relevant values ®f Z, andS. For if kg times the sec-
ond line of (17) goes to zero in the limit then bofl)) and the rest of the first
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line, when non-negative, must go to zero together in thetlihi{18) holds with

A, B, andB? — 4AC bounded away from zero for fixed, nonzefothen (17) also
puts significant constraints on the mean square gradieftsoidS, supplementing
comparison-function constraints of the kind found by Bairtti and Young [1] and
Winters and Young [29]. By themselves, the latter constsaivould be insufficient
to control the mean square gradients tightly enough to predn epsilon theorem.

As will be noted in the next section, (18) is satisfied by theallgonlinear mod-
els of seawater properties as described, for instancegin\{2e are currently inves-
tigating whether (18) is satisfied by the still more accuratate-of-the-art model
currently being standardized by SCOR/IAPSO Working Gro@.IThe calcula-
tions are laborious but it seems clear that (18) is satisfiethts model as well,
albeit by a slender margin at abyssal depths. The slendeyimiarmainly due to a
contribution to the coefficier® not from the Dufour and Soret effects but from the
interdependence df, 3 andSexpressed by (16).

If (18) were violated, as appears thermodynamically pdssdnd realizable for
conceivable fluid microstructures, then our proof would. f/Rather than signalling
any dramatically different fluid behaviour, | suspect thas twould merely widen
the gap between what is true and what is provable, or whatd&s been provable.

4 Specific examples

For illustrative purposes we simplify the expressionsXgprandJs [8] to
Jg = —«k (09 -IydZ) and Js = —ks(OS+T1s02) (29)

in units compatible with (4) and (5), whekg is the molecular salt diffusivity. The
correction terms iy andls are necessary in order thdg andJs vanish when
OT =0 anddu = 0. Bothly andls are positive. In the case 6§ this allows the
salinity Sto find its natural scale height, withdiminishing upward under gravity
at ~ 3% km tin a stagnant ocean withs = 0 [6, & refs.]. Conservative tem-
peratured, being numerically close to the ordinary potential tempe[10], in-
creases upward at 0.15K km™! in an isothermal stagnant ocean. Other small con-
tributions to the fluxes arising from (16) and from the Dufeund Soret effects are
neglected. They will be re-introduced and carefully diseusin our JFM paper.

For the equation of state we take a model similar to that i} &@ept for the
inclusion of a nonlinear term in salinity,

0(9,2.5) = o { B 1- V0029 + 3507~ pis+ 35t + B | (20)
0

* * Z
= = ez By (1 v poaeZ) 0 + 3659~ peSi 3+ 25 | (2)
0
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Hered andS are defined as increments relative to reference values gith-a
273K, S = 35%o0, while Bs, V", po, Bs, Bs, BS, andcp are positive constants. To a
first approximation, (20) represents the the two princigailinearities of seawater,
the thermobaricityy” and the temperature nonlineariy, along with the weaker
salinity nonlinearityBs, as well as compressibiliyThen

ont * oht .
so that
oh* i} )
D55 = —92ZB509 —go(Bs — "By pogoZ+ B3 9)0Z
oh*
and O—c = —~GoZBS0S+go(Bs—BsSDZ. (23)

The expressiomo(By — v By podoZ+ B59) multiplying OZ is always positive-
valued for seawater (even well below freezing temperajutescause at realistic
salinities the ratig8y /B3 is typically well above 10K, for instance 16.7 K with the
values in footnote 3. Substituting (19) and (23) into (15)reeover (17) with

A = KsB390lZ] , (24a)

B=0, (24b)

C = KsPsolZ, (24c)

D = —R9o(Bs + V' BspodolZ + B39 ) — KelsBs9olZ] , (24d)
E = Ks9o(Bs— BsS) + KslsBsGolZ , (24e)

F = Ks0ols (Bs + Y By PololZ| + B59) + Rsols(Bs— BS) ,  (24f)

whereky 1= K /Ko andKs := Ks/Ko, both order-unity quantities. Thus all the coef-
ficientsA, B, ..., F are order-unity quantities in the limi — O.

We can now see PYO02's result in perspective. It is the daseB=C =E =
F =0; the bound (2) comes from tlieterm in the second line of (17) with = con-

% The positive constanty is a nominal sound speed, notwithstanding that the actuak$e
nesq sound speed is infinite because of the incompresgilsitindition (6); in any case the
y* term makes the actual sound speed differ from the nonggatypically by a few percent,
unlessd = 0. Table 1.2 of Vallis [26] gives a sufficient idea of the olef magnitudecy = 1490
ms? By =167x10°K™L, y* =12x108Pa?l (this is Vallis'sy*, hisy* increased by

a small increment+0.07 x 10 8Pal), pp = 1.027x 10°%kgm 3, B5 = 1.0 x 10°°K~2, and
Bs=0.78x 10 3% * Over the full range of oceanic conditiofis is always positive, with or-
der of magnitudgds > 0.5 x 107 %s 2 and reaching just over twice this value in some conditions,
according to the accurate equation of state defined by TaBlefB7]. Values of the molecular
diffusivities k andks are respectively of the order of 10m?s™* and 10°m?s 2.
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stant, allowing a trivial integration by parts, leaving p@al term bounded by a geo-
metric factor~ H ! timesk goBs A9 = kAb, with A as in (2). The term-« (b(1%Z)
vanishes in PY02's case of uniform gravity.

In the more general case defined by (20)—(24), the cruciatitierfiess condition
(18) is satisfied thanks to the lucky accident tBgtand 3¢ are both positive for
seawater (typical values in footnote 3). This enables ugdwepa strong epsilon
theorem. The bound is sti(Kp) in the limit, as in PY02. The independent work of
Nycander [16] produced a similarly strong bouf@kp), albeit for the slightly less
general cas@ > 0 withB=C = F = 0. There, the adiabatic gradierig and/sin
(19) were taken to be zero along wigd.

However, these epsilon theorems with)) = O(kp) all rely on assuming con-
stancy of the coefficient8y etc. in (20). For then we can still bound tBeandE
terms in the second line of (17) since the potentially daogefactorsd3 and
SOStake the form of gradient%,l:l(ﬁ 2) and%l:l(sz), so that we can again integrate
by parts and use the boundednesg©#Z|. This eliminates the gradients 6fand
Sfrom the second line of (17), again giving a bound as the fivgtgr of k.

When the coefficients are fully variable, however, suchgrdéons by parts in
the second line of (17) do not eliminate the gradient8 @ndS, which if not inte-
grated away can be dangerous because of the small scalesdratidSfields. We
then have to resort to a blunter tool, the Cauchy—Schwaetzuality. Despite this,
it turns out to be possible to obtain bounds that are asyneptiyt nearly as good
as in PY02, under reasonable assumptions. They are “neagpad” in the sense
that the bounds are proportional to the first powekgftimes only a logarithmic
factor, {(¢)) = O(koInkp). This comes from exploiting the constraints mentioned
below (18).

5 Concluding remarks

Apart from lifting the Boussinesq restriction, the JFM pepal prove the (&) =
O(KolnKp) result and will push further toward the most realistic pbksithermo-
dynamics and equation of state. In a subsequent paper tintineal of Physical
Oceanography it is hoped to discuss the extent to which these epsilon &msr
constrain our understanding of the real oceans’ upper andrloneridional over-
turning circulations, taking account of the extent to whibk bounds or{(c)) are
further degraded by allowing a finite depth of radiative geat@®n of surface heat-
ing from the visible solar spectrum. The emphasis will thbiftaway from the
asymptotic behaviour and will focus, rather, on the best ewizal bounds or{(e))
obtainable for realistically small but finite valuesaf.
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