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Abstract Recent progress in understanding the balance–imbalance problem is high-
lighted, with emphasis on spontaneous-imbalance phenomena associated with the
exponentially fast “wave capture” of inertia–gravity waves. These phenomena are
excluded from shallow-water models and are outside the scope of the classical
Lighthill theory. Also discussed is progress on a differenttopic, an effort to extend
the Paparella–Youngepsilon theorem to realistic ocean models. The theorem con-
strains turbulent dissipation ratesε in horizontal-convection thought-experiments,
in which mechanically-driven stirring is switched off. Thetheorem bears on the
so-called “ocean heat engine” and “ocean desert” controversies. The original the-
orem (2002) applied only to very idealized ocean models. Several restrictions on
the original proof can now be lifted including the restriction to a linear, thermal-
only equation of state. The theorem can now be proved for fairly realistic equations
of state that include thermobaric effects, and nonlinearity in both temperature and
salinity. The restriction to Boussinesq flow can also be lifted. The increased realism
comes at some cost in terms of weakening the constraint onε. The constraint is
further weakened if one allows for the finite depth of penetration of solar radiation.
This is collaborative work with Francesco Paparella and William Young.
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1 Introduction

Following the organizers’ aims, I had originally undertaken to talk only about the
first topic in this paper, spontaneous imbalance and accurate PV (potential vorticity)
inversion. Recent progress in that field has been remarkable, throwing a clear light
on where the Lighthill paradigm is relevant and where it is not, as well as finding
the first accurate and completely self-consistent PV inversion operators. However,
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most of what I had to say about this is already in print elsewhere [12; 13]. Here I
give only a quick summary, in Section 2, then move on to the second topic.

The second topic concerns the oceanic MOC, the meridional overturning cir-
culation. It is sometimes called the thermohaline “conveyor belt” despite having
nothing like the inextensibility of a real mechanical conveyor belt. The aspect cru-
cial to questions such as the desertification, or not, of the upper ocean under global
warming is the rising branch relative to the stratification surfaces in the main ther-
mocline and elsewhere. It is upward material transport across stratification surfaces
that is germane to questions about the supply of nutrients tothe upper ocean [21],
and hence about desertification or not.

It has sometimes been thought that buoyancy forcing alone can “drive the
conveyor belt”, a scenario much discussed under the heading“horizontal convec-
tion”. The idea seems to be that the cooling of the sea surfacein high latitudes is
the main control, not only driving the deep-convective plumes and gravity currents
of which the downward branch is composed but also supplying sufficient stirring,
hence diapycnal mixing, to sustain the upward branch against the stable stratifica-
tion N2. Clearly the plumes and gravity currents must cause a certain amount of
stirring and mixing.

Such a picture might tempt one to suppose that the “conveyor belt” circulation
is something that can be shut off entirely by reducing the buoyancy forcing – by
either warming or freshening the high-latitude sea surface, or both. A contrary view
is that theupward branch depends, rather, on mechanical stirring by winds, tides,
and possibly biota [2; 15; 25; 28]. In that case the upward branch would hardly
be affected by shutting off the few tens of sverdrups [5] of flow in the downward
branch. The sole effect would be to make the stratification surfaces drift downward,
very gradually, without much affecting the upward materialtransport across them.1

The theorem of Paparella and Young published in 2002 [19], hereafter PY02,
puts important and mathematically rigorous constraints onour thinking about these
questions. It does so by placing a severe upper bound on the average turbulent dis-
sipation ratesε attainable in a horizontal-convection scenario for small molecular
diffusivities. If one accepts the usual empirical (Ellison–Britter–Osborn) relation
betweenε values and diapycnal mixing rates

Kz ∼ γε/N2 (1)

whereKz is the vertical eddy diffusivity describing the mixing, andγ . 0.2, see e.g.
[17], also [11], then one can strengthen the arguments for the importance of me-

1 For instance “very gradually” would mean a downward drift ofjust under a kilometre per millen-
nium for every ten sverdrups of downward flow that remained shut off. This downward drift of the
stratification surfaces would not, however, detach the mainthermocline from its Southern Ocean
outcrop and therefore would not shut off the wind-driven mechanical stirring and Ekman transport
across the outcropping stratification surfaces, contributing to the “upward” branch [25, & refs.].
This is because of the way in which the speed of the Antarctic Circumpolar Current is regulated
internally, almost independently of wind stress but very much favouring the outcropping, e.g. [22]
& refs. – a very different circumstance from that in the hothouse climate of the early Eocene 50
million years ago, when the Sun was about half a percent cooler but the Drake Passage still closed.
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chanical stirring to the upward branch [14; 15; 28], including the superficial stirring
and Ekman transport across the Southern Ocean outcrop [25, &refs.], and hence
to the transports of nutrients across the ocean’s stratification surfaces into the upper
ocean, along with other questions about the oceanic generalcirculation.

However, PY02’s epsilon theorem applies only to a highly idealized Boussinesq
ocean model, in a rectangular domain, with a linear equationof state that neglects
salinity altogether. In my talk at the international Workshop on 10 December 2008
I described a generalization in which all these restrictions were lifted except the
Boussinesq approximation. (A video of the talk, “Beyond Lighthill...”, was made
publicly available viahttp://sms.cam.ac.uk/media/518985/formats
later that month.) In particular, the new epsilon theorem allowed for arbitrary bot-
tom topography, curved geopotentials and an equation of state that included not
only salinity, but also the two main nonlinearities of real seawater, the thermal and
thermobaric nonlinearities. This was work in collaboration with Francesco Papar-
ella and William R. Young. Young had earlier reported our first breakthrough, the
first result for a nonlinear equation of state, to the Stockholm Sandström Centennial
Meeting on 3 November 2008.

As shown in Sects. 3 and 4 below, the key to proving these generalized epsilon
theorems, and further generalizations arrived at after theWorkshop, was to exploit
Young’s formulation of Boussinesq energetics. The formulation is a simple way of
handling thermobaricity and is essentially that given, with due acknowledgement, on
p. 73 of the textbook by Vallis [26]. Young (personal communication and ref. [30])
beautifully clarifies the way in which a vestige of the thermodynamic energies sur-
vives in the Boussinesq limit, adding to the gravitational potential energy.

Armed with Young’s formulation, we were able to go on to proveepsilon theo-
rems for still more realistic equations of state, includingthose being standardized
by the international SCOR/IAPSO Working Group 127 on theThermodynamics
and Equation of State of Seawater. The accuracies are state of the art, comparable
to those in recent publications such as [3; 7]. In addition, we were able to lift the
Boussinesq restriction and thereby shed a fundamentally new light on the subject.
A full report is in preparation, whose first part is to be submitted to theJournal of
Fluid Mechanics, hereafter “JFM”.

A few days before submission of the present paper, we learnedthat Jonas Ny-
cander [16] had independently arrived at a generalized epsilon theorem based on
Young’s Boussinesq energy equation, (13) below, and a nonlinear equation of state
almost the same as (20) below. Nycander’s Boussinesq resultalmost exactly par-
allels the result to be described in Sect. 4 below, and reported in my December
Workshop talk.

2 Spontaneous Imbalance

The recent progress in this area concerns spontaneous imbalance of the kind dis-
covered in the 1990s by O’Sullivan and Dunkerton [18], in continuously stratified
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flows. In particular, it is now clear why these continuously stratified scenarios – let
us call them OSD-type scenarios – are at an opposite extreme to what would be
expected from the Lighthill theory [9], which applies not only to Lighthill’s origi-
nal case of acoustic imbalance but also to typical shallow-water scenarios [4]. The
Lighthill theory is the classic milestone in the field. When it was published in 1952
it offered profound new insights. These were the first generic insights into the na-
ture of spontaneous imbalance, even though not all-embracing, as it now turns out.
A review and historical perspective may be found in [12].2

In brief, the continuously stratified, OSD-type scenarios differ drastically from
Lighthill-type scenarios in three respects. First, the radiation reaction on the wave
generation region is substantial. In a Lighthill scenario,by contrast, the radiation
reaction is weak, permitting non-iterative computation ofthe spontaneous imbal-
ance and the resulting wave emission after first computing the vortical motion using
PV inversion, i.e. altogether neglecting the wave emission. This was Lighthill’s most
fundamental point. The vortical motion can be regarded as known before computing
the wave emission.

Such non-iterative computation is impossible in an OSD-type scenario. The vor-
tical motion and wave emission are intimately part of each other throughout the
wave source region. As pointed out in [12], the wave emissionprocess is fundamen-
tally similar to mountain-wave generation except in one crucial respect. In order for
the analogy to be accurate, recognizing the substantial radiation reaction, one must
consider the notional mountain to be made of an elastic substance so pliable that
the wave emission process substantially changes the shape of the mountain, hence
substantially changes the vertical velocity field.

The second and related respect is the lack of scale separation in the wave source
region, in an OSD-type scenario. The reason why the spontaneous wave emission
is weak in a Lighthill scenario is the destructive interference arising from scale
separation. The emitted waves have typical scales, or reciprocal wavenumbers, that
greatly exceed typical vortex scales. In an OSD scenario, bycontrast, the waves arise
in the source region with reciprocal wavenumbers indistinguishable from typical
scales of the vortex motion. As they propagate away from the source region the
waves undergo “wave capture”, or strain-enhanced critical-layer absorption, with
wavenumbers increasing exponentially fast [20, & refs.]. This ensures that back-
reflection and resonance phenomena are negligible and that the radiation reaction
on the source is similar to that of waves satisfying a radiation condition.

The third respect is unsteadiness versus quasi-steadinessof the wave emission
process. In a Lighthill scenario, unsteadiness of the vortical motion is a crucial part
of the spontaneous-imbalance mechanism. In an OSD scenario, with its mountain-
wave-like character, it is now clear that one can have inertia–gravity wave emission
from a steady vortical flow. Perhaps the first work to point clearly to that fact was the
study reported in [24], in which a surface temperature frontwas prevented from col-
lapsing by applying an artificial diffusivity, holding the front approximately steady.
Recently, examples have come to light for which perfectly steady flow is a natural

2 Also available fromwww.atm.damtp.cam.ac.uk/people/mem/#imbalance



Spontaneous imbalance and the Paparella–Young epsilon theorem 7

idealization. These are the propagating vortex dipoles described in several recent
papers including [23] and [27]. They were discovered through high-resolution nu-
merical experiments. The review in [12] gives a careful description and comparison
between the two best-resolved cases, including the evidence for a substantial radia-
tion reaction.

3 Epsilon theorems for realistic ocean models

PY02’s epsilon theorem [19] constrains the turbulent dissipation ratesε attainable
in an idealized horizontal-convection scenario. A Boussinesq liquid in a rigid, ther-
mally insulating, box-shaped container of depthH, with gravity uniform and the
top surface exactly horizontal, is set in motion purely by maintaining a nonuniform
temperatureϑ at the top surface. The buoyancy accelerationb is a linear function of
ϑ alone. No mechanical stirring is allowed. A statistically steady state is assumed.
For this scenario PY02 rigorously established a bound proportional to the range∆b
of buoyancy-acceleration values at the top surface,

〈〈ε〉〉 6 κ∆b/H (2)

where the double angle brackets denote the domain and time average and whereκ
is the thermal molecular diffusivity. Therefore, in particular,〈〈ε〉〉 goes to zero as the
first power ofκ in the limit of small molecular diffusivities, for instanceholding the
Prandtl numberν/κ constant whereν is the molecular diffusivity of momentum.
The vanishing of〈〈ε〉〉 in that limit was at first called an “anti-turbulence theorem”.
However, we now prefer to call it an “epsilon theorem” for tworeasons, first because
the theorem does not rule out locally finiteε values in the limit, in shrinking sub-
volumes of the domain, and second because, even ifε were to go to zero at the
same rate as〈〈ε〉〉 in all locations, it would still be possible to have weak yet fully-
developed turbulence in the sense of having a Richardson cascade and a vanishingly
small Kolmogorov scale(ν3/ε)1/4 ∝ κ1/2.

Now the key to proving epsilon theorems is to avoid considering the complete
energetics. Indeed, one must dissect the complete energetics in a certain way. This
happens automatically for the Boussinesq equations and is one of the facts implicitly
exploited in PY02’s proof, along with the linearity of the equation of state,b ∝ ϑ .
In the Boussinesq equations the internal and chemical energies of seawater are rel-
egated to an almost passive role. For the full equations the proof is harder to spot
because the complete energetics must, of course, take account of the full thermody-
namics including the internal and chemical energies.

Even within the Boussinesq equations there are nontrivial technical obstacles to
be overcome, beyond making the geometry and the centrifugal–gravitational field
more realistic. They concern the nonlinearities in realistic equations of state for sea-
water. The first steps toward overcoming these obstacles were taken by Francesco
Paparella, William R. Young and myself, working together last year. The key was
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to recognize first that a mathematical device used in PY02, consisting of two suc-
cessive integrations with respect to altitudez – the steps leading from (2.1b,c) to
(2.3) and then to (3.3), in ref. [19] – could be replaced by a single integration after
multiplication byz. The second step was to recognize that this integration was a
pointer toward using the Boussinesq energy formulation discovered by Young (per-
sonal communication and ref. [30]), working on a different problem after PY02 was
published. For a general, nonlinear equation of state the crucial step is to introduce
a quantity most aptly called thedynamic enthalpy, which in this context takes on
the superficial appearance of a buoyancy-associated potential energy, the quantity
denoted byΠ in Eq. (2.116) of Vallis [26] but here denoted byh‡ in order to flag the
connection with enthalpy. That connection is carefully explained in [30]. It clarifies
the “almost passive” role of the internal and chemical energies.

Consider a domain like that in Fig. 1 with arbitrary topography and curved geopo-
tentials. It is now easiest to take the Boussinesq equationsin coordinate-independent
form

Du/Dt +2ΩΩΩ×u+∇∇∇p−b∇∇∇z = ∇∇∇·σσσ , (3)

Dϑ/Dt = −∇∇∇·Jϑ , (4)

DS/Dt = −∇∇∇·JS , (5)

∇∇∇·u = 0, (6)

whereΩΩΩ is the Earth’s angular velocity, D/Dt the material derivative∂/∂ t +u ·∇∇∇,
u(x,t) the relative velocity,p(x,t) the pressure anomaly with the reference density
ρ = ρ0 = 1 in suitable units,z = z(x) a scaled geopotential height to be defined
below, with its zero level at the top surface,σσσ the viscous stress tensor with compo-
nentsσi j = σ ji while S andϑ are salinity and conservative temperature [10], andJS

ϑ1 ϑ2

ϑ3

ϑ4

Heat In Heat Out

z=0

JS • n̂=0

Jϑ • n̂=0

n̂

Fig. 1 Schematic of a model ocean. Instead of PY02’s idealized rectangular domain, arbitrary
topography is allowed, across which there are no salt or heatfluxes. The geothermal heat flux is
assumed negligible. Salinity as well as temperature variations are allowed, as is a fully nonlinear
equation of state. The effective geopotentials (gravitational plus centrifugal) are allowed to curve
realistically, with gravity plus centrifugal force nonuniform, andz the geopotential altitude.
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andJϑ their molecular-diffusive fluxes in suitable units. These may include cross-
diffusivities arising from the Soret and Dufour effects andother thermodynamic
dependences. The nonlinear equation of state has the generic form

b = b(ϑ ,z,S) . (7)

To help formalize the Boussinesq limit, it is convenient to definez as the actual
geopotential relative to the top surface divided by a constant reference valueg0

of the gravity accelerationg, so thatz is approximately the geometric altitude
and∇∇∇z approximately a unit vertical vector. Thenb is −g0 times the fractional
density anomaly. Thermobaric nonlinearities are represented within the Boussinesq
framework by the dependence ofb on z, since the background reference pressure
= −ρ0g0z + (surface pressure). Definingw := Dz/Dt andε := ∇∇∇u:σσσ = ui, jσi j,
the local per-unit-mass viscous rate of conversion of mechanical energy into thermal
energy, and taking the scalar product of (3) withu we have, using incompressibility
(6),

∂
∂ t

(

1
2|u|

2) − wb + ∇∇∇·
{

u
(

1
2|u|

2 + p
)

−u·σσσ
}

= −ε (8)

where∇∇∇·(u·σσσ) = (uiσi j), j . The problem now is what to do with the buoyancy term
wb. Standard ways to turn it into a rate of change of potential energy fail because
of thermobaricity. The difficulty can be overcome by introducing Young’s dynamic
enthalpyh‡ (personal communication and ref. [30]), whose definition is

h‡(ϑ ,z,S) :=
∫ 0

z
b(ϑ ,z′,S)dz′ . (9)

Then, by the chain rule,

Dh‡

Dt
= −wb +D(ϑ ,z,S) (10)

where the dissipative contribution

D(ϑ ,z,S) :=
∂h‡

∂ϑ
Dϑ
Dt

+
∂h‡

∂S
DS
Dt

(11)

= −
∂h‡

∂ϑ
∇∇∇·Jϑ −

∂h‡

∂S
∇∇∇·JS . (12)

Then from (6), (8) and (10) we have an equation whose left-hand side is in conser-
vation form,

∂
∂ t

(

1
2|u|

2 + h‡) + ∇∇∇·
{

u
(

1
2|u|

2 + p + h‡)−u·σσσ
}

= −ε +D(ϑ ,z,S) , (13)

and whose domain and time average is, for the statistically steady state,
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〈〈

ε
〉〉

−
〈〈

D(ϑ ,z,S)
〉〉

= 0 , (14)

there being no mass flow across the boundary,u · n̂ = 0 wheren̂ is the outward
normal, and no work done by surface viscous stresses since there is no mechanical
stirring e.g. by wind stress at the top surface. Using (12) wenow have

〈〈

ε
〉〉

−
〈〈

Jϑ ·∇∇∇(∂h‡/∂ϑ) + JS ·∇∇∇(∂h‡/∂S)
〉〉

= 0 (15)

after integrating by parts. This last step produces no boundary terms – the most
crucial step in proving an epsilon theorem – because of (a) the vanishing ofJϑ ·n̂
andJS·n̂ on the topography and (b) the vanishing of∂h‡/∂ϑ and∂h‡/∂S, thanks
to (9), on the top surface wherez = 0. On the top surfaceJϑ ·n̂ andJS·n̂ need not
vanish, indeed cannot both vanish if the system is to be forced into motion without
mechanical stirring.

Now the most accurate models of seawater all assume, with strong justification,
that conditions are everywhere close to local thermodynamic equilibrium. Thus the
temperatureT is well defined, andJϑ andJS can be expressed as linear combina-
tions of∇∇∇T and∇∇∇µ whereµ is the chemical potential of salt relative to water [8].
The expressions forJϑ andJS include the Dufour and Soret cross-diffusive terms.
Respectively, those terms represent a contribution toJϑ from ∇∇∇µ and toJS from
∇∇∇T . SinceT andµ are functions of state we may write

T = T (ϑ ,z,S) and µ = µ(ϑ ,z,S) (16)

where the functional dependence, expressing local thermodynamic equilibrium,
may reasonably be assumed smooth. ThenJϑ andJS become linear combinations
of ∇∇∇ϑ , ∇∇∇z and∇∇∇S, and the second term in (15) a quadratic form in the components
of ∇∇∇ϑ , ∇∇∇z and∇∇∇S. That is, (15) has the form

〈〈ε〉〉 + κ0
〈〈

A |∇∇∇ϑ |2 + B∇∇∇ϑ ·∇∇∇S + C |∇∇∇S|2 +

+ D∇∇∇ϑ ·∇∇∇z + E ∇∇∇S·∇∇∇z + F |∇∇∇z|2
〉〉

= 0 , (17)

where the coefficientsA, B, .. are smooth functions ofϑ , z, andS. The coefficient
κ0 is a reference diffusivity, whose ratio to each actual molecular diffusivity and
cross-diffusivity (includingν, the molecular diffusivity of momentum) will be held
constant in the small-diffusivities limitκ0 → 0. This is the natural generalization of
PY02’s constant Prandtl number. The coefficientsA, B,...F are bounded asκ0 → 0.

As illustrated in the next section, the terms on the second line of (17) can
be bounded asκ0 → 0, under reasonable assumptions, using the fact thatz is a
smoothly-varying field independent ofκ0. An epsilon theorem〈〈ε〉〉 = O(κ0) can
then be proved whenever the first line of (17) is non-negativedefinite, which is true
if

A > 0 , C > 0 , and B2−4AC 6 0 (18)

for all oceanographically relevant values ofϑ , z, andS. For if κ0 times the sec-
ond line of (17) goes to zero in the limit then both〈〈ε〉〉 and the rest of the first
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line, when non-negative, must go to zero together in the limit. If (18) holds with
A, B, andB2−4AC bounded away from zero for fixed, nonzeroz, then (17) also
puts significant constraints on the mean square gradients ofϑ andS, supplementing
comparison-function constraints of the kind found by Balmforth and Young [1] and
Winters and Young [29]. By themselves, the latter constraints would be insufficient
to control the mean square gradients tightly enough to produce an epsilon theorem.

As will be noted in the next section, (18) is satisfied by the usual nonlinear mod-
els of seawater properties as described, for instance, in [26]. We are currently inves-
tigating whether (18) is satisfied by the still more accurate, state-of-the-art model
currently being standardized by SCOR/IAPSO Working Group 127. The calcula-
tions are laborious but it seems clear that (18) is satisfied by this model as well,
albeit by a slender margin at abyssal depths. The slender margin is mainly due to a
contribution to the coefficientB not from the Dufour and Soret effects but from the
interdependence ofT , ϑ andS expressed by (16).

If (18) were violated, as appears thermodynamically possible, and realizable for
conceivable fluid microstructures, then our proof would fail. Rather than signalling
any dramatically different fluid behaviour, I suspect that this would merely widen
the gap between what is true and what is provable, or what has so far been provable.

4 Specific examples

For illustrative purposes we simplify the expressions forJϑ andJS [8] to

Jϑ = −κ (∇∇∇ϑ −Γϑ∇∇∇z) and JS = −κS (∇∇∇S +ΓS∇∇∇z) , (19)

in units compatible with (4) and (5), whereκS is the molecular salt diffusivity. The
correction terms inΓϑ andΓS are necessary in order thatJϑ andJS vanish when
∇∇∇T = 0 and∇∇∇µ = 0. BothΓϑ andΓS are positive. In the case ofΓS this allows the
salinity S to find its natural scale height, withS diminishing upward under gravity
at ∼ 3‰ km−1 in a stagnant ocean withJS = 0 [6, & refs.]. Conservative tem-
peratureϑ , being numerically close to the ordinary potential temperature [10], in-
creases upward at∼ 0.15K km−1 in an isothermal stagnant ocean. Other small con-
tributions to the fluxes arising from (16) and from the Dufourand Soret effects are
neglected. They will be re-introduced and carefully discussed in our JFM paper.

For the equation of state we take a model similar to that in [26] except for the
inclusion of a nonlinear term in salinityS,

b(ϑ ,z,S) = g0

{

βϑ (1− γ∗ρ0g0z)ϑ + 1
2β ∗

ϑ ϑ 2 − βSS + 1
2β ∗

S S2 +
g0z
c2

0

}

, (20)

⇒ h‡ = −g0z
{

βϑ
(

1− 1
2γ∗ρ0g0z

)

ϑ + 1
2β ∗

ϑ ϑ 2−βSS + 1
2β ∗

S S2+
g0z
2c2

0

}

. (21)
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Hereϑ andS are defined as increments relative to reference values such as T0 =
273K,S0 = 35‰, whileβϑ , γ∗, ρ0, β ∗

ϑ , βS, β ∗
S , andc0 are positive constants. To a

first approximation, (20) represents the the two principal nonlinearities of seawater,
the thermobaricityγ∗ and the temperature nonlinearityβ ∗

ϑ , along with the weaker
salinity nonlinearityβ ∗

S , as well as compressibility.3 Then

∂h‡

∂ϑ
= −g0z

(

βϑ − 1
2γ∗βϑ ρ0g0z+ β ∗

ϑ ϑ
)

and
∂h‡

∂S
= g0z(βS −β ∗

S S) , (22)

so that

∇∇∇
∂h‡

∂ϑ
= −g0zβ ∗

ϑ ∇∇∇ϑ −g0
(

βϑ − γ∗βϑ ρ0g0z+ β ∗
ϑ ϑ

)

∇∇∇z

and ∇∇∇
∂h‡

∂S
= −g0zβ ∗

S ∇∇∇S + g0(βS −β ∗
S S)∇∇∇z . (23)

The expressiong0
(

βϑ − γ∗βϑ ρ0g0z + β ∗
ϑ ϑ

)

multiplying ∇∇∇z is always positive-
valued for seawater (even well below freezing temperatures), because at realistic
salinities the ratioβϑ /β ∗

ϑ is typically well above 10 K, for instance 16.7 K with the
values in footnote 3. Substituting (19) and (23) into (15) werecover (17) with

A = κ̂ϑ β ∗
ϑ g0|z| , (24a)

B = 0 , (24b)

C = κ̂Sβ ∗
S g0|z| , (24c)

D = −κ̂ϑ g0
(

βϑ + γ∗βϑ ρ0g0|z|+ β ∗
ϑ ϑ

)

− κ̂ϑΓϑ β ∗
ϑ g0|z| , (24d)

E = κ̂Sg0 (βS −β ∗
S S)+ κ̂SΓSβ ∗

S g0|z| , (24e)

F = κ̂ϑ g0Γϑ
(

βϑ + γ∗βϑ ρ0g0|z|+ β ∗
ϑ ϑ

)

+ κ̂Sg0ΓS
(

βS −β ∗
S S

)

, (24f)

whereκ̂ϑ := κ/κ0 andκ̂S := κS/κ0, both order-unity quantities. Thus all the coef-
ficientsA, B,..., F are order-unity quantities in the limitκ0 → 0.

We can now see PY02’s result in perspective. It is the caseA = B = C = E =
F = 0; the bound (2) comes from theD term in the second line of (17) withD = con-

3 The positive constantc0 is a nominal sound speed, notwithstanding that the actual Boussi-
nesq sound speed is infinite because of the incompressibility condition (6); in any case the
γ∗ term makes the actual sound speed differ from the nominalc0, typically by a few percent,
unlessϑ = 0. Table 1.2 of Vallis [26] gives a sufficient idea of the orders of magnitude:c0 = 1490
m s−1, βϑ = 1.67× 10−4K−1, γ∗ = 1.2× 10−8Pa−1 (this is Vallis’s γ ′∗, his γ∗ increased by
a small increment+0.07× 10−8Pa−1), ρ0 = 1.027× 103kg m−3, β ∗

ϑ = 1.0× 10−5K−2, and
βS = 0.78×10−3 ‰−1. Over the full range of oceanic conditionsβ ∗

S is always positive, with or-
der of magnitudeβ ∗

S & 0.5×10−6 ‰−2 and reaching just over twice this value in some conditions,
according to the accurate equation of state defined by Table B2 of [7]. Values of the molecular
diffusivities κ andκS are respectively of the order of 10−7 m2s−1 and 10−9 m2s−1.
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stant, allowing a trivial integration by parts, leaving only a term bounded by a geo-
metric factor∼H−1 timesκg0βϑ ∆ϑ = κ∆b, with ∆ as in (2). The term−κ〈〈b∇2z〉〉
vanishes in PY02’s case of uniform gravity.

In the more general case defined by (20)–(24), the crucial definiteness condition
(18) is satisfied thanks to the lucky accident thatβ ∗

ϑ andβ ∗
S are both positive for

seawater (typical values in footnote 3). This enables us to prove a strong epsilon
theorem. The bound is stillO(κ0) in the limit, as in PY02. The independent work of
Nycander [16] produced a similarly strong bound,O(κ0), albeit for the slightly less
general caseA > 0 with B = C = F = 0. There, the adiabatic gradientsΓϑ andΓS in
(19) were taken to be zero along withβ ∗

S .
However, these epsilon theorems with〈〈ε〉〉 = O(κ0) all rely on assuming con-

stancy of the coefficientsβϑ etc. in (20). For then we can still bound theD andE
terms in the second line of (17) since the potentially dangerous factorsϑ∇∇∇ϑ and
S∇∇∇S take the form of gradients,12∇∇∇(ϑ 2) and1

2∇∇∇(S2), so that we can again integrate
by parts and use the boundedness of|∇2z|. This eliminates the gradients ofϑ and
S from the second line of (17), again giving a bound as the first power ofκ0.

When the coefficients are fully variable, however, such integrations by parts in
the second line of (17) do not eliminate the gradients ofϑ andS, which if not inte-
grated away can be dangerous because of the small scales in theϑ andS fields. We
then have to resort to a blunter tool, the Cauchy–Schwartz inequality. Despite this,
it turns out to be possible to obtain bounds that are asymptotically nearly as good
as in PY02, under reasonable assumptions. They are “nearly as good” in the sense
that the bounds are proportional to the first power ofκ0 times only a logarithmic
factor, 〈〈ε〉〉 = O(κ0 lnκ0). This comes from exploiting the constraints mentioned
below (18).

5 Concluding remarks

Apart from lifting the Boussinesq restriction, the JFM paper will prove the〈〈ε〉〉 =
O(κ0 lnκ0) result and will push further toward the most realistic possible thermo-
dynamics and equation of state. In a subsequent paper to theJournal of Physical
Oceanography it is hoped to discuss the extent to which these epsilon theorems
constrain our understanding of the real oceans’ upper and lower meridional over-
turning circulations, taking account of the extent to whichthe bounds on〈〈ε〉〉 are
further degraded by allowing a finite depth of radiative penetration of surface heat-
ing from the visible solar spectrum. The emphasis will then shift away from the
asymptotic behaviour and will focus, rather, on the best numerical bounds on〈〈ε〉〉
obtainable for realistically small but finite values ofκ0.
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