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On Dynamics and Transport Near the Polar Mesopause in Summer 

MICHAEL E. MCINTYRE 

Department of Applied Matheraatics and Theoretical Physics, 
University of Carabridge, England 

Some basic aspects of dynamics and transport in polar regions within one or two scale heights 
of the summer mesopause are examined, and the implications for local one-dimensional photo- 
chemical modeling of those regions discussed. Included is a simple thought experiment on gravity 
wave breaking that throws further light on the so-called "turbulent Prandtl number" question, 
and related questions. The "downward control" of time averaged, zonally averaged upwelling by 
gravity wave breaking is noted, and a one-dimensional modeling strategy suggested in which the 
transport of water vapor and other constituents from below is characterized by a single parameter, 
defining a mean upwelling velocity inversely proportional to the mean mass density. It is suggested 
that, at and below noctilucent cloud altitudes, vertical mixing should be altogether neglected. 

1. INTRODUCTION 

There is a well-founded consensus that transport pro- 
cesses are important near the summer polar mesopause, 
and that gravity waves are involved. The fact that 
transport strongly influences a number of radiative and 
photochemical processes in the mesosphere, including those 
leading to the formation of noctilucent clouds (NLC) and 
polar mesospheric clouds (PMC), seems clear from many 
observational and theoretical studies (see, for instance, 
papers in this issue, and references therein including the 
recent review of observationM constraints on transport 
by Strobel [1989], and the observational information in, 
for instance, SchrSder [1974], Olivero and Thomas [1986], 
Gadsden [1986], and most recently Thomas et al. [1989].) 

There are two quite distinct transport effects that might 
reasonably be assumed to be important. The first is the 
mean upwelling in summertime polar latitudes (variable, 
but probably within the order-of-magnitude range 1-10 
cms -1 at the mesopause) that occurs as part of the 
global scale circulation induced by breaking gravity waves. 
This could be a significant factor in levirating NLC/PMC 
particles as well as in supplying water vapor from below, the 
more so since colder temperatures should go with stronger 
upwelling over the previous few days. Upwelling velocities 
of several centimeters per second, giving adiabatic cooling 
rates of one or two tens of degrees per day in the upper 
mesosphere, seem to be of the right order [e.g., Holton, 
1983; Garcia, this issue] to depress temperatures below 
radiative equilibrium by the 70 K or so that may be required 
for NLC/PMC formation near 83-85 km, albeit subject to 
uncertainties in the calculation of radiative relaxation rates 

in the absence of local thermodynamical equilibrium. The 
relevant attribute of the gravity waves is their ability to 
transport momentum and angular momentum from regions 
of the atmosphere many scale heights below. The manner 
in which this wave-induced momentum transport gives rise 
to upwelling, and hence temperature depression, is recalled 
in section 3. 
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The second transport effect that might be assumed to 
be important is vertical mixing of heat and constituents 
by the turbulence due to breaking gravity waves. For 
instance, such mixing seems to be needed to account 
for transport of atomic oxygen downward from • 90 km 
against the mean upwelling [e.g., Thomas et al., 1984; 
Garcia and Solomon, 1985] or the downward transport of 
certain ions observed by incoherent-scatter radar (e.g., C. 
Hall, petsohM communication, 1988). The corresponding 
downward heat transport is also a potentially significant 
factor in the lower thermospheric heat budget and hence in 
the control of temperatures, Mbeit well above NLC/PMC 
altitudes [e.g., Zimmerman and Keneshea, 1986, Strobel, 
1989, and references therein]. 

Various formulae have been proposed to model such 
verticM mixing in terms of a vertical eddy diffusivity D. 
For example, in observationM studies in which the turbulent 
energy dissipation rate el per unit mass is inferred from 
measurements, it has sometimes been assumed that one 
may use 

D= /31el/N 2 (1) 

where /71 is a dimensionless number, taken to be some 
modest fraction of unity, perhaps 0.25 or 0.5. Here 

N2_gO0 g (OT g) 
i.e., the square of the buoyancy or Brunt-V'•s'• frequency; 
g is the gravity acceleration, • is the potentiM temperature, 
z the Mtitude, T the temperature, and Cp the specific 
heat at constant pressure. The eddy fluxes of heat and 
long-lived constituents are usuMly written • 

respectively, where p is the m•s density and X is 
a constituent miffing ratio. These formulae may be 
contrated with the corresponding molecular formulae and 
assume, in the usuM way, that entropy and constituents 
are transported advectively by smM1 some turbulent •r 
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motions, to which the theory of homogeneous turbulence is 
approximately applicable. 

Closely related to (1) is Lindzen's well-known parame- 
terization for an upward propagating gravity wave (above 
its brea 'king altitude and below any critical levels that may 
exist). Lindzen's formula is equivalent to ta'king/3:• - i in 

where e:• is the local rate of loss of intrinsic wave energy 
per unit mass, taken by definition to be equal to the mean 
wave energy flux convergence per unit mass, 

wgE k(a -c) 4 - (4) e2 - p0 Hdiss 2 N Hdiss 

where wg is the vertical group velocity, E is the wave 
energy density, p0 the mean mass density, and Hdiss the 
height scale for the dissipation of wave energy or wave 
action by brea 'king (see equation (8)). The quantity e2 may 
often be comparable in order of magnitude to el (see next 
section), but the two need not be equal, since when wave 
energy disappears some of that energy goes into increasing 
the basic state potential energy. Indeed we shall see that 
calculating the difference e:•-el is almost the same thing as 
calculating the vertical mixing in which we are interested, 
since the latter is closely related to changes in basic state 
potential energy; cf. (17) below. The remaining symbols 
in (4) have their usual meanings: c and k are the waves' 
horizontal phase speed and wave number, respectively, and 
a is the mean wind, so that (c- a) is the intrinsic phase 
speed, that is to say the phase speed Doppler-shifted to the 
viewpoint of an observer moving with the mean wind. The 
last step in (4) depends upon the well-known dispersion 
properties 

N • Nk k(a-c) • 
(• -- C) 2 -- m2 and Wg -- m2 -- N (5) 

for quasi-hydrostatic internal gravity waves, where m is 
vertical wave number; it also depends upon an assumption 
that 

E = «PO(8 - c) 2 (6) 
at breaking. The expression (6) assumes that the di- 
mensionless wave amplitude a, defined as the horizontal 
disturbance velocity amplitude divided by la-cl, is equal to 
unity, and again uses the quasi-hydrostatic approximation 
and the fact that the wave energy E is then equal to twice 
the mean horizontal disturbance 'kinetic energy. Hdiss can 
be defined as wg divided by the logarithmic wave energy 
or wave action dissipation rate. For constant N and zero 
mean shear it can be shown within the usual ray theoretic 
approximations that Hdiss is equal to the density scale 
height, 

(7) Hdiss = Hp -- dpo/dz 

and more generally that 

Hdiss= (k + 3 0a 1 dN) -1 c- Oz + N (8) 

This allows for the effect of shear and vertical buoyancy- 
frequency variations dN(z)/dz at the same (ray theoretic) 
level of approximation as the density term. The derivation 
is a slight extension of that given by Lindzen [1981] and 
Fritts [1984]. The condition 

a=l (9) 

used in deriving (6) will be recognized as the well-known 
gravity wave "saturation hypothesis" in its simplest form. 

This paper has two related purposes. The first (section 
2) is to describe and analyze a simple thought experiment 
on gravity waves that suggests an almost pathologically 
sensitive behavior of the coefficients /31 and /3:• appearing 
in (1) and (3), as regards their dependence on the wave 
supersaturation (a- 1). On the assumption that the waves 
break by convective overturning, it will appear that the 
values of /31 and /3:• may vary by an order of magnitude 
or more as (a- 1) varies over a modest range, as it must 
be supposed to do in reality. The thought experiment is 
highly idealized and artificial, but is enough to suggest 
strongly that the use of either (1) or (3) with fixed, 
order-unity values of/31 and /3:• could lead to gross error. 
The supersaturation (a- 1) can be expected to vary for 
instance according to the suddenness with which the waves 
encounter brea'king conditions (see also l/Veinstock [1989]), 
just as can be observed for ocean waves incident on steep 
versus gentle beaches. The "steep beach" analogy applies 
to an increasing extent when values of m Hdiss and ra/k 
decrease towards unity. Constructive interference effects 
will cause further variability in (a- 1), in realistic wave 
fields. The results add to earlier doubts about ta'king 
/32- i in (3) raised by the work of Chao and Schoeberl 
[1984], Walterscheid [1984], Fritts and Dunkerton [1985], 
Schoeberl [1988], and Coy and Fritts [1988]. 

The second purpose (sections 3 and 4) is to develop a pos- 
sible strategy, taking account of the results just described, 
for representing transport in one-dimensional photochem- 
ical models of the processes that lead to NLC/PMC 
formation. It will be argued that the sensitivity of /31 
and /32 to (a- 1) may be less important for this purpose 
than might at first be thought. Indeed, a consideration 
of how the gravity wave field controls the mean upwelling 
will suggest the usefulness of a modeling strategy that 
altogether ignores the turbulent transport of water vapor 
and other chemical constituents at and below NLC/PMC 
altitudes, and attributes the water vapor supply entirely to 
mean upwelling. 

2. AN IDEALIZED THOUGHT EXPERIMENT 

ON BREAKING GRAVITY WAVES 

The observed structure of breaking gravity waves both 
in the laboratory [e.g., Koop and McGee, 1986] and in the 
real mesosphere and lower thermosphere [e.g., Kopp et al., 
1985, Fritts and Rastogi, 1985, C.R. Philbrick, personal 
communication, 1988] provides merely one instance of the 
extreme spatial inhomogeneity that seems to characterize 
many naturally occurring turbulent fluid flows. The point is 
discussed in a wider context in a recent middle atmospheric 
review and forward look [Mcintyre, 1987; see sections 5 and 
8]. By contrast, the classical justification of eddy-diffusive 
flux formulae like (2a) and (2b) involves an explicit or tacit 
assumption that the turbulence is nearly homogeneous. 
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Fig. 1. Idealized, doubly periodic internal gravity wave field viewed in the a:z plane before and after breaking, 
assuming convective adjustment. The case a = 1.66 is shown. The solid curves axe the isentropes 0 = Oo(z) + 
0 t (a:, z, t) = constant after breaking, and the dashed portions show the shapes of the same isentropes in the initial 
wave field. The shaded regions represent the turbulent layers. In the model calculation these are idealized as 
perfectly mixed, with respect to horizontal momentum as well as potential temperature. Note that these mixed 
layers axe deeper than the layers that were statically unstable initially. 

More precisely, there has to be a separation of spatial 
scales: it is assumed inter alia that the mean gradients 
O/Oz are characterized by much larger spatial scales than 
the largest turbulent eddies [e.g., Batchelor and Townsend, 
1956]. In contemplating the real atmosphere, one gets the 
impression that this scale separation assumption may often 
be one of the worst modeling assumptions one can make; 
therefore it is not obvious to what extent flux-gradient 
formulae like (2a) and (2b) should apply at all. And even 
if they do apply to some extent, despite the likelihood of 
being outside the range of circumstances for which they 
are justifiable, there are further questions, such as whether 
the same value of D should be used in (2a) as in (2b). It 
is possible that even a long-lived tracer might have spatial 
fluctuations in mixing ratio that are not perfectly correlated 
with spatial fluctuations in potential temperature (P. H. 
Haynes, personal communication, 1987). 

Even supposing that (2a) and (2b) do apply to a useful 
extent, with approximately the same D values, one still 
has to ask whether D can be evaluated from (1) or (3) and 
whether momentum fluxes can be similarly parameterized, 
as in the Lindzen parameterization, and if so with what 
D values. There is also the distinction between D values 

that are chosen to account for wave dissipation, in the heat 
and momentum equations for the wave motion, versus D 
values that are chosen to describe mean vertical transport 
in a way that is relevant to photochemical modeling. For 
inhomogeneous turbulence there is no reason why any of 
these D values should be the same, or even particularly 
close to one another, and it is not a well-defined question 
to ask for "the" value of the eddy diffusivity or turbulent 
Prandtl number without saying which choice is meant. 

The purpose of this section is to analyze an idealized but 
physically conceivable situation that throws some light on 
questions like these, and illustrates the points just made. 
The results also strongly indicate that if formulae of the 
type (1) and (3) are to have any hope of conforming to 
reality, then we must abandon the idea that the coefiicents 

/31 and/32 are constants, let alone constants of order unity 
or a modest fraction of unity. Instead, they must be 
considered to vary in a way that depends sensitively on 
the value of the wave supersaturation (a- 1). In the case 
of /32, this supports and strengthens conclusions already 
drawn by Chao and Schoeberl [1984], Fritts and Dunkerton 
[1985], and Coy and Fritts [1988] from arguments based 
on somewhat different models of breaking waves. The 
present model predicts even greater sensitivity to (a- 1), 
for reasons to be explained. 

For the sake of devising a thought experiment that 
yields definite answers in as simple and clearcut a manner 
as possible, while avoiding any dependence on disposable 
parameters, we sacrifice realism in two ways. First, we 
replace the real situation, typified by gravity waves arriving 
from below, by an initial value problem. We imagine an 
undisturbed, stably stratified atmosphere to which artificial 
external forces (but no heat sources or sinks) are applied by 
some hypothetical agency. This agency accelerates the fluid 
to produce a disturbance velocity field u t, and pushes the 
isentropic (constant-O) surfaces up or down adiabatically, in 
the right phase relationship to create a propagating gravity 
wave field. This will be called the "initial wave field." 

Of particular interest is a situation in which the initial 
wave field is supersaturated (a > 1) and can therefore be 
expected to break shortly after being set up. We assume 
that the breaking takes place by convective overturning. 

Second, we make the Boussinesq approximation and 
assume that the undisturbed static stability, density, and 
wind are constant with height. We may then (i) go into 
a frame of reference in which the undisturbed atmosphere 
is at rest, (ii) consider the wave field to be a periodic 
plane progressive wave, periodic in the vertical as well 
as in the horizontal (Figure 1), and (iii)use the fact 
that such a wave is an exact, finite-amplitude solution to 
the Boussinesq equations of motion. On the basis of a 
"perfect mixing" or "convective adjustment" hypothesis, 
this permits a very simple analysis of the net irreversible 
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transport across isentropic surfaces (the transport that is 
relevant to photochemical modeling) and its relation to 
the net turbulent energy dissipation œ1 - f e ldt and wave 
energy dissipation œ2 - f e2dt, integrated over the time of 
the wave-breaking event. The energy budget will be free of 
the usual complications arising from moving-medium wave 
energetics, by (i), free of any ambiguities arising from net 
energy import or export at boundaries, by (ii), and free of 
doubts about the applicability of simple wave solutions at 
finite amplitude, by (iii). Moreover there are no disposable 
parameters, once the initial wave field is specified. 

We further simplify the problem by assuming, as in (5) 
and (6), that the wave motion is quasi-hydrostatic, with 
intrinsic frequency Ik(c- a)l << N. This assumption is not 
essential, but it is broadly consistent with the observational 
evidence, and with the idea that the breaking waves have 
time to undergo convective adjustment. It leads moreover 
to a useful conceptual simplification: we shall see that, 
apart from dimensional scaling factors, the only property of 
the initial wave field on which the results depend is (a- 1). 

Before proceeding to a consideration of the wave ener- 
getics, we recall briefly the relationship between vertical 
heat transport and potential-energy change in one dimen- 
sion. The left hand sketch in Figure 2a shows the vertical 
profiles O(z) = Oo(z) and O(z) = Oo(z) + AO(z) for the initial 
and final states of a one-dimensional thought experiment 
in which an isolated layer of a stably stratified Boussinesq 
atmosphere is perfectly mixed by some external agency. 

(a) 
0 

(z) (time integrated) 
Final I 

(b) D 

Fig. 2. Two one-dimensional thought experiments to illustrate the 
connection between vertical heat transport and potential-energy 
change in a Boussinesq model. Sketches of the vertical profiles of 
the initial and final potential temperature 0 are shown on the left. 
The heavy curves on the right show the corresponding vertical 
profiles of the effective net "diffusivity" 7) that can be used to 
describe the associated heat and mass rearrangement (see text). 

It will be useful to write the resulting potential-energy 
increase in a suggestive form involving an "effective net 
diffusivity" 7) expressing the time-integrated vertical heat 
flux in terms of the initial, undisturbed stable stratification. 
(Thus 7) has dimensions of length squared, rather than 
length squared over time.) The undisturbed logarithmic 
potential-temperature gradient 0• 1 dOo/dz = g-I N 2, where 
N is the undisturbed buoyancy frequency as before. Within 
the Boussinesq approximation we may consider 00 as well 
as the density p0 to be constant. 7) is defined by saying 
that the fractional potential-temperature change A0/00 
shall be equal to the convergence of a time-integrated 
vertical flux -g-XN27); that is, AO/0o = g-Xd(N27))/dz. 
The corresponding change APcol in total potential energy 
in each column of unit horizontal area is a well-defined 

q,antity, independent of the origin of z, since the one- 
dimensional mass rearrangement has taken place only 
within a finite height range, say zl < z < z2, and satis- 
fies f (AO/Oo)dz = O• • f AOdz = O. The potential-energy 
change is therefore, unambiguously, 

/z2 AO •Z2 d APcol -- -- pogZ•-odZ-- poZ•-zz(N27))dz (10) 
1 1 

or on integration by parts 

APcol = poN27)dz (11) 
1 

per unit horizontal area. The corresponding 7) profile is 
shown on the right of Figure 2a. 

Another example is shown in Figure 2b. This shows a 
layer throughout most of which 7), and the time-integrated 
flux, are constant, causing only the top of the layer to cool 
and the bottom to heat. Again, the resulting potential- 
energy change per unit horizontal area is well-defined, and 
is given equally well by (10) or (11). 

Now consider the periodic field of finite amplitude 
gravity waves and let 0 • and u • be the disturbance 
potential-temperature and horizontal velocity fields. From 
here on, it is convenient to average vertically and to reckon 
energies and energy changes per unit mass. Let A denote 
the (averaged) available potential energy of the waves per 
unit mass. A is by definition zero before the initial wave 
field is set up, when the isentropic surfaces are flat, and 
is defined such that changes in A are equal to changes in 
the potential energy P per unit mass as long as the fluid 
motion is adiabatic. For the present case of constant N 
the relevant formula is simply 

X Ot2 = g2 «0 t2 A= g ]• (12a) 
0o dOo/dz 0o 2 N 2 

where the overbar denotes the average, defined in terms of 
the vertical averaging operator 

()-lim 2-• ( )dz 
The formula (12a) is exact, for finite amplitude waves, as 
long as the basic state has N constant and the Boussinesq 
approximation holds. For an elucidation of what is involved 
in the adiabatic relationship between A and P the reader 
may consult Holliday and Mcintyre [1981], Andrews [1981] 



MCINTYRE: DYNAMICS AND TRANSPORT NEAR SUMMER POLAR MESOPAUSE 14,621 

and Mcintyre [1988]; but ignore the statement about 
mixing in the first of these references; it is incorrect. The 
averaged kinetic energy per unit mass is 

We denote the values of A and K in the initial wave field 

by Ainit , Kinit. Thus the work required to set up the initial 
wave field is Ainit 4./(init per unit mass. For a sinusoidal 
plane wave like that depicted in Figure 1, with c, k and m 
all positive, we have, with a suitable choice of axes, u t = 
accos{k(x-ct)-mz},O t- {k(x ct) mz and Ainit--/•init-' 41-a2c2. a(Oo/g)Ncsin - - }, 

Now imagine that the waves break in such a way that the 
shaded regions in Figure I become vertically well mixed, 
eliminating all regions of local static instability, and that 
this occurs in a time very much less than a wave period. 
The dashed isentropes in Figure I (surfaces of constant 
00 +0 t) show the initial state, before breaking, and the solid 
isentropes show the state that results from the assumed 
mixing; see also the left hand diagram in Figure 3, which 
shows the vertical profiles of 0 t. This is the simplest local, 
mass-conserving, vertical rearrangement that eliminates all 
statically unstable regions; note that the depth of each 
mixing region, corresponding to -Zm < z < Zm in Figure 3, 
is greater than that of the initial statically unstable region. 

We also assume that the horizontal momentum pou t is 
mixed perfectly in the same (shaded) regions of Figure 
1. For the quasi-hydrostatic waves that we have in mind, 
this momentum mixing assumption has a modicum of 
physical plausibility, since in the real, three-dimensional 
world the overturning would be free to take place in roll-like 
structures aligned along the shear of the wave motion, in 
the typical manner of thermal convection in shear. These 
would have some tendency to homogenize the longitudinal 
momentum. The assumed vertical profiles of u t before and 
after mixing are shown in the right hand diagram of Figure 
3. 

It is not intended, of course, to suggest that these mixing 
assumptions can give us any more than a highly idealized 
model of wave breaking, even for quasi-hydrostatic waves. 
For instance, the turbulent layers might well, in reality, 
evolve toward a statically stable rather than a neutral 
state [e.g., Linden et al., 1989], and the momentum might 
well be substantially rearranged but not homogenized. 

Mixed layer 

zffi 

-- -zffi 

z z 

g • 

Fig. 3. Sketch of the changes in the z profiles of the disturbance 
potential temperature 0 t and horizontal velocity component u t 
assumed in the wave-breaking thought experiment, at x - ct --- O. 
The straight line segments cut off equal areas, to conserve heat 
and momentum. 

Quantitatively accurate modeling would demand, in reality, 
high-resolution numerical simulations of the fully three- 
dimensional turbulent problem, a task that is well beyond 
the scope of available computational resources even today, 
requiring a multitude of cases to be run in the likely event 
that the detailed mixing characteristics proved sensitive to 
noise in the initial conditions. The present model, while 
not pretending to be quantitative, has at least the virtue of 
simplicity and comprehensibility and, as already mentioned, 
no disposable parameters. Once the foregoing assumptions 
have been made, the values of several quantities of interest, 
including œ1, œ2 and the net vertical heat transport, are 
determined precisely and unambiguously as functions of 
(a - 1). 

Denote the magnitudes of the decreases in A, K, and 
P due to the profile changes shown in Figure 3 by AA, 
AK and Ap, all positive by definition. Ap is defined in 
the same way as in the first integral in (10), apart from 
the factor P0, the sign convention, and the fact that the 
integral is replaced by the vertical averaging operator. Ap 
is well defined for the same reason as was APcol: the 
vertical integral of the change A0 t in 0 t vanishes over each 
mixing layer, so that the contribution to Ap from each 
layer is independent of the z origin. 

We may summarize the energy changes as follows. Before 
the experiment, the isentropes are fiat, and A --0, K- 0, 
and P - P0, say. (The potential energy P0 of the initial 
undisturbed state is itself ambiguous, but that is immaterial 
since only changes in energy are of interest.) After wave 
generation, A- Ainit , Z- /(init, and P- P0 4. Ainit, 
and after mixing A - Ainit - AA, Z -- Kinit - AK, and 
P- P0 4-Ainit- Ap. Note that we must expect AA to 
differ from Ap because the mixing is adiabatic process. 
By definition, the net wave energy dissipation 

still reckoning all energy changes per unit mass. 
Finally, we imagine that after the waves break, the 

hypothetical agency conducting the experiment intervenes 
again and carefully removes all of the remaining wave 
motion adiabatically (which results in work being done 
upon the agency, although less work than it originally did 
in order to create the waves). This is the closest we 
can come in our thought experiment to mimicking a real 
situation in which the waves propagate out of the region 
of interest, leaving the isentropes once again completely 
fiat. Then A and K decrease by amounts Ainit- AA and 
Kinit- AK respectively (taking A and K back to zero), 
while P decreases by the same amount as A, since this 
final stage is adiabatic. Thus P decreases by Ainit -AA, 
so that 

say, where 

P = Po + Ainit - Ap- (Ainit - AA) 

= PO 4. A Ptransp 

APtransp -- AA -- AP (14a) 

Since APtransp is the net potential-energy increase, after 
the isentropes have been distorted then adiabatically 
flattened again, it is exactly the potential-energy increase 
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associated with the true, irreversible, net cross-isentropic 
transport due to wave breaking. By analogy with (11), the 
corresponding "effective net diffusivity" 1)is 

1) = APtransp/N 2 = (AA- AP)/N 2 (14b) 

The agency that set up and removed the waves has done 
net work AA + AK = œ2 per unit mass over the whole 
experiment. This work must have been partitioned between 
APttans p and the net turbulent energy dissipation œ1 per 
unit mass, which is therefore exactly 

œ1 = AA + AK- APtransp -- AP + AK (15) 

The quantities analogous to /•! and /•2 can now be defined 
as 

/•1 ---- APtransp/œ1 (16a) 

and 

B2 ---- APtransp/œ2 (16b) 

since we then have, from (14b), 

1) = Bx œ•/N 2 1) = B2œ2/N 2 

the model's counterparts to (1) and (3). Notice that we 
also have 

1) = (œ2 - œ1)/N2 (17) 

In order to evaluate these quantities explicitly, let us 
invoke our assumption of a sinusoidal initial wave and, for 
convenience, take units such that p0 = 1, N 2 = 1, c = 1 
and therefore m = 1, that is, vertical wavelength = 2•r, 
using the first of (5) with 2 = 0. In these units, the initial 
profiles in Figure 3 give 

/0 /0 -- •g dz -- sin 2 zdz = 41--a Ainit = 1 • 1 20t2 1 a2 2 
00 

Kinit__ 1/•r 1 / •r ; = aa ½os a = ¬J (lS) 

To recover the corresponding dimensional quantities, which 
have dimensions of energy per unit mass, multiply by c a. 
From the left hand part of Figure 3, we see that the 
half-depth of the mixed layer, Zm, a function of a, is the 
smallest positive root of 

a sin z = z (19) 

(Note again that this corresponds to a turbulent layer 
that is deeper than the initial statically unstable layer.) 
At x = 0, then, the mixed layer is -Zm • z • Zm, and 
the dimensionless 0 • profile is -asinz before mixing and 
-z within the layer after mixing. Thus, with our sign 
conventions, 

AP = 1 fo ;•m -z(z - asin z)dz 
-1 

= •r {-«Z3m + a(sin Zm - Zm cos Zm)} (20) 

lfOZm AA = • -(z 2 - a 2 sin 2 z)dz 

- 3 -- •Zm q- «a2(zm- sinzm coszm)} (21) 

llZm AK = 2a' -(1 - a 2 cos • z)dz 

= (2a')-ll--zm + «a2(zm +sinzmcoszm)} (22) 
and, as a partial check, 

APtransp = AA- AP = • (-z + a sin z)2dz 

(> 0, irreversible!) 

--(2•r)-l{Iz3m q- 2a(zmcoSzm -- sin Zm) 

+«a2(zm -- sin Zm cos Zm)} (23) 

These quantities are functions of a alone, after taking (19) 
into account. Multiplication by c a yields the corresponding 
dimensional energies per unit mass. Graphs of AP, AA, 
AK and APtransp are plotted in Figure 4 along with Ainit, 
Kinit, from which •ve gain an immediate impression of the 
sensitivity to the value of (a- 1). 

It is not hard to show, by Taylor-expanding (20)-(23), 
that AA, AK and AP all behave like (a-1) 5/2 and 
that APtransp behaves like (a - 1)?/2, as (a - 1) I 0. To 
show this it is easiest to Taylor-expand the integrands 
first and then to integrate the leading order terms using 
Zm ~ {6(a- 1)} x/2, the latter being obtained by expanding 
(19), except that for AK it is easiest first to factorize the 
integrand as -(1-acosz)(1 +acosz)and then expand 
the right hand factor only, noting that the integral of the 
left hand factor vanishes. This analysis can be extended 
to show that these power laws would remain the same for 
other physically plausible rearrangements of the 0' and u ' 
fields, such as the imperfect vertical mixing envisaged three 
paragraphs above (13), assuming only that the mixing 
involves changes in O0'/Oz of order (a- 1) and jumps in 0' 
of order (a- 1) 3/2 or less, consistent with Zm 
for small (a- 1). Details are omitted for brevity. 

Values of B1 and B2 are shmvn in Table 1; again, the 
great sensitivity to (a- 1) is evident. The bottom half of 
Table 1 probably has little physical interest; one wonders 
how often waves are likely to reach (a- 1) > 1, say, before 
mixing becomes effective in limiting a, except perhaps for 
the most violent breaking of high frequency waves with 
large vertical wavelengths, in "steep beach" conditions 
further up in the lower thermosphere. 

We may also ask what the model has to say about various 
"turbulent Prandtl numbers." If, for example, we were to 
define the effective net momentum "diffusivity" 1)mw for 
the time-integrated wave dissipation as 1)mw = AK/2Kinit 
(in rough analogy •vith the fact that for m = 1 the 
contribution from ordinary molecular viscosity v to the 
rate of change of wave kinetic energy K is 2vK), then 
the "Prandtl nmnber" 1)mw/1) takes the values shown in 
the fourth column of Table 1. Again, the values vary 
wildly. The last column compares 1) with the effective net 
heat "diffusivity" 1)hw for wave dissipation, defined in the 
corresponding ;vay as 1)hw ----AA/2Ainit. This illustrates 
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Fig. 4. Graphs of the dimensionless energy changes in the gravity wave breaking thought experiment, for different 
values of the dimensionless wave amplitude a. The heavy curve is a measure of the net vertical transport by 
mixing (see text). Realistic values are probably confined near the bottom left hand corner; a wider range is shown 
only to convey the functional character of equations (18)-(23), and as a check on consistent asymptotic behavior. 

the point that "the" effective eddy diffusivity of a given 
quantity, in this case heat, may differ greatly according 
to whether it is conceived of as applying to the wax'cs or 
to the basic state. For large a, for instance, the effective 
diffusivities for the waves are far smaller than those for the 

basic state, because the turbulent fluxes are comparable 
but wave-field gradients far exceed basic state gradients. 

It might be thought, incidentally, that the model could 
be used to approach the difficult problem of backscattering 
from a region of wave breaking. There is no theoretical 
reason, of course, why a wave-breaking region should 
not backscatter the incident waves, although the present 
author is not aware of any case study where this has 
been unequivocally observed in the mesosphere. There are 
hints of it in the momentum-flux results reported by Reid 
and Vincent [1987], and there is good numerical modeling 
evidence in some lower-atmospheric examples involving 

TABLE 1. Model Counterparts of/5•,/52 and Two Effective 
Diffusivity Ratios, against Wave Supersaturation (a - 1). 

(a-- 1) 01 02 •)rnw/• ) /)hw/• ) 

0.01 0.0019 0.0019 345.3 688.7 

0.1 0.0186 0.0182 30.8 59.9 

0.25 0.0448 0.0429 10.4 19.5 

0.5 0.0848 0.0782 4.1 7.3 

1.0 0.154 0.133 1.4 2.3 

3.0 0.345 0.257 0.20 0.28 

5.0 0.464 0.317 0.077 0.098 

9.0 0.606 0.377 0.024 0.029 

c• 1 0.5 0 0 

The sensitivity of all these quantities to (a- 1) is apparent. 
The last two columns (see text) suggest some pitfalls inherent in 
the notion of "turbulent Prandtl number." 

strong mountain waves [Clark and Peltier, 1984]. The 
counterpart of this backscattering in our idealized model is 
the presence of Fourier components with downward group 
velocities in the modified wave field implied by the final 
profiles in Figure 3. It is curious, albeit probably not 
very significant, that the fundamental (wavelength 2•r) 
backscattered component vanishes, although the higher 
harmonics do not. The point is not pursued here because 
it seems too model-dependent to be of real interest. 

Perhaps the most important suggestion from this anal- 
ysis, even more striking than suggestions from the earlier 
analyses by Chao and Schoeberl [1984], Walterscheid [1984], 
Fritts and Dunkerton [1985], Schoeberl [1988], and Coy 
and Fritts [1988] is that waves that are not breaking too 
violently (corresponding to values near the top of Table 
I or the bottom left of Figure 4) will produce only weak 
vertical mixing. It should be weak in the sense that the 
dimensionless numbers /•1 and /32 in (1) and (3) are likely 
to be well below unity, as are their counterparts /tl and 
/t2 near the top of Table 1. The present model suggests 
this even more forcefully than its predecessors. The main 
difference between the present model on the one hand, and 
the model of Fritts and Dunkerton and Coy and Fritts 
on the other, for example, is that there the depth of the 
turbulent layer is treated as an independent parameter 
(related to their parameter n), whereas here its dependence 
on (a- 1) is built into the model, albeit in an idealized 
way. The present model, in other words, is based on 
the expectation that the turbulent layer depth 2Zm should 
decrease as a decreases toward unity, and it is this that 
accounts for the present model's more sensitive dependence 
on (a- 1) when (a- 1)is small. An implicit assumption 
is that the static stability elsewhere in the wave field can 
rapidly suppress turbulence. 
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Further evidence on the nature of convective instability 
in brea'king gravity waves has recently come from two- 
dimensional numerical experiments by R. L. Walterscheid 
and G. Schubert (Nonlinear evolution of an upward 
propagating gravity wave: overturning, convection and 
turbulence, submitted to the Journal of the Atmospheric 
Sciences, 1988). As far as can be seen from a small number 
of cases, the general character of the breaking waves 
in their model is is broadly consistent with the picture 
assumed here. There is, as yet, no check from a fully 
three-dimensional simulation, and no clear discrimination 
between the present model and its predecessors. 

The wider implications of the present results are daunt- 
ing. The sensitivity to (a-1) illustrated in Table 1 suggests 
that in trying to understand the real atmosphere, partic- 
ularly the lower thermosphere and the winter mesosphere, 
where waves may well break violently, an acute problem 
will be how to estimate effective values of (a- 1). These 
values will be sensitive to statistical properties, such as the 
intermittency of brea'king in a realistic wave field, which 
will be sensitive in turn to the occurrence of constructive 

or destructive interference and hence to phase relations 
between the Fourier components in the spectrum of waves. 
For instance, one might get vertical mixing less weak than 
a simple statistical measure of (a - 1) might suggest, if it 
happened that the spectral phase relations were such as to 
imply relatively rare, but violent, wavebrea'king events. 

In the case of the summer mesosphere and NLC/PMC 
modeling, however, it seems likely that the weakness of 
vertical mixing for modest values of (a- 1) is the relevant 
consideration. We return to this question after recalling 
what controls the other transport mechanism that has to 
be considered, namely, the mean upwelling. 

3. UPWELLING IN ZONALLY SYMMETRIC, 
QUASI-STEADY MODELS 

It is now widely accepted that mean upwelling in the 
summer high-latitude mesosphere is a necessary part of 
the global scale mesospheric circulation, without which it 
would be difficult, if not impossible, to make sense of the 
observed facts, including the remarkable coldness of the 
summer mesopause. The summer mesopause is the coldest 
part of the entire atmosphere, despite a net absorption 
both of infrared radiation from below and of solar radiation 

from above. Adiabatic cooling by sustained vertical motion 
seems likely to be the only mechanism capable of producing 
the observed cold temperatures. 

Dynamical considerations show that a drag force, hav- 
ing a certain latitudinal gradient, is needed to drive this 
upwelling. The force, of whose manner of functioning 
and domain of influence we shall be reminded shortly, is 
believed to come mainly from the systematic, irreversible 
momentum transport associated with upward propagating 
gravity waves directionally filtered by the mean wind struc- 
ture [Lindzen, 1981]. Besides the theoretical robustness, 
and hence likely ubiquity, of this momentum transport 
effect (e.g., M. E. Mcintyre and W. A. Norton, and refer- 
ences therein, Dissipative wave-mean interactions and the 
transport of vorticity or potential vorticity, submitted to 
the Journal of Fluid Mechanics, G. K. Batchelor Festschrift 
Issue, 1989), there is an accumulation of independent obser- 
vational evidence for the existence of the required gravity 

waves in the real atmosphere [e.g., Balsley et al., 1983; 
Fritts, 1984; Reid, 1986; Chanin and Hauchecorne, 1987; 
Reid and Vincent, 1987; RJttger, 1987; Fritts et al., 1988; 
Manson and Meek, 1988; Fritts and VanZandt, 1989, and 
references therein], including some direct measurements of 
wave-induced momentum fluxes. 

As a preliminary to discussing the real summer meso- 
sphere, we recall briefly how the wave-driven upwelling 
mechanism works in a simplified context, namely, that 
of zonally symmetric model mesospheric circulations that 
vary on a seasonal time scale only, being driven by a 
zonally symmetric, zonally directed wave-drag force .• per 
unit mass that varies on a similarly slow time scale. An 
important recent model study of this 'kind is reported 
by Garcia [this issue]; see also the review material and 
historical notes in the book by Andrews et al. [1987]. 

As might be anticipated from the fact that the seasonal 
time scale greatly exceeds the relevant radiative relaxation 
time scales (e.g., the references just cited), the circulation 
driven by the force .• in these model mesospheres is quasi- 
steady, in the sense that the zonally averaged, or prima facie 
zonally symmetric, wind and temperature tendencies Oa/Ot 
and O•'/Ot can be neglected in the governing equations. In 
these circumstances the nature of the dynamical control is 
particularly simple to analyze. To a first approximation, 
the extratropical angular momentum balance takes the 
steady state form 

-f•* - .•'(y, z) (24) 

and the mean meridional and vertical velocities •*,fv* 
satisfy a zonally symmetric mass-conservation equation of 
the form 

po(z) a(e* cos •) + O(po•o*) = 0 (25) 
cos • Oy Oz 

where y is latitude q• times the Earth's radius and f(y) is 
the Coriolis parameter. Here •* and fv* are defined so as 
to be as directly relevant as practicable to the transport 
of constituents; one may use, for instance, the TEM or 
"transformed Eulerian-mean" equations with log pressure 
as the vertical coordinate z, suitably scaled, or even better 
the Eulerian-mean equations in isentropic coordinates with 
log entropy as the vertical coordinate [e.g., Tung, 1982; 
Andrews et al., 1987]. The steady state mass-conservation 
equation has the same form (25) in either case, with 
suitable definitions. See also the discussion of "transport 
circulation" in Plumb and Mahlman [1987]. 

The mean density po(z) falls off exponentially with 
altitude z. From (24) and (25) it follows in two or three 
lines of manipulation that the upwelling velocity • at a 
given altitude z0 is related to the drag force • by 

-, 

wo(y, zo) = 

{ } 1 a 1 

p0(z0) f- (y) z)z 
z0 

(26) 

the integral being safely convergent at its upper limit 
because of the factor P0 and the constraints on the 
magnitude of • imposed by wave breaking. (Dimensionless 
amplitudes a may well exceed unity, but as already 
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discussed they are unlikely to do so by orders of magnitude; 
and so for gravity waves [•[ •< e2/[a - c[ ,,, Wg[a - cl/Hdiss 94 

June 75 øN 

in order of magnitude, using (4)if., which is unlikely to 
increase upwards faster than P0 decreases). A more accurate 92 - 
version of (26), based on a more accurate version of (24), is 
presented by P. H. Haynes, C. J. Marks, M. E. Mcintyre, 90 - 
T. G. Shepherd, and K. P. Shine (On the downward control 
principle for extratropical diabatic circulations, submitted • 88 - 
to the Journal o• the Atmospheric Sciences, 1989); that • 
paper also presents an independent verification of (26) • • 86 - 

in the form of time dependent analytical and numerical • 
calculations showing that the steady state described by 84 - 
(26) is indeed approached, how it is approached, and how 
the rate at which it is approached depends on spatial scales 82 - 
and radiative relaxation time scales. 

The relation (26) highlights the simple but interesting 
fact that the quasi-steady upwelling across a given level, 
for example the NLC/PMC level, is controlled from above, 
in the sense that it depends exclusively on .• and its 
latitudinal gradient above that level. This principle of 
"downward control" by •' takes an even simpler form if the 

80 

0 1 2 3 4 5 

w* (cm/s) 

Fig. 5. Upwelling profiles from three zonally symmetric model ex- 
periments reported by Garcia [this issue], illustrating the "down- 

waves can be assumed to propagate straight upward. This 
is true to good approximation for those gravity waves that 
are believed to dominate •' in the mesosphere. The waves 
in question have fast vertical group velocities and periods 
of the order of an hour or less [e.g., Reid, 1986; Reid and 
Vincent, 1987]. Then 

(27) 

ward control" principle in the form expressed by equations (26) 
and (28). The mesospheric circulation regime is changed by vary- 
ing the radiative relaxation time •'rad while keeping other external 
parameters unchanged, including the parameterized upward flux 
of gravity waves from the troposphere. The curve marked "base 
case" is for %ad -- 4 days, the next curve down (marked by circles) 
is is for %ad -- 8 days, and the remaining curve is for %ad -- 16 
days. Mesopause altitudes and temperatures and wave breaking 
threshold altitudes all decrease as %ad increases. 

where pou/w / is the radiation stress or wave-induced 
momentum flux in the usual approximation (and riorational 
convention) appropriate to high-frequency gravity waves. 
With these approximations, the integration in (26) can be 
carried out explicitly, giving 

•0; (y, z) = I O i u' cosq• 0y (f- (y)cosq• w') (28) 
To this approximation, then, the quasi-steady upwelling 
across a given level z depends only on the latitudinal 
distribution of the net upward gravity wave flux across 
the level z and not, for instance, on the height at 
which the waves break. This behavior is strikingly 
illustrated by Figure 5, taken from Garcia [this issue]. 
Three profiles of •*(z) are shown, from three zonally 
symmetric model simulations, in which everything in 
the mesospheric circulation regime varies except the net 
upward flux of gravity waves incident from below, as 
measured by pou/w/. Zonal wind profiles, mesopause 
altitudes, mesopause temperatures, and wave-breaking 
threshold altitudes all differ from experiment to experiment 
but, as Figure 5 illustrates, the upwelling velocity profile is 
the same to good approximation in all three experiments 
at those altitudes lying below the region where the waves 
are breaking, that is below about 87km. The model is 
behaving as (28) predicts. 

From the present perspective one might summarize the 
key properties of the mesospheric circulations found in 
Garcia's model study as follows: 

1. The upwelling at a given level is controlled by the 
gravity wave drag above that level, and hence by the net 
wave-induced momentum flux across that level. 

2. The wave breaking and drag occur largely above 
NLC/PMC altitudes. (It is worth recalling that this is 
always made more likely, other things being equal, by the 
region of increased N 2 values above the mesopause. All 
gravity-wave theories, predict an increase in the amplitude 
a, in the sense defined in section 1, hence an increase in the 
likelihood of wave breaking, when waves propagate upward 
into such a region [Hauchecorne et al., 1987; Fritts and 
VanZandt, 1989]. The last term in (8) correctly indicates 
this tendency, albeit only qualitatively because of the ray 
theoretic and other approximations on which (8) is based.) 

3. Below wave breaking altitudes, and therefore at 
and below NLC/PMC altitudes, the mean upwelling •0' 
on the seasonal time scale has an altitude dependence 
given to a first approximation by •* cr po(z) -1. (This 
can be seen at once from (26), since the quantity in 
braces becomes independent of z0 when z0 lies below wave 
breaking altitudes. It can also be seen from (28), using the 
fact that (27) is zero below wave breaking altitudes.) 

4. Below wave breaking altitudes, and at and below 
NLC/PMC altitudes, horizontal advection can be neglected 
in comparison with vertical advection. (Statement 3 and 
equation (25) imply that •*= 0 below wave breaking 
altitudes.) 

5. Below wave breaking altitudes, and at and below 
NLC/PMC altitudes, vertical eddy transport of heat and 
constituents is negligible. (This is true even in the model 
experiments that use the Lindzen diffusivity formula (3), 
according to Garcia [this issue], and therefore true a fortiori 
when the smaller values of D indicated in section 2 are 

used.) 
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4. A TRANSPORT MODELING STRATEGY 

FOR THE REAL SUMMER MESOSPHERE 

Can we treat the five statements just made as hypotheses 
that might be approximately applicable to the real summer 
polar mesosphere, for example at a high latitude location 
where rocket soundings have been taken, as in the Cold 
Arctic Mesopause Project [e.g., Kopp et al., 1985]? If 
the answer were yes, then it would follow that the use 
of one-dimensional modeling would be strictly justifiable - 
provided that vertical advective transport is incorporated, 
with an upwelling profile of the form •0*(z)½r po(z) -1, 
and provided that the vertical eddy diffusivity is made 
zero or, failing that, as small as numerical model stability 
permits. Such a model would be attractive as a practical 
research tool in that the assumed transport is physically 
reasonable, simple to understand and to formulate, closely 
consistent with two-dimensional model studies like Holtoh's 

and Garcia's, as Figure 5 illustrates, and described by a 
single parameter only, namely, the proportionality constant 
giving the strength of the upwelling. It may also 
be qualitatively reasonable outside the bounds of strict 
validity of the relations (26) and (28), as we shall indicate. 
The idea of introducing vertical advection into a one- 
dimensional photochemical model, for application to a 
particular geographical region like the polar cap, is not 
new; the usefulness of such a model has been demonstrated, 
for example, in the different context of understanding ozone 
evolution in the Antarctic stratosphere in late summer, by 
Furman et al. [1985]. 

In the present state of knowledge, however, it is 
unfortunately not possible to give a definitive answer to the 
question just posed. What does seem possible at present 
is to argue that the five statements, hereafter referred 
to as hypotheses 1-5, can reasonably be made the basis 
of a one-dimensional modeling strategy on the Occam's 
Razor principle. Indeed, with the possible exception of 
tidal effects (see Jensen et al. [this issue]), we shall argue 
that it would be difficult to justify the use of more 
elaborate models until far more knowledge of the three- 
dimensional, time-dependent mesospheric gravity wave field 
and circulation becomes available. 

Hypothesis 5 is probably the most robust. It is 
supported both by direct observation (C. R. Philbrick, 
personal communication, 1988) and by the results of 
theoretical analyses like that of section 2 above. All the 
indications seem to be that even though we must expect 
some gravity wave breaking at and below NLC/PMC 
altitudes, the breaking is typically weak. Together with 
the theory of section 2 and its predecessors, this strongly 
suggests that we can neglect vertical mixing altogether, to 
an excellent approximation at and below those altitudes. 

The status of the other hypotheses is less certain. 
Perhaps the greatest two uncertainties are first the role 
of transient fluctuations in the mean circulation, on time 
scales less than the time scale for adjustment to a 
downward controlled circulation, and second the role of 
zonal asymmetry of the mean circulation, where "mean" no 
longer signifies a zonal average, but instead a local average 
over a few gravity wave periods. 

Regarding the first uncertainty, we know from ground- 
based observations that NLC displays may fluctuate on 
time scales less than a day, much faster than downward- 

control adjustment times. The same is true of PMC 
[e.g., Olivero and Thomas, 1986]. There is, of course, 
every reason to suppose that fast dynamical processes 
like gravity wave generation will themselves fluctuate on 
similarly short time scales, hence • itself and the time- 
dependent response to it. Downward-control adjustment 
times for "large scale" circulations (height and length 
scales H•> Hp and L•> NHp/f) are of the order of 
the radiative relaxation time •'rad, and are longer for 
smaller scale circulations. Thus although the background 
large scale seasonal mean upwelling is almost certainly 
downward controlled, conforming to (26) and (28) to good 
approximation, short-term fluctuations in •0' need not 
be. On the other hand, the downward control principle 
has some qualitative validity outside its strict domain of 
applicability. It has validity to the extent that even for time 
scales << •'rad at least half the mass circulation fluctuation 
induced by time dependence in Y will always be directed 
downward, and more like three quarters for the largest 
scales (more than 84% downward, for example, in the case 
of the second Hough mode in a 239K isothermal atmosphere 
with Hp - 7km and Rossby height fL/N = 13km). Further 
details are given in the paper by Haynes et al., referred to 
below equation (26). 

Regarding the second uncertainty, similar remarks apply, 
but with additional effects much harder to quantify. It 
is hardly likely that the gravity wave drag force is either 
zonally directed or zonally symmetric, when one thinks of 
current ideas about gravity wave sources and gravity-wave 
filtering, to say nothing of the various possible interactions 
of gravity waves with tides [e.g., Walterscheid, 1982; Fritts 
and Vincent, 1987]. Thus it is hardly likely that the 
upper mesospheric circulation, which is believed to be 
so powerfully affected by the wave drag force, would be 
zonally symmetric either. However, it is conceivable that 
the circulation might nevertheless be more nearly symmetric 
than the force distribution itself, especially at the lower 
altitudes. Zonal winds can carry the air past geographically 
fixed, longitudinal nonuniformities in the force distribution 
and its induced circulation, so that in effect there might 
be some zonal averaging of the forcing in the lower part of 
the relevant altitude range. An additional effect of zonal 
asymmetry would be to contribute directly to the transient 
mean circulations that are superposed on the large scale, 
seasonal-mean circulation, the materiM derivative D/Dr 
now entering the circulation dynamics in place of the 
partial derivative O/Or. Transient vertical motion would be 
induced by the relative advection of isentropic anomalies 
of potential vorticity, in just the same way as for the 
synoptic-scale vertical motion associated with tropospheric 
weather systems [e.g., section 4 of Hoskins et al., 1985]. 

What emerges from the foregoing considerations is 
that, with the possible exception of tidal contributions, 
quantification of the actual local, transient vertical motion 
would require a state of the art in mesospheric observation 
and modeling comparable to that currently attained in 
operational numerical weather forecasting, in addition to 
which one would require synoptic, detailed observations of 
the time-dependent gravity wave fluxes po(u•w •, v•w •) in 
three dimensions. This is a tall order, even for the next 
generation of space-based wind sensors. We are forced to 
the conclusion that for modeling purposes it is difficult 
to imagine doing better, at present, than provisionally 
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adopting hypotheses 1-5 on the Occam's Razor principle. 
The resulting transport model is arguably far closer to 
physical reMity in the summer polar mesosphere than 
one-dimensionM models assuming an arbitrary vertical 
diffusivity function D(z) but no upwelling. Moreover, a 
transport model having only a single disposable parameter, 
the proportionaltry constant for the upwelling velocity 
profile oc p0(z) -1 would provide a more testing basis for 
comparison with observation than a model having M1 the 
disposable degrees of freedom associated with the arbitrary 
function D(z). 

In summary, it seems clear that the suggested modeling 
strategy, whose merits would of course be subject to tests 
against observation and, eventually, against more compre- 
hensive observations and three-dimensional modeling, has 
significant attractions in the present state of knowledge. 
Not least among these is its avoidance of the problem 
posed by the eddy diffusivity concept itself, recalled at the 
beginning of section 2, namely the fact that that concept 
appears difficult to justify, in any fundamental way, under 
conditions typical of the real atmosphere. 
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