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Abstract. This is about a personal journey starting from my lifelong
skepticism about statistical significance tests — perhaps the most mis-applied
of all mathematical theories, especially as regards extreme events — toward a
new clarity and power in the use of probability theory and a clear resolution
of old dilemmas about subjectivity versus objectivity. There is little original
thought here. Rather, the idea is to pull together some rudimentary threads,
often seen as unrelated, from mathematics, biology, experimental psychology,
and information theory.

Introduction

My title is a joke, though a serious one. If one thinks
carefully about what is involved, in the spirit of our
“assembly that seeks into the depth of a matter”, then
one sees that in a certain sense the title is pleonastic,
like “singing vocally”. The reason is that, at the most
fundamental levels — and I mean fundamental biologi-
cally as well as mathematically — there is no such thing
as deterministic thinking. Our very thought processes,
including mathematical thought processes, are funda-
mentally and inherently probabilistic.

I’ll argue that this point, appropriately developed,
throws light on the difficulties and controversies among
statisticians and other scientists, whether about com-
monplace events or extreme events. They include the
old “Bayesian versus frequentist” controversy between
Harold Jeffreys and Ronald Aylmer Fisher and the “fre-
quentist versus personalist” dichotomy stressed in Jay
Kadane’s interesting talk. They include related issues
of subjectivity versus objectivity.

On primordial biological levels the point is elemen-
tary as well as fundamental. It’s an almost trivial as-
pect of what has long been known about how biologi-
cal systems work, including our own brains. The ubi-
quitous protein molecules called allosteric enzymes are
logic elements (e.g., Monod, 1971). But they interact
in massively-parallel information-processing “circuits”
whose very “wiring” is probabilistic, indeed stochastic.
Brownian motion — thermal fluctuation on picosecond
timescales — connects those logic elements together in a
fundamentally noisy way. That of course is why, given
the mechanical strengths of chemical bonds including
hydrogen bonds, life can exist only in a rather narrow
temperature range.

So the textbook view of brain function, in which neu-
rons with their tree-like dendrites and spines are viewed

as deterministic adding machines, taking weighted sums
of synaptic inputs (e.g., Warwick, 1997), is näıve and in
some ways may even be profoundly wrong. Neurophys-
iological research in recent decades has shown that a
single neuron, far from being a simple adding machine,
is a highly subtle and complex information-processing
system (e.g., Crick, 1994; Koch, 1999), a massively-
parallel stochastic computer in its own right. The näıve
neurons-and-synapses picture, more characteristic of ar-
tificial neural networks than of real ones, is showing us,
at most, the surface of a vast stochastic-computational
ocean about which little is understood in detail.1

But what about the abstract mathematical level?
We have what looks at first sight like a perplexing
paradox, a complete intellectual impasse. It seems to
have stumped even so great a thinker as Roger Penrose,
who argues — fascinatingly but wrongly, in my humble
opinion2 — that the only way out of the impasse is to
suppose that the brain performs an unknown kind of
quantum-gravity computation (Penrose, 1989, 1994).

What then is this impasse? The problem that exer-
cised Penrose, which I too find fascinating, is the prob-
lem of how our exquisite sense of mathematical preci-
sion, of “unassailable mathematical truth”, the Platonic
beauty and precision of simple mathematical curves
and other deterministic constructs, can possibly emerge
from the actions of our tens of billions of interconnected
neurons, subsisting in their metaphorical ocean of ther-

1One might regard the phrase “biological determinism” as an-
other joke — this time an incongruous juxtaposition — were it
not for its incessant repetition, mostly by non-biologists, and the
political exploitation thereof (e.g., Segerstr̊ale, 2000).

2Appendix to McIntyre (1997b); see also the sections dis-
cussing “acausality illusions” and compare them with p. 386 of
Penrose (1994). There I can lay some claim to original thinking,
because the insights into brain function arose from considering
how music works, and its deepest connections with mathematics,
in a way that I’ve never seen discussed elsewhere.
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mal fluctuations. How, indeed, can there emerge so
precise, austere, and deterministic a way of thinking as
Aristotelian logic and its further developments — the
unequivocal logical thinking on which we all rely, and
use to build and verify our own perfectly precise and
deterministic mathematical knowledge, such as know-
ing that there’s an infinity of prime numbers?

I’ll argue that both experimental psychology and evo-
lutionary biology have something profound to say about
this. But so too, it turns out, does mathematics it-
self, in a startling piece of intellectual bootstrapping,
as summarized in the next two sections. It does so in
a way that beautifully meshes with the insights from
experimental psychology and evolutionary biology.

Remarks on the foundations of
mathematics and probability theory

Mathematics tells us that our thought processes are
“fundamentally and inherently probabilistic” in a differ-
ent and entirely abstract sense that seems at first sight
far removed from, and independent of, the molecular-
level biological details. There is a sense in which the
abstract axioms of probability theory are built into our
brains. Understanding this turns out not just to be in-
teresting in its own right, but also to be a major step
toward resolving the old controversies about subjectiv-
ity versus objectivity in statistical inference.

What leads me to say such a thing? The first hint,
and thrill of surprise, came when I learned that one of
our most eminent mathematicians, the Fields medal-
ist David Mumford, has gone so far as to propose that
the very foundations of mathematics should be reformu-
lated on a stochastic basis (Mumford, 2000). Mumford
in turn cites as inspirational a book I’d never heard
of, unpublished at the time and now published only
posthumously, by Edwin T. Jaynes (Jaynes, 2003). I
notice that Kadane (2007) lists it as “an idiosyncratic
book by a controversial figure”.

On turning to Jaynes’ book I found, to be sure, some
polemics but more importantly a clear, simple and far-
reaching conceptual framework in which not only can
Aristotelian logic be seen as part of probability theory
but in which, under surprisingly weak qualitative as-
sumptions, all the rules of probability theory itself can
be deduced, cleanly and uniquely, from a single primor-
dial idea that incorporates in a natural way the fact
that information is involved. This is done using the
theorems of Richard T. Cox (Cox, 1946), making me
wonder why I was not taught those theorems as an un-
dergraduate, instead of coin-tossing and such.

The idea is simply that, for given background knowl-
edge or information Z, our brains must be able to at-

tribute a degree of plausibility to any new statement,
proposition or hypothesis A with which they are con-
fronted. From this single primordial idea emerges the
whole edifice of probability theory — along with an en-
hanced understanding of how to use it — provided only
that we assume that “degree of plausibility” is somehow
measured by a smoothly-variable real quantity

P (A|Z) (1)
that’s well defined and behaves qualitatively in a way
that’s both self-consistent, and consistent with the most
rudimentary common sense (next section).

So although we begin, at this primordial level, by
reading the symbol P (A|Z) as the subjective “plau-
sibility” that A is true given that Z is true, we find
under weak qualitative assumptions that such symbols
are mathematically indistinguishable from probabili-
ties. That is, to the extent that our brains can assess
plausibilities in some such way, they must be proba-
bilistic devices in a high-level abstract sense — only
remotely and indirectly related to the molecular-level
sense noted previously — of being compelled to work
with quantities P that turn out to be nothing but proba-
bilities in the standard quantitative mathematical sense.

I say “primordial” and “compelled” advisedly. It
hardly needs saying that the ability to make plausibil-
ity assessments of the kind in question, consciously or
unconsciously, are matters of life and death and must
be evolutionarily ancient.

For survival’s sake, the brain must assess the plausi-
bility that something is edible, or hostile, or whatever;
and it is a biological advantage to make such assess-
ments in a self-consistent way. As far as evolution and
natural selection are concerned, departures from self-
consistent calculation are mistakes. They reduce the
chances of survival. So approximate self-consistency,
alongside computational speed, will have been strongly
selected for.3 None of this, incidentally, has to do
with the separate issues of linguistic capability and con-
sciousness. As the anthropologist–philosopher Gregory
Bateson once wrote (Bateson, 1972),

“No organism can afford to be conscious of
matters with which it could deal at uncon-
scious levels.”

3But not exact “algorithmic soundness”, in Penrose’s sense.
The reader who finds it startling that there’s any abstract math-
ematical property that can be selected for, in the biological or
Darwinian sense, may find some interest in other examples. One
is that, for clear reasons of survival, prime numbers have evidently
been selected for in the case of, for instance, the Magicicada
genus, the 13- and 17-year “periodical cicadas” of eastern North
America (http://en.wikipedia.org/wiki/Magicicada#Life cycle &
refs.). One might say metaphorically that mother Nature is a
mathematician and that this is no surprise, because mathematics
is just a way of saying what is self-consistent.
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That of course applies to ourselves just as much as to
other living organisms, as I have discussed in detail else-
where (McIntyre, 2000).

Incidentally, anyone who doubts that we have uncon-
scious mathematics, and that we can do rather precise
unconscious calculations, need only spend half a second
looking at the “walking lights” display on my home page
//www.atm.damtp.cam.ac.uk/people/mem/. This clas-
sic of experimental psychology (e.g., Johansson, 1975)
clearly shows, among other things, the brain’s uncon-
scious mastery of Euclidean geometry. Twelve bright
dots or splotches move over the retinas of your eyes,
forming a pattern in 3-dimensional spacetime, 2 spa-
tial dimensions and 1 time dimension. The brain fits to
these sparse data a model of a certain piecewise-rigid
motion in 4-dimensional spacetime, representing a per-
son walking in the dark with light sources at his or her
principal joints. For anyone with normal vision this
perceptual phenomenon is highly robust and highly re-
peatable. Of course the brain must also be using some-
thing like Bayesian inference with unconscious priors, as
is often pointed out these days (e.g., McIntyre, 1997a;
Jaynes, 2003, §5.4) — but now I’m getting ahead of
myself.

The consistency requirements

What exactly are those surprisingly weak qualitative
assumptions about P (A|Z) regarding well-definedness,
self-consistency, and common sense? The most careful
discussion I have seen is that of Van Horn (2003); see
also Cox (1946) and chapters 1 and 2 of Jaynes (2003).
I’ll give a brief sketch to show the essence.

Well-definedness and self-consistency imply, for in-
stance, that the same value of P (A|Z) must be obtained
regardless of the way it’s calculated from the statements
A and Z. Both statements can be arbitrarily compli-
cated Boolean expressions. They could be sets of sim-
pler statements connected by “and” operators, or they
could be any Boolean expressions at all, provided only
that whatever appears to the right of the vertical bar
is not self-contradictory, i.e., not tautologically false.
That would render the symbol P (A|Z) meaningless, as
a measure of the plausibility of A given that Z is true.

The value of P (A|Z) must be independent of any
Boolean rearrangements of A and Z and of the way
in which their information content is packaged and la-
belled, as long as the information content remains the
same. The fact that there are many different Boolean
expressions with the same information content provides
one set of constraints on the functional form of P (A|Z).

Of course some packagings of information may be
more convenient than others. For instance it may be
convenient, even though not essential, to make Z de-

note the currently available background information, as
already hinted. So, for now, let us think of Z as con-
taining all the statements already known to be true at
some time, while A could be a new set of statements
that might or might not be true and whose plausibility
we are therefore interested in assessing.

Thus we might want Z to be a large set of true state-
ments along the lines of “I am a member of a partic-
ular species inhabiting a certain jungle” together with
statements expressing everything I’ve learned from my
experiences to date, it being irrelevant how that infor-
mation is represented, e.g., verbally or non-verbally, or
consciously or unconsciously. And at the time consid-
ered, statement A might be, for instance, the statement
(represented somehow) that “the thing moving in front
of me is a potential mate”.

With A more or less plausible, though uncertain,
I might need to assess the plausibility of other state-
ments as well, such as a statement B that “the fastest
escape route is such-and-such”. And I might need to
calculate, consciously or unconsciously, the value of
P (AB|Z) where AB is shorthand for the Boolean ex-
pression “A and B”, so that P (AB|Z) means the plau-
sibility, given Z, that A and B are true simultaneously.

Relevant to this last is the value of P (B|AZ), which
can differ from P (B|Z). For if A turns out to be
true then the implications about possible escape routes
might change. Once P (A|Z) has been found, P (B|AZ)
is relevant and P (B|Z) irrelevant to any calculation of
P (AB|Z). Therefore we assume

P (AB|Z) = function of P (B|AZ), P (A|Z) (2)

which in turn, however, implies because of Boolean com-
mutativity AB = BA that

P (AB|Z) = function of P (A|BZ), P (B|Z) (3)

with the same function as in (2) — both (2) and (3)
holding for all Boolean expressions A, B, Z, AZ, and
BZ as long as the last three are not self-contradictory.

In order to make sense as measures of plausibility, P
values must vary continuously and monotonically with
the degrees of plausibility. It is convenient to take them
as monotonically increasing. Consistency then demands
that the function on the right-hand sides of (2) and (3)
is continuous and monotonically increasing in both its
arguments. Suppose for instance that the information
Z is updated to Z ′ such that the second argument on
the right of (2) increases while the first does not. That
is, the update makes A more plausible but is irrelevant
to the plausibility of B given A, or more precisely

P (A|Z ′) > P (A|Z) while P (B|AZ ′) = P (B|AZ) (4)

which, we’re assuming, has to imply
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P (AB|Z ′) > P (AB|Z) (5)

with equality only when B and therefore AB represent
impossibility. Similar assumptions are made when any
of the other arguments on the right of (2) and (3) are
singled out as increasing; and continuity demands that
small increases in those arguments produce small in-
creases in P (AB|Z).

If we now use Boolean associativity A(BC) = (AB)C
we can prove from the above that the function on the
right of (2) and (3) can be taken without loss of gener-
ality to be a simple arithmetical product, so that

P (AB|Z) = P (B|AZ)P (A|Z) = P (A|BZ)P (B|Z) (6)

which is the standard, quantitative “product rule” of
probability theory. Notice that the second equality ex-
presses what is usually called Bayes’ theorem or Bayes’
rule, with suitable choices of A, B, and Z. If we de-
mand that (6) be compatible with the limiting cases of
certainty and impossibility, we see at once that P values
must always run between 0 and 1,

0 6 P 6 1 (7)

with 0 representing impossibility and 1 certainty. And
if finally we assume that

P (A|Z) = function of P (A|Z) alone (8)

as the only reasonable relation between the plausibility
of A and that of its Boolean negation A, i.e., “not A”,
with the function monotonically decreasing, then we
can prove with no further assumptions that the stan-
dard sum rule

P (A|Z) + P (A|Z) = 1 (9)

holds as well, for general A and Z. We now have the
complete set of rules defining probability theory. The
rest of probability theory follows from (6) and (9).

The proofs are far from trivial, though not difficult if
one further assumes that the functions in (2), (3), and
(8) are differentiable. Proofs can be given under weaker
assumptions (e.g., Van Horn 2003 & refs).4

From (6) and (9) we may deduce, after a few lines
of manipulation following the rules of Boolean algebra,
the “extended sum rule”

4With these and with (5) itself there are technical issues such
as “universality” and “refinability” that amount to assuming a
sufficiently large universe of discourse, or event space, as noted
by Van Horn and others. Thus with dice, for instance, one must
recognize the possibility that the number of sides → ∞. Plainly
there must be a large enough supply of independent statements
A, B, ... in terms of which to express assumptions like (5). We
may also note that some philosophers reject Boolean algebra. Of
greater practical importance, in science at least, is care over the
limiting processes that lead to continuous probability distribution
functions and making, for instance, appropriate use of group the-
ory (e.g., Jaynes’ Chapter 12) to ensure “coordinate indepen-
dence” in the manner long familiar in physics and chemistry.

P ((A ∪B)|Z) = P (A|Z) + P (B|Z)− P (AB|Z) (10)

where A ∪ B means “A or B” and satisfies (A ∪B) =
AB . This result is often visualized by set-theoretic Venn
diagrams, reminding us of the Kolmogorov approach to
probability theory and helping to check the correctness
of the Boolean manipulations.

Let us summarize. Remarkable though it is, we have
seen that starting from the seemingly vague and subjec-
tive notion of “plausibility” — and, given some reason-
able universe of discourse,4 relying solely on (2)–(5)ff.,
(8), differentiability, and the Boolean algebra of state-
ments representing information of any kind — one has
no choice but to arrive at the quantitative rules (6) and
(9) of probability theory. Some authors including Van
Horn use “Cox’s theorem”, singular, to indicate (6) and
its proof together with (9) and its proof.

I should say that “no choice”, though substantially
correct, is not quite literally correct. In the foregoing
sketch I have glossed over the technicality that there is,
actually, some choice, though only in a trivial sense. For
instance one may rescale everything such that P values
run between 0 and Pmax where Pmax is any positive real
number. But then the right-hand sides of (7) and (9)
must be replaced by Pmax, and the second and third
members of (6) multiplied by P−1

max. This is a mere
“coordinate change” that makes no difference to the
content of the theory.

Another such change, more general but similarly
unimportant, is to replace P by a continuous mono-
tonic function Q = f(P ). Again this just complicates
the superficial appearance of the rules without changing
their content. The rules are the same apart from writ-
ing f−1(Q) wherever P appears in (6)–(10). These are
issues of entirely the same kind that led to the Kelvin
scale as the natural temperature scale in elementary
thermodynamics, and need not concern us further. If
one wishes, one may think of (6) and (9) as the natu-
ral “canonical forms” of the rules defining probability
theory or probability calculus, as it is also called.

Conditioning statements are primordial

It is noteworthy that conditioning statements such as
Z, or whatever comes after the vertical bar, automati-
cally appear as a natural, inevitable, and inherent part
of the theory. Concealment of all the conditioning state-
ments — as seems usual in traditional undergraduate
courses on probability theory that start with coin-tos-
sing and such — misleadingly suggests that condition-
ing statements are an optional add-on to be brought
in later. On the contrary, it is clear from the above
that they are elementary, fundamental, and primordial.
They’ve been shown objectively, by the above argu-
ments, to have a key status in the conceptual framework.
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That key status is underlined by the restriction that
conditioning statements must not be self-contradictory.
In other words, conditioning statements must have
some information content. That makes sense, because
no kind of plausibility or probability can be meaning-
ful in an information vacuum. In the traditional coin-
tossing problem there is, of course, some rather complex
background information, all concealed in a conceptual
dustbin labelled “fair coin”.

Making conditioning statements explicit blows away
all kinds of difficulties. Take for instance a famous
problem that, despite its extreme simplicity, often fools
even scientifically trained people (e.g., Krauss, 2001;
further references and comments in endnote 35 of Mc-
Intyre, 1997a, for instance about the classic work of
Amos Tversky and Daniel Kahneman on cognitive illu-
sions). Handicapped by my coin-tossing training, I had
to think hard the first time I got it clear. This is the
“three cards” or “Monty Hall” problem, of which Carl
Wunsch reminded us at the Workshop (Wunsch, 2007)
and which will come up again in my concluding remarks.

A card game is played by two people whom I’ll call
Monty and Mike. It is played by the following rules.
Monty and Mike trust each other to follow the rules.

Monty puts an ace and two ordinary cards face-down
in a row, noting the position of the ace but keeping it
hidden from Mike, who has to guess where the ace is by
fingering the back of one card. Monty then has to re-
move an ordinary card from another position and show
it to Mike, who then has to bet on whether to persist
with the original guess or to switch to the other face-
down card — that is, to bet on which of the two remain-
ing face-down cards is more likely to be the ace. Psy-
chologists have found that in the role of Mike most peo-
ple intuitively feel that the two cases are equally prob-
able, and that there’s no point in switching. However,
on reasonable assumptions it’s twice as probable that
the other face-down card is the ace. That is, it would
be far better to switch.

Why did I, for one, have to think hard to get this
simple point clear? As we’ll see in a moment, the point
becomes clear as soon as one equips oneself with (6),
(9), and their conditioning statements. Cox’s theorems
tell us that these two rules and the rules of Boolean al-
gebra must be enough for the purpose. So if I’m Mike,
all I need is to be clear what background information Z
is in my possession about Monty and the card game.
It is this background information Z that’s concealed
by what I’m calling the traditional coin-tossing train-
ing, the traditional “frequentist” training in probability
theory. I remember lecture after lecture with never a
conditioning statement in sight. Probability was pre-
sented as an absolute: the probability of this or that.

This left me with no safe way to think about the three
cards problem beyond a laborious enumeration of all
the possibilities, including the fingering of all three po-
sitions, with careful checking that no possibility had
been overlooked. Of course there’s nothing wrong with
frequentist thought-experiments, in their place; indeed,
computer-aided Monte Carlo techniques provide very
useful tools in some problem areas. Nevertheless, leav-
ing Z implicit felt to me like groping in the dark.

Making Z explicit was like turning on the lights.
Let’s label the positions of the three face-down cards
successively as 1, 2, and 3. Since Z represents my back-
ground information, as distinct from Monty’s, it tells me
nothing about where the ace might be. So if An is the
statement that the ace is in position n (n = 1, 2, 3), it’s
reasonable to take P (An|Z) = 1/3 for each n. So by
symmetry I may as well go ahead and finger the posi-
tion n = 1, from here on treating that fact as updating
my background information to, say, Z ′. Since fingering
a card changes nothing else, I have P (An|Z ′) = 1/3 for
each n. My background information does, however, in-
clude the rules of the game. So it tells me that Monty
knows where the ace is and will never remove it. So,
denoting by Rn the statement that Monty removes an
ordinary card from position n, I can reasonably take

P (R2|A1Z
′) = P (R3|A1Z

′) = 1/2 (11)
and

P (R2|A3Z
′) = P (R3|A2Z

′) = 1 (12)
whereupon it becomes obvious by symmetry — and in
any case verifiable from (6), (9) and (10) — that after
Monty removes an ordinary card (i.e., after R2 or R3

eventuates) the probability that I fingered the ace is
still 1/3 and therefore that I didn’t finger it 2/3, by (9).
More precisely, P (A1|R2Z

′) = P (A1|R3Z
′) = 1/3 and

therefore, by (9), P (A3|R2Z
′) = P (A2|R3Z

′) = 2/3.
To the extent that we regard P values like those in

(11) and (12), and the values P (An|Z) = P (An|Z ′) =
1/3, as properties of the background information we
may usefully call them prior probabilities or priors —
even though we haven’t explicitly used Bayes’ rule. Of
course all those P values are assumed values. They all
involve subjective judgement, however reasonable that
judgement may seem.

But is it always reasonable? Suppose I suddenly re-
call that Monty has some bias such that (11) becomes

P (R2|A1Z
′) = q , P (R3|A1Z

′) = 1− q (13)

where q 6= 1/2. For instance I might recall that Monty
has a form of Tourette’s syndrome that compels him
to remove the card as near as possible to the card I
fingered, making q = 1. Then if R3 eventuates, I can
be certain of A2. That is, P (A2|R3Z

′) = 1. For gen-
eral q it can be verified from (6), (9) and (10) with,
as always, attention to the rules of Boolean algebra,
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first that P (R3|Z ′) = P (R3|A1Z
′) P (A1|Z ′) +

P (R3|A2Z
′) P (A2|Z ′) = (2 − q)/3 and then, after

further use of (6), that P (A1|R3Z
′) = (1− q)/(2− q)

and P (A2|R3Z
′) = 1/(2−q). Setting q = 1/2 recovers

the respective values 1/3 and 2/3 appropriate to (11).

Bayesian inference and Platonic forms

I want to return to our unconscious mathematics, as
manifested by the walking lights demonstration, before
coming to some final remarks about extreme events, the
subjectivity-versus-objectivity issue, and the old dis-
putes between frequentists, Bayesians and others.

How confident can we be that natural selection will
produce something operationally equivalent to (6) and
(9), to good approximation? Although we are far from
being able to verify this directly from neurophysiology,
we may note all the other examples of how natural se-
lection tends to optimize functionality. The cicada ex-
ample of footnote 3 is only one among countless oth-
ers (the point, there, being that prime numbers of sea-
sonal cycles tend to minimize encounters with preda-
tors). Anyone who has ever taken the slightest notice
of biological phenomena must surely be impressed by
the approach to optimal solutions that we see wherever
we look in the living world. And Cox’s theorems tell us
that (6) and (9) are themselves functionally optimal in
a very strong sense.

The streamlined shapes of high-speed fish and birds
provide further examples of near-optimization by natu-
ral selection. The beautiful curves describing the shapes
of efficient airfoils reflect an aerodynamic functionality
that’s close to optimal. Precisely optimal shapes are
not of course attained by real fish and birds, but appear
to be well approximated in many cases (e.g., Lighthill,
1975, p. 32). Such shapes, with their simplicity and in-
finite smoothness, are examples of Platonic geometric
forms. The world of Platonic forms, the idealized world
of mathematical wonders where perfect circles are truly
perfect, and curves can have infinite numbers of deriva-
tives, reminds us in turn of Penrose’s impasse.

But once again I’m getting ahead of myself. What
have Platonic geometric forms got to do with the rules
of probability theory? There is an interesting answer.
Both have a great deal to do with the primordial kind
of statistical inference we call visual perception.

We have already met this point in the walking lights
demonstration. Perception works by model-fitting us-
ing unconscious priors, some of them coming from ge-
netic memory. Insofar as genetic memory has also
equipped us with (6) and (9) it seems reasonable to sup-
pose, indeed almost inevitable, because of natural selec-
tion, that the visual brain’s unconscious model-fitting
process must, as already hinted, be operationally equiv-

alent to Bayesian inference.
Cox’s theorems tell us that anything else would imply

inconsistency in using the available visual information,
which would have been selected against.

Thus, in the case of the walking lights, the model-
fitting process must to good approximation be equiva-
lent to taking, say, A in (6) to represent the data and
B to represent a hypothesis, or candidate model, while
Z contains any relevant background information. So
Z would consist of a large number of statements that
might include, for instance, “my eyes are open and I’m
looking at something near the top of Michael McIn-
tyre’s home page”. A would be a statement asserting
that twelve bright dots are moving across my retinas,
tracing certain smooth curves, or mostly-smooth curves,
in 3-dimensional spacetime. B would be a statement
defining one of a combinatorially large set of hypothe-
ses, or candidate models, to be fitted to the data.

For instance if we interdistinguish the B statements
by subscripts, B = Bi say, varying discretely or con-
tinuously, then there might be a large subset I of i
values such that the corresponding Bi all state that
the twelve bright dots are such as could originate from
glow-worms, or other light sources, moving in various
ways on a wall, or otherwise defining smooth or mostly-
smooth curves in 3-dimensional spacetime. Let’s call
the corresponding candidate models “planar models”.
For another subset J, the corresponding Bj with j ∈ J
might all state that the moving dots are such as could
originate as a perspective view of light sources at the
pivots of a jointed skeletal structure, in piecewise-rigid
reciprocating motion tracing smooth or mostly-smooth
curves in 4-dimensional spacetime. Let’s call the corre-
sponding models “non-planar models”.

The candidate models are indeed models, i.e., are
hypothesized to be partial and approximate representa-
tions of reality. Therefore, despite our Platonic sensibil-
ities, the spacetime curves so defined are best thought
of as being slightly fuzzy. So we may as well include
the fuzziness in each model specification. Indeed, the
repertoire of candidate models should include models
with different amounts of fuzziness. For the particular
model specified by statement Bj we can read P (A|BjZ)
as measuring the goodness of fit of that model to the
data specified by A, maximizing when the j value gives
the best fit possible. Rewriting the second part of (6)
in the usual Bayesian manner for this purpose, we have

P (Bj |AZ) =
P (A|BjZ)P (Bj |Z)

P (A|Z)
(14)

for j ∈ J, and similar equations for Bi with i ∈ I. Since,
in the usual Bayesian manner (Kadane, 2007), we are
focusing on just the one dataset — i.e., are regarding
the statement A as fixed — we are free to ignore the
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denominator when comparing models and to pay atten-
tion only to relative P values in the numerator.5

In the present case, it’s obvious that either kind of
model, planar or non-planar, can fit the data equally
well. So the outcome depends entirely on the relative
values of P (Bi |Z) or P (Bj |Z), the brain’s unconscious
priors for the various models. The perceptual phe-
nomenon actually experienced, by everyone with nor-
mal vision, shows that the non-planar models are over-
whelmingly favored, at least in cases where the 4-dimen-
sional motion resembles any human or animal skeletal
motion. That is, the unconscious priors must be such
that P (Bj |Z) � P (Bi|Z) for i ∈ I, j ∈ J.

How the brain actually uses its multi-level, massively
parallel computational abilities, from allosteric enzymes
upward, to carry out such computations, and exactly
how it narrows down a combinatorially large repertoire
of candidate models — or indeed just what that reper-
toire consists of — are all largely unknown. In view of
the combinatorial largeness it is surely safe to assume,
however, that Occam’s-razor principles are involved. As
I discuss elsewhere (McIntyre, 1997a) we glimpse some
of these from phenomena such as perceptual grouping,
and others through our visions of Platonic forms such
as smooth spatial and spatiotemporal curves.

Figure 1, another classic of experimental psychology,
directly demonstrates the unconscious priors that ex-
press the Platonic by favoring simple, smooth curves.
Anyone with normal vision who stares at this figure
sees a beautifully smooth curve, ghostly yet sharp and
precise, fitted to the inner ends of the black segments.
Experimental psychologists call these curves “illusory
contours”. The figure is from McIntyre (1997b); other
examples can be found in practically any book on vi-
sion, e.g., Crick (1994, p. 47).

The brain chooses a simple, smooth spatial curve. So
it must be using something operationally equivalent to
Bayesian computations to solve, unconsciously, an ex-
tremum problem in the calculus of variations. This hap-

5By long-established convention, the goodness of fit P (A|BjZ)
is called the “likelihood” (of the model specified by Bj as a gen-
erator of the given data specified by A). Since one is inter-
ested only in the relative goodness of fit when comparing any
two models, one usually deals with “likelihood ratios” such as
P (A|BjZ)/P (A|Bi Z), or their logarithms. A set of candidate
models is itself, by association, called “a likelihood”. The ratio-
nale is that with A fixed one is regarding a symbol like P (A|BjZ)
as a function of the Bj . So if one hears a statistician ask another
statistician “what’s your likelihood?” it probably means “what set
of models are you trying to fit to this particular dataset?” Such
is human language. Model-fitting of this kind is supremely impor-
tant because it represents the functioning not only of perception
but also of the systematic and more conscious extension of it that
we call science. Chapter 3 of MacKay (2003) and chapter 4 of
Jaynes (2003) give valuable discussions and examples.

Figure 1. Demonstration of an illusory contour grazing the
inner ends of the black segments (see text). In constructing
the contour, which does not exist physically on the paper or
screen, the visual system is unconsciously solving a Bayesian
problem that is also an extremum problem in the calculus of
variations, minimizing some norm involving rates of turning
of the tangent to the contour.

pens for anyone with normal vision even though other,
less smooth curves would fit the inner ends of the seg-
ments equally well. It is evident that an Occam’s-razor
principle must be involved. An unconscious choice of
priors favors the simplest possible object outlines con-
sistent with retinal data.

There are auditory counterparts in music, as I have
discussed elsewhere (McIntyre 1997a,b). The Platonic
is, indeed, awesomely, “already there” (e.g., Penrose,
1989, 1994) and is something that artists, mathemati-
cians, and many others have always recognized. Being
in genetic memory, it must be evolutionarily ancient. It
has been “there” from time immemorial, many tens of
millions of years at least.

Concluding remarks

The foregoing reminds us of what is perhaps the
most deep-seated and elusive difficulty with probabilis-
tic thinking — the extreme intimacy and complex inter-
play between reason and intuition, much of it beyond
conscious reach. In the parlance increasingly popular in
the AI and neuroscience communities today, the brain
is a massively-parallel Bayesian machine (e.g., Ghahra-
mani, 2004) with a vast and ever-changing, context-
sensitive web of unconscious assumptions as priors. So
when we use our brains to think consciously about
probabilities, we have to contend with powerful intu-
itions from the unconscious probabilistic thinking alrea-
dy present — if “thinking” is the right word. In parti-
cular, we can’t know about all the unconscious priors.
It’s no wonder that the whole subject area has been a
quagmire of endless debates over what’s subjective and
what’s objective, over what various statistical tests “re-
ally mean”, and in a wider community over even the
simplest problems like that of the three cards and that
of the “prosecutor’s fallacy”, which latter has led to ter-
rible consequences such as unsafe murder convictions.

Cox’s theorems seem to me to provide crucial guid-
ance in negotiating that quagmire. They establish that
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if one accepts Boolean algebra — and that plausibilities
or probabilities can be measured as smoothly-varying,
real-valued functions — then there is nothing subjective
about the framework of probability theory expressed by
(6), (9) and (14) and their mathematical consequences.
So subjectivity comes entirely from the choice of infor-
mation to be considered and from any failure to make
it explicit, and to handle it in a consistent way.

In particular, there are always conditioning state-
ments, some of which represent background informa-
tion. There are always, therefore, some priors that must
be estimated or somehow chosen. Even in the three-
cards problem, as I hope I made clear on page 157, it
is valuable just to say explicitly what the background
information and priors are taken to be, the priors being
the assumptions that P (An|Z) = P (An|Z ′) = 1/3 to-
gether with (12), and (11) or (13). The reasonableness
of the priors can be better judged once the information
is made explicit. It comes down to solving the problem
with one’s eyes open rather than closed.

That kind of clarity seems to me to be no luxury,
and not just for murder trials. It’s an urgent necessity
in more complicated problems, too, such as how to think
rationally about extreme events affecting thousands of
people. Indeed the choice of background information to
be considered, and the corresponding choice of priors,
can now be seen as a necessary task in any attempt at
probabilistic reasoning and inference that aspires even
to self-consistency, let alone to objectivity. And the old
hardcore frequentist prohibition, forbidding scientists
to make priors explicit, now looks more and more like
commanding us to go about our business blindfolded.

Even when the background information is in some
sense minimal — in some sense close to an information
vacuum — one still has the challenge of choosing so-
called “ignorance priors” in as consistent and objective
a way as possible. Such problems can to some extent be
clarified (e.g., Jaynes, 2003, chapter 12) albeit far from
wholly resolved (e.g., Kass and Wasserman, 1996) by
considerations of coordinate independence and group
invariance. Another approach is to maximize the Shan-
non information entropy and appears to have worked
well in certain problems, such as image processing. But
that, too, has turned out to be far from universally ap-
plicable (e.g., MacKay, 2003, Ex. 22.13) if only because
of inconsistencies with (14) (Seidenfeld, 1987). As Van
Horn puts it, ignorance for this purpose is a slippery
concept and, in practice, one is never completely igno-
rant (Van Horn, 2003, end of §4), taking unconscious
knowledge into account. And if one thinks one is mak-
ing no assumptions — as with the hardcore frequentists’
mantra “let the data speak for themselves” — then it
means only that all one’s assumptions are unconscious.

Besides, in real problems it may be necessary, and desir-
able, to include overtly subjective or “hunch” elements
in the priors assumed, as the best scientists have always
done, consciously or unconsciously or both. The main
need is to try to make the assumptions explicit; and a
saving grace is an important “chain consistency prop-
erty” (Jaynes, 2003, eq. (8.57)ff.) that shows how, and in
what circumstances, successive applications of (14) en-
able priors to be improved by successive inputs of data.

As already said, frequentist thought-experiments can
be very useful. Yet the harm done by the old hard-
core frequentist or “ultra-orthodox” view and its domi-
nance over undergraduate education, portraying proba-
bilities as absolutes and increasing the risk of blunders
like the prosecutor’s fallacy, now seems almost reminis-
cent of the harm once done by the contemporaneous
views called eugenics and behaviorism. If you think
that’s a bit harsh, consider that all those views seem to
have involved similar attitudes claiming ownership of an
absolute truth (such as “priors are never admissible”,
“genes are either good or bad”, or “scientists may not
study perceptual phenomena”) and forbidding everyone
to think outside the bounds thus set — manifestations,
it seems to me, of the human “hypercredulity instinct”,
that ancient tribal-cohesion mechanism of whose mani-
festations in other areas we are so painfully aware today.

Physicists at the time — as distinct from some physi-
cists today — managed to avoid such traps. They were
helped by the sheer force of experimental evidence, such
as blackbody radiation, atomic spectroscopy, and the
photoelectric effect and were helped also, at first, by the
mind-blowing experience of having to develop quantum
theory. Max Born put it well when he wrote

“I believe that ideas such as absolute
certitude, absolute exactness, final truth,
etc., are figments of the imagination which
should not be admissible in any field of sci-
ence . . . . This loosening of thinking [Born’s
emphasis] seems to me to be the greatest
blessing which modern science has given to
us. For the belief in a single truth and in
being the possessor thereof is the root cause
of all evil in the world” (Born, 1991).

He had a point.
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