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Abstract

Wave propagation, wave breaking, and the concomitant wave-induced momentum
transport are ubiquitous processes in the Earth’s atmosphere and oceans, a classic ex-
ample being the surface gravity waves from storms in the Southern Ocean that drive
mean longshore currents on California beaches. Such processes are not only interesting
in themselves, but are also fundamental to making sense of the various ‘wave-turbulence
jigsaw puzzles’ with which the atmosphere and ocean, separately and in combination,
confront us. For instance, what used to be regarded as an enigmatic ‘negative viscos-
ity’ of the subtropical atmosphere is now straightforwardly comprehensible in terms
of Rossby wave propagation and breaking. Other examples include understanding (a)
why the mean east—west winds in the equatorial lower stratosphere reverse every 1418
months, throughout a belt encircling the globe, (b) why the lowest temperatures on
earth (as low as 110K, or —163°C) are found not in the winter hemisphere but near
the summer pole, at altitudes between 80 and 90km, (¢) why the e-folding atmospheric
lifetimes of certain man-made chlorofluorocarbons are of the order of a century, and (d)
why the greatest concentrations of stratospheric ozone are found where photochemical
ozone production rates are least.

This lecture will discuss some of the theoretical-mechanical concepts relevant to un-
derstanding these phenomena, including the concepts of wave ‘momentum’ and wave
‘breaking’. There emerge, somewhat unexpectedly, what might prove to be some useful
new ideas about the problem of water-wave generation by wind. The main point is
that the water waves can be systematically amplified by certain irreversible, ratchet-
like, non-superposable effects that depend on spatio-temporal inhomogeneities, such as
wind gustiness and wave ‘groupiness’. These include the effects of what might be called
‘Rossby lee waves’ in the airflow downstream of water-wave groups. The resulting wave
drag can amplify non-breaking water waves and might, for instance, help to explain the
growth of the ‘energy front’ reported by O. M. Phillips in this Proceedings.

1. INTRODUCTION

I want to widen the context of this Minisymposium and talk about some phenomena
and concepts that appear fundamental to a whole range of problems in atmosphere—
ocean dynamics. | also want to say something about that old but still problematic
topic, the generation of water waves by wind. I cannot claim to be an expert on that
problem, let alone on air-sea interaction in general, but it is possible that a fresh look
from another perspective might help to advance our understanding.
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The atmosphere and oceans used to be thought of simply as ‘turbulent’ fluids on a
vast scale, and early attempts to understand them often involved Reynolds averaging
together with the hope that the resulting eddy-flux terms might be able to be charac-
terized, at least roughly, in terms of the notion of ‘eddy diffusivity’. It was therefore a
surprise when even the signs of these fluxes sometimes turned out contrary to expec-
tation. This was found, for example, from global-scale atmospheric ‘general circulation
statistics’ (e.g. Lorenz 1967); and for a time the phenomenon was thought of as a kind of
mysterious ‘negative eddy viscosity’ (Starr 1968). This meant of course that no-one un-
derstood what was going on. Eastward momentum was seen to be transported poleward
by large-scale eddies, against the local mean horizontal shear in subtropical latitudes.
The eddy viscosity became infinite a little further poleward. Many other such exam-
ples are now known, one of the most conspicuous being the celebrated ‘quasi-biennial
oscillation’ (QBO) of the equatorial lower stratosphere, to be described in §4.

The mystery was gradually solved as it was recognized how important for this pur-
pose, as well as ubiquitous, are the various wave propagation mechanisms that operate
in the atmosphere and oceans, such as internal gravity wave and Rossby wave* propaga-
tion. Among the important pioneering contributions were those of Charney and Drazin
(1961), Eady (unpublished, but see Green 1970), Booker and Bretherton (1967), Wallace
and Holton (1968), Lindzen and Holton (1968), Dickinson (1969), and Rhines (1975).
Today we have a relatively clear view of these problems, both through data from clever
terrestrial and space-based observing techniques, and through a better understanding
of the basic theoretical principles and of how to apply both numerical and idealized
theoretical-mechanical modelling. Such modelling is used not only in hypothesis-testing
thought-experiments, but also as pointing toward better ways to make observational
data tell us, in a dynamically intelligible way, more about what is going on in the real
atmosphere and oceans (e.g. Thorncroft et al. 1993, & refs.). Better understanding
includes seeing what is robust about an idealized model, hence which aspects of it are
likely to carry over to more realistic situations. This lecture will mention a few such
models and their contribution to our present-day understanding. Also touched on will
be the intimate relation between wave propagation mechanisms and shear instability
mechanisms, and the concept of ‘wave breaking’ and its frequent relevance — when
appropriately defined — to phenomena involving wave-induced momentum transport.

It is interesting to view the wind-wave problem from the conceptual vantage point
thus arrived at. There emerge what may turn out to be some new ideas about wave
generation mechanisms, to be discussed briefly at the end of the lecture. Besides being of
general significance for our understanding of ocean waves and air—sea interaction, these
ideas might help to explain, for instance, the growth of the ‘short wave energy front’
seen in the experiments described in Professor Phillips’ Minisymposium Lecture in this
Proceedings and in Chu et al. (1992). The key is to recognize all the wave propagation
and wave breaking mechanisms that come into play, in the air as well as in the water.

2. THE MIDDLE ATMOSPHERE: SOME OBSERVED FACTS

The phenomena to be discussed, including the phenomenon of ‘negative viscosity’,
are seen very clearly in what is now usually called the ‘middle’ atmosphere (but still,
occasionally, the ‘upper’ atmosphere). It comprises the stratosphere, extending to about
50 km altitude, and the mesosphere above it, extending to somewhere between 80 and

*Rossby waves (historically, ‘Kelvin—Kirchhoff-Rayleigh-Rossby waves’) may also be called ‘vorticity
waves’ or, more generally, ‘potential-vorticity waves’ (§6 below). I am following today’s established
usage.
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100 km. Figure 1 includes the bulk of the middle atmosphere; it shows a typical mean
January temperature distribution as a function of altitude and latitude. The units on the
right-hand scale are e-folding pressure scale heights, roughly 7km, so that the altitude
range is from sea level to roughly 85 km. (Somewhere above this altitude, temperatures
rise steeply into what is called the thermosphere, where simple thermodynamics and
continuum mechanics break down and plasma physics becomes important.) This sec-
tion and §§4,8 sketch briefly some of what is known and understood about the middle
atmosphere; a more extensive discussion and bibliography can be found in a recent re-
view of mine (1992) written for a non-specialist audience of physicists, and in other,
more specialized review material cited therein; see for instance the book by Andrews,
Holton and Leovy (1987).

Figure 1. Temperatures T between sea level and about 85 km, for typical January conditions (degrees
Kelvin, longitude and time averaged). Northward is toward the right, and the right-hand altitude scale
is in e-folding pressure scale heights, roughly 7km. From satellite and other observations analyzed by
Barnett and Corney (1985).

The light shading in Figure 1 shows the warmest regions, and the dark shading the
coldest, in January. Some of these features can be understood largely from considera-
tions of radiative heat transport. For instance the high temperatures T' 2 260 K near 7
scale heights or 50 km, defining the ‘stratopause’, are largely due to heating by absorp-
tion of solar ultraviolet radiation by ozone, balanced by infrared cooling to space. T
increases southward at the stratopause mainly because the diurnally averaged normal
solar irradiance has an absolute maximum at the south pole at the December solstice,
and throughout a substantial part of December and January. The south pole is then,
so to speak, the sunniest place on earth.*

A number of other features are not so simply explained. One example is the very
cold region at the top left of the picture, where the lowest mean temperature plotted is
T = 150 K. In fact individual rocket soundings have shown temperatures as low as 110 K

*For solar declination « relative to a spherical, rotating earth, the fractional length of day A(¢) at
latitude ¢ is 7~ ! arccos[max{—1, min(1, — tan « tan ¢)}], and the diurnally averaged vertical component
of solar irradiance is the full solar irradiance multiplied by A(¢) sin asin ¢ + 7~ sin{7A(¢)} cos a cos .
This has an absolute maximum at the south pole when « is within 2.8°0f its minimum value —23.6°.
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on occasion. At these altitudes, the sunniest place on earth is also the coldest place
on earth. Until about a decade ago, this was regarded as one of the great enigmas of
atmospheric science, the enigma of the ‘cold summer mesopause’. There is no doubt that
the observed temperatures are far below what they should be on the basis of radiative
heat transport and photochemistry alone. Temperatures substantially higher than their
radiative values also occur. They occur, for instance, throughout most of the depth of
the north-polar region on the right of Figure 1.

Let us note one other observed fact, at first sight having little to do with the observed
pattern of temperature anomalies, but actually closely connected. This is the now-
notorious fact (with its potentially serious implications for the stratospheric ozone layer)
that the man-made chlorofluorocarbons known as CFC-11 and CFC-12 have very long
atmospheric lifetimes, of the order of a century. These are e-folding times. Even if all
leakage of these CFCs into the atmosphere could be stopped tomorrow, it would take
several centuries for their concentrations to decrease to, say, 1% of present values.

How are these facts connected? The connecting link is indicated in Figure 2, which
shows an estimate of the mean circulation of the stratosphere and mesosphere. It
is the mean in a sense very roughly equivalent to a Lagrangian mean with suitable
re-initialization of particle ensembles (see the caveats in my 1992 review and its bib-
liography). This mean circulation gives us a roughly correct explanation both of the
temperature anomalies and of the observed lifetimes of CFCs, and the lifetimes of cer-
tain other long-lived chemical tracers. The temperature anomalies are accounted for by
adiabatic expansion in the rising branches of the circulation, and adiabatic compres-
sion in the descending branches, pulling temperatures away from the radiative values
toward which they would otherwise tend to relax. The rising branches carry chemical
tracers upward, for example CFCs and other tropospheric tracers through the tropical
stratosphere. The rate at which they are carried upward governs the rate at which they
are exposed to sufficiently energetic solar ultraviolet radiation, and hence destroyed
photochemically. This is the main way in which CFCs are destroyed, removal rates at
sea level being relatively small. The typical strength of the mean circulation required
to account for the observed temperature anomalies also gives a CFC destruction rate
consistent with the observed lifetimes.

Again, the rising branch of the circulation at higher altitudes, shown schematically
by the heavy dashed curve at the top left of Figure 2, explains the extraordinarily low
summer mesopause temperatures. The circulation also carries small amounts of wa-
ter vapour upward to the mesopause. A phenomenon observed at these altitudes, the
sporadic formation of ‘noctilucent’ and ‘polar mesospheric’ clouds, requires a supply of
water vapour as well as exceptionally low temperatures. Water vapour is photochemi-
cally destroyed near the mesopause, where ultraviolet photons are even more energetic
than in the stratosphere. Considerations like these, and other observational evidence,
give confidence in the picture suggested by Figure 2.

The mean circulation is also part of what controls the distribution of ozone, and the
rate of replenishment of the ozone layer. The photochemistry of ozone is complicated and
can interact more subtly with the fluid dynamics than, for instance, CFC destruction,
which depends mainly on total exposure to ultraviolet photons. Ozone can be expected
to be more sensitive to processes hidden by the averaging in Figure 2; we return briefly
to this point in §8.

*See for instance Thomas et al. (1989, & refs.). These incidentally are the world’s highest clouds, by
far, occurring at altitudes around 83-85 km. Anyone who lives between about 50° and 60° latitude can
observe them as an electric blue glow above the poleward horizon, sometimes intricately patterned, on
a few clear nights after midnight in the two months following midsummer.
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Figure 2. Light curves: mass transport streamlines of the longitude and time averaged global-scale
circulation in an altitude range between about 3 and 9 pressure scale heights (cf. right-hand scale
in Figure 1), estimated from satellite data for January 1979 by Solomon et al. (1986). The pressure
altitude is in nominal kilometres, defined as 1/7 of a scale height. The circulation is defined in a quasi-
Lagrangian sense giving a simplified, but roughly correct, indication of the vertical advective transport
of chemical tracers (and is broadly consistent with direct observations of such tracers). The time for
a notional fluid element to rise from the tropical tropopause to, say, 40 km is typically of the order of
two years. Heavy dashed curve: qualitative indication of the extension of the circulation into the upper
mesosphere and lower thermosphere.

How is the mean circulation driven? This again forces us to consider processes hidden
by the averaging. The key point is that the Earth is a rapidly rotating planet. It is
rapidly rotating in the sense that the distribution of angular momentum M per unit mass
in the atmosphere is dominated by the Earth’s rotation, and only weakly affected by air
motion relative to the Earth. In the extratropics there is a strong latitudinal gradient
of M. So a circulation like that shown in Figure 2 cannot persist unless something
exerts a persistent torque on the extratropical atmosphere, in an appropriate sense (in
fact, against the Earth’s rotation everywhere except in the summer mesosphere, where
it must be with the rotation). In a thought-experiment in which this torque is switched
off, the circulation begins to die down, and temperatures to relax toward their radiative
values (e.g. Haynes et al. 1991, & refs.).

It is now believed on good evidence that in the real middle atmosphere this torque
arises from wave-induced angular momentum transport, in fact mostly from Rossby
waves and internal gravity waves generated in the troposphere. The Rossby waves
account for most of the lower part of circulation shown in Figure 2, and the gravity
waves account for the upper mesospheric branch. The sense of the angular momentum
transport is related to the phase speeds of the waves and to the different places where
they are generated and dissipated, and not locally to such things as the sign of the
mean shear. It is no wonder, then, that attempts to apply ideas like ‘eddy viscosity’
can produce incongruous results, such as negative or infinite eddy viscosities.
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3. WAVE-INDUCED MOMENTUM TRANSPORT

The fact that wave propagation and diffraction are generally accompanied by a sys-
tematic flux or transport of momentum is a well-known rule in theoretical physics,
applying to waves in fluids as well as to the more obvious case of waves in a vacuum,
such as photons. The key phenomenon is that, if progressive waves are generated in one
place A and dissipated in another B, this is accompanied by an irreversible, cumulative
transport of momentum from A to B. The sense and rate of this transport is usually
given, to some useful approximation, by what might be called the photon analogy, or
‘quasimomentum rule’ (§5).

The physical reality of such wave-induced momentum transport is easy to demon-
strate in the laboratory. For instance, it manifests itself in the phenomenon known as
the ‘sonic wind’ or ‘quartz wind’ (e.g. Lighthill 1978a,b), in which a piezoelectric trans-
ducer emits a beam of ultrasound that transports momentum from the transducer to
locations where the waves dissipate. The resulting mean force on the fluid often gener-
ates a turbulent jet. One can demonstrate what is fundamentally the same thing without
any special apparatus at all, using capillary-gravity waves at frequencies of order 5 Hz.
This was done during the lecture using a small cylindrical wavemaker (Figure 3a) and
a glass dish containing water with chalk dust on the surface. Making the wavemaker
oscillate vertically shows that the observed mean flow (arrowed curves) is predominantly
wave-induced, and not Rayleigh—Schlichting boundary-layer streaming from the surface
of the wavemaker. The latter has the opposite sense (e.g. Lighthill 1978a, p.348; Van
Dyke 1982, Fig. 31). Carefully stopping the wavemaker and observing the persistence
of the mean flow shows that it is more than a ‘Stokes drift’: irreversible, cumulative
momentum transport has indeed taken place. With a larger area of water, one can use
a curved wavemaker to focus the waves on a more distant spot (Figure 3b), illustrating
the fact that the wave generation and dissipation sites can be well separated spatially.

Figure 3. Simple demonstrations of momentum transport by 5Hz surface capillary-gravity waves (see
text). Configuration (a) works well with a wavemaker whose diameter ~ 3 to 4 cm, and configuration
(b) with a wavemaker whose radius of curvature 2 50 cm. From Mclntyre and Norton (1990).

This last point is underlined by the classic work of Munk et al. (1963) in which,
following earlier work by Barber and Ursell, they demonstrated that surface gravity
waves generated by storms in the Southern Ocean can, and often do, propagate across
the Pacific all the way to beaches in California, where they break and generate longshore
mean currents (see also Snodgrass et al. 1966). This is a clear case of irreversible wave-
induced momentum transport over many thousands of kilometres! The internal gravity
waves that sustain the mesospheric circulation of Figure 2 also dissipate mostly by
breaking. They have sources mostly in the denser layers of the atmosphere far below,
so that horizontal momentum is transported over vertical distances not of thousands,
but certainly many tens, of kilometres (e.g. Fritts 1984, 1993).

Essentially the same things happen with Rossby waves, except that Rossby-wave
dynamics has a peculiar ‘one-signedness’ that can constrain the sense of the momentum
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transport in a ratchet-like way. As well as being interesting for this reason, the case of
Rossby waves is arguably the simplest to understand from first principles. This will be
seen in §7. First, however, I want to mention an example involving internal gravity and
other kinds of waves, in which the wave-induced momentum transport interacts with
wave refraction to produce an interesting feedback oscillation of the mean flow that
has been observed both in the laboratory and in the real atmosphere — the celebrated
‘quasi-biennial oscillation’ or ‘QBO’ — and then I want to touch briefly on the photon
analogy and on what is sometimes called wave ‘momentum’.

4. THE QBO AND ITS LABORATORY ANALOGUE

The ‘laboratory QBO’ was demonstrated in a famous experiment by Plumb and
McEwan (1978). The system used was a salt-stratified fluid contained in a large labo-
ratory annulus, of depth 50 cm and gap width 12 cm. Internal gravity waves are excited
by making a flexible lower boundary oscillate in a standing wave, equivalent to equal
amplitudes of clockwise and anticlockwise progressive waves. The response of the fluid
breaks this symmetry (the annulus is at rest relative to the laboratory, and the Earth’s
rotation can be neglected); and a wave-induced mean flow arises, horizontally around
the annulus. Soon a regime is established displaying a characteristic spacetime signa-
ture, in which the mean flow reverses periodically at a given altitude, and does so earlier
at higher altitudes. This was illustrated by a movie of the original experiment shown
in the lecture.

The two mechanisms involved are first the wave-induced angular momentum trans-
port, cumulatively changing the mean velocity profile as the waves dissipate (viscously
in this case), and second the effect of mean shear in Doppler shifting and refracting
the waves (somewhat like the selective surface-wave refraction that can make a bathtub
vortex appear, at first glance, to be rotating the wrong way). In the Plumb-McEwan
experiment the wave dissipation rate is least, and the vertical group velocity greatest,
when the waves propagate against the mean flow. Such waves therefore penetrate high-
est. They transport angular momentum in the same sense as their intrinsic angular
phase speed and can therefore reverse the mean motion where they dissipate, first at
higher and then at lower and lower altitudes in the annulus. Mathematical models that
express these ideas tend to behave non-chaotically, and to produce the spacetime signa-
ture very robustly (e.g. Yoden and Holton 1988; Haynes et al. 1993), as long as waves
of sufficient amplitude are excited in both senses, clockwise and anticlockwise.

The same spacetime signature (albeit not exactly periodic) is conspicuously present in
the mean east—west winds of the tropical lower stratosphere, throughout a belt encircling
the globe, at altitudes between about 16 and 35 km and latitudes between about +15°.
Whereas in the laboratory it typically takes about half an hour for the mean flow to
reverse, in the real stratosphere it takes about 14 + 3 months. The wind reversals are
clearly seen in the tropical radiosonde data that became routinely available from the
early 1950s onwards; and there is indirect evidence for their existence many decades
before then (Hamilton and Garcia 1984; Teitelbaum et al. 1993). Although our detailed
understanding is incomplete, it seems overwhelmingly likely that the resemblance to
the laboratory experiment and to mathematical models of it is not accidental, and
that the mean flow changes are wave-driven in much the same way. Indeed, before
wave driving was thought of at all in this context — the observed QBO used to be
another great enigma of atmospheric science — a strong case had already been made
for the existence of some strange kind of eddy or fluctuation-induced angular momentum
transport, again entailing ‘negative eddy viscosity’. Without some such eddy transport,
it seemed impossible to make dynamical sense of the observed mean flow changes, on
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the basis of careful physical arguments and numerical experiments (Wallace and Holton
1968). It was only after this that the realization came (Lindzen and Holton 1968) that
wave-induced angular momentum transport could behave in just the required manner.

We do not yet have a convincing quantitative model of the real QBO including, for
instance, the effect of the mean upwelling illustrated in Figure 2. This advects angu-
lar momentum upward on a comparable timescale, and we lack sufficient quantitative
knowledge of its strength and seasonal variation. There is also uncertainty over exactly
which wave types are significant in the tropical stratosphere. It used to be assumed that
the principal such wave types are the equatorially trapped Kelvin and Rossby—gravity
waves (e.g. Andrews et al. 1987, Gill 1982). There is observational support for this
in the case of the Kelvin wave, whose observed amplitude is not far from having an
appropriate order of magnitude. But it has seemed more and more likely, for instance,
that planetary-scale Rossby waves originating in the extratropical troposphere are more
significant than equatorial Rossby—gravity waves — meaning locally significant in the
tropics (e.g. Dickinson 1968; Lindzen and Tsay 1975; Andrews and Mclntyre 1976;
Dunkerton 1983; Takahashi and Boville 1992; O’Sullivan and Hitchman 1992, see §8
below) as well as indirectly significant through the strength of the mean upwelling.

We have even less knowledge, either observational or theoretical, of possible wave
generation mechanisms. The real QBO seems to involve highly complicated, chaotic,
nonlinear wave generation processes (mainly in the troposphere, both tropical and ex-
tratropical) to which there is a robustly non-chaotic response in the tropical stratosphere
— with, it might be added, potentially important consequences for long-range weather
forecasting, such as a feedback on the depth of cumulonimbus convection and hence
on tropical cyclone intensities and El Nifio timings (Gray et al. 1992). These aspects
remain a challenge and opportunity for the future.

5. LONG-DISTANCE TRANSPORT AND THE PHOTON ANALOGY

The ‘photon analogy’ or ‘quasimomentum rule’ says that the rate at which momentum
is transported from location A to location B, when a wave packet is generated at A and
dissipated at B, is the same as if

(a) the fluid were absent, and
(b) the wave packet had a certain amount of momentum q that it
carries around with it, like a photon in a vacuum.

The quantity q is not actually a momentum. It is a property of the wave packet that may
more aptly be called its quasimomentum or pseudomomentum, in order to distinguish it
from momentum. Momentum, in the presence of a material medium, is a fundamentally
different quantity.* Hence the alternative term ‘quasimomentum rule’. Indeed a better,
more precise statement is that “the rate... is the same as if

(a) the fluid were absent, and

(b) the wave packet had momentum equal to its quasimomentum.”
The quasimomentum is a wave property in the sense that it can be evaluated from lin-
earized wave theory alone. In the simplest theoretical approximations (slow modulation

*This is because its conservation corresponds to a different translational symmetry (of the propagating

medium rather than of the total physics). There is no widely agreed name for q. Other names used
with different kinds of waves include ‘wave-vector’, ‘Poynting’s momentum’, ‘Minkowski momentum’,
‘radiation momentum’, ‘acoustic momentum’, ‘crystal momentum’, ‘phonon momentum’, ‘tensor mo-
mentum’, ‘field momentum’, ‘canonical momentum’, ‘wave momentum’, and ‘momentum’. This has
led to some confusion. For the basics plus some history going back to the time of Rayleigh, Poynting,
Abraham, and Minkowski, and for keys to the literature, the reader may consult my 1981 essay and its
bibliography, also Loudon and Paige (1991, p.236), Peierls (1991, §§2.4-6), and Shepherd (1990, §5).
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as well as small amplitude), we may take q ~ Fk /& where F is the intrinsic wave-energy
in the sense discussed e.g. by Bretherton and Garrett (1968), k is the wavenumber vec-
tor, and w is the intrinsic frequency, or frequency Doppler-shifted to a reference frame
moving with the local mean flow. Like E, q is O(a?) in wave amplitude a.

The analogy summarizes a body of special and general results from theories in which
a is considered small and in which wave-induced momentum transport, and all the as-
sociated mean effects, are self-consistently described correct to O(a?®). As is well known
the theoretical calculations can be elaborate and tricky, equatorial Rossby—gravity waves
being a case in point (Andrews and McIntyre 1978a §9, & refs.). Such theories are often
qualitatively applicable, and may also be quantitatively applicable to important parts
of the problem, such as the part concerned with wave-induced momentum transport be-
tween the sites of wave generation and dissipation. Amplitudes in the intervening wave
field can in some cases be truly small (in the relevant sense, measured by wave slopes),
as for instance in the case of surface gravity waves crossing the Pacific. Some aspects
of the theory and the photon analogy extend to finite amplitude as well (Andrews and
Mclntyre 1978a,b). The analogy has relevance to all the situations and all the wave
types mentioned in this lecture, including the equatorial Kelvin and Rossby—gravity
waves that are thought to contribute to the real QBO.

But wait, I hear someone say, why all this hair-splitting about an ‘analogy’ — why
the ‘as if” and the ‘quasi’, to say nothing of the ‘pseudo’? Isn’t this complicating
things unnecessarily? Surely wave packets in a fluid really do have momentum q, which
they really do carry around with them, just like photons in a vacuum. Is it not well
known that dissipating waves exchange ‘their momentum’ (meaning q) with the mean
flow? How could they do such a thing if they didn’t really have momentum q to
exchange? Besides, how else could those waves that propagate across the Pacific, after
generation by storms in the far south, drive longshore currents on northern beaches?
In that situation we do not have a steady wavemaker, and we do not have a steady
‘radiation stress’ spanning the whole ocean for weeks on end. So surely wave packets,
and finite wavetrains, must just carry momentum with them. And what about the
mesospheric circulation and the noctilucent clouds? Real internal gravity waves are
highly intermittent; and isolated wave packets are again, arguably, a more relevant
idealization than steady waves spanning the whole depth of the middle atmosphere.

Well, what really happens is interesting, and worth a brief digression. Take for in-
stance an idealized version of the situation in mid-Pacific. Figure 4, from my 1981 essay,
shows an isolated, non-dissipating, two-dimensional packet of surface gravity waves on
deep water. More precisely, it shows semi-schematically the leading-order theoretical
solution describing the disturbance and its accompanying O(a?) velocity field, derivable
from the work of Longuet-Higgins and Stewart (1962). That solution can be used to
compute the total momentum of the propagating disturbance. In order for the photon
idea to be literally true, in the manner just envisaged, it would be necessary for that
momentum to be well defined and equal to q. It turns out that in this case the momen-
tum is indeed well defined. But a careful computation shows what Longuet-Higgins and
Stewart also found, namely that the momentum is not equal to q (see figure caption).
To leading order, it is zero!

This is not a paradox. Rather, it is one of many counterexamples showing that, for
waves in material media, the photon idea cannot be taken literally as a general principle.
In order for the photon idea to make sense in general — in fact to make sense outside
a very limited set of circumstances — it is indeed crucial to regard it as an analogy,
i.e., to retain the words ‘as if’ preceding items (a) and (b) above, and to continue to
recognize the distinction between momentum and quasimomentum. Thus stated, the
analogy is both useful, and capable of general theoretical justification. One approach is
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to use ‘generalized Lagrangian means’ in conjunction with Kelvin’s circulation theorem
(Andrews and Mclntyre 1978a); the importance of the circulation theorem in this kind of
problem was recognized by Rayleigh (1896), and its connection with the photon analogy
was, I think, first recognized by Bretherton (1971). Additional considerations that have
improved our general understanding, but have yet to be fully worked out, can be found
in my paper with Norton (1990). But, to return to the idealized ‘Pacific’ problem, how
then does the whole thing work fluid-mechanically?

The main point is this. As a wave packet propagates past any given fluid element
between its generation and dissipation sites, it gives rise to an O(a?) mean forcing
whose time integral is zero for that fluid element. Details are complicated but the most
significant aspect of this forcing can be thought of, for present purposes, as coming from
the divergence of a radiation stress spanning the region occupied by the wave packet
(and satisfying Newton’s third law of ‘action and reaction’). This causes the given fluid
element first to feel a mean push, and then a mean pull, against other fluid elements in
the region. Consequently, the time-integrated force on the given fluid element is zero.
Corresponding statements are true of the other aspects of the O(a?) mean forcing, such
as apparent mass sources and sinks (e.g. Andrews and McIntyre 1978a).

Computing the O(a?) response to a given O(a?) mean forcing is a linear problem.
Therefore, during a time interval in which one or more wave packets propagate from A
to B, one can regard the O(a?) mean forcing as the sum of two contributions: first a
steady forcing, corresponding to a steady wavetrain and its radiation stress spanning the
entire region between A and B — and conforming to the photon analogy — and second
an oscillatory forcing in the same region whose time integral vanishes everywhere.

It is only the first of these two contributions that is interesting from the present
viewpoint, i.e. that corresponds to the notion of a cumulative, irreversible wave-induced
transport of momentum from A to B. The second, oscillatory contribution evokes a
response that is non-cumulative, because of the vanishing of its time integral. It tends
moreover to be strongly dependent on circumstances such as conditions at remote
boundaries, and how the waves were generated. Its details can be complicated. For
instance if one were to include stable stratification and Coriolis effects in a less idealized
model of the Pacific ocean, then the O(a?) response to the passage of a non-dissipating
wave packet would be quite different from that shown in Figure 4. It would involve the
excitation of very weak O(a?) internal Coriolis—gravity (inertio—gravity) waves over a
large area of ocean. In fact something similar happens even in the special case of Fig-
ure 4 (see my 1981 essay for further discussion) since in general there are very distant,
very weak, fast-propagating, ultra-long O(a?) surface gravity waves, which I have not
attempted to depict in the figure but which embody significant amounts of momentum,
and which depend on how the wave packet was generated.

In summary, then, what is complicated, and circumstance-dependent, is the detailed,
unsteady O(a?) mean response of the fluid medium to the generation, propagation and
dissipation of a wave packet, or of many wave packets. What is simple, and general,
is the fact that the time integral of this O(a?) response is zero apart from the cu-
mulative contribution given by the photon analogy. This is true, in a wide range of
problems of this kind, whether or not any well-determined, well-localized O(a?) mean
momentum appears temporarily within the fluid as wave packets propagate past, or
whether for instance O(a?) mean momentum is temporarily taken up by distant bound-
aries, as is sometimes signalled by divergent momentum integrals in idealized versions
of the problem — or whether O(a?) mean momentum is taken up by distant long-wave
disturbances, as in the problem of Figure 4 and its variants.

Another thought-experiment of fundamental interest in this connection is to scatter
the wave packet of Figure 4 from an immersed obstacle, and ask what the mean recoil
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force is. One finds that it is given by the photon analogy, appropriately re-stated. This
again is ‘despite’ the fact that, in this case, the wave packet has a well defined momentum
equal to zero. What happens is that more very weak, fast-propagating, ultra-long-wave
O(a?) disturbances, of the kind already referred to, are radiated during the reflection
process. One can derive a general result, comprising a non-trivial extension of Noether’s
theorem, that shows why the net effect of all these O(a?) phenomena must be given by
the photon analogy in many such cases including this one. The result also shows why
there are some ‘exceptional’ problems for which the analogy fails.*

Figure 4. Packet of surface gravity waves propagating toward the right in deep water, and its accompa-
nying O(a?) velocity field plotted quantitatively except that the Stokes drift (near the surface) is not
depicted. The total momentum of the wave packet is well defined, and comprises the momentum of the
Stokes drift, which, for these particular waves, equals q, plus the momentum of the return flow under-
neath, which equals —q (because return-flow acceleration reactions feel the free surface as effectively
rigid — for further discussion see McIntyre 1981).

6. ROSSBY WAVES, VORTICES AND SHEAR INSTABILITIES

Of all the examples of irreversible wave-induced momentum transport, some of those
associated with Rossby waves are arguably the simplest as well as among the most
important. Rossby waves and related phenomena are ubiquitous in the atmosphere and
oceans, and are fundamental to almost every aspect of large-scale atmosphere—ocean
dynamics. For example, it is Rossby waves and related phenomena that drive most of the
mean circulation illustrated in the lower part of Figure 2. The ‘Rossby-wave elasticity’
to which the wave propagation owes its existence is important also, for instance, in
strongly inhibiting the turbulent transport of chemicals into the Antarctic ozone hole,
or of drier air into the moist eye wall of a tropical cyclone. A still wider interpretation
of ‘related phenomena’, meaning phenomena depending on ‘Rossby elasticity’, would

*The key step is to consider a certain translational symmetry operation giving a conservation law for
the sum of the quasimomentum of the waves and the momentum of the immersed obstacle. There are
‘exceptional’ cases because this translational symmetry operation is singular. The singularity is strong
enough, in some cases, to invalidate the extension of Noether’s theorem. Details will be given in a
forthcoming paper with S. D. Mobbs (1993). I discovered one of these exceptions by chance some time
ago, via some very careful O(a?) calculations (McIntyre 1972, 1973). The existence of such exceptions
is a telling confirmation that the photon analogy is only an analogy, highly useful when valid but not,
in general, to be taken literally.
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include many important types of shear instabilities all the way from ordinary small-
scale shear instabilities to the large-scale, buoyancy-powered ‘baroclinic instabilities’
that can lead to the formation of common types of atmospheric and oceanic eddies and
vortices, including extratropical weather cyclones (Hoskins et al. 1985, & refs.).

Rossby waves and related phenomena occur in dynamical systems of the generic form
DQ/Dt =0, u=1Q), (6.1a,b)

where D/Dt = 0y + u -V = 0y + u0; + v0y, the two-dimensional material derivative,
and where I(-) is a time-independent functional of the materially conserved scalar field
Q. The simplest case is the familiar case of two-dimensional inviscid, incompressible
vortex dynamics, for which

1(Q) = (=0, 8:)V?Qx (6.2)

where )y = Q = v, — uy, the ordinary vorticity and, to make the inverse Laplacian
unambiguous, suitable boundary conditions are understood such as evanescence of |u|
at infinity. Note that (6.2) implies V - u = ug; + v, = 0. The next simplest case is the
same thing on a rotating earth whose vertical component of absolute vorticity is Qe,
say, a prescribed function of horizontal position but not of time. Then, retaining the
notation u = (u, v) for the relative velocity and Q. = v, — u, for the relative vorticity,
we may take QQ = Qe + @y in (6.1) and retain (6.2) unchanged, remembering that Q) is
prescribed. The notation in (6.1) has been chosen to emphasize the fact that the single
scalar field @) contains all the dynamical information. At every instant, the () field can
be ‘inverted’ to recover the velocity field u. One may call I(-) the ‘inversion functional’.

In more realistic models of the rotating, stratification-constrained, vortical flows that
occur in the real atmosphere and oceans, the same generic mathematical structure (6.1)
applies, in many cases to remarkable accuracy. This is why simple two-dimensional
vortex dynamics has always been such an important idealization in the context of
atmosphere—ocean dynamics. The coordinates x and y now measure horizontally-
projected distances along the (approximately horizontal) stratification surfaces. D/Dt
and u = (u,v,0) are still two-dimensional on each such surface, and u, + v, is still
‘zero’ to some useful approximation (more precisely, has typical magnitudes < typi-
cal magnitudes of v, — u,). What is new is that the inversion functional I(-) is now
three-dimensional. Away from the equator, it still has the qualitative character of (6.2)
but with V=2 more like a three-dimensional inverse Laplacian, in coordinates verti-
cally stretched by Prandtl’s ratio, the ratio of the buoyancy to Coriolis frequencies.
Distortions of the stratification surfaces are also determined as part of the inversion
operation. One may generally characterize such stratified, rotating flows as approxi-
mately ‘layerwise two-dimensional’. In the most accurate models, which include models
whose validity extends into the tropics, ) is the Rossby—Ertel potential vorticity, and
inversion is no longer a linear operation (e.g. Hoskins et al. 1985, & refs; Thorpe 1985;
Davis 1992; Raymond 1992).

One has here, incidentally, a framework for the general characterization of coher-
ent structures such as vortices and vortex pairs, in atmosphere—ocean dynamics —
amounting to variations on a theme from Professor Roshko’s Opening Lecture in this
Proceedings. For instance a ‘vortex’, in any dynamical system of the form (6.1), is
the coherent structure represented by a strong, isolated anomaly in the @) field together
with the induced velocity and any other relevant fields in and around it, where ‘induced’
means given by whatever inversion operator I(-) characterizes that dynamical system.
Atmospheric cyclones and anticyclones, and oceanic Gulf Stream rings and ‘Meddies’
(e.g. Armi et al. 1988), are all cases in point. Figure 5 illustrates one such structure in a
model atmosphere, somewhat idealized but instantly recognizable to any meteorologist
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familiar with large-scale atmospheric behaviour. It is a cyclonic (earth-co-rotating) ex-
tratropical vortex induced by a strong, compact anomaly in the Rossby—FErtel potential
vorticity field near the tropopause. Coherent structures such as these are often impor-
tant for weather developments, in which fast advection of potential-vorticity anomalies
near the tropopause is an important aspect of the dynamics, approximately satisfying
eq. (6.1a) over timescales of several days.

Figure 5. Section across the axisymmetric structure induced by an isolated, axisymmetric, cyclonic
potential-vorticity anomaly (stippled region) near a model tropopause (heavy curve) across which the
Rossby—Ertel potential vorticity has a strong discontinuity, by a factor of 6. The family of thin curves
some of which are closed are isopleths of tangential velocity, at 3 ms~lintervals — the greatest velocities
> 21 ms~! being at the tropopause — and the other family of thin curves, more nearly horizontal, are
the stratification surfaces. These are isopleths of potential temperature 8 defined to coincide with
actual temperature at pressure 1000 mb or 1000 hPa, plotted at 5K intervals. ‘Anomaly’ means a
potential-vorticity contrast on a 6 surface (Hoskins et al. 1985, eq.29). The induced surface-pressure
minimum is 41 hPa below ambient. The structure is typical for middle latitudes; the Coriolis parameter
is 10~* s (as at latitude 43.3°N). The domain shown has a radius of 2500km. From the work of Thorpe
(1985).

Now to ‘Rossby-wave elasticity’. The simplest example occurs in the strictly two-
dimensional dynamical system specified by (6.2) with Q; = Q — Qe = vz — uy, and Q.
a linear function of y so that when u = 0 we have

0Q/0y = 0Q/0y = B = constant . (6.3)

This is Rossby’s famous ‘B-plane’ or ‘nearly flat earth’ model, with (x,y) taken to be
Cartesian. Then (6.1) is satisfied — in this case without linearization, as it happens
— by expressions of the form u = (=3,, 0,)¥(z,y,t) (Qr = V¢) with ¢(z,y,t)
cosly cos {k(x — ct)}, provided that the phase speed ¢ and the wavenumber components
k,l satisfy the dispersion relation

c=—B/(K*+1?). (6.4)

The one-signedness previously referred to shows up here: (6.4) is a formula for ¢, and
not ¢? as in classical small-vibration problems in non-rotating reference frames. We can
see the reasons for the one-signedness and appreciate its robustness as follows.

By (6.1), the contours of constant () are also material contours. If a disturbance
makes these contours undulate as suggested in Figure 6, then @, in (6.2) will be al-
ternately positive and negative as indicated by the plus and minus signs in Figure 6.
Then since ¥ = V~2Q, the contours of ¢ can be pictured as the equipotentials of the
electrostatic field due to a pattern of alternating positive and negative charges (with the
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sign changed), or as the topographical contours giving the displacement of a stretched
elastic membrane that is pulled up (—) and pushed down (+) alternately in the same
pattern. Hence v will have hills and valleys centred respectively on the minus and the
plus signs, implying that the strongest north-south velocities (at right angles to the
electric field in the electrostatic analogy) will occur at intermediate positions, a quarter
wavelength out of phase with the displacement, and in the sense shown by the heavy,
dashed arrows in Figure 6. If one now makes a moving picture in one’s mind’s eye of
what this induced velocity field will do to the material contours, one can see at once
that the behaviour must be oscillatory, and also such that the undulations propagate
from right to left only.

The same physical picture exhibiting one-way propagation applies when (). = 0 but
@ has a background gradient 0Qy/0y due to a mean shear flow u = {ug(y), 0},

0Qo/0y = —0up/0y> = —ugy, (6.5)
so that Q@ = Qo(y) + Q'(z,y,t) and ¥ = — [Yue(§)dy + ¢'(x,y,t) and, for small
disturbances,

(0 + 1002)Q" — uoyy 'z =0, P =V72Q", (6.6)

essentially the Rayleigh equation. It is no surprise, therefore, to find that the simplest
classical shear instabilities, such as the instability of the ug = tanhy shear layer, or
its Rayleigh (piecewise linear) counterpart, can be understood (consistently with the
Rayleigh, Fjgrtoft and Arnol’d stability theorems) in terms of a coupled pair of Rossby
waves, in a certain frame of reference, each of which propagates against the local mean
flow and phase-locks with the other in such a way as to bring it to rest. Furthermore,
each Rossby wave makes the other grow exponentially, via a reduced phase shift between
disturbance velocities v’ and the sideways displacements 1’ of the @ contours (Lighthill
1963, Bretherton 1966, Hoskins et al. 1985 §6b). The Miles (1957) wind—wave instability
is in some ways fundamentally similar, except that one of the Rossby waves is replaced
by the surface gravity wave, and there is a mismatch between the strengths of the gravity
and Rossby elasticities leading among other things to relatively slow growth.

7. ROSSBY-WAVE BREAKING: A DEFINITIVE EXAMPLE

In Figure 6 the @@ (material) contours are depicted as undulating reversibly, the
situation described by linearized, dissipationless wave theory. Indeed, for linearized
theory to be self-consistently and generally applicable, along with associated concepts
such as the principle of superposition, the undulations must also be gentle. Strictly
speaking, the sideways slopes (0y/dz)¢g must be infinitesimal. The opposite extreme,
that of infinite sideways slopes followed by sideways overturning, and rapid, irreversible
deformation, lengthening and folding of the ) contours, is a commonplace occurrence
and can be recognized as a Rossby-wave version of ‘wave breaking’. An idealized example
is shown in Figure 7; see also Figure 9 below. This phenomenon, in a variety of forms,
is ubiquitous in the real atmosphere and oceans and plays an important role in the
irreversible transport of momentum and angular momentum by Rossby waves.

The case of Figure 7, known as the Stewartson—-Warn-Warn (SWW) Rossby-wave
critical-layer solution, is now described in more detail. It is important out of all propor-
tion to the restrictive idealizations used because it is an unequivocal example, described
by an analytical solution, of irreversible wave-induced angular momentum transport due
solely to wave breaking, with no other wave dissipation mechanisms involved.

We return to the dynamical system described by (6.1)-(6.3), but now introduce an
undisturbed flow uo(y) having constant shear ug,, say. Again the ) contours are made to
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Figure 6. Sketch of the @ contours and the Q-anomaly (Q') pattern, and the induced velocity field
giving rise to the sideways ‘Rossby elasticity’ in a simple, non-breaking Rossby wave.

undulate, this time by introducing a gently undulating boundary near some value y of v,
exciting Rossby waves of constant phase speed ¢ and y-lengthscale ug, /3. The boundary
displacement amplitude is of order €wug,/f where € is a small dimensionless parameter.
The z-wavelength 27 /k of the undulation is assumed long enough, > 2mug, /3, for
the inverse Laplacian V™2 in (6.2) to be approximated by (9/0y)~2, simplifying the
mathematics. (The lengthscale ug, /3 then corresponds to the lengthscale [ in (6.4)
when ¢ ~ [~ ug,.) Under these restrictions and with suitable choices of yp, this problem
can be solved analytically (Stewartson 1978, Warn and Warn 1978). The @ contours
behave in an approximately undular manner except in a narrow region surrounding the
critical line, or y-location where ug(y) = c¢. This narrow region, the ‘critical layer’, is
separated from the undulating boundary by a distance 2 ug, /8 and has width of order

b:61/2 ’U,Oy/ﬂ . (71)

The ‘inner problem’ for this region is mathematically the same as the nonlinear pen-
dulum problem, incompressible fluid flow replacing incompressible phase-space flow. It
is analytically soluble in terms of elliptic functions, and the solution confirms that the
region is, indeed, a region of Rossby wave breaking in the sense envisaged. Figure 7
shows the solution at four successive times. () contours are overturning sideways, and
deforming in a manifestly irreversible way.

Let us suppose that the resulting rearrangement of the ) field has, in a coarse-
grain view, something of the character of a mixing layer as shown in idealized form in
Figure 8a. Then it is a trivial matter to see that there must be an associated irreversible
transport of momentum. Let 6Q(y) be the change in @) represented by the difference
between the solid and dashed lines in Figure 8a, and 0% (y) the corresponding change in
u. Application of the inversion operator (6.2) gives (since 6Q) = 6Q, = —du, here) the
parabolic profile

_ oo 182 — 1b,%) (—ibm <y < 1bw)
- _ — 2 4 2 2
da(y) /_OO 5Q() dy { H (y < b ory > Lbm) (7.2)

where by, is the breadth of the mixing layer. Negative momentum
M / 5u(y) dy = — 15 Bbm" (7.3)

has been transported irreversibly into the region where ) has been rearranged. This
phenomenon is robust: any change 6Q(y) qualitatively like that in Figure 8a will be
associated with a momentum change of the order of magnitude, and sign, indicated by
(7.3). For instance the SWW solution has a limiting value of 6M as ¢ — oo, which
can be expressed in the form (7.3) with the value of b, shown by the bar at the centre
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of Figure 7d. This value of b, may be thought of as an ‘effective mixing width’ for
the SWW solution. In this case the momentum (7.3) has come from the wave source
comprising the undulating boundary at large Y. When £, or more generally the initial
gradient 9(Qe + Qo)/dy, is positive, this momentum is necessarily negative — another
manifestation of the one-signedness of Rossby dynamics.

The SWW solution provides us, incidentally, with a definitive counterexample to
arguments saying that (Q-mixing scenarios like that of Figure 8a are impossible because
they violate momentum conservation. These arguments overlook the possibility of wave-
induced momentum transport from outside the region. Further historical remarks and
references, going back to various issues surrounding, for instance, G.I. Taylor’s ‘vorticity
transfer theory’, and its recent developments including links with the photon analogy,
can be found in my 1992 review and in the paper with Norton (1990).

Another interesting point about Figure 7 is that the predicted ) configuration be-
comes shear-unstable after the contours first overturn. So if any noise is present initially,
the actual evolution is quite different in detail. In typical cases the result is an appar-
ently chaotic form of Rossby wave breaking, and an increase in the effective mixing
width by by a modest factor such that 6M (o by,°) increases in magnitude by a fac-
tor 2 or 3. Figures 8b,c, from the definitive study by Haynes (1989), show the () and
0u profiles, defined as Eulerian z-averages, in one such case. The 0@ profile has the
approximately parabolic form suggested by the idealization (7.2).

The foregoing examples are conceptually important in another way, already hinted
at. The inviscid, two-dimensional fluid-dynamical system under consideration is known
to have mathematically regular behaviour, over arbitrarily long time intervals. The
examples are therefore cases of wave dissipation and irreversible momentum transport
that do not depend on overtly dissipative processes like viscosity. The irreversibility
involved is a purely fluid-dynamical irreversibility, precisely that associated with the
persistent lengthening of the () contours as time goes on, and familiar from other fluid-
dynamical paradigms such as ‘random straining’ and ‘turbulence’ (e.g. Batchelor 1952).

8. THE DEFINING PROPERTY OF WAVE BREAKING, THE STRATO-
SPHERIC ‘SURF ZONE’, AND OZONE CHEMISTRY

What should one mean by wave breaking for general, non-acoustic* waves in fluids?
Even in the most familiar case, ordinary surface gravity waves, the phenomenon usually
recognized as breaking has an extensive ‘zoology’ of shapes and time-evolutions. The
same is true of internal gravity and Rossby waves. The question does not seem to have
any natural answer from a ‘zoological’ or morphological viewpoint. However, a natural
answer does suggest itself if one wants the concept of ‘wave breaking’ to be relevant to
the general question of wave-induced momentum transport, or, more precisely, to the
question of when wave-induced momentum transport becomes irreversible.

One can then use the rapid, irreversible material-contour deformation illustrated
above as the defining property of wave breaking. ‘Rapid’ means that deformation rates
are comparable, at least, to the local intrinsic wave frequency. Such a definition is en-
tirely compatible with the accepted phenomenology, and relevance, of wave breaking
in the case of surface gravity waves and longshore ocean-beach currents. The case for
such a generalization is carefully argued in three papers with T. N. Palmer (1983-5).
It avoids ‘zoological’ definitions, and requirements to decide whether ‘turbulence’ is in-
volved, but does take account of the relevant general theorems, particularly Kelvin’s

*Shock formation in acoustic waves seems best kept conceptually separate, if only because its essential
dependence on the existence of overtly dissipative processes (microscopic irreversibility).
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Figure 7. Contours of constant @@ for the SWW solution, a special but clear-cut example of Rossby-
wave breaking (contrast the purely undular, non-breaking Rossby wave in Figure 6), and the consequent
irreversible wave-induced momentum transport. See also Figure 9. The y-scale has been expanded using
the re-scaled coordinate Y = y/b with b = el/2 uoy/B; the range —5 <Y < 5 is plotted. Four successive
stages in the evolution are shown, at times 1, 1.5, 2, 3 in units of 21/2(kbu0y)_1, where k is the z-
wavenumber. The vertical bar in panel (d) gives the effective mixing scale by ~ b; cf. (7.2), (7.3) and
Figure 8a. From Killworth and McIntyre (1985), after Stewartson (1978) and Warn and Warn (1978).

(a) Y (b) Y (c) Y

Figure 8. @-mixing scenarios and associated momentum change; see (7.2), (7.3): (a) the simplistic,
but qualitatively relevant, idealization that assumes perfect Q-mixing over width bm; (b) an actual
Eulerian-mean @Q(y) profile from an accurate, quasi-chaotic Rossby-wave critical-layer solution (P. H.
Haynes, personal communication); and (c) the approximately parabolic du(y) profile corresponding to
(b), showing the momentum change due to the Rossby wave breaking (first of (7.2) and of (7.3)). As
in Figure 7, the re-scaled coordinate Y = y/b is used, over the same range —5 to 5 (b = €'/2 ug, /).

circulation theorem and the way it manifests itself in exact, formally complete theo-
ries of wave—mean interaction. The relevant material contours are defined to be those
that would otherwise undulate reversibly under the generalized elasticity, or restoring
mechanism, that gives rise to the wave propagation.

Figure 9, of which an animated version was seen in the lecture, shows a less idealized
example of Rossby wave breaking and its effects, taken from the work of Norton (1993).
The parameter conditions are far closer to those in the real stratosphere than those
assumed by critical-layer theory. Here the dynamical system comprises the shallow-
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water equations on a sphere, solved numerically by a high-resolution pseudospectral
method. The projection is polar stereographic, and the winter northern hemisphere
is shown. An axisymmetric initial state is disturbed by smoothly distorting the lower
boundary in a large-scale pattern so as to imitate the effect, on the real stratosphere, of
planetary-scale Rossby waves propagating up from the much denser troposphere below
(Charney and Drazin 1961). The result looks remarkably similar to what is seen in the
real winter stratosphere at altitudes of the order of 25 to 50 km.

The left panel of Figure 9 shows @, now the shallow-water potential vorticity, defined
as absolute vorticity over local layer depth. The model problem still has the generic form
(6.1) to excellent approximation, but with a shorter-range potential-vorticity inversion
operator® I(-). The central region is the model’s ‘stratospheric polar vortex’, where the
relevant material contours, which in this experiment lie initially along latitude circles,
are almost coincident with the 2 contours and undulate nearly reversibly. In this region
there is little Rossby-wave breaking. This is illustrated by comparison with the right
panel, which shows the behaviour of some material contours computed very accurately
using a high-precision ‘contour advection’ technique adapted from the work of Dritschel
(1988). Outside the polar vortex, in middle latitudes, is a region in which the waves
are breaking vigorously. There, the initially-latitudinal material contours are deformed
rapidly and irreversibly, and mixed into a broad, 2D-turbulent ‘Rossby-wave surf zone’;
e-folding times for contour lengthening were estimated to be about 4 days (Norton, op.
cit.). This ‘surf zone’ is the real-stratospheric counterpart of the idealized Rossby-wave
critical layer. It is far broader, and very different in detail, but it illustrates equally
well the robustness and one-signedness of the angular momentum transport associated
with irreversible @Q-rearrangement. As already suggested, such Rossby-wave breaking
is an important part of how the mean circulation illustrated in Figure 2 is driven.
Furthermore, its recognition in models of the global-scale stratospheric transport of
trace chemicals like CFCs is beginning to lead to improved realism in the predictions
of such models, both via a more realistic mean circulation, and also via a more realistic
representation of the quasi-horizontal turbulent transport (Garcia et al. 1992).

This latter aspect may be especially important for ozone photochemistry (and rele-
vant to some current controversies about ozone depletion — see §10 of my 1992 review).
This is because ozone photochemistry by its nature could be more sensitive than, for
instance, CFC photochemistry, to the timing of a typical molecule’s excursions across
the ‘surf zone’. Timescales for such excursions are comparable, at certain altitudes, to
photochemical timescales. Together with the mean circulation itself, these complicated
fluid motions control the rate at which ozone is produced photochemically, mainly in
the high tropical stratosphere, and carried thence to the extratropical lower strato-
sphere where it accumulates (unless destroyed by ‘ozone-hole chemistry’) in far greater
concentrations than can be produced by tropical photochemistry alone.

Model simulations like that of Figure 9 are also relevant to understanding the Antarc-
tic ozone hole. The contours in the right-hand panel of Figure 9 can be regarded as iso-
pleths of an advected passive tracer, the advection being very accurately simulated, with
no artificial diffusion. The simulation shows that, at least in the model, chemical sub-
stances in the surf zone do not penetrate past the region of strong Rossby elasticity con-
centrated in the steep () gradient near the vortex edge. This is believed to be important

*To rough approximation, this I(-) is given by (6.2) with V~2 replaced by (V2 — x2)~1, corresponding

to an elastic membrane tethered by local springs, somewhat like a spring mattress, with a latitude-
dependent e-folding scale k~! (the ‘Rossby radius’) of about 1400 km at the pole, 2000 km at 45°N,
and 3000 km in the tropics. MclIntyre and Norton (1990, 1993) give examples of much more accurate
(but much more elaborate) potential-vorticity inversion operators I(-) for shallow-water models.
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Figure 9. Winter hemisphere in a high-resolution, shallow-water numerical model of the stratosphere,
from Norton (1993). The mean depth is 4km, and the numerical resolution (triangular truncation
at total wavenumber 127) corresponds to a mesh size roughly 1° latitude. Left panel: potential vor-
ticity @, contour interval 4 x 10~2m~1s~1, zero contour dotted. (Negative @ values would, in a
three-dimensional model, signal the three-dimensional mode of Rossby-wave breaking pointed out by
O’Sullivan and Hitchman 1992.) Right panel: isopleths of an advected tracer field, initially axisym-
metric and coincident with the @ contours, showing the fluid-dynamical irreversibility characteristic of
Rossby-wave breaking and two-dimensional ‘turbulence’. This was computed with near-perfect accu-
racy using a high-precision ‘contour advection’ techique, introduced independently by Norton (1993)
and by Waugh and Plumb (1993) using an algorithm developed in another context by Dritschel (1988).

for ozone-hole chemistry. The same phenomenon has been demonstrated in the labora-
tory by Sommeria et al. (1989, 1991). The contour-advection technique, conceived of as
a benchmark numerical tracer advection algorithm, was introduced independently by
Norton (op. cit.) and by Waugh and Plumb (1993).

Recently, O’Sullivan and Hitchman (1992) have shown that an entirely different mode
of Rossby-wave breaking is possible near the equator, where the potential vorticity
itself changes sign. It conforms to the general wave-breaking definition, with three-
dimensional rather than layerwise-two-dimensional material contour deformations, aris-
ing from an asymmetric inertial (quasi-centrifugal) instability. Among other things, this
may have new implications for the quantitative modelling of the QBO.

9. WIND-GENERATED WATER WAVES: TWO NEW MECHANISMS?

What does this old but elusive problem look like from the foregoing perspective? The
first point is that Rossby-wave dynamics is involved, albeit on much faster timescales
than before. The velocity profile in the air, whether or not approximately logarithmic,
will usually have a strong curvature ug,, near the water surface (y vertical). Therefore
there is a vertical gradient of spanwise vorticity and hence, in the present language, a
Rossby elasticity, in the airflow just above the water waves; recall (6.5) and Figure 6.
That is why the Miles inviscid wind-wave instability, for instance, can be regarded as
a coupled ‘Rossby-wave, gravity-wave’ instability. One can think in terms of a pair of
phase-locked, counterpropagating waves, a backward-propagating Rossby wave in the
air coupled to a forward-propagating gravity wave in the water. (Other examples of
Rossby-wave, gravity-wave instabilities go back to G. I. Taylor’s work in the 1930s on
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the ‘Taylor—Goldstein equation’; see also, e.g., Griffiths et al. (1982), Hayashi and Young
(1987), and Sakai (1989).) In the Miles instability, the Rossby elasticity is relatively
weak. This implies not only that the water wave largely determines the phase speed c,
but also that the growth rate is slow and that the most significant Rossby effects occur
near the critical line ug(y) = ¢, where intrinsic phase speeds are slow. The mathematical
underpinning for these statements is well known and is given in detail by Miles (1957)
and Lighthill (1962).

Now the self-consistency of the linearized instability theory requires that conditions
near the critical line resemble those in Figure 7a. In the present language, the Rossby
wave is not only weak and slow, but is also in the earliest stages of wave breaking,
in the generalized sense already referred to. The later stages can be expected to look
more like those of Figure 7b—7d and beyond, with a small value of the effective mixing
scale by,, viewed in a suitably undulating coordinate system. This suggests that the
idealized scenario represented by the inviscid Miles mechanism lacks robustness, when
taken literally. The delicate phase-locking and synchronization of the normal mode’s
displacement fields will be disrupted by Rossby wave breaking before much vertical
rearrangement, of spanwise vorticity can take place (and long before the water waves
break). The outcome will be net vorticity rearrangement, in the airflow, over only a small
effective mixing depth by,, of the same order as the scale b given by (7.1) except that
the lengthscale uo, /B is replaced by a typical value of —uq,/ugy, near the critical hne
There is a correspondingly small net wave-coherent momentum transport 6M o by,
from air to water, having the order of magnitude implied by (7.3) with 3 again replaced
by a typical value of —ugyy near the critical line.

However, there is one important feature of this idealized scenario that does, on the
other hand, look robust. This is the sign of the net wave-coherent momentum transport,
which tends to be such that the water waves are amplified when travelling in the same
direction as the wind. More precisely, the sign is determined by the sign of —ug,, and
the one-signedness of the associated Rossby-wave dynamics — the same one-signedness
that so strongly controls the sense of the mean circulation throughout most of Figure 2.
In the wind—wave problem the sign is determined quite independently of whether or not
we have strictly z-periodic waves and delicately synchronized exponential, normal-mode
growth.

This sign-robustness must imply a kind of ‘ratchet effect’. Almost any spatio-
temporal intermittency — whether it be any tendency of the water waves to arrange
themselves in groups through, for instance, subharmonic instabilities, or any gustiness
of the wind that might be modelled as an intermittency in quantities like —qy,
will tend to favour intermittent wave-coherent momentum transport whose effects are
cumulative. They may possibly also be such as to reinforce the intermittency. There is
no longer any reason, moreover, why the effective depths b, associated with any Rossby
wave breaking should be especially small.

More generally, the sign-robustness points to the likely effectiveness of any process in
which wave-coherent undulation of the airflow over the water waves causes Rossby wave
activity in the air to increase in total amount, or to dissipate, or both. The relevant
measure of ‘activity’ for this purpose is a suitably defined quasimomentum (Killworth
and Mclntyre 1985; Shepherd 1990, & refs.), since the photon analogy can be shown
to apply here, in the required sense. Any such process will result in wave-coherent
momentum transport in such a sense as to amplify the water waves. This could well be
important for the real wind—wave problem, despite the added complexities of turbulence
and other three-dimensional effects. There appear, in particular, to be two distinguish-
able mechanisms whose possible role deserves closer attention, both theoretically and
experimentally.
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One is simply local Rossby wave breaking characterized by relatively large effective
depths bp,. If, for instance, a gust produces an effective —ug,, that then encounters
a wave group, leading to rapid vertical rearrangement of spanwise vorticity (reducing
—Uoyy), then the water waves will be correspondingly amplified for a short time. The
transient nature of such phenomena would add to the well-known difficulties of observing
the associated pressure phase shift experimentally. The other mechanism, which in
reality might tend to occur at the same time, is the formation of Rossby lee waves in
the airflow. This will give rise to ‘wave resistance’ in the usual way, not depending on
wave breaking of any kind. Indeed the lee-wave mechanism should be at its most efficient
when both Rossby wave breaking and water wave breaking are unimportant. Then one
should get unseparated flow over the water waves (e.g. Banner 1990, & refs.) and,
for at least some —ugy, profiles, an efficient shedding of Rossby-wave quasimomentum
into the downstream airflow. It seems possible that the amplifying wave group in the
experiments of Chu et al. reported by Professor Phillips, which they call the ‘short wave
energy front’, might depend on the Rossby lee-wave mechanism — and the experiments
might offer a chance to study it under controlled conditions.

These ideas might also help resolve some longstanding questions about the effects
of three-dimensional turbulence on different timescales, from the relatively long, ‘dis-
sipative’ timescales required to restore —ug,, profiles, to the relatively short, ‘elastic’
timescales on which rapid-distortion theory might be appropriate, merely modifying
the Rossby elasticity in the air — as with internal gravity waves in the important
observational study by Finnigan and Einaudi (1981), in which eddy-viscosity or other
steady-state dissipative turbulent modelling was shown to be wrong by ‘an order of mag-
nitude’. In some wind-wave models, turbulent processes are modelled semi-empirically
for instance by adding something like an eddy viscosity to the Miles theory. Such de-
vices (drastically modifying the type of behaviour suggested by Figure 7) would seem
unavoidable in models that insist on z-periodicity, or on horizontal statistical station-
arity and linear superposability of wave-coherent processes. But a physically correct
turbulence model might need to bring in a wider range of timescales. This suggests
that it could be fruitful to try to model the spatio-temporal intermittency of the water
waves and the airflow explicitly.
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