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The tachocline has values of the stratification or buoyancy frequency N two

or more orders of magnitude greater than the Coriolis frequency. In this

and other respects it is very like the Earth’s atmosphere, viewed globally,

except that the Earth’s solid surface is replaced by an abrupt, magnetically-

constrained ‘tachopause’(Gough & McIntyre 1998). The tachocline is heli-

um-poor through fast ventilation from above, down to the tachopause, on

timescales of only a few million years. The corresponding sound-speed an-

omaly fits helioseismic data with a tachocline thickness (0.019± 0.001)R�,

about 0.13 × 105 km (Elliott & Gough 1999), implying large values of the

gradient Richardson number such that stratification dominates vertical shear

even more strongly than in the Earth’s stratosphere, as earlier postulated by

Spiegel & Zahn (1992). Therefore the tachocline ventilation circulation can-

not be driven by vertically-transmitted frictional torques, any more than the

ozone-transporting circulation and differential rotation of the Earth’s strato-

sphere can thus be driven. Rather, the tachocline circulation must be driven

mainly by the Reynolds and Maxwell stresses interior to the convection zone,

through a gyroscopic pumping action and the downward-burrowing response

to it. If layerwise-two-dimensional turbulence is important, then because of

its potential-vorticity-transporting properties the effect will be anti-frictional

rather than eddy-viscosity-like. In order to correctly predict the differential

rotation of the Sun’s convection zone, even qualitatively, a convection-zone

model must be fully coupled to a tachocline model.

8.1 Introduction

In the quintessential Douglas Gough manner I am going to be provocative

straight off and say, in answer to the question in the title, that ‘anti-friction’

is closer to the mark – flying in the face of classical turbulence theories.

1



2 McIntyre

How can I make such an outrageous assertion? I can do so because in

significant respects the Sun’s interior is very like the Earth’s atmosphere,

and we observe the Earth’s atmosphere doing it all the time, that is, showing

anti-frictional behaviour. By ‘anti-frictional’ I mean that if we describe the

fluid system in terms of a differentially-rotating mean state with angular

velocity Ω̄(r, θ, t) and azimuthal velocity v̄φ = r sin θ Ω̄(r, θ, t), where r, θ, φ

are radius, colatitude, and longitude and t is time, plus chaotic fluctuations

v′ about that state, then the averaged effect of the fluctuations is to drive

the system away from solid rotation.

This of course contradicts the classical idea, enshrined in the term ‘eddy

viscosity’, that chaotic fluctuations by themselves should drive, or rather

relax, the system toward solid rotation. The attractiveness of that classical

idea illustrates the perils of conflating ‘chaos’ with ‘turbulence’. The idea

would be correct if another classical idea were correct, namely that turbu-

lence theory should be like gas-kinetic theory, with the turbulent fluctuations

acting like molecular-scale fluctuations about a nearly homogeneous mean

state. Thus the gas-kinetic mean free path is replaced by some ‘mixing

length’, ‘Austausch length’, or other lengthscale representative of the irre-

versible fluctuating displacements of fluid elements. That lengthscale may

or may not be hidden from view within the complexities of a turbulence

theory based on ‘closure’. If momentum is transported by the fluctuating

displacements, and if typical displacements are much smaller than the scales

of variation of the mean state – as implied by the stipulation ‘nearly homo-

geneous’ – then the effect of the fluctuations on the mean state is like that of

a viscosity, relaxing the system toward solid rotation, essentially because of

the scale separation just mentioned and the implied flux–gradient relations.

The recognition that fluctuations in the Earth’s atmosphere often do the

opposite, i.e. drive the system away from solid rotation (though not, of

course, arbitrarily far away), was a major paradigm shift within the terres-

trial atmospheric sciences over the past century. That paradigm shift had its

beginnings in the work of Harold Jeffreys in the second and third decades of

the century (e.g. Jeffreys 1933†). It gathered pace in the late 1960s, stimu-

lated by an increasing wealth of observational evidence. It was fundamental

† This conference paper, originally from Procès-Verbaux de l’Assoc. de Météorol., UGGI, Lisbon,
Part II (Mémoires), lucidly and cogently summarizes Jeffreys’ classic argument, developed
over the preceding decade or more, that observed surface winds imply the existence of what
Victor Starr later called the ‘negative viscosity’ due to the large-scale eddies, the cyclones and
anticyclones, appearing on weather maps. The reported conference discussion (Jeffreys, op.
cit., pp. 210–11) illustrates that in 1933 no-one, not even Jeffreys, had the faintest idea of
what kind of fluid dynamics might be involved. The ‘negative viscosity’ phenomenon was still
flagged as a major enigma in the closing pages of the landmark review by E. N. Lorenz (1967).
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to solving some of the greatest enigmas with which the atmospheric sciences

were confronted in the 1960s.

One of those enigmas was the behaviour of Ω̄(r, θ, t) in the tropical strato-

sphere between 15–30 km, in which the sign of ∂Ω̄/∂r reverses quasi-periodic-

ally with a mean period around 27 months. This surprising phenomenon was

first revealed by radiosonde balloon observations, which had become routine

after the second world war in support of operational weather forecasting.

The phenomenon is known today as the quasi-biennial oscillation or QBO.

Its cause was wholly mysterious in the 1960s. Today, however, the QBO is

recognized as one of the clearest illustrations of the point I am emphasizing,

the tendency of chaotic fluctuations to drive a stratified fluid system, very

often, away from solid rotation; and a further and even clearer illustration

can be found in the beautiful laboratory experiment devised and carried out

by Plumb & McEwan (1978). A stratified fluid in a large annulus is driven

away from solid rotation, Ω̄ ≡ 0 in this case, by nothing but the imposition

of fluctuations via an oscillating boundary. On a timescale of many bound-

ary oscillations, Ω̄ evolves away from zero, and then develops a pattern of

reversals very like that of the QBO.

Together with appropriate conceptual and numerical modelling, the re-

sults from the Plumb–McEwan experiment have greatly illuminated our

thinking about the QBO, and enriched our repertoire of models of it. The

reader interested in the observed phenomena and in today’s understanding

of them, which is secure, at least qualitatively – and in the history of ideas

leading to that understanding – may consult my recent reviews (2000, 2002)

together with a major review of research on the QBO by Baldwin et al.

(2001), which latter includes an extensive discussion of the observational

evidence. Movies of the Plumb–McEwan experiment plus ‘technical tips’ on

how to repeat it are available on the Internet.†

8.2 Long-range and short-range momentum transport

How can the classical turbulence theories be so completely wrong, not just

quantitatively but also qualitatively? The answer is not only clear with hind-

sight but also simple. Because the Earth’s atmosphere and the Sun’s interior

are heavily-stratified, rotating fluid systems, the fluctuations, chaotic though

they may be, inevitably feel the wave propagation mechanisms associated

with rotation and stratification.

These include the propagation mechanisms of internal gravity waves, Cori-

olis or ‘inertial’ (epicyclic) waves, and layerwise-two-dimensional Rossby or

† at http://www.gfd-dennou.org/library/gfd exp/exp e/exp/bo/
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vorticity waves. By its very nature, any wave propagation mechanism pro-

motes systematic correlations among the fluctuating fields v′, etc. Almost

inevitably, the upshot is that momentum and angular momentum are trans-

ported over distances far greater than mixing lengths, limited only by the

distances over which waves can propagate. Internal gravity waves provide

a well known example, in which the most significant correlations are those

between the horizontal and vertical components of v′.
Of course there are exceptional cases in which the momentum transports

exactly cancel, such as perfect g modes and p modes, in the strict sense

of global eigenmodes subject to no excitation or dissipation. The cancella-

tion is not trivial to demonstrate, when Ω̄ 6= 0, but it can be demonstrated

from the so-called ‘nonacceleration theorem’ of wave–mean interaction the-

ory (e.g. McIntyre 2000 & refs.), essentially a consequence Kelvin’s circula-

tion theorem applied around all latitude circles.

Long-range momentum transports of the kind in question are sometimes

called radiation stresses (e.g. Brillouin 1925, on ‘tensions de radiation’).

They are usually anisotropic, contrary to what might be suggested by the

older term ‘radiation pressure’ still found in the literature. They are related

to mean gradients in ways that are anything but local, the global eigenmodes

being an extreme case. It is crucial to consider large-scale wavefields and

the processes of generation, dissipation, refraction, Doppler-shifting, internal

reflection, focusing and defocusing that shape the wavefields.

Classical turbulence theories – all the way from simplistic mixing-length

theories to complicated closure theories – take no account of such long-range

momentum-transport mechanisms. As already emphasized, the only mo-

mentum transport they consider is, by assumption, that arising from local,

short-range, Austausch or material-exchange types of process. It is exactly

that short-range character, and the implied or hoped-for scale separation,

that give rise to ‘turbulent stresses’ involving flux–gradient relations and

eddy viscosities. We may summarize what happens in the Earth’s atmo-

sphere by saying that, on a global scale, radiation stresses dominate turbu-

lent stresses. We shall see nevertheless that turbulence can be important in

another way, namely through its contribution to shaping the wavefields, as

with surf near ocean beaches.

8.3 Potential vorticity

Anti-frictional behaviour is not inevitable when radiation stresses dominate

turbulent stresses, but experience has shown it to be commonplace. For

instance such behaviour is often produced by broadband internal gravity
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wave fields – broadband in the sense of having a range of horizontal phase

speeds – like those generated by the Sun’s convection zone or by the Earth’s

tropical thunderstorms. In fact the Plumb–McEwan experiment, in which

the significant waves are internal gravity waves, shows that even two distinct

horizontal phase speeds can be enough.

Anti-frictional behaviour is commonplace, too, in the case of Rossby-

wave fields, whether broadband or not, for quite different reasons connected

with the properties of the Rossby–Ertel potential vorticity, hereafter ‘PV’.

Anti-frictional behaviour is especially characteristic of the stresses exerted

horizontally by fluctuating layerwise-two-dimensional motion. That is why

Gough & McIntyre (1998 & refs., hereafter GM) argued against horizontal

eddy viscosity as explaining the thinness of the tachocline.

The PV, denoted here by the symbolQ, is a quantity central to the dynam-

ics of heavily stratified fluid systems, including the dynamics of Rossby waves

and other nearly-horizontal, layerwise-two-dimensional motions. Such other

motions include layerwise-two-dimensional turbulence, also loosely called

‘geostrophic’ turbulence despite its possible existence near the equator. The

properties of Q will expose the fact that such turbulence is itself intimately

bound up with the Rossby-wave mechanism. This will be demonstrated in

Sections 8.4 and 8.5. In the dynamical regimes under discussion there is no

such thing as turbulence without waves.

In a reference frame rotating with angular velocity Ω0 the PV, Q, is

defined as

Q = ρ−1 (2Ω0 + ∇× v) · ∇ϑ , (8.1)

where ρ is mass density and ϑ is potential temperature (materially invariant,

Dϑ/Dt = 0, for adiabatic motion; in place of ϑ one may equally well use

specific entropy, or any other monotonic function of ϑ alone). For definite-

ness we identify Ω0 with the angular velocity of the Sun’s interior just below

the tachocline, |Ω0| ≈ 0.27 × 10−5 rad s−1 or 430 nHz, and take the axis of

coordinates parallel to Ω0. Heavy stratification means that ∇ϑ is nearly

vertical, ∇ϑ ≈ r̂ ∂ϑ/∂r, where r̂ is a unit vertical (radial) vector. Heavy

stratification also means that the associated buoyancy frequency N greatly

exceeds the other reciprocal timescales of interest, including |Ω0| and the

vertical shear r sin θ ∂Ω̄/∂r. We recall that N is defined by

N2 = g ϑ−1∂ϑ/∂r = g ∂(lnϑ)/∂r , (8.2)

g being the local gravitational acceleration, and that the value of N is of the

order of 10−3 rad s−1 near the base of the tachocline. The standard measure

of stratification against vertical shear, the gradient Richardson number, is
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defined by

Ri = N2(r sin θ ∂Ω̄/∂r)−2 . (8.3)

If we use the refined estimate of tachocline depth ∆r obtained by Elliott

& Gough (1999), (0.019 ± 0.001)R�, about 0.13 × 105 km, then typical

vertical shears ∆v̄φ/∆r . 10−5 s−1, not much greater than |Ω0|. Thus

Ri & 10−6/10−10 ∼ 104 � 1 near the base of the tachocline. Even when N

is taken to be an order of magnitude smaller, 10−4 rad s−1, as near the top

of the tachocline, we still have Ri & 102 � 1. This says that the tachocline

is even more heavily stratified than the most heavily stratified portion of

the Earth’s stratosphere, where typically Ri & 10 in a coarse-grain view.

Such Ri values are high enough to enforce layerwise-two-dimensional mo-

tion, everywhere including the equator, as pointed out by Spiegel & Zahn

(1992, hereafter SZ). A key property of Q during such motion is that not

only ϑ but also Q itself is materially invariant, DQ/Dt ≈ 0, if the motion

can be considered inviscid as well as adiabatic and if MHD (Lorentz) forces

can be neglected within the tachocline. Approximately inviscid motion is

consistent with large Ri values.†
A second key property of Q, which holds for any motion whatever – even

a motion that feels MHD forces – is the integral relation
∫ ∫

S
Qb dA = 0 , (8.4)

where dA is the surface area element and where the integral is taken glob-

ally over a stratification or isentropic surface S, on which ϑ is constant by

definition. The weighting factor b = ρ/|∇ϑ|, a positive-definite quantity. It

is a stratification-related mass density in the sense that b dϑ is the mass per

unit area between neighbouring stratification surfaces S; that is, b dA dϑ is

the mass element. The relation (8.4) is an immediate consequence of Stokes’

theorem, the definition of Q, and the fact that each surface S is topologically

spherical and has no boundary. For present purposes both the Sun and the

Earth are rapidly rotating bodies, with strongly polarized Q fields: except

near the equator, 2Ω0 dominates ∇×v in (8.1). So (8.4) is satisfied through

† Note also that tachocline thermal diffusion times estimated as (π−1∆r)2/κ, where the thermal

diffusivity κ ∼ 107 cm2s−1, come out at about 500y. This is well in excess of the likely
timescales of months to years for any layerwise-two-dimensional motion that might occur in
the tachocline. Viscous and magnetic diffusion times are far longer still. The inviscid, adiabatic
material invariance of Q (Ertel’s theorem) is easy to verify from ∇(Dϑ/Dt) = 0 together with
the scalar product of ∇ϑ with the inviscid, adiabatic vorticity equation, or alternatively (e.g.
McIntyre 2000, Section 9) as a corollary of mass conservation together with Kelvin’s circulation
theorem applied to small constant-ϑ circuits. The neglect of MHD forces is much more of an
open question, but, for what it is worth, the arguments of GM strongly justify such neglect in
the downwelling branches of the tachocline ventilation circulation.
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cancellation of strong positive and negative contributions from the northern

and southern hemispheres respectively.

Owing to the positive-definiteness of the weighting factor b, the relation

(8.4) imposes a severe constraint on the possible evolution of the global-scale

Q distribution on each surface S. We shall see that (8.4) is almost enough,

by itself, to guarantee that layerwise-two-dimensional fluctuations about a

mean state of solid rotation will behave anti-frictionally. Consistently with

(8.4), one may picture Q as the amount per unit mass of a fictitious ‘PV sub-

stance’ composed of charged particles to which the stratification surfaces S
are completely impermeable. They are impermeable even if the motion is

not adiabatic. Even if mass leaks across a surface S, through thermal diffu-

sion, the notional particles of ‘PV substance’ remain trapped on that surface

(Haynes & McIntyre 1990). The ‘PV charge’ is conserved in the same way

as electric charge. That is, pair production and annihilation are allowed,

but no net charge creation or destruction. Just as bdA dϑ is the mass ele-

ment, QbdA dϑ is the charge element. The picture is consistent with (8.4)

because the value, zero, of
∫∫
QbdA cannot be changed by pair production

and annihilation. Nor can it be changed by the advective rearrangement of

the notional particles on each surface S by any layerwise-two-dimensional

motion.

A third key property of Q is its ‘invertibility’. This says that the isen-

tropic distributions of Q, i.e. the distributions of PV values on the surfaces

S, contain nearly all the kinematical information about the layerwise-two-

dimensional motion – whether or not MHD forces are significant. At each

instant, to good approximation, one can ‘invert’ the PV field to get the

velocity, pressure and density fields. The dynamical system is then com-

pletely specified by the PV inversion operator together with a single prog-

nostic equation for the rate of change of Q, supplemented, if necessary, by a

prognostic (induction) equation for any magnetic fields that may be present.

The equation for Q can be DQ/Dt = 0 or an appropriate generalization,

symbolically

DQ/Dt = viscous, diabatic and MHD terms . (8.5)

The single time derivative reminds us that Rossby waves and other layer-

wise-two-dimensional motions, viewed in the rotating frame, are chiral: they

notice the direction and sense of Ω0. The mirror-image motion is impossible.

All this is simplest to see in the limiting case of anelastic motion and

infinitely heavy stratification, in which N 2 →∞ and Ri →∞. The surfaces

S become rigid and horizontal – horizontal in the billiard-table sense, with

the sum of the gravitational and centrifugal potentials constant – and the
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flow on each S becomes strictly horizontal and strictly incompressible. Then

v = r̂×∇Sψ for some streamfunction ψ, and

Q = b−1(f +∇2
Sψ) (8.6)

with b strictly constant, where f is the vertical component of 2Ω0 and ∇S
and ∇2

S are the two-dimensional gradient and Laplacian on the surface S.

We may regard (8.6) as a Poisson equation to be solved for ψ when Q is

given. Solving it is a well defined, and well behaved, operation provided that

the given Q field satisfies the integral relation (8.4) on each S. Symbolically,

v = r̂×∇Sψ with ψ = ∇−2
S (bQ− f) . (8.7)

This expresses PV invertibility in the limiting case. Notice that the limiting

case is degenerate in that the radial coordinate r enters the problem only as

a parameter. There is no derivative ∂/∂r anywhere in the problem, either

in the Laplacian or in the material derivative D/Dt = ∂/∂t + v·∇, v

now being strictly horizontal. Not only is the motion layerwise-two-dim-

ensional, but the layers are completely decoupled. There is, therefore, an

implicit restriction on magnitudes of ∂/∂r, i.e. an implicit restriction on the

smallness of vertical scales, as the limit is taken.

More realistically, when N 2 and Ri are large but finite, ∂/∂r reappears in

the problem and brings back vertical coupling. The motion remains layer-

wise-two-dimensional in the sense that the notional ‘PV particles’ move

along each stratification surface S, but the surfaces themselves are no longer

quite horizontal, nor quite rigid. All the vertical coupling comes from the

PV inversion operator. The two-dimensional inverse Laplacian in (8.7) is

replaced by an inverse elliptic operator that resembles a three-dimensional

inverse Laplacian when a stretched vertical coordinate Nr/f is used.

Here one has to make tradeoffs between accuracy and simplicity. The sim-

plest though least accurate inversion operator is that arising in the standard

‘quasi-geostrophic theory’, an asymptotic theory for large Ri and f 6= 0,

valid away from the equator. MHD forces are still absent from the inver-

sion and, if significant at all, enter the problem only through the prognostic

equation (8.5). The operator ∇2
S becomes ∇2

S + ρ−1∂r
(
ρf2N−2∂r

)
. We

may expect this to be a self-consistent approximation if Alfvén speeds are

of the order of |v| or less. Notice that for tachocline eddies of horizon-

tal scale 105 km, say, the vertical coupling extends over a vertical scale

∼ (f/N) × 105 km ∼ 0.004 × 105 km at latitude 45◦, fairly small in com-

parison with a tachocline thickness of 0.13× 105 km.

Some idea of what is involved in constructing more accurate inversion

operators can be gained from the recent work of Ford et al. (2000) and
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Mobehalhojeh & Drischel (2001 & refs.) and summarized in a recent review

of mine (2001); see also the earlier discussion by Hoskins et al. (1985). Subtle

generalizations of the notions of ‘geostrophic balance’ and ‘magnetostrophic

balance’ are involved, and there are ultimate limitations on the accuracies

attainable and on good mathematical behaviour, owing to phenomena such

as Lighthill radiation, equatorial inertial instabilities, symmetric-baroclinic

or Høiland instabilities, and magneto-rotational or Chandrasekhar–Fricke–

Balbus–Hawley instabilities.

Before going further with the theory, let us take note of what layerwise-

two-dimensional motion looks like in the real-world example that has been

the most thoroughly studied, the Earth’s stratosphere. There, thanks to

today’s observing systems, we can see many of the associated phenomena

in remarkable detail, including conspicuous examples of Rossby-wave prop-

agation.

8.4 A glimpse of the Earth’s stratosphere

Figure 8.1 presents two snapshots of the stratosphere, showing at a spatial

resolution of a few degrees latitude the effects of layerwise-two-dimensional

motion on two stratification surfaces S. These surfaces lie at altitudes of

about 31 and 37 km. An animated version can be seen on my website.† The

figure is reproduced by courtesy of Dirk Offermann, Martin Riese, and the

other scientists involved in the CRISTA space-based remote-sensing project;

see Riese et al. (2002). The quantity shown is the mixing ratio XN2O of a

biogenic chemical tracer, nitrous oxide, that is destroyed photochemically on

a timescale of years but resupplied, across the stratification surfaces S from

the troposphere below, on the same timescale of years, by a global-scale

circulation called the Brewer–Dobson circulation. This is a stratospheric

counterpart of the tachocline ventilation circulation. In the stratosphere

the upwelling branch of the circulation is in the tropics; therefore XN2O

values are highest there. White areas are data gaps.

The layerwise-two-dimensional motion has far greater horizontal velocities

than the Brewer–Dobson circulation, and far shorter timescales of days to

weeks. On such timescales XN2O is a near-perfect passive tracer, indeed

material invariant, DXN2O/Dt = 0 to good approximation. Thus, apart

from the overall pole-to-equator gradient, the patterns seen in Figure 8.1

are shaped almost exclusively by the layerwise-two-dimensional motion.‡
† In colour, at www.atm.damtp.cam.ac.uk/people/mem/papers/LIM/index.html#crista-movie
‡ The observational resolution is enough for our purposes, though there must in reality be invis-

ible fine-grain detail, such as the filamentary, cream-on-coffee patterns found in recent high-
resolution observational and modelling studies of stratospheric flows at lower altitudes (e.g.
Norton 1994, Waugh & Plumb 1994, Waugh et al. 1994, Appenzeller et al. 1996).



10 McIntyre

Each snapshot shows similar features, notably the well-mixed region (med-

ium gray) on the right, with nearly uniform tracer values, sandwiched be-

tween relatively isolated polar and tropical airmasses having very different

tracer values, with steep gradients in transition zones between. It is clear

from the animated version and from numerical model simulations, which

produce generically similar tracer distributions (e.g. Norton 1994), that the

layerwise-two-dimensional motion is causing strong mixing on each strati-

fication surface S in an extensive midlatitude region sandwiched between

the polar and tropical airmasses. A long tongue of tropical air is being

drawn eastward past the tip of South America (light gray, inner band on

the left) and marks the early stages of a typical mixing event, in which air

is visibly recirculating within the midlatitude region at the instant shown.

This horizontal recirculation is conspicuous in the animation. Because of

the strong mixing, it is reasonable to regard the motion as fully turbulent,

in the layerwise-two-dimensional sense, in middle latitudes.

However, the motion as a whole has not only its turbulent aspect but

also the wavelike aspect anticipated theoretically. This too is conspicuous

in the animated version of Figure 8.1, which shows the long axis of the

central, elongated dark region rotating clockwise through an angle of about

70◦ longitude in 5 days, 10–15 August 1997, relative to the Earth. The

central region marks the core of the ‘polar vortex’, characterized by large

negative values of Q. Because of the approximate material invariance of Q,

it behaves like an advected tracer on the short timescales of the layerwise-

two-dimensional motion, and has a distribution somewhat like that of XN2O

apart from an additive constant.

The rate at which the long axis rotates is determined by a competition

between the mean winds – which broadly speaking blow clockwise, at speeds

of the order of 80 m s−1, about nine times faster than 70◦ in 5 days – and

a wave propagation mechanism that powerfully rotates the long axis an-

ticlockwise relative to the air. This is the Rossby-wave or vorticity-wave

mechanism.† The phase progression is necessarily one-way (here anticlock-

wise, or retrograde, relative to the air), as a consequence of the chirality

associated with the single time derivative in equation (8.5).

As is well known, the Rossby-wave mechanism operates whenever Q has a

mean gradient ∂Q̄/∂θ on stratification surfaces S, such as the gradient asso-

ciated with the global-scale polarization – the positive-to-negative, pole-to-

pole variation in Q values due to the rotation of the whole system, Ω0 say,

† As usual, terminology contradicts historical precedent. Carl-Gustaf Rossby was one of the
greatest pioneers in atmospheric science, and his memory deserves special honour, but the
wave mechanism was noted decades earlier by Kelvin and Kirchhoff, in special cases at least.
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Fig. 8.1. Nitrous oxide (N2O) mixing ratios XN2O observed at two stratospheric al-
titudes on 11 August 1997 by the CRISTA infrared spectrometer, from Riese et al.
(2002). White areas are data gaps. On Rossby-wave timescales of days and weeks
N2O is an accurate passive tracer, though destroyed photochemically on Brewer–
Dobson timescales of years. In the right half of each picture XN2O values increase
equatorward nearly monotonically or stepwise monotonically (being nearly con-
stant over the large medium gray regions on the right). Polar-vortex values (dark
central regions) are close to zero, and tropical values are high, imported from the
troposphere by the Brewer–Dobson upwelling. At left and right respectively:
pressure-altitudes are 4.64 hPa and 10 hPa, roughly 37 km and 31 km; ranges of
mixing ratios in parts per billion by volume are 0–90+ and 0–150+ with contour
intervals 10 and 16.67, where ‘+’ signifies that maximum values may slightly over-
shoot the plotted range; the light band in the subtropics highlights the ranges 60–70
and 100–116.67 ppbv. CRISTA (CRyogenic Infrared Spectrometers and Telescopes
for the Atmosphere) detects a number of chemical species through their infrared
spectral signatures and is a large (1350 kg) helium-cooled instrument flown from
the Space Shuttle.

which must here be taken to be somewhat faster than the rotation of the

solid Earth. North–south material displacements across that gradient give

rise to a pattern of fluctuating Q anomalies on the surfaces S that alternate

in sign downstream, every 90◦ of longitude in the case of Figure 8.1. Inver-

sion of that pattern of Q anomalies to obtain the fluctuating velocity field

produces north–south velocities that lag north–south displacements by a

quarter wavelength in longitude, implying one-way phase propagation with

highest Q̄ values on the right, i.e. retrograde phase propagation.

To check this qualitative picture in the simplest possible way using the

standard Rossby–Haurwitz wave theory, take the limiting case (8.7), lin-

earize the prognostic equation DQ/Dt = 0 for small disturbances Q′, ψ′, v′

about a mean state of solid rotation Ω0, regard each stratification surface

S as precisely spherical and look for disturbances with complex amplitude

Q̂ and spherical-harmonic structure Q′ = Re{Q̂Pmn (cos θ) exp(imφ− iωt)}.



12 McIntyre

The linearized prognostic equation is

∂Q′

∂t
+
vθ
′

r

∂Q̄

∂θ
= 0 , (8.8)

with ∂Q̄/∂θ = −2Ω0b
−1 sin θ, b = constant, and Ω0 = |Ω0|. PV inversion

reduces to ψ′ = ∇−2
S (bQ′), hence ψ̂ = −r2bQ̂/{n(n+1)}, with ψ̂ the complex

amplitude of ψ′, i.e., ψ′ = Re{ψ̂Pmn (cos θ) exp(imφ− iωt)}. Noting that

vθ
′ = −(r sin θ)−1∂ψ′/∂φ and that ∂/∂φ = im, we have

ω = − 2Ω0m

n(n+ 1)
. (8.9)

This illustrates the qualitative picture sketched above, including the one-way

propagation associated with chirality – the single power of ω coming from

the single time derivative. Because the angular phase velocity ω/m < 0,

the phase propagation is retrograde and the meridional disturbance velocity

vθ
′, with complex amplitude ∝ −imψ̂, lags the displacement, with complex

amplitude ∝ −imψ̂/(−iω) = mω−1ψ̂, by a quarter wavelength in longitude.

More realistic models of stratospheric Rossby waves must take account of

the turbulent mixing in middle latitudes. The mixing has an obvious qual-

itative effect: it weakens the PV gradient ∂Q̄/∂θ in middle latitudes and

strengthens it at the subtropical edge of the midlatitude mixing region (out-

ermost light band, clearest on the right of Figure 8.1) and at the polar edge

bounding the vortex core. This characteristic reshaping of the Q̄(θ) profile is

suggested schematically by the cartoon on the left of Figure 8.2, in which y

denotes northward distance in arbitrary units, y ∝−θ, in a midlatitude slab

model. The dashed and heavy lines represent the Q̄(y) profiles before and

after mixing. The middle graph presents the corresponding Q̄(y) profiles in

an actual numerical experiment, to be referred to shortly. Thus, in more

realistic models, the quasi-elastic resilience associated with the Rossby-wave

mechanism tends to be concentrated in transition zones of steep Q gradients,

also marked by steep XN2O gradients, lying between the tropical, midlati-

tude and polar airmasses. The same quasi-elastic resilience is part of why

the three airmasses are chemically so distinct, with little mixing between

them, a phenomenon seen again and again by stratospheric researchers and

much studied because of its significance for ozone-layer chemistry. ‘Shear

sheltering’ is also involved (Juckes & McIntyre 1987; Hunt & Durbin 1999).

For our purposes, however, the most important point of all is that the

layerwise-two-dimensional mixing in middle latitudes owes its existence to

the Rossby waves. In this respect the situation illustrated in Figure 8.1 is

fundamentally similar to the ocean-beach situation, in which the turbulence
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in the ocean-beach surf zone owes its existence to surface gravity waves.

That is part of what I meant by the assertion that in the dynamical regimes

under discussion ‘there is no such thing as turbulence without waves’.

The midlatitude mixing occurs for well-understood reasons associated

with flow unsteadiness, hyperbolic points, and so on – a chaotic-advection

kinematics very much tied, in this case, to the wave propagation, as ana-

lysed in detail by, for instance, Polvani & Plumb (1992). We may say that

the turbulent mixing is intimately, and inseparably, part of the wavemotion.

It is therefore reasonable to consider these stratospheric Rossby waves to

be breaking waves. For this reason, the midlatitude mixing region is often

called the ‘stratospheric surf zone’.

Numerical experiments in which the initial condition is axisymmetric, and

in which Rossby waves are then excited somehow, commonly produce surf

zones like that seen in Figure 8.1 (e.g. Norton 1994). The formation of

surf zones is a very robust feature of such experiments, almost regardless

of how chaotic or regular the waves, as such, happen to be. In the Earth’s

stratosphere the Rossby-wave fields can on occasion be fairly regular, as in

the case of Figure 8.1, or, more typically in the northern-hemispheric winter,

rather more chaotic.

A fundamentally similar phenomenon of surf-zone formation was demon-

strated long ago in the idealized numerical experiments of Rhines, in a clas-

sic paper entitled ‘Waves and turbulence on a beta-plane’ (Rhines 1975).

The designations ‘Rossby-wave breaking’ and ‘stratospheric surf zone’ can

be justified in a very general way, from wave–mean interaction theory (e.g.

McIntyre & Palmer 1985), having regard to Kelvin’s circulation theorem.

This has application to most if not all non-acoustic wave types.

In the Rossby-wave case the whole conceptual picture is illustrated by a

specific model of wave breaking in a certain parameter limit, known as the

Stewartson–Warn–Warn model, in which the surf zone is narrow and the

interplay between the wavelike and turbulent dynamics can be precisely and

comprehensively described using matched asymptotic expansions (Haynes

1989 & refs.). This is based on the midlatitude slab model in the limiting

case (8.7), and has provided a set of detailed examples including that from

which Figure 8.2b is derived. The interplay works both ways, at leading

order: not only do the waves create the turbulence – again justifying the

idea of ‘wave breaking’ – but the turbulence, in turn, strongly influences

the wavefield, and in particular the systematic correlations between vθ
′ and

vφ
′ that are significant for horizontal momentum transport. The wavefield,

through the PV inversion operator, senses the horizontal rearrangement of

PV substance by the turbulence within the surf zone.
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8.5 Turbulence requires waves

There is an alternative, independent justification for the assertion that in

the dynamical regimes under discussion ‘there is no such thing as turbu-

lence without waves’. The justification follows simply and directly from

PV invertibility, involving no restriction to special parameter regimes, and

no reliance on particular mathematical techniques such as that of matched

asymptotic expansions.

We assume the existence of turbulence without waves, and show that this

leads to a contradiction. More precisely, consider a layerwise-two-dimen-

sional PV mixing event like those depicted in Figure 8.2a,b, in which the

PV profile Q̄(θ) or Q̄(y) is changed by a finite increment δQ̄ within some

finite mixing region y1 < y < y2 or θ1 < θ < θ2, in such a way as to

respect the integral relation (8.4). The dashed lines show the initial Q̄(y)

profile. In the case of the cartoon in Figure 8.2a, the profile of δQ̄(y) is a

simple N-shape, having negative slope within the mixing region.

Imagine that the mixing somehow takes place without any wave mecha-

nism being involved. The PV invertibility principle says that when the Q̄

profile changes then the mean velocity profile must change too, by δv̄φ say.

In the limiting case (8.7) the relevant inversion is trivial, b being constant;

for instance in the slab model it is simply

δv̄φ(y) =

∫ ∞

y
δQ̄(ỹ) bdỹ . (8.10)

For the N-shaped δQ̄(y) profile, the shape of δv̄φ(y) is a simple parabola. For

the δQ̄(y) profile implied by Figure 8.2b, the shape of δv̄φ(y) is qualitatively

the same, the parabola-like shape given by the right-hand plot, Figure 8.2c.

These mean flow changes show a net momentum deficit. Notice that∫ y2

y1
δv̄φ(y)dy =

∫ y2

y1
yδQ̄(y)bdy (integrating by parts): the total momentum

change, ignoring a constant factor ρ, is equal to the first moment of δQ̄(y).

This is negative for the N-shaped δQ̄(y) profile. The first moment, and the

momentum change itself, both have unambiguous meanings in virtue of the

integral relation (8.4), which implies that
∫ y2

y1
δQ̄(y)bdy = 0 in the present

limiting case (8.7), with b constant. So the momentum deficit is indeed a

deficit whenever δQ̄(y) is such that the mixing event was indeed a mixing

event, in the sense of weakening the gradient of Q̄ within the mixing region

y1 < y < y2.

The argument just presented can easily be generalized from the slab
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Fig. 8.2. Demonstration that rearrangement of PV substance by layerwise-two-dim-
ensional mixing on a stratification surface S, within some latitude band y1 < y <
y2, must entail momentum transport outside the band hence wavelike as well as
turbulent fluctuations. (This follows from PV invertibility, and does not require
accurate material invariance of Q.) The quantitative examples in plots (b) and (c)
are by courtesy of P. H. Haynes (personal communication); for full mathematical
details see Killworth & McIntyre (1985) and Haynes (1989). Plot (a) shows idealized
Q̄ distributions before and after mixing; (b) shows the same in an accurate slab-
model simulation, using DQ/Dt = 0 together with the inversion (8.7); (c) shows the
resulting mean momentum change, given by equation (8.10), whose profile would
take a simple parabolic shape in the idealized case corresponding to (a).

geometry to the spherical geometry, replacing equation (8.10) by

δv̄φ(θ) = r (sin θ)−1

∫ θ

0
δQ̄(θ̃) b sin θ̃ dθ̃ . (8.11)

We can also remove the restriction to the limiting case (8.7), reverting to

finite N2 and Ri. In the most accurate versions it is necessary to redefine the

mean Q̄ around latitude circles as a weighted ‘isentropic’ mean at constant

ϑ, i.e. following a stratification surface S, with weighting function b, so

as to respect the integral relation (8.4). It is then convenient to switch

to ϑ as the vertical coordinate, as discussed under the heading ‘isentropic

coordinates’ in the atmospheric-science literature (e.g. Andrews et al. 1987).

The main conclusion, that layerwise-two-dimensional PV mixing produces

a momentum or angular momentum deficit, still holds good.†
It follows that – whatever the purely turbulent (Austausch) stresses that

might be involved – such turbulent stresses cannot satisfy the momentum

budget on their own. This point was made long ago by Stewart & Thomson

(1977) who, however, used it to claim that turbulent mixing scenarios like

† In fact the conclusion holds exactly on each surface S in any thought experiment in which the
initial and final states are axisymmetric. The vertical coupling represented by the ∂r term in
quasi-geostrophic theory is incapable, by itself, of transporting absolute angular momentum,
and so never enters the calculation.
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those of Figures 8.2a,b cannot be realized. This overlooked the possibility

that ‘the problem of turbulence’ might have a wavelike aspect, allowing mo-

mentum to be exchanged between the mixing region and its surroundings.

To summarize, then, the implication in reality is that wave-induced mo-

mentum transport, not confined to mixing regions such as y1 < y < y2 in

Figure 8.2, is an essential part of the picture – essential to making sense of

the fluid dynamics as a whole. The turbulent mixing scenarios can in fact

be realized, but only in the presence of waves, which, in the stratospheric

case at least, are chiefly Rossby waves.

The Stewartson–Warn–Warn model played an important role in develop-

ing the conceptual framework just sketched, by illustrating, with great pre-

cision, how everything works and fits together in a particular set of idealized

thought experiments. We may note too that the same thought experiments

provide especially clear examples of anti-frictional behaviour.

In each case a shear flow v̄φ ∝ y is disturbed by monochromatic Rossby

waves generated by an undulating boundary located at positive y, outside

the domain of Figure 8.2. The graphs plotted in Figures 8.2b,c come from

one such thought experiment but are qualitatively similar to those from

all the others. In each case the surf zone or mixing zone surrounds the

location y = 0, a so-called ‘critical line’ where, by definition, v̄φ coincides

with the longitudinal phase speed of the Rossby waves. The phase speed

is retrograde relative to the mean flow throughout y > 0, so that Rossby-

wave propagation is possible there. The fluid behaviour within the surf zone

is complicated and chaotic in most cases; for detailed examples and for a

definitive and thorough analysis see Haynes (1989). The behaviour is anti-

frictional because the momentum transport that accounts for the momentum

deficit in the surf zone, equation (8.10) and Figure 8.2c, is everywhere against

the mean momentum gradient ∂v̄φ/∂y > 0, through a positive correlation

between v′y and vφ
′.

More generally, equation (8.10) and (8.11) show that in any thought ex-

periment starting with solid rotation on a given stratification surface S, such

as the solid rotation observed below the Sun’s tachocline, the formation of

mixing regions like that in Figure 8.2 will drive the system away from solid

rotation. This general point is reinforced by the integral relation (8.4). Be-

cause b is positive definite, (8.4) tells us at once that the only way to mix Q

to homogeneity on a stratification surface S is to make Q zero everywhere –

a fantastically improbable state on a planet rotating like the Earth, or in a

star rotating like the Sun. Since real Rossby waves do break, and do mix Q,

they must be expected to do so imperfectly, mixing more strongly in some

places than in others and producing the characteristic spatial inhomogeneity
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that always seems to be observed, as illustrated by Figure 8.1. Again, the

effect is to drive the system away from solid rotation.

To be sure, one can imagine a thought experiment in which the air on and

near the stratification surface S begins by rotating solidly, and then has its

angular velocity uniformly reduced by breaking Rossby waves. The PV mix-

ing would have to be distributed in just such a way as to give a uniformly

reduced pole-to-pole latitudinal profile of Q, keeping it precisely propor-

tional to cos θ. But the tailoring of a Rossby-wave field to do this would

be a more delicate affair than standing a pencil on its tip, and the natural

occurrence of such a wave field would be another fantastically improbable

thing. A sufficient reason for its improbability is the positive feedback as-

sociated with PV mixing. As soon as some region begins to be mixed,

PV gradients and Rossby quasi-elasticity are weakened, facilitating further

mixing. Conversely, PV gradients are tightened at the edges of the mixing

regions, tending to inhibit mixing there, as evidenced for instance by the

steep XN2O gradients at the edges of the surf zone in Figure 8.1.

Nonmagnetic laminar spindown would also produce differential rotation.

This was part of why GM argued that an internal magnetic field in the Sun

is not merely possible but actually inevitable – the only way to account for

the observed near-solid rotation in the radiative, heavily stratified interior.

8.6 Concluding remarks

The general arguments of Section 8.5 are enough to show that in heavily

stratified systems there is no such thing as turbulence without waves, and

hence that stratification-constrained horizontal eddy viscosities are implau-

sible, if MHD effects are negligible. The general arguments leave open the

question of which waves. The reason for focusing here on Rossby waves

rather than gravity waves, for instance, is that the timescale of the tacho-

cline ventilation circulation, ∼ 106y (see SZ and GM), while long in com-

parison with that of the sunspot cycle, ∼ 10y, is short in comparison with

the Sun’s lifetime and spindown time, ∼ 1010y. A number of published

and unpublished estimates of gravity-wave amplitudes in the Sun’s interior,

based on the reasonable hypothesis that gravity waves are generated mainly

by the overlying convection zone, point to momentum transports that could

be significant on spindown timescales but fall far short of being significant

on tachocline ventilation timescales.

Acoustic waves are still weaker, for this purpose, leaving only the ques-

tion of Alfvén and other MHD waves. GM’s arguments justify the neglect of

MHD effects in the downwelling branches of the tachocline ventilation circu-
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lation, outside the midlatitude band of upwelling. The downwelling firmly

confines the large-scale interior magnetic field to the tachopause and below,

as GM showed with the help of an appropriate magnetic boundary-layer the-

ory. Rapidly alternating solar-cycle fields could be carried downward from

the top of the tachocline but should diffusively self-annihilate far faster than

the 106y timescale of the downwelling.

In the midlatitude upwelling branch, the magnetic boundary-layer theory

fails. Superficial layers of the interior field must be fed into the tachocline

then into the convection zone. Exactly how that happens is uncertain, and

no detailed model is available as yet, though it must be the main means

whereby the interior field leaks out, contributing to the decay from its pri-

mordial state – a scenario that fits well with the fact that interior magnetic

diffusion times for the largest possible scales, i.e. for a simple internal dipole,

are comparable to the Sun’s lifetime. In the tachocline’s upwelling branch

the presence of large-scale magnetic field may give rise to significant angular

momentum transport, either directly via Alfvénic elasticity as field lines are

sheared out, or via MHD waves. Or the upwelling may itself be locked into

solid rotation. All we know so far is that mass conservation dictates that

the upwelling branch must exist, and that the physics of thermal diffusion

and the pattern of vertical shear in the tachocline inferred from helioseis-

mic inversions (e.g. Thompson et al. 1996, Kosovichev 1997, Schou et al.

1998) dictates, through a very robust ‘thermal wind balance’, i.e. through

large-scale hydrostatic and cyclostrophic balance, that the upwelling must

indeed be taking place in middle latitudes (SZ, GM). The upwelling branch

remains the biggest missing piece of the jigsaw puzzle put together in GM.

The ‘gyroscopic pumping’ of the tachocline ventilation circulation, and

of the stratospheric Brewer–Dobson circulation, is a well understood pro-

cess in stratified, rotating fluid dynamics and has been discussed exten-

sively elsewhere (e.g. McIntyre 2002 & refs.). Persistent westward or east-

ward forces pump fluid persistently poleward or equatorward, respectively,

through Coriolis-induced turning. Ekman pumping is the special case in

which the east–west forces are frictional forces near a boundary; in the

stratosphere the forces are wave-induced. For the Sun the important points

to note are (1) that the only process able to provide east–west forces of suf-

ficient strength is the three-dimensional turbulence in the convection zone,

through its Reynolds and Maxwell stresses, (2) that the resulting ventila-

tion circulation tends to burrow downward, (3) that the burrowing can be

stopped only by the interior magnetic field, and (4) that a complete model

of convection-zone differential rotation must take account of the thermal

structure of the tachocline induced by the ventilation circulation, hotter in
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downwelling and cooler in upwelling regions, with its thermal-wind link to

differential rotation. The implied differential rotation must be continuous

with that in the convection zone, again by thermal-wind balance. It follows

that the tachocline determines the differential rotation at the base of the

convection zone – not vice versa – and that the convection zone reacts back

on the tachocline by reshaping the Reynolds and Maxwell stresses and the

consequent gyroscopic pumping. To my knowledge there has been no effort,

so far, to construct a model that captures this two-way coupling.

With the inevitability of a poloidal magnetic field in the interior below

the tachopause, we may expect magneto-rotational instabilities to be po-

tentially significant in the interior as well as in the tachocline’s upwelling

branch. As pointed out in Balbus & Hawley (1991 & refs., especially Fricke

1969), magneto-rotational instabilities should operate in stellar interiors

with poloidal magnetic fields, in such a way as to prevent Ω̄ from decreasing

outwards from the rotation axis. This plus Ferraro’s law of isorotation could

clamp the upwelling and most of the interior into solid rotation – except in

the ‘polar pits’ at the hairy-sphere defects in the horizontal magnetic field at

the tachopause, which as GM pointed out are the only locations where the

gyroscopically pumped tachocline circulation can burrow down far enough

to burn lithium and beryllium. Notice, incidentally, how the arguments of

Section 8.5 are vitiated by the poloidal magnetic field: PV advection is nul-

lified by MHD effects on the right-hand side of equation (8.5). There is no

longer any tendency to form PV mixing regions!

If the interior is clamped into solid rotation almost everywhere, it hardly

needs saying that there are strong implications both for helioseismic inver-

sion and for understanding primordial spindown. Furthermore, older specu-

lations such as mine of 1994, about QBO-like torsional oscillations in stellar

interiors, would now appear to be ruled out.
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