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ABSTRACT

An idealized analytical model of the barotropic potential vorticity (PV) staircase is constructed, con-
strained by global conservation of absolute angular momentum, perfect homogenization of PV in mixing
zones between (prograde) westerly jets, and the requirement of barotropic stability. An imposed functional
relationship is also assumed between jet speed and latitudinal separation using a multiple of the “dynamical
Rossby wave” Rhines scale inferred from the strength of westerly jets. The relative simplicity of the
barotropic system provides a simple relation between absolute angular momentum and PV (or absolute
vorticity). A family of solutions comprising an arbitrary number of jets is constructed and is used to illustrate
the restriction of jet spacing and strength imposed by the constraints of global conservation of angular
momentum and barotropic stability. Asymptotic analysis of the theoretical solution indicates a limiting ratio
of jet spacing to the dynamical Rhines scale equal to the square root of 6, meaning that westerly jets are
spaced farther apart than predicted by the dynamical Rhines scale. It is inferred that an alternative “geo-
metrical” Rhines scale for jet spacing can be obtained from conservation of absolute angular momentum on
the sphere if the strength of zonal jets is known from other considerations. Numerical simulations of the full
(nonaxisymmetric) equations reveal a pattern of zonal jet evolution that is consistent with our construction
of ideal PV staircases in spherical geometry (which can be considered as limiting cases), as well as with the
asymptotic analysis of a geometrical Rhines scale. The evolution of the PV staircase originating from an
upscale cascade of energy in the barotropic model is therefore seen to depend on conservation of energy
(for the strength of jets) and conservation of absolute angular momentum (for the spacing and number of
jets). Further analysis of the numerical results confirms a “Taylor identity” relating the flux of eddy
potential vorticity to mean-flow acceleration. Eddy fluxes are responsible for the occasional transitions
between mode number as well as for maintaining the sharp westerly jets against small-scale dissipation.
Suggestions are made for extending the theoretical model to PV staircases that are asymmetric between
hemispheres or with latitudinal variation of amplitude, as modeled in the shallow-water system.

1. Introduction

The concept of “geophysical turbulence” when ap-
plied to the large-scale circulation of planetary atmo-
spheres must account for the emergence of coherent
structures, most notably zonal jets of alternating sign
that organize the turbulence into latitudinal bands. This
result is consistent with the role of Rossby waves in
arresting the upscale cascade of energy in barotropic or
geostrophic turbulence (Rhines 1975; Williams 1978).
Certain fundamental characteristics of turbulence, such

as disorder, similarity, and power-law behavior, are un-
characteristic of the zonal-mean zonal flow, which is
ordered, coherent, and contributes to a steepened spec-
tral slope with a distinct concentration of energy in the
zonal component at low wavenumbers:

1) The mean zonal flow is ordered in the sense that (i)
its temporal evolution from rest in a forced-
dissipative system is monotonic, punctuated by oc-
casional transitions of flow regime, and (ii) its main-
tenance in steady state (if the design of the numeri-
cal experiment allows such) is achieved by a balance
of statistically stationary eddy fluxes and dissipative
processes (typically some combination of hyperdif-
fusion at small scales and Rayleigh friction or hy-
podiffusion at large scales), both of which display a
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consistent and predictable relationship to the jets
themselves (Huang and Robinson 1998).

2) The mean zonal flow is coherent in the sense that it
has a well-defined, quasi-periodic latitudinal struc-
ture (Danilov and Gurarie 2004) whose variation in
latitude on the sphere, and relationship between
jet strength and spacing, are in large measure repro-
ducible and therefore predictable on theoretical
grounds. Jet spacing is positively correlated with jet
strength (Huang and Robinson 1998) or rate of en-
ergy injection (Maltrud and Vallis 1991; Scott and
Polvani 2007). Simplicity of flow regimes is seen not-
withstanding the well-known fact that the flow evo-
lution in these very experiments (whether forced or
freely decaying) is unpredictable in different realiza-
tions and may lead (from identical parameter set-
tings but different initial conditions or random forc-
ings) to flows of opposing symmetry: for example, in
equatorial superrotation versus subrotation (Kita-
mura and Ishioka 2007).

3) As a coherent structure, the mean zonal flow causes
the lower half of the wavenumber spectrum to de-
part significantly from predictions of isotropic quasi-
2D turbulence with its “�3 slope” downscale enstro-
phy cascade and “�5/3 slope” upscale energy cas-
cade. The zonal component instead exhibits a much
steeper slope approaching �5 (Galperin et al. 2001),
but it is questionable as to whether the concept of an
energy spectrum is useful owing to the regular spa-
tial structure of the zonal mean component (G. Val-
lis 2006, personal communication). Interestingly, if
this component is notched out of the spectrum, the
remaining nonzonal component displays an energy
spectrum resembling quasi-2D turbulence (Huang
et al. 2001; Danilov and Gurarie 2004). Geophysical
turbulence therefore has a critical role to play in the
evolution and maintenance of the coherent struc-
tures. To some extent this role can be anticipated by
spectral thinking (Vallis and Maltrud 1993), but ul-
timately it becomes necessary to understand wave
and turbulent transport processes in order to explain
the evolution and maintenance of jets (Huang and
Robinson 1998).

Between the wave and turbulent spectral regimes is
the so-called dynamical Rhines scale, defined most sim-
ply as (i) the scale at which Rossby waves break and
cease to exist, giving way to turbulence (proceeding to
smaller spatial scales) or (ii) the scale at which the up-
scale turbulent transfer of energy is arrested by the
excitation of Rossby waves (proceeding to larger spatial
scales). An alternative definition of the Rhines scale, or
spectral Rhines scale, was introduced by Maltrud and

Vallis (1991) in terms of the upscale transfer of energy.
Their definition has the advantage that one can predict
a transition scale based on knowledge of the rate of
energy injection at small scales. As just noted, however,
the emergence of coherent structures cannot be antic-
ipated from spectral thinking alone. The role of Rossby
waves and their associated eddies resulting, for ex-
ample, from wave breaking or the excitation of smaller
solitary waves and vortices, must be accounted for. This
aspect of the problem involves wave–mean flow inter-
action, but having said this in no way guarantees that
the evolution and maintenance of coherent structures is
easy to understand. Based on the limited information
currently available, we infer three possible scenarios for
the organization of wave and turbulent transport by
persistent zonal jets: 1) The first scenario is deduced
from the consideration that (prograde) westerly jets
cannot be the locus of a Rossby wave critical level;
therefore, the jet latitude is a point of minimum parcel
displacement and latitudinal stirring (Dunkerton and
O’Sullivan 1996). The resulting “potential vorticity
(PV) staircase” associated with a profile of westerly jets
(McIntyre 1982; McIntyre and Palmer 1983, 1984;
Peltier and Stuhne 2002) is then regarded as a natural
outgrowth of the resting planetary profile of PV, which
is an unstable equilibrium in the presence of Rossby
waves and instabilities. The associated meridional pro-
file of mean zonal wind organizes eddy momentum
fluxes so as to maintain the staircase (Dunkerton 1991a;
Randel and Held 1991; Del Sole 2001). 2) A second
scenario also involves wave activity but recognizes that
westerly jets may act as waveguides owing to their cur-
vature (Simmons 1974), rather than directing wave ac-
tivity to regions of weaker westerlies (Dickinson 1968).
Steepened PV gradients ultimately become the locus of
edge waves (Scott et al. 2004) when approaching the
staircase limit. In a three-dimensional flow, edge waves
propagate vertically on the jumps of the staircase and
are evanescent on the steps in between. In flows with
small-scale dissipation, wave fluxes may act locally to
maintain westerly jets and their sharp meridional PV
gradients. 3) A third scenario emphasizes the role of
latitudinal shear in organizing small-scale eddy momen-
tum fluxes in such a way as to maintain the jets (Huang
and Robinson 1998). As eddies are rotated by shear,
their meridional flux of zonal momentum is eventually
altered to reinforce the shear. Whether this scenario
involves a continuum of waves, or is simply the out-
come of turbulence modified by persistent local shears,
remains unclear. In the latter case there is no a priori
distinction between (prograde) westerly and (retro-
grade) easterly jets; the locus and morphology of tur-
bulent eddies evidently must depend on some other
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process (most likely Rossby wave propagation) that ex-
cites or modulates the turbulence in the first place.
Likewise, the effect of latitudinal shear on the con-
tinuum (the so-called Orr mechanism) does not differ-
entiate between the sign of the shear, so in order to
create or maintain a PV staircase this mechanism, too,
must depend in some way on underlying asymmetries in
wave propagation.

A better understanding of each of these scenarios
(and possibly others) is needed for a comprehensive
understanding of PV staircases. Particular attention
should be given to eddy fluxes of PV that create and
maintain the jets against dissipation. Do these fluxes act
primarily (i) to maintain the (prograde) westerly jets in
their cores, (ii) to maintain the (retrograde) easterly
jets in between, or (iii) both? The answer to this ques-
tion is likely a function of the scenario observed, as well
as the dimensionality of the system. A multilayer sys-
tem, for example, admits vertical wave propagation of
quasi-stationary planetary waves that anchor easterly
jets via heat fluxes while baroclinic eddies maintain the
staircase via momentum fluxes (Lee 2005). All of our
scenarios have a common characteristic that lateral
eddy mixing is inhomogeneous in latitude and is orga-
nized by the PV staircase in such a way as to maintain it.
The notion of inhomogeneous mixing in the context of
Rossby wave–mean flow interaction appeared 25 yr ago
in McIntyre’s (1982) review of sudden warmings and
the related discussion by McIntyre and Palmer (1983)
of a midlatitude “surf zone” bounded on both sides by
sharp gradients1 of PV and tracer: that is, the circum-
polar vortex edge and (what later came to be known as)
the subtropical transport barrier. Although the strato-
spheric flow is diabatically forced, actual gradients are
much sharper than anticipated from diabatic effects
alone (Butchart and Remsberg 1986). Clearly, large-
scale planetary waves and specific flow features such as
the Aleutian anticyclone are instrumental, if not essen-
tial, to the PV staircase of the terrestrial stratosphere
and its extension to the terrestrial mesosphere
(Dunkerton and Delisi 1985). This situation contrasts
with the deep oceans of Earth and the visible atmo-
spheres of gas giants (Jupiter, Saturn, etc.), where
large-scale waves are less evident and (to the extent
that we can observe them) the flows are dominated by
smaller-scale eddies (Williams 1978; Galperin et al.
2004; Ingersoll et al. 2004) and, presumably, the trans-
ports associated with such eddies.

From the preceding discussion we infer that litera-

ture on the PV staircase has been motivated by a two-
fold desire (i) to explain the banded structure of ob-
served atmospheres in our solar system and terrestrial
oceans, and (ii) to understand better the implications of
Rossby waves and the Rhines scale for geophysical tur-
bulence in rotating, stratified flows, whether on the �
plane or sphere. The concept of the Rhines scale ex-
tends to spherical geometry, with certain complications
arising from the latitudinal variation of � (Cho and
Polvani 1996; Huang and Robinson 1998) and the ten-
dency of shallow motions to be equatorially trapped
(Theiss 2004; Scott and Polvani 2007). In one respect
the sphere is a simpler system than the � plane because
the latitudinal variations of � and deformation radius in
effect lock the PV staircase to a fixed pattern that can-
not drift in latitude (apart from occasional merger of
jets). Going to the sphere we sacrifice the perfectly
regular jet pattern of the � plane (Danilov and Gurarie
2004) but are able to glean useful information from the
latitudinal variation of jet structure (Yoden and Ya-
mada 1993; Huang and Robinson 1998; Scott and Pol-
vani 2007) as emphasized in the discussion to follow. A
local application of the �-plane model to the sphere was
advocated recently by Theiss (2004) and Smith (2004).

As is clear from the title of our paper, another im-
portant aspect in the barotropic and shallow-water sys-
tems is the conservation of absolute angular momen-
tum. Despite occasional recognition of the importance
of this global invariant (Williams 1978; Yoden and Ya-
mada 1993; Dritschel and McIntyre 2007) there has
been surprisingly little discussion of the role of angular
momentum conservation in building the PV staircase.
This is in contrast to the repeated emphasis given to
conservation of energy and the many factors that regu-
late the flux of energy and its accumulation or dissipa-
tion in various parts of the spectrum. Conservation of
angular momentum has been a guiding principle in un-
derstanding nonlinear Hadley circulations in the terres-
trial troposphere (Held and Hou 1980; Lindzen and
Hou 1988; Plumb and Hou 1992) and stratosphere
(Dunkerton 1989, 1991b; Tung and Kinnersley 2001)
and on Mars (Schneider 1983). In a three-dimensional
flow, overturning circulations are required to maintain
gradient balance in the presence of thermal and me-
chanical forcings. Multijet flows are accompanied by
multiple overturning circulations (James and Gray
1986).

The discussion to follow will make clear that PV
staircases require consideration of the dual conserva-
tion of energy and angular momentum. Our conclusion
is based on a mathematical analysis that takes into ac-
count the conservation laws, spherical geometry, and a
requirement that the staircase be barotropically stable,

1 Inhomogeneous mixing is also seen in the spontaneous devel-
opment of a density staircase in freely decaying stratified turbu-
lence (Ruddick et al. 1989; Holford and Linden 1999).
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and is guided by recent numerical findings. Conserva-
tion of absolute angular momentum imposes a con-
straint on possible flows that may arise in geostrophic
turbulence on the sphere, extending from the tropics to
midlatitudes, or as far as the staircase extends. A scal-
ing relation (in effect, law) will be derived relating the
spacing of (prograde) westerly jets to their latitudinal
spacing in terms of a “geometrical Rhines scale” whose
definition is independent of the details of wave trans-
port, PV mixing, and turbulence phenomenology. We
merely require a PV staircase that (i) is completely ho-
mogenized within mixing zones located between (pro-
grade) westerly jets and (ii) is barotropically stable. For
simplicity and economy of presentation, discussion in
sections 2 and 3 is limited to the barotropic case with
hemispheric symmetry. Suggestions are offered in sec-
tion 4 on how to extend the theory to asymmetric con-
figurations and those with latitudinal variation of jet
amplitude as arise in the shallow-water system. The
theory is illustrated in section 3 using a barotropic ver-
sion of the numerical model described by Scott and
Polvani (2007).

2. Analytical solutions

The ideal PV staircase is a piecewise constant profile
of potential vorticity extending from one hemisphere to
the other, corresponding to a continuous, piecewise lin-
ear profile of absolute angular momentum. We con-
sider exclusively profiles with even or odd symmetry
about the equator having either an even (2, 4, 6 . . .) or
odd (3, 5, 7 . . .) number of stair steps—a step corre-
sponding to the flat (latitude invariant) part of the PV
profile. The former profiles have a PV jump exactly on
the equator and are in superrotation, with (prograde)
equatorial westerlies; the latter have a middle step cen-
tered on the equator and may be in equatorial subro-
tation, with (retrograde) equatorial easterlies, or
(somewhat less likely) in weak equatorial superrotation
with two westerly jets straddling the equator. When
cross equatorial symmetry is assumed, an odd number
of steps requires trivially that the middle step be cen-
tered on the equator. The poleward extent of the PV
staircase is regarded either as a parameter or variable
of the problem. In general, the stair does not extend all
the way to the poles, a scenario considered unlikely, as
explained by Scott and Polvani (2007).

The absolute angular momentum is

m � a cos��u � �a cos��, �2.1�

where u is the mean zonal wind, � and a are the rota-
tion rate (positive eastward) and radius of the planet,
respectively, and � is latitude. The absolute vorticity—a
surrogate for PV in the barotropic model—is

�a � 2� sin� �
1

a cos�

�

��
�u cos��. �2.2�

These quantities are related as

�a � �
1

a2

�m

��
, �2.3�

where 	 � sin�. Hereafter we use nondimensional
quantities

m � �a2m* �2.4a�

�a � ��*a �2.4b�

u � �aU �2.4c�

such that

�*a � �
�m*
��

. �2.5�

For notational convenience the asterisks are omitted
from these symbols in the remainder of this section;
unless indicated otherwise, the quantities m and 
a are
in nondimensional form.

a. Mode 0: Equatorial superrotation (single jet)

The resting atmosphere has m � 1 � 	2, a downward
concave parabola in 	 with maximum m on the equator,
going to zero at the poles. A symmetric solution with
equatorial superrotation can be obtained easily as

m � me � �1 � �p
2 � me�

�

�p
, �2.6�

where me � 1 is the equatorial value of m and 	p is the
poleward terminus of the mixing zone. The minus sign
is chosen for solutions in the “Southern” Hemisphere
	 � 0. This construction is illustrated in Fig. 1a. For
conservation of absolute angular momentum we re-
quire that the areas bounded by the two curves are
identical in the interval [0, 	p]:

me�p �
1
2
�1 � �p

2 � me��p � �p �
1
3

�p
3 , �2.7�

so that

�p �3�me � 1�. �2.8�

Note that the integration is performed over 	, which
accounts properly for the diminishing surface area as
meridians converge to the poles. In this simple solution
with a single prograde (westerly) jet on the equator
(hereafter “mode 0”) a direct correspondence exists be-
tween the degree of equatorial superrotation (me � 1)
and the poleward terminus of the mixing zone, 	p. A
maximum value of superrotation (1/3) is realized when
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mixing extends over the entire hemisphere in both
hemispheres (	p � 1).

The absolute vorticity of the resting atmosphere is
2	, and of the mixed atmosphere is

�a � �
1

�p
�1 � �p

2 � me�

� �
4
3
3�me � 1�

� �
4
3

�p . �2.9�

In the limiting case 	p � 1, 
a � �4/3. Figure 1b illus-
trates the PV staircase for mode 0. This solution has the
interesting property that the value of homogenized PV

in either hemisphere is greater (in absolute value) than
a homogenized value obtained by mixing the hemi-
spheres individually (�1 for the limiting case). Evolu-
tion to the mixed state from an atmosphere initially at
rest has required an upgradient transport of PV from
the Southern to Northern Hemisphere in addition to
the intrahemispheric mixing between the tropics and
midlatitudes of each hemisphere.

As a check on self-consistency of the mode 0 solution
we may calculate the time-integrated tendencies of (i)
absolute angular momentum at the equator (the equa-
torial “impulse”) and (ii) absolute vorticity integrated
over the Northern Hemisphere:

�me � ���a�. �2.10�

FIG. 1. (a) Angular momentum for mode 0 solution superposed on the resting parabola, plotted as a function of
	 � sin�. Vertical dashed lines indicate latitudes where the angular momentum does not change between the
resting and staircase states. (b) Same as in (a), but for PV. We refer to a step in the staircase as the flat (latitude
invariant) part, and a riser as the sudden jump (positive northward). The integrated change of PV outside the
dashed lines is identically zero by Stokes theorem. (c) Angular momentum as in (a), but for mode 1. In this special
case of mode 1 the outer part of the staircase solution is constrained to be tangent to the resting parabola. (d)
Potential vorticity as in (b), but for mode 1. The areas outside the vertical dashed lines circumscribed by the resting
and staircase profiles of PV appear to be approximately the same and are, in fact, equal as required by Stokes
theorem.
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The change in equatorial m is obviously

�me � me � 1 �
1
3

�p
2 , �2.11�

while the initial and final values of hemisphere-
integrated absolute vorticity inside �	p (it does not
change outside) are

��a� � ��0

� p

2� d� � �p
2 t � ti ,

��
0

� p 1
�p

�1 � �p
2 � me� d� �

4
3

�p
2 t � tf .

�2.12�

The final and initial values of �
a� differ by the amount
on the rhs of (2.11), confirming (2.10). In other words,
the equatorial impulse leading to superrotation is ex-
actly consistent with the interhemispheric flux of PV
leading to that state. This result illustrates (i) Stokes
theorem applied to the entire hemisphere with a
bounding contour lying on the equatorial latitude
circle, and (ii) a generalized “Taylor identity” (Dunker-
ton 1980; Dritschel and McIntyre 2007) in which the
acceleration along a fixed closed contour is determined
by the flux of absolute vorticity across the contour. In
Fig. 1b the impulse corresponds graphically to the
change in PV between the equator and latitudes:

�� � �0 �
1
2

�m �
1
3

�p , �2.13�

where 	0—indicated by vertical dashed lines in Figs.
1a,b—is the (absolute value of) latitude where m does
not change and 	m is the midpoint of a “midlatitude”
mixing zone lying beyond 	0. The change of PV inte-
grated from the equator to 	0 is geometrically

3
4

�0

4
3

�p �
1
3

�p
2 � me � 1 � �me . �2.14�

Note that the meridionally and time-integrated abso-
lute vorticity tendency outside �	0 is zero since the
changes straddling �	m are equal and opposite. Stokes
theorem applied on partial hemispheres poleward of
�	0 therefore implies no net change of absolute angu-
lar momentum (or of mean zonal velocity) on the
bounding latitude circles �	 0, consistent with
Fig. 1a.

Although nothing has been said about transport
mechanisms, the meridional transport of angular mo-
mentum and potential vorticity by eddies is presumably
required for equatorial superrotation. The tendency of
mean zonal wind can be written (in dimensional form)

either in terms of the meridional convergence of eddy
momentum flux, or (using the Taylor identity) as

�u

�t
� �	�	 �2.15a�

�m

�t
� a cos� �	�	. �2.15b�

The tendency of mean relative vorticity is

��

�t
� �

�

�� ��	�	
cos�

a �. �2.16�

Advection by a mean meridional circulation is ne-
glected, consistent with the barotropic model. The ten-
dencies of m and 
 are consistent with (2.3), noting that
the planetary component of 
a does not change with
time.

Eddy mixing processes are necessary for staircase
formation, and some combination of “interhemi-
spheric” and “intrahemispheric” PV transport is also
required. Knowledge of the initial and final state alone,
however, is insufficient to choose one mixing scenario
over another. Rather, we note a valuable lesson from
this example: in the absence of external forcings and
mean meridional circulation, transport of PV across
(what is to become ultimately) a “barrier” to meridio-
nal transport by breaking Rossby waves and instabili-
ties is necessary in order to set up the barrier in the first
place. This fact has an important implication for the
construction of general solutions in section 2c.

b. Mode 1: Equatorial sub- and superrotation
(twin jets)

A solution with three mixing zones can be obtained
easily, with m � me � constant from the equator to
some latitude �	1 and

m � me �
|� | � �1

�p � �1
�1 � �p

2 � me� �2.17�

in the interval �[	1, 	p]. This construction is shown in
Fig. 1c. Conservation of absolute angular momentum
requires that

me�p �
1 � �p

2 � me

�p � �1
�1

2
�2 � ��1�

� 1

� p

� me�p �
1
2
�1 � �p

2 � me���p � �1�

� me�1 �
1
2
�m1 � mp���p � �1� � �p �

1
3

�p
3 ,

�2.18�
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where m1 � m(	1) � me and mp � m(	p) � 1 � 	2
p .

The second term on the last line of (2.18) represents
intuitively the average angular momentum in the outer
mixing zone multiplied by the width of the zone. This
equivalence is valid for any linear-in-m segment of the
staircase.

The absolute vorticity (Fig. 1d) is zero in the middle
zone straddling the equator and is equal to

�a � �
�1 � �p

2 � me�

�p � �1
�2.19�

in the interval �[	1, 	p], where the lower (positive)
sign once again is selected for the Southern Hemi-
sphere. The mode 1 solution is underdetermined, with
two variables, 	1 and 	p (for a given me), but only one
angular momentum constraint. A limiting case of mar-
ginal stability can be obtained, nevertheless, as shown
in Fig. 1d by assuming that the absolute vorticity is
continuous at �	p:

2�p � �
1 � �p

2 � me

�p � �1
. �2.20�

It is a limiting case in the sense that, if the absolute
vorticity were lower (in absolute value) outside of �	p

than inside, the flow would be barotropically unstable
in the neighborhood of �	p and would presumably
remove the instability, returning m and 
a to their lim-
iting profiles. This assumption corresponds graphically
in Fig. 1c to the requirement that the slope of m in the
midlatitude mixing zone not exceed the slope of the
resting profile at 	p, that is, that the straight segment is
tangent to the parabola. This situation also yields the
largest possible reduction of me below 1, that is, equa-
torial subrotation.

The two constraints (2.18) and (2.20) provide two
relationships for me:

1 � me �
1
3

�p
2 � ��p � �1�

2 �2.21a�

1 � me � �p
2 � 2�p��p � �1� �2.21b�

so that

�p
2 � 3�1

2 �2.22a�

1 � me � �1
2�23 � 3� �2.22b�

3�1 � me� � �p
2�23 � 3�. �2.22c�

The last equality, (2.22c), provides a unique relation-
ship between me and 	p analogous to (2.8). As in the
mode 0 solution it is easy to verify that the equatorial
impulse starting from an atmosphere at rest, �me �
	2

1(3 � 23), is exactly consistent with a downgradient

cross-equatorial transport of absolute vorticity from the
Northern to Southern Hemisphere. Once again we may
imagine that the net transport is equivalent to a homog-
enization of absolute vorticity in the interval [�	0, 	0],
where

�0 � �123 � 3 �1 � me , �2.23�

while the remaining mixing outside 	0 is intrahemi-
spheric only. The mean flow is unchanged at �	0, and
the integrated absolute vorticity outside this latitude is
also unchanged, as required by Stokes theorem.

It is fortuitous that the limiting (marginally stable)
mode 1 solution displays only two jets (Fig. 1c) or “ris-
ers” of the PV staircase (Fig. 1d) from pole to pole
whereas the mode 0 solution contains three risers (Fig.
1b). In fact the mode 1 solution should always be re-
garded as having four risers; it just happens that the PV
jumps at �	p are identically zero in this limit. The
general form of the mode 1 solution is a barotropically
stable configuration with easterlies poleward of the jets
at �	1 extending from �	0 to �	p. Three examples
are shown in Figs. 2a,c,e. The angular momentum con-
straint is given by (2.18), but barotropic stability at �	p

requires that

2�p � �
�1 � �p

2 � me�

�p � �1
. �2.24�

The corresponding profiles of absolute vorticity are
shown in Figs. 2b,d,f. The first example displays weak
equatorial superrotation with a pair of off-equatorial
prograde jets. Mode 0 is evidently a limiting form of the
superrotating mode 1 solution when these off-
equatorial jets collapse to a single on-equatorial jet. In
such superrotating cases the equatorial stair step is nar-
rower than the other two midlatitude steps. In between
the subrotating and weakly superrotating solutions is
another special case (Figs. 2c,d) obtained by setting
me � 1. The steps of the PV staircase are of equal width
in this case. The tropical part of this angular momen-
tum–conserving (AMC) solution was obtained by Held
and Hou (1980) in the upper troposphere for heating
symmetric about the equator. In this special case

�1 �
1
3

�p �2.25a�

�0 �
1
2

�p �2.25b�

and

�a � �
3
2

�p �2.26�
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in the interval �[	1, 	p], which may be compared to its
value �2	p in the limiting case of marginal stability.
Unlike the preceding cases, there is no unique relation-
ship between me and 	p in (2.25) and (2.26) since any
value of 	p is possible in this self-similar solution. The

final example shown in Figs. 2e,f is in equatorial sub-
rotation with small risers at �	p. In this case the equa-
torial stair-step is the widest of the three, and a second
pair of 	0 exist near the equator.

The axisymmetric model of Held and Hou did not

FIG. 2. Angular momentum and potential vorticity as in Fig. 1, but for mode 1 solutions with (a), (b) 	p � 0.6,
x � 	 1/	p � 0.25, (c), (d) 	p � 0.75, x � 0.3333, and (e), (f) 	p � 0.8, x � 0.4. Note in (e) that the subrotating
solution has two pairs of latitudes where the change of angular momentum between resting and staircase states is
zero.
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allow eddy mixing outside of 	1; absolute angular mo-
mentum instead was advected downward in the subsid-
ing branch of the Hadley circulation, ultimately re-
turned to the solid Earth in a (frictionally controlled)
surface return flow. Our barotropic model of eddy mix-
ing on the sphere is very different from their model of
the axisymmetric and equatorially symmetric Hadley
circulation but shares the same property, when me � 1,
of zero exchange of angular momentum and PV be-
tween hemispheres. This special case has zero impulse
at the equator and therefore no change in meridionally
integrated absolute vorticity in each hemisphere indi-
vidually. Of the examples shown, me � 1 marks the
boundary between upgradient and downgradient PV
transport across the equator.

We note finally that the general form of mode 1 so-
lution (including the mode 0 solution as a limit) is em-
braced by the relationship

�me � me � 1 � �p
2

1⁄3 � x

1 � x
�2.27a�

�a � �
4
3

�p

1

1 � x2 , �2.27b�

where 	1 � x	p. The three special cases highlighted in
Figs. 1a,b, 2c,d and 1c,d, respectively, are (i) mode 0
limit (x � 0), (ii) Held and Hou (1980) AMC circula-
tion (x � 1/3), and (iii) limit of marginally stable flow at
�	p(x � 1/3). �he latitudes of zero impulse are
given by the solution of a quadratic equation in x � with
coefficients

a � 1 � x2 �2.28a�

b � �
4
3

�2.28b�

c �
1
3
� x2, �2.28c�

where 	0 � x �	p. This result is validated by the vertical
dashed lines in Fig. 2, and it can be shown analytically
that the correct values are obtained using this formula
in the special cases highlighted above. The negative
root yields the vertical dashed lines, whereas the posi-
tive root corresponds trivially to x � � 1 (not shown).
The trivial solution is obtained from the fact that a �
b � c � 0. Using this condition, the negative root of the
quadratic formula simplifies to the remarkable equality

�a � �0 � �p , �2.29�

which can be visualized, in geometric terms, from the
plots of absolute vorticity in the following way. The
change of meridionally integrated absolute vorticity is
identically zero outside 	0 (as required by Stokes theo-
rem, since 	0 is the latitude where the mean flow does
not change), implying that the two small triangles in this
region formed by the intersection of the initial and final
linear segments of 
a are identical. Hence

�a � 2�0 � 2�p � �a , �2.30�

whereupon (2.29) follows. The extra pair of dashed
lines in Figs. 2e,f originates from (2.23) in cases where
�me � 0.

From the preceding discussion it is clear that Stokes
theorem constrains the area of adjacent polygons—
formed by the intersection of initial and final profiles of

a and bounded laterally by any of the possible values
of 	0—to be equal, ensuring that the meridionally in-
tegrated absolute vorticity does not change in such re-
gions. Our illustrated cases afford three additional ex-
amples of equal-area polygon pairs as follows: (i) in Fig.
1d, a rhomboid and triangle, equatorward and pole-
ward of 	1; (ii) in Fig. 2d, a triangle and rhomboid,
equatorward and poleward of 	1; and (iii) in Fig. 2f, the
two rhomboids straddling 	1. (In the latter example,
despite appearances, 	1 does not lie exactly midway
between the two values of 	0; nevertheless, the rhom-
boids have equal area.) The reader may verify that
the polygons in each pair have equal area by substi-
tuting the arithmetic values of 	0, 	1, and 	p in each
case.

The process of building a PV staircase from the initial
linear slope 2	 may be likened to the construction of
terraces on a linear grade where the soil, like PV, is a
conserved quantity. The same end result can be
achieved by any number of mixing scenarios. As noted
in section 2a, we are inclined to choose the simplest
rearrangement as the most likely; however, without ad-
ditional information on mixing processes, there is no
reason to select one scenario over another. Consider
the challenge posed by Fig. 2b, the weak superrotating
mode 1 solution. In this case, the simplest rearrange-
ment of soil (in other words, PV) transfers the rhom-
boidal section equatorward of �	0 in the Southern
Hemisphere to its new location equatorward of �	0 in
the Northern Hemisphere, while flattening the equato-
rial grade in the opposite direction by flipping the tri-
angular section just north of the equator to the south-
ern side. An alternative scenario leaves behind a small
portion of the rhomboid to fill in the triangle south of
the equator, and then picks up additional soil just north
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of the equator on the way to forming the northern wall.
Putting this in the context of the dynamics of a rotating
fluid, the first scenario requires nonlocal mixing, in the
sense that lateral eddy scales increase linearly from the
equator, while the second scenario suggests a more uni-
formly local mixing process across the tropical belt.
Nonlocal mixing is uncharacteristic of Fickian diffusion
but is possible in the general framework of “transilient
turbulence” described by Stull (1984). The formation of
prograde (westerly) jets in our illustrations requires (i)
positive (upgradient) PV transport [cf. (2.10a) and
(2.10b)] and (ii) inhomogeneous mixing, with PV ho-
mogenization restricted to mixing zones between the
jets (McIntyre 1982; McIntyre and Palmer 1983).

c. Higher modes with cross-equatorial symmetry

Unlike the mode 0 solution, for which a unique re-
lationship exists between the degree of equatorial su-
perrotation �me and adjacent mixing zones, the mode 1
solution and all higher solutions are underdetermined
when angular momentum conservation provides the
only constraint on the problem. Because of their infi-
nite number and variety, it seems pointless to discuss
higher-mode solutions without invoking additional con-
straints that, in effect, select unique combinations of
profile parameters. In this subsection our procedure is
to select a mode number (i.e., a given number of steps
and risers) and then determine combinations of profile
parameters that satisfy the imposed constraints. The
two hemispheres are assumed symmetric in m. The con-
vention is that even modes n � 0, 2, 4 . . . have a jet on
the equator while odd modes n � 1, 3, 5 . . . have a stair
step centered on the equator. Going from one even n to
the next, a new jet is added in each hemisphere, which
introduces two new variables: namely, the position and
strength of the jet. The same occurs going from one odd
n to the next. (An even mode may be regarded as hav-
ing the same number of jets in each hemisphere as the
following odd mode, but with the two jets closest to the
equator collapsed into one.) We infer that for each new
jet in the Northern Hemisphere, two additional con-
straints must be imposed in order to preserve a unique
functional relationship between me and 	p. To under-
stand this requirement in more detail, the global angu-
lar momentum constraint for mode number n may be
written (in each hemisphere) as

�
j�0

N 1
2
�mj � mj�1�

1
2
�
� j � 
� j�1� � �p �

1
3

�p
3 ,

�2.31�

where N � (n � 1)/2 and �	 j is the spacing, between
prograde (westerly) jets, associated with the jth jet lo-
cated at 	 j. Figure 3 illustrates the staircase construc-
tion just described. This expression generalizes the last
line of (2.18) to an arbitrary number of steps. The con-
vention is that j � 0 is located on the equator (regard-
less of even or odd symmetry) and j � N � 1 is the
outermost riser at 	p. For the outer boundary condition

mN�1 � 1 � �p
2 �2.32a�

1
2
�
�N � 
�N�1� → �p � �N �2.32b�

so that the outermost riser is not a westerly jet; rather,
it is a point of intersection with the resting parabola. In
(2.31) there are 2(N � 2) “basic variables” mj, �	 j—
from which it is again apparent that two new variables
are introduced with each increment of N. The average
angular momentum in each mixing zone is multiplied
by the width of that zone [cf. (2.18)] and we imagine
that the width of each mixing zone is determined some-
how by the two jets bounding that zone. We regard
(2.31) as a global constraint; that is, we do not require
angular momentum to be conserved locally in indi-
vidual mixing zones. This expectation is consistent, at
least, with the realization that jet formation, if attrib-
utable to eddies, requires an eddy flux of potential vor-

FIG. 3. Construction of PV staircase for higher mode numbers
(in this case, mode 10, with p � �0.08) illustrating a variable
spacing of constant prograde (westerly) jets, slight increase of
easterly jet amplitude approaching the pole, and a polar anticy-
lone formally lying outside the staircase. When p � 0 ( p � 0), jet
spacing increases (decreases) in 	 approaching the pole. The jet
spacing increases in � in either case if p � �0.5. The example
shown lies near the coalescence point and has weak polar easter-
lies. On the interior branch above this point, the polar flow be-
comes westerly.
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ticity across the latitude of the jet during its period of
formation.

Aside from the spherical geometry and global angu-
lar momentum constraint, all of the geophysical fluid
dynamics (GFD; wave and instability momentum trans-
port and turbulent mixing processes) is contained in the
specification of mj and �	 j. This is by no means a trivial
problem, and we wish to make clear that the following
discussion is not intended to solve fully the dynamical
problem, but to illustrate how—with certain simplifying
but reasonable assumptions—the spherical geometry
and global angular momentum constraint may be used
to construct ideal PV staircases with n � 2 in much the
same way as done with the lowest two modes illustrated
in sections 2a, b. Toward this end, two constraining
formulas are introduced that are based loosely on the
numerical results of Scott and Polvani (2007):

1) JET STRENGTH

The maximum speed of prograde (westerly) jets is
approximately constant across the staircase when the
radius of deformation is greater than or equal to the
planetary radius.2

Therefore

mj � mj�0� � U1 � � j
2 for j � 0, 1 . . . N,

�2.33�

where U is the maximum mean zonal wind (u) of each
jet, scaled by �a, and mj(0) denotes the absolute angu-
lar momentum of the resting atmosphere. The observed
uniformity of U suggests that eddy potential vorticity
fluxes are reasonably constant across the sphere (at jet
latitudes) when the deformation radius LD is large; that
is, when the waves and eddies responsible for the trans-
port are not equatorially confined. We note incidentally
that the assumption of uniform jet strength is a safe bet
on the midlatitude � plane (Danilov and Gurarie 2004)
with constant �. This symmetry is broken on the sphere,
with its variable � (and variable deformation radius).
Notwithstanding this complication, multiple jets on the
sphere are remarkably similar at large LD.

2) JET SPACING

The number of jets in the staircase is inversely pro-
portional to a Rhines scale as determined by the rms
value of zonal wind (dominated by the zonal mean or
“jet” component) as well as an “energy centroid” in the

spherical wavenumber spectrum of kinetic energy (also
dominated by the zonal-mean zonal component). For
large deformation radius LD, we assume that


� j
�1 � C�F ���

2U
� C�1 � �2�p�U for

j � 0, 1 . . . N, �2.34�

where � � 21 � 	2 is the nondimensional planetary
vorticity gradient, scaled by �/a. When F(�) � �, p �
1/4, noting that � varies as cosine of latitude; this is the
familiar “Rhines scale” derived from the Rossby wave
dispersion relation on the midlatitude � plane. There is
evidently some uncertainty on how to apply the Rhines
scale in a spherical domain. On the one hand, a global
type of disturbance (e.g., a Rossby–Haurwitz wave)
suggests that we consider individual wavelengths and
jets with roughly equal spacing in 	. This choice would
be motivated by the latitudinal structure of Rossby–
Haurwitz waves as Legendre functions. On the other
hand, a local view of waves and their interaction with
jets (or a local view of turbulence in a sheared flow)
suggests that we consider jet spacings that vary in �,
with some expansion or contraction in 	 approaching
the poles. This choice would involve the application of
Rhines scaling, appropriate for the midlatitude � plane,
to all latitudes. At this point a specific choice is not
needed, only that the range of choices is plausible. It
will prove illuminating to consider three values of p
ranging from 1/4 to �1/4, corresponding, respectively,
to jet spacings (i) that expand slowly in the 	 coordi-
nate, approaching the poles, (ii) that are equally spaced
in 	, and (iii) that contract slowly in the 	 coordinate,
approaching the poles. It is very important to note that
in all three cases there is a slow expansion of jet spacing
with latitude when viewed in the � coordinate. There is
no need to consider equal jet spacing in latitude since
the simulated jet spacing always increases approaching
the pole (usually attributed to the variation of �). For
simplicity, the parameter C is taken to be uniform, rec-
ognizing that transport processes are similar across the
staircase when the deformation radius is large. The ef-
fects of small LD in the shallow-water system are dis-
cussed in the sequel. It is unlikely that a universal value
of C exists; this parameter almost certainly depends on
model setup (e.g., how the flow is forced) and the abil-
ity or otherwise of adjacent jets to persist when inter-
leaved with mixing zones. From Scott and Polvani
(2007) we infer that C � 0.3 over four orders of mag-
nitude of forcing strength (the dependence of spacing
on LD is weak), whereas for the ideal mode 0 and 1
staircases shown here, C�O(1). It will be instructive to
examine values of C lying in this range.

2 For a small deformation radius this constraint does not apply:
jet strength decreases with latitude, and we regard polar regions,
with their isotropic turbulence, as formally outside the staircase.
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The parameters C, U, and 	p may be regarded as
“auxiliary” variables when enough constraints are im-
posed to determine them. With the current inventory of
equations and variables we are required to specify two
of the three auxiliary variables as parameters, from
which the third auxiliary variable may be determined as
part of the solution. Here, C and U will be specified and
	p will be determined by the angular momentum con-
straint once all of the 	 j are obtained from

� j�1 � � j �
1
2
�
� j � 
� j�1� for j � 0, 1 . . . N � 1.

�2.35�

For the 	 j, one needs only to specify a ratio of param-
eters U/C2 [cf. (2.34)]. However, it is not possible to
absorb C completely in the definition of U because C
does not appear explicitly (in the ratio U/C2) in the
definition of angular momentum (2.33).

With our simplifying constraints the mode 2 solution
(N � 1) is determined by

m0 � m�U, �0� � 1 � U �2.36a�

m1 � m�U, �1� � 1 � �1
2 � U1 � �1

2

�2.36b�

m2 � 1 � �2
2 �2.36c�

�0 � 0 �2.36d�

�1 � �0 �
1
2
�
�0 � 
�1� �2.36e�

�2 � �p , �2.36f�

together with (2.34) for the �	 j and subject to the glob-
al angular momentum constraint

�
j�0

1 1
2
�mj � mj�1��� j�1 � � j� � �p�1 �

1
3

�p
2�.

�2.37�

An example is shown in Fig. 4, with C � 0.42, U �
0.043, and p � 1/4. In this case the outer mixing zones
are almost tangent to the resting parabola (Fig. 4a);
only tiny risers remain at �	p (Fig. 4b), which could be
easily eliminated with a small change of parameters.
The equatorial riser is slightly stronger than the middle
risers at �	1, owing to a more acute angle of m at the
equator. Redistribution of absolute angular momentum

occurs mainly between the westerly jets at �	1 and the
tropical interior, with its equatorial westerly jet and
flanking easterlies. The first three terms of a Taylor
series (introduced in section 2e) are an excellent ap-
proximation of the exact values at �	1 (Figs. 4c,d).
These jets are separated from the equatorial jet by sig-
nificant easterlies (Fig. 4e)—a consequence of the inte-
rior redistribution of m, as opposed to an exterior re-
distribution, which would create significant easterlies
extending to �	p, complemented by stronger tropical
westerlies (see below). Global conservation of absolute
angular momentum is illustrated by the change of rela-
tive angular momentum (Fig. 4f) providing a more lucid
view of this constraint than shown by the change of
absolute angular momentum (Fig. 4a).

An example of mode 3 is shown in Fig. 5, deter-
mined by

m0 � m1 �2.38a�

m1 � m�U, �1� � 1 � �1
2 � U1 � �1

2

�2.38b�

m2 � m�U, �2� � 1 � �2
2 � U1 � �2

2

�2.38c�

m3 � 1 � �p
2 �2.38d�

�0 � 0 �2.38e�

�1 � �0 �
1
2


�1 �2.38f�

�2 � �1 �
1
2
�
�1 � 
�2� �2.38g�

�3 � �p , �2.38h�

again using (2.34) for the �	 j and subject to the angular
momentum constraint

�
j�0

2 1
2
�mj � mj�1��� j�1 � � j� � �p�1 �

1
3

�p
2�.

�2.39�

There is no equatorial jet for the odd mode; conse-
quently, only the half contribution from �	1 is used in
(2.38f), which determines 	1 entirely. The parameters
in Fig. 5 are C � 0.4231, U � 0.039, and p � 0. This
example displays features similar to those of Fig. 4:
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nearly tangent edges, interior redistribution of m, and
taller risers near the equator (Figs. 5a,b). The Taylor
series with three terms are accurate even at �	2 (Figs.
5c,d). This example, unlike the previous one, has equa-
torial subrotation (retrograde easterlies). Equatorial
easterlies are slightly weaker than in the midlatitudes

(Fig. 5e), which we attribute in general to (i) the dif-
ferent moment arms and (ii) the dependence of the
Rhines scale on latitude. A measure of the latter effect
can be seen in the slightly wider spacing of midlatitude
jets when p � 1/4 (not shown). When p � 0, the vari-
able spacing is eliminated, and the change of relative

FIG. 4. Illustration of mode 2 solution (see text for parameter values): (a) angular momentum superposed on the
resting parabola, (b) PV staircase with tiny risers at �	p, (c) (1 � 	2)�1/4 and its three-term Taylor series
representation (dashed curve), (d) (1 � 	2)1/2 and its three-term Taylor series representation (dashed curve), (e)
relative zonal wind, and (f) relative angular momentum.
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angular momentum once again illustrates the global
conservation of this invariant (Fig. 5f).

d. Parameter dependence

The meridional extent of the staircase 	p and width
of steps �	 j generally increase with U up to a certain
point, given C. Discussion of the parameter space
therefore can be streamlined by considering the value

of U that maximizes 	p subject to the geometric con-
straint 	p  1. For exterior solutions this limit implies
	p � 1, whereas for interior solutions the staircase may
or may not reach the pole depending on whether the
values of C and U lie above or below a coalescence
point, as illustrated in Figs. 6 and 7 for modes 2 and 3,
respectively. As noted above (in connection with Fig. 4)
angular momentum in the exterior solution is ex-

FIG. 5. Same as in Fig. 4, but for mode 3 solution (see text for parameter values).
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changed between the polar latitudes and the staircase
itself, whereas for interior solutions these exchanges oc-
cur entirely between staircase steps. (Our terminology
is unrelated to the interior and exterior solutions of
Laplace’s equation in electrostatics.) Solution trajecto-
ries are similar for the two modes, although the maxi-
mum zonal wind is necessarily smaller in the mode 3
solution by about a factor of 2 in order to accommodate
the additional jet. The thumbnails in each panel illus-
trate the jet structure in each of the three branches.3

For the interior solution the meridional width shrinks
rapidly to zero when C is decreased below the coales-

cence point. In this branch, the staircase “rides the pa-
rabola” to its top very quickly as U → 0 and C tends to
a limiting value (since the mode number is fixed). By
contrast, the exterior solution to the right of the coa-
lescence point varies rather slowly with C, evidently
because the outermost easterlies can be adjusted to ac-
commodate variations in the tropical westerlies as U is
changed. This adjustment presumably continues until a
limiting structure resembling mode 0 is obtained, but
with a sequence of steps near the equator. Above the
coalescence point the interior solution develops polar
westerlies associated with the outermost jets. The most
interesting result of Figs. 6 and 7 is that a practical
minimum of C exists for each mode, and this limit is
almost identical for the two modes. It is evidently im-
possible to build a PV staircase of modes 2 or 3 at
smaller C.

A simple argument explains why the constant of pro-
portionality (C�1) describing the ratio of jet spacing to

3 The branches shown maximize 	p versus U for a particular C.
A fourth branch may be defined below the lowest point of the
exterior solution that maximizes 	p versus C for a particular U.
This branch (not shown) represents the asymptotic form of the
exterior solution, just as the branch below the coalescence point
represents the asymptotic form of the interior solution.

FIG. 6. Values of U as a function of C for mode 2 (with p � 1/4) that maximize 	p as a function of
U. Small panels inlaid show latitudinal profiles of relative zonal wind.
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jet strength cannot exceed a critical value. Small U im-
plies that (prograde) westerly jets form small peaks on
top of the resting parabola, connected by linear-in-m
segments with (retrograde) easterlies in their center.
Large jet spacings, on the other hand, imply large nega-
tive deviations of retrograde segments below the resting
parabola: large, that is, if the westerly peaks are small.
The resulting discrepancy between small maximum
westerly and large maximum easterly winds violates the
global conservation of absolute angular momentum.
For equal area of (the sum of all) westerly peaks and
easterly valleys relative to the resting parabola, the lin-
ear segments must be sufficiently narrow in latitude.
For fixed mode number n, the meridional extent of the
staircase must therefore shrink to zero as U → 0. When
viewed in m, the PV staircase may be likened to a
“necklace of bamboo” created from several small linear
pieces of material. To preserve the curvilinear appear-
ance of the necklace one must use either a few short
pieces (analogous to small n) lying at the lowermost

point of the necklace when worn, or many short pieces
(analogous to large n) filling the necklace from one
end to the other. Deviations from the unfinished lay-
out (without bamboo) thereby remain small in either
case.

A slightly simpler model of the PV staircase regards
the jet spacing as constant in 	. This special case is
obtained by truncating (2.40b) to its leading term. Fig-
ures 8a,b illustrate solution trajectories for modes 2 and
3 when the effect of variable � is removed from the
Rhines scaling (2.34). Results with p � 0 (thick curve)
are similar to the more general cases p � �1/4 (thin
curves). This simplification establishes that the Rhines-
scale concept (with a suitable scale factor C) is rele-
vant not only to the construction of PV staircases on
the sphere, but alternatively can be derived from the
staircase solution assuming only that the jets are
approximately equally spaced. Thus, we obtain a geo-
metric Rhines scale, determined entirely by the con-
straints of angular momentum conservation and baro-

FIG. 7. Same as in Fig. 6, but for mode 3, with p � 0.
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tropic stability, which is independent of any assumption
of wave transport processes or turbulence phenomenol-
ogy.

The analytical model is easily extended to higher
mode numbers. Figures 9a,b show the solutions for U
(that maximize 	p) for modes 4 and 5, respectively.
Aside from their smaller wind magnitude, these curves
are similar to those of modes 2 and 3. In particular, the
limiting values of C are nearly the same. To understand
the origin of this limiting value in mathematical terms
we have attempted a general solution for arbitrary

mode number using a Taylor series expansion for mj

and �	 j truncated to two terms (next).

e. Asymptotic analysis

The Taylor series

mj � 1 � � j
2 � U�1 �

1
2

� j
2 �

1
8

� j
4 � O�� j

6��
�2.40a�

FIG. 9. Same as in Fig. 8, but for (a) mode 4 and (b) mode 5. For comparison, the lower part of the interior
solution for mode 2 with p � 1/4 is also shown (dotted line).

FIG. 8. Same as in Fig. 6, but comparing the solution trajectory for constant 	 spacing of westerly jets (p � 0,
thick line) with that for Rhines scaling in 	 (p � 1/4, thin line at right) or � (thin line at left) for (a) mode 2 and
(b) mode 3. The inlays in Figs. 6 and 7 indicate the nature of solution branches, here labeled E (exterior), I
(interior), and A (asymptotic).
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� j �
U

C �1 �
1
4

� j
2 �

5
32

� j
4 � O�� j

6�� �2.40b�

are useful in many cases of interest (p ��1/4 in 2.40b).
These expansions are quite good for most 	 j but fail
miserably as |	 j | → 1 and therefore should be used with
caution. The results shown above were based on exact
formulas; nevertheless, the accuracy of the truncated
expansion will be apparent for all 	 j in the examples
shown.

Approximate results obtained by truncating the Tay-
lor series expansion to its leading two or three terms are
shown in Figs. 10a,b for modes 2 and 3, respectively,
with p � 1/4. As anticipated from Figs. 4 and 5, the
three-term truncation is accurate over most of the
range, thanks to the absence of jets near the pole,

where the Taylor series fail. This is partly a conse-
quence of the construction of the theoretical model,
wherein 	p is determined by the global angular mo-
mentum constraint; that is, it does not depend explicitly
on the Rhines scale, which is undefined at the outer
edges of the staircase (where u � 0) or poles (where
� � 0). The two-term truncation is less accurate, but it
should be noted that this level of approximation enables a
perturbation solution for 	p and 	3

p (see below). We ex-
pect the perturbation method to be useful in alternative
models of the PV staircase that incorporate more sophis-
ticated principles of GFD into the model constraints
(e.g., a flux parameterization for Rossby waves).

When the Taylor series are truncated to two terms, a
perturbation method may be used to understand as-
ymptotic properties of the solution near the limiting

FIG. 10. Taylor series approximations (thick line) to exact solutions (thin line) for (a), (b) mode 2 and
(c), (d) mode 3 with p � 1/4.
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value of C. For even modes (with their first step begin-
ning at the equator) the hemisphere-integrated angular

momentum may be divided into an interior staircase
part and a “polar” part:

�
j�0

N�1 1
2
�mj �mj�1�

1
2
�
� j � 
� j�1� �

1
2
�mN �mp���p � �N�

� �
j�0

N�1 ��1�U� � �1�
1
2

U��̂j
2�U

C �1�
1
4

�̂j
2�� 1

2 �1� �N
2 �U�1�

1
2

�N
2 �� 1� �p

2���p � �N�

� �1�U�
U

C �
j�0

N�1

�1� a2�̂j
2� � �1� �̂N

2 �
1
2

U�1�
1
2

�N
2 ����p � �N�, �2.41�

where

�̂j
2 �

1
2
�� j

2 � � j�1
2 � �2.42a�

a2 �
1
4
�

1 � U�2
1 � U

. �2.42b�

The subscript on a2 designates a coefficient for the sec-
ond term of the expansion, although it is a nonlinear
function of the auxiliary variable U. This dependence is
ultimately relegated to a higher order in 	 j because the
coefficient a2 is multiplied by 	2

j , while its own varia-
tion is O(	2

j ). When the lowest-order value a2 � �3/4
is then substituted into (2.41), and we make use of the
relation

U � C2
�0
2, �2.43�

the angular momentum constraint becomes


�0�
j�0

N�1 �1 � C2
�0
2 �

3
4

�̂j
2�

� �1 � �̂N
2 �

1
2

C2
�0
2���p � �N� � �p �

1
3

�p
3 .

�2.44�

Viewing this equation as a perturbation expansion in
	p truncated to the leading two terms (of odd order
only) and equating its first- and third-order parts gives


�0N � ��p � �N
�0�� � �p �2.45a�

�C2N �
3
4

S2�
�0
3 �

1
2
��C2 � N2�
�0

2 � �p
2�

� ��p � �N
�0�� � �N

�2�
�0
2 � �

1
3

�p
3 , �2.45b�

where

�N � �N
�0� � �N

�2�
�0
2 � O�� j

5� �2.46a�

S2 � �
j�0

N�1 �j2 � j �
1
2� � N

6
�2N2 � 1� �2.46b�

so that

�N
�0� � N
�0 �2.47a�

�C2N � S2�
�0
3 �

1
2
��C2 � N2�
�0

2 � �p
2���p � N
�0�

� �
1
3

�p
3 . �2.47b�

The former equation suggests that 	 (0)
j � j�	0 so that

variations of jet spacing caused by the � dependence of
the Rhines scale may be neglected at first order. These
variations are properly accounted for at third order
both (i) within the staircase [first term on the lhs of
(2.44)] and (ii) in the outer rhomboid [second term of
the lhs of (2.44)] provided that a small correction to 	N

is retained, which may be evaluated noting that

�N � �
j�0

N�1 1
2
�
� j � 
� j�1� �

U

C �
j�0

N�1 �1 �
1
4

�̂j
2�

� N
�0 �
1
4

S2
�0
3. �2.48�

The first term on the rhs of (2.48) agrees with (2.47a)
and in (2.47b) was substituted for the 	 (0)

N in (2.45b);
the second term was likewise substituted for 	 (2)

N and
subsequently absorbed into the first term on the lhs of
(2.47b). When p � 1/4, the Rhines scale increases
slowly in the sine of latitude, causing 	N to slightly
exceed its lowest-order value predicted by equal spac-
ing in 	. Exactly the opposite occurs when p � �1/4 so
that 	N is slightly less than its lowest-order value. If
exactly equal spacing in 	 is assumed a priori (p � 0),
(2.47a) becomes exact (	N � N�	0) and 	 (2)

N disap-
pears, while the factor 3/4 on the lhs of (2.45b) reverts
to unity; fortuitously, these two changes cancel.
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Equation (2.47b) may be differentiated with respect
to �	0, then setting �	p/��	0 � 0 to match the situation
in the lower branch of the interior solution (namely, to
maximize 	p with respect to U holding C fixed, equiva-
lent to a variation of 	p with respect to �	0, holding C
fixed) to give

3
�0
2�C2N � S2� � ��C2 � N2�
�0���p � N
�0�

�
1
2
��C2 � N2�
�0

2 � �p
2���N� � 0. �2.49�

Equations (2.47b) and (2.49) may be written as

A � B�x � N� �
1
3

x3 � 0 �2.50a�

3A � �2B � x2��x � N� � BN � 0, �2.50b�

where

x �
�p


�0
�2.51a�

A � C2N � S2 �2.51b�

B �
1
2
�C2 � N2 � x2� �2.51c�

from which it is easy to show that B � �xN whereupon
C � x � N. This simple relation was validated in our
examples near the limiting value of C. Further manipu-
lation shows that x is a solution of

x2 � 3N2 �
N

2x
�1 � 4N2�. �2.52�

As it turns out, x increases almost linearly in N, so the
difference C � N � x is remarkably steady, C � 0.4, in
the range N � 1 � 20 as shown in Fig. 11. In the limit
of large N, (2.52) predicts that C → 1/6 � .408. Re-
calling that C is like an inverse spatial scale in (2.34),
large N implies a geometrical Rhines-scale factor for
the sphere (i.e., the ratio of jet spacing to the Rhines
scale associated with the jet velocity) equal to6. The
asymptotic values shown in Fig. 11 agree with the lim-
iting values of C shown in our earlier examples to
within 1%–2%. This statement also applies to solution
trajectories for modes higher than 5 (not shown here).

The corresponding analysis of odd modes, with a half
stair step beginning at the equator, proceeds along simi-
lar lines and yields similar values of C, also shown in
Fig. 11. If one were to substitute a continuous curve for
the discrete values shown, the curve for odd modes is
exactly that of even modes but shifted to the right by
1/2. By calling out the first term in the summation of
(2.41), noting that

m0 � m1 �2.53a�

�1 �
1
2


�1, �2.53b�

equations analogous to (2.47a) and (2.47b) are obtained
as follows:

�N
�0� � N̂
�0 �2.54a�

�C2N̂ � Ŝ2�
�0
3 �

1
2
��C2 � N̂2�
�0

2 � �p
2���p � N̂
�0�

� �
1
3

�p
3, �2.54b�

where

N̂ � N �
1
2

�2.55a�

Ŝ2 �
1
8
� �

j�1

N�1 �j2 �
1
4� � 1

4
N̂ �

1
3 �N̂2 �

1
4�N̂.

�2.55b�

Once again a small correction to 	N is retained:

�N �
1
2
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j�1

N�1 1
2
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� j � 
� j�1�

�
1
2


�1 �
U

C �
j�1
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4
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1
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4
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4
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4�
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4


�0
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FIG. 11. Asymptotic values of C for even and odd modes, as a
function of N.
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From this point the equations are isomorphic to those
of even modes but with N̂ and Ŝ2 substituted for N and
S2. Therefore C � x � N̂, and the asymptotic value of
C at large N is the same. In fact, the entire curve is the
same (shifted by 1/2) because a relation isomorphic to
(2.52) is obtained for odd modes as well, and (2.55b)
yields the same sum as (2.46b), but with N̂ in place of N.
This equivalence of even and odd modes suggests that
both could be analyzed with identical formulas in an
alternative model using half stair steps instead of full
steps.

When the (prograde) westerly jets of the staircase are
assumed to have equal amplitude, the strength of (ret-
rograde) easterly jets generally varies in latitude in or-
der to accommodate (i) the variation of the moment
arm, proportional to1 � 	2, and (ii) the variation (if
any) of spacing between the westerly jets. For a given
deviation of m from the resting parabola, a smaller mo-
ment arm approaching the poles requires stronger east-
erlies; the same is true for larger jet spacings, which
imply a larger deviation of m. In our first case (p � 1/4)
using the variable Rhines scale (2.34), both factors play
an approximately equal role. To see this, note that the
deviation from the resting parabola is

�m � mj �
mj�1 � mj

� j�1 � � j
�� � � j� � �1 � �2�

�2.57a�

��m

��
�

mj�1 � mj

� j�1 � � j
� 2� � 0 at � � �m ,

�2.57b�

whereupon to O(	4
j ),

�m �
1
2
�� j � uj�1� �2.58a�

mm � 1 � U � �̂j
2 �2.58b�

�mm � U � �m
2 � �̂j

2

� U �
1
4
�� j�1 � � j�

2 �2.59�

or

��me � mm� � �
� j � 
� j�1�
2. �2.60�

Another way to look at this is to note that the deviation
is simply the difference between a straight line and a
parabola, which can always be written as a 	 translation
of the original parabola; that is, the deviation itself is a
parabola. With p � 1/4 in (2.34) the maximum devia-
tion of m below the resting parabola varies as (1 �
	2)�1/2. The maximum deviation of u contains an addi-

tional factor of (1 � 	2)�1/2 from the moment arm,
bringing the total variation to (1 � 	2) as shown in
Fig. 12a. For constant jet spacing in 	 (p � 0) the
variation is from the moment arm only (Fig. 12c). With
p � �1/4 in (2.34) the Rhines scaling is reversed in the
	 coordinate, bringing the (prograde) westerly jets
closer together, approaching the poles. (It should be
kept in mind that their spacing still increases approach-
ing the pole when viewed in the � coordinate, as in the
other two cases.) In this case the (retrograde) easterly
jets are equal (Fig. 12e). The theory outlined above
evidently applies to a more general class of jet strength/
spacing relationships, although we have yet to explore
the function space in detail. The corresponding plots of
m deviation are shown in Figs. 12b,d,f. From the first
two of these panels it is apparent that some transfer of
prograde (westerly) angular momentum to the equator
is required, slowly varying in 	, even for solutions such
as those lying on the upper end of the asymptotic
branch near the coalescence point.

The specification that 	p be the maximum possible
for a given value of C is based loosely in the notion that
small-scale forcing of the (nearly barotropic) model ap-
plied uniformly on the sphere will tend to create a PV
staircase extending into polar latitudes (Scott and Pol-
vani 2007).4 The preceding analysis made this assump-
tion, but additional insight can be obtained from an
alternative condition that the outer segment be tangent
to the resting parabola, as discussed in connection with
mode 1 in the previous subsection. This condition au-
tomatically excludes easterlies adjacent to 	p, whether
large or small. The majority of nearly barotropic cases
shown by Scott and Polvani, in fact, have polar wester-
lies, although the polar jet is usually not sharp and its
maximum is somewhat weaker than the jets of the stair-
case. In the analytical model such a situation is found in
the interior solution above the coalescence point (when
constrained to maximize 	p, as above) or when tan-
gency at 	p is imposed as an alternative.

Values of C and U at the coalescence point are shown
in Fig. 13, using the jet spacing (2.34) with three values
of p. Coalescence values of C increase slowly with mode
number while U drops precipitously, approximately as
n�1.8 over the range shown, relevant to known plan-
etary atmospheres. The exponent is reasonably close to
2, consistent with our earlier notion that the deviation
of m from the resting parabola is proportional to jet
spacing squared, with jet spacing approximately in-

4 The angular momentum constraint applies to freely decaying
turbulence and, in our case, to a forced system in which the ran-
dom small-scale forcing imparts no angular momentum to the
globally averaged flow.
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versely proportional to mode number. Coalescence val-
ues of U in the three cases are nearly identical at large
N, since the formula for jet spacing becomes irrelevant
when the number of jets is large. When p � �1/4 the
coalescence and limiting values of C are almost identi-
cal, thanks to the steep vertical slope of the left solution
branch. This is a convenient result because one may
then use asympotic values (representing solutions
trapped near the equator) as a good estimate for other

solutions near the coalescence point than span the
globe.

A final observation is that if the number of jets varies
approximately as the inverse square root of U, it there-
fore varies approximately as the inverse one-fourth
power of zonal kinetic energy. In a model configuration
with energy increasing linearly with time owing to a
constant input of energy at small scales, the temporal
decrease in the number of jets is expected to be very

FIG. 12. Illustration of mode 10 solutions all having 	p � 0.95, for (a), (b) p � 1/4, (c), (d) p � 0, and
(e), (f) p � �1/4. Dashed curves show the different powers of (1 � 	2) appropriate for each of the cases.
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slow. Indeed, it proves difficult to examine steady-state
behavior in such a configuration because the required
integration time is very long.

3. Numerical results

The simplest system in which to study the effects of
potential vorticity mixing and angular momentum con-
servation is that of a single layer of fluid of uniform
depth on the sphere. This system is governed by the
barotropic vorticity equation:

�t � J��, �a� � 0, �3.1�

where 
 � �� is the vorticity, � is streamfunction, and
the absolute vorticity 
a � 
 � f, which, as in section 2,
is here the same as the potential vorticity.

a. Numerical procedure

We solve (3.1) numerically using a pseudospectral
model with a horizontal truncation of T170 spherical
harmonics and time stepping with a semi-implicit leap-
frog scheme. The numerical model is the same as de-
scribed in Scott and Polvani (2007) but adapted to solve
the barotropic vorticity equation only.

The system is forced and dissipated by the inclusion
of additional terms on the rhs of (3.1). In particular, F

is a random process, � correlated in time, designed to
input energy at a constant rate �0 in a range of spherical
harmonics centered on nf � 42. The term D
 is made up
of scale-selective diffusive operators acting at small and
large scales: hyperdiffusion to arrest the enstrophy cas-
cade before the truncation scale; and hypodiffusion to
remove energy at large scales and allow equilibration of
the large-scale flow. We note that the form of the hy-
podiffusion (an inverse Laplacian) is equivalent to a
damping on the streamfunction, and therefore can be
considered as a crude approximation to the more physi-
cally relevant radiative cooling in more sophisticated
equivalent barotropic or shallow-water systems. These
terms take the same form as the terms F and D
 in Scott
and Polvani [2007; see in particular Eqs. (9a), (11), and
(15), therein].

We present results from calculations in which energy
is injected at a constant rate �0. Two sets of experiments
are performed, with �0 � 10�6 and �0 � 10�7, in units of
a2(�/2 )�3. The model is integrated until time t � T,
where T � 104 � (2 /�) for the case �0 � 10�6 and
T � 2 � 104 � (2 /�) for the case �0 � 10�7, that is,
T � 104 and T � 2 � 104 planetary rotations, respec-
tively. This length of integration generally allows for a
quasi-equilibrated state to be reached, although in
some cases complete equilibration requires more time.
For comparison with the analysis of section 2, in the
following discussion all quantities are scaled on a and �
unless otherwise noted. For each energy injection rate,
an ensemble of calculations is performed comprising 30
realizations of the forcing. As will be described, consid-
erable variability in mode number exists for different
realizations under otherwise identical parameter val-
ues.

b. Mode selection

We first consider the case �0 � 10�6. For this en-
semble, the equilibrium solutions fall roughly into three
groups: prograde equatorial flow, retrograde equatorial
flow, or mixed, the latter consisting typically of hemi-
spherically asymmetric states. Of these three groups we
consider only the former two. In a three-dimensional
system, asymmetric states with nonzero cross-equa-
torial shear would tend to be inertially unstable and
would in general not be observed: here they can be
considered as an artifact of the single-layer system that
has no means to prevent angular momentum maximiz-
ing away from the equator (see section 4a). We define
prograde cases as those whose value of u at the equator
exceeds one-half of the global maximum u, and retro-
grade cases as those whose value of u at the equator is
less than one-half of the global minimum u. By this
definition, of the 30 ensemble members, 9 are prograde

FIG. 13. Coalescence values of C and U as a function of mode
number n. The thick curves are for p � 0. In accord with Fig. 8,
values of C (U ) for p ��1/4 are slightly below (above) the values
of p � 0 (thin curves). The reverse applies to p � 1/4 although
values of U are nearly the same. The dashed curve shows an
approximate power-law fit to U as a function of mode number n.
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and 8 are retrograde. The steady-state zonal velocity u
at t � 104 for the two groups is shown in Fig. 14. With
respect to the axisymmetric solutions, the prograde
cases here correspond to mode 4 solutions (three jets
per hemisphere), while the retrograde cases correspond
to either mode 3 or mode 5 solutions (two or three jets
per hemisphere; in each case the polar westerlies are
counted as jets).

The approximately equal occurrence of prograde and
retrograde solutions stands in contrast to the situation
of freely decaying barotropic turbulence, where retro-
grade equatorial jets have been more frequently docu-
mented. Ensemble calculations of freely decaying baro-
tropic and shallow-water turbulence, starting from dif-
ferent initial conditions, indicate that prograde jets can
form in certain parameter regimes, but that retrograde
jets are generally preferred (Kitamura and Ishioka
2007). In forced-dissipative shallow-water turbulence,
Scott and Polvani (2007) observed a tendency toward
retrograde equatorial jets with decreasing deformation
radius. In the forced-dissipative barotropic system, on
the other hand, Huang and Robinson (1998) observed
both prograde and retrograde equatorial jets depending
on the level of forcing. Large ensemble calculations of
the forced-dissipative barotropic system appear not to
have been previously documented; Fig. 14 indicates
that both prograde and retrograde are approximately
equally realizable in this system.

The magnitudes of the jets in Fig. 14 are almost 0.02,
roughly half of the values obtained for the limiting so-
lutions of the axisymmetric model (e.g., Figs. 5 and 7
give a value of around 0.04 for mode 3). As will be seen
next, the eddy mixing of PV is incomplete in the full
model. Note that in each group in Fig. 14 the maximum
jet speeds are similar. This is consistent with Fig. 7 and

the corresponding case for mode 4 (not shown) in that
there is an overlap of the ranges of U for which the
upper branches (	p � 1) occur. The asymmetric solu-
tions (which comprise less than half of the total en-
semble, and which will not be considered here) can be
regarded as containing different mode numbers in dif-
ferent hemispheres, a situation that is not precluded by
the analysis of section 2.

A similar pattern is found in the weakly forced en-
semble with �0 � 10�7 (not shown). The range of pos-
sible solution states appears to increase, presumably
because more mode numbers can coexist for the same
maximum jet strength. Of the 30 members of the en-
semble, 5 are prograde and 8 are retrograde, by the
above definitions. Jet strengths reach around 0.007, and
the typical mode numbers are between 5 and 7.

During the time evolution toward equilibrium both
prograde and retrograde cases emerge out of similar
early time evolution: significant differences in jet struc-
ture develop slowly in time. Often, cases that are ret-
rograde at early times develop a prograde equatorial jet
through the merger of the two jets straddling the equa-
tor; in other cases an equatorial jet will drift off the
equator to be replaced by easterlies.

The process of jet merger may be considered in terms
of the axisymmetric solutions described in section 2:
when the jet strength is small, the angular momentum
constraint implies that jet spacing in the piecewise lin-
ear solution must be correspondingly small. As the jet
strength increases, jet spacing must also increase. Jet
mergers can therefore be considered as a transition
from a state where a higher mode number exists but
subsequently becomes unrealizable within a barotropi-
cally stable flow. Although the axisymmetric solution
must be regarded as a limiting case, a similar PV and

FIG. 14. Equilibrium u from an ensemble calculation of 30 realizations with � � 10�6. (a) Nine prograde
equatorial flows are shown, representing all cases for which u(	 � 0) � 1/2 max	(u); (b) eight retrograde flows
show all cases for which u(	 � 0)  1/2 min	(u).
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angular momentum structure exists in the full model,
consistent with the hypothesis that eddy mixing gener-
ally leads to an angular momentum–conserving rear-
rangement of the PV. In the full model, PV mixing
between the jets is incomplete, giving rise to sloping
steps. Similarly, the risers are not vertical but sloping,
partly due to the zonal averaging of a PV jump that is
not perfectly zonally aligned (but slightly wavy), and
partly due to the fact that the jump itself is not perfect
owing to the presence of diffusion in the model.

An example is given in Fig. 15, which shows the
merger of two jets straddling the equator into a single
equatorial jet. At early times the subtropical jets are
accelerating, because of the constant input of energy by
the forcing and the accumulation in the zonal flow. At
the earliest times shown, the PV gradients across the
equator are positive, corresponding to a barotropically
stable configuration. As time increases, mixing across
the equator becomes progressively more complete,
eventually reaching the marginally stable situation of
zero PV gradient. At this point jet merger occurs. In
terms of Fig. 6, the evolution corresponds to moving
upward along the upper branch as U increases. When
the higher-mode solution is no longer realizable within
a barotropically stable configuration, a catastrophic
change in the flow structure occurs toward a lower-
mode solution, realizable at larger U.

c. Zonal momentum balance

We next describe the momentum balance during the
adjustment of the flow to equilibrium, and how eddy
fluxes organize an acceleration of the zonal mean flow.
By (2.15a), the zonal mean flow acceleration is associ-
ated with an eddy-induced flux of potential vorticity. In
particular, any jet acceleration must be accompanied by
an upgradient flux of potential vorticity.

First, we illustrate the identity during the evolution
toward equilibrium. Figure 16 shows the zonal mean
flow u, the acceleration �u/�t, and the eddy-induced PV
flux !�
� at the time of the jet merger in Fig. 15. The two
subtropical jets are decelerating and the equatorial jet
is accelerating. The acceleration is seen to correspond
closely with the eddy fluxes as expected.

Although less dramatic, the midlatitude jets are also
accelerating at this time. Again �u/�t is correlated with
!�
�, but now greater (relative) departures can be seen,
mostly due to small-scale structure in the latter. Differ-
ences between !�
� and �u/�t can arise only through the
effects of dissipation; since the forcing is � correlated in
time, the contribution to !�
� (which is averaged in time
over intervals �t � 10) is negligible. Furthermore,
small-scale structure in �u/�t � !�
� can be balanced

FIG. 15. Time evolution of (a) zonal-mean zonal velocity u and (b) potential vorticity 
a during an equatorial jet
merger. Lines are drawn at times t � {200, 220, 240, . . . , 600} � 2 .

FIG. 16. Zonal-mean velocity u (solid), acceleration �u/�t (dot-
ted; �5000), and eddy PV flux ! �
� (dashed; �5000) at the time of
jet merger (t � 500 � 2 ) shown in Fig. 15.
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only by the hyperdiffusion, since hypodiffusion is only
effective at the largest scales.

The small-scale structure in !�
� can best be exam-
ined at equilibrium when �u/�t � 0. Figure 17 shows in
more detail the correspondence of (quasi) equilibrium
!�
� both with the jet maxima and with the PV profile.
A surprising feature is that !�
� appears to maximize at
the jet maxima. This region is associated with a sharp
PV gradient, which in some sense can be considered as
a barrier to eddy mixing, and which therefore might be
expected to coincide with a minimum in !�
�. On the
other hand, since the PV gradients are concentrated at
the jet, this region is also where wave activity is con-
centrated. In the limit of a perfect staircase, nonzero
PV gradients only exist at the jet maximum, and con-
sequently eddy fluxes must necessarily be confined
there. Maxima of !�
� aligned with the jet core were
also found in Huang and Robinson (1998) during the
acceleration phases of the jet. At the higher resolution
used here, the finer structure of the eddy fluxes within
the jet region becomes clear. Note, for example, the
regions of weak !�
� on either side of the maxima,
which correspond closely to the narrow regions of al-
most zero PV gradients on either side of the PV riser,
again consistent with the observation that eddy fluxes
must be confined to regions of nonzero PV gradient.

d. Jet spacing

We close this discussion with a consideration of the
statistics of jet spacing and strength across multiple re-
alizations of the forcing. Although roughly similar jet
numbers and spacing emerge for a given forcing ampli-
tude (since this determines the energy and hence ap-

proximate zonal wind speed of the jets), as discussed
above variations do exist and different mode numbers
are obtainable under identical physical conditions.

Recall that in section 2, three different models were
discussed relating spacing to jet strength, namely, �	 �
C�1(1 � 	2)�1/4U (stretched Rhines scaling in 	),
�	 � C�1U (uniform jet spacing in 	), and �	 �
C�1(1 � 	2)1/4U (compressed jet spacing in 	). The
differences between these models was most apparent
with regard to the strength of the interjet easterly flow
and its 	 dependence (Fig. 12). A casual inspection of
many numerically generated equilibrated u profiles
(e.g., Fig. 14) immediately suggests that the latter
model (compressed jet spacing in 	) is the most rel-
evant. In the numerical simulations, easterlies are most
often approximately constant in latitude; a small minor-
ity of cases has easterlies increasing toward the poles
while the westerlies are relatively constant. We can
make this more precise by considering the relationship
between interjet easterlies to jet spacing occurring in all
pairs of adjacent jets in the full set of both ensemble
calculations. This provides equilibrium states ranging
from mode 3 to around mode 7, which also contain
large variability in jet spacing. Thus, for each pair of
adjacent jets at 	 j and 	 j�1 we define the spacing �	 j �
	 j�1 �	 j and the magnitude of the interjet easterlies as
Uj � �min	∈[	 j,	 j�1]u(	).

Figure 18 shows the scatterplot of the �	 j against

FIG. 17. Zonal-mean velocity u (solid), acceleration �u/�t (dot-
ted; �10 000), eddy PV flux ! �
� (dashed; �10 000), and zonal
mean PV 
a (dashed–dotted; �0.01) at quasi equilibrium (aver-
aged over the last fifth of the integration).

FIG. 18. Relation of jet spacing to jet strength, for p��1/4. The
idea is to determine which, if any, of the Rhines scalings in the
range �1/4  p  1/4 best describe the numerical results. Of the
three values illustrated in this paper, p��1/4 displays the best fit,
and the inferred slope of the fit is close to the asymptotic value of
U/C. Here, �	 is defined as the spacing between pairs of adja-
cent jets; U is defined as the minimum u between the same pairs.
Diamonds and crosses denote jet pairs from the ensembles with
� � 10�6 and � � 10�7, respectively.
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(1 � 	2)�pU for p � �1/4. A compact relationship
exists only for the case of compressed jet spacing in 	
shown here. For the case of uniform jet spacing in 	
(p � 0) all the U’s are approximately equal for a given
realization, depending only on the total energy level
(not shown). The dependence on 	 is degenerate and
no value of C is obtained. Similarly, no clear relation
holds for the local Rhines scaling in 	 (p � 1/4, not
shown). For the compressed jet spacing, although there
is considerable scatter, a value of C � 0.4 can be esti-
mated from the slope of the best-fit line through the
points. This value accords reasonably well with the as-
ymptotic values of C derived in section 2e.

4. Two generalizations of the theoretical model

The numerical model of Scott and Polvani (2007),
based on the shallow-water equations, admits a richer
spectrum of jet behavior than the barotropic model. In
particular, the wave activity and eddy fluxes become
equatorially confined at small positive equivalent
depth, so that westerly and easterly jets alike vary in
amplitude with latitude, decreasing away from the
equator. Although the model displays a statistical pref-
erence for symmetric states—namely, hemispheric sym-
metry of the PV staircase, whether even or odd—
asymmetric states are sometimes obtained. In this sec-
tion we suggest how the theoretical model may be
generalized to handle such variations from the symmet-
ric barotropic staircase.

a. Asymmetric solutions

It is tempting to dismiss hemispherically asymmetric
PV staircases with cross-equatorial shear as irrelevant
owing to equatorial inertial stability. Any process that
moves the maximum m off the equator—thereby satis-
fying a necessary and sufficient condition for centrifu-
gal inertial instability between the equator and m maxi-
mum—is countered by an inertial adjustment that tends
to restore inertial stability. The notion, however, that
inertial adjustment simply transports the maximum m
back to the equator, restoring the initial (stable) profile
of m, is incorrect. All that is required for inertial sta-
bility is a redistribution of m that flattens its gradient
within and poleward of the unstable zone adjacent to
the equator (Ortland and Dunkerton 2008, unpublished
manuscript). As a result, asymmetric solutions are pos-
sible in the tropics. They are of course possible in dy-
namical models that do not admit inertial instability at
all, for example, when the equivalent depth is larger
than the marginal value for equatorial inertial instabil-
ity. Such cases are included among those shown by
Scott and Polvani (2007).

In the event that the hemispheres behave indepen-
dently, the theoretical model described above may be
applied to the hemispheres individually; there is no
cross-equatorial transport of angular momentum or
PV. Equatorial superrotation is of course excluded
from such cases. Inertial adjustment may come into
play in situations where some sort of cross-equatorial
transport is attempted by the large-scale circulation, to
be partially offset by the adjustment. It was argued by
Dunkerton (1981), for example, that the diabatic circu-
lation of the middle atmosphere attempts to create
easterlies on the equator twice a year (the easterly
phase of the semiannual oscillation) but that this ad-
vective process is partially countered and/or delayed by
inertial adjustment (see, e.g., Hitchman and Leovy
1986, for evidence of the effect). One consequence of
the adjustment is that the flow becomes barotropically
unstable on the summer side of the equator. Barotropic
instability is thought to be one of several possible
mechanisms for excitation of the 2-day wave (Orsolini
et al. 1997; Pendlebury and Dunkerton 2008, unpub-
lished manuscript). It was suggested in section 2b that
barotropic adjustment should be taken into account at
the outer edges of the PV staircase. To be consistent
with this reasoning we should therefore consider the
combined effects of inertial and barotropic adjustment
near the equator. As a practical matter—as long as the
underlying dynamical model allows it—inertial instabil-
ity is guaranteed to be effective in adjusting the flow to
an inertially neutral state, whereas it is less certain that
barotropic instability is equally effective in relaxing the
flow to a barotropically neutral state. One of the cases
shown by Scott and Polvani (2007), for example, dis-
plays a nonmonotonic final PV profile.

If the hemispheres are coupled and the coupling
mechanisms include inertial and barotropic adjust-
ment, the appropriate generalization of the analytical
model is (i) to relax the requirement of hemispheric
symmetry (which can always be done whether or not
the adjustment is important) and (ii) to impose two
boundary conditions, one on each side of the equa-
tor, linking the analytical solutions to a profile of m that
is marginally stable to inertial and barotropic instabili-
ties.

b. Shallow-water system

Tidal theory provides an intuitively appealing way to
understand the equatorial confinement of zonal jets
(Theiss 2004; Scott and Polvani 2007) in a model gov-
erned by the shallow-water equations. In the limit of
small positive equivalent depth, the latitudinal struc-
ture functions become increasingly confined close to
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the equator (Flattery 1967; Longuet-Higgins 1968). In
this limit the equatorial �-plane approximation is useful
(Matsuno 1966; other references). The latitudinal struc-
ture functions are Hermite polynomials of order n mul-
tiplied by a Gaussian envelope with an e-folding scale
equal to the equatorial radius of deformation. The
equatorial deformation radius is analogous to the more
familiar Rossby deformation radius of the midlatitudes,
but its derivation includes an additional power of lati-
tude y owing to the latitudinal variation of f, the Co-
riolis parameter. As a result, the relation between lati-
tudinal and vertical scales for equatorial tidal motions is
such that

��2y0
4 � 1, �4.1�

where � � m2/N 2 � 1/gh is the Lamb’s parameter
(Boussinesq limit), m is the vertical wavenumber, and h
is equivalent depth. The latitudinal-scale factor y0 var-
ies as the square root of vertical wavelength, or one-
fourth power of equivalent depth. For fixed equivalent
depth, the Gaussian envelope is constant and the me-
ridional extent of eigenmodes increases with mode in-
dex n as the order of the Hermite polynomial increases.
This comment applies to equatorially trapped inertia–
gravity and Rossby waves alike. Equatorial confine-
ment of eigenfunctions at large � occurs in more general
flows with latitudinal shear that admit divergent baro-
tropic and inertial instabilities (Dunkerton 1990; Win-
ter and Schmitz 1998).

To the extent that zonal jets are driven by eddy PV
fluxes5 in accord with the Taylor identity and there is
no significant compensation owing to an induced mean
meridional circulation, the appropriate generalization
of the analytical model is to introduce a slowly varying
Gaussian envelope such that

U � U��� � U�0� exp���2� �4.2a�

� � y�y0 �4.2b�

using the y0 given by (4.1). Based on our results ob-
tained with the barotropic model, we anticipate two

changes associated with the representation of jets in the
shallow-water system. First, the choice of p (the power
of cosine latitude) in the Rhines scaling [Eq. (2.3)],
which was shown to be a rather minor factor in the
analysis, becomes irrelevant when modes are confined
to the tropics, where � is essentially constant. The spac-
ing of (prograde) westerly jets does not vary signifi-
cantly in latitude and the (retrograde) easterly jets are
equal and comparable in strength to the westerly jets.
Second, because the outermost jets decay to zero long
before reaching the pole, the numerical calculation be-
comes ill conditioned in the sense that the global angu-
lar momentum constraint cannot determine the extent
of the PV staircase accurately, if applied at the end of
the calculation to determine 	p, as done in the global
problem. Noting the accuracy of the Taylor series ex-
pansions, we suggest an alternative procedure; namely,
to regard the entire system of equations as a matrix
problem for 	2

j and 	p, constrained by (i) the shallow-
water envelope for jet strength, (ii) jet spacing that is
essentially constant, and (iii) the global conservation of
absolute angular momentum. When truncated to two
terms, the problem is almost linear in 	2

j save for a
cubic term involving the outer contribution 	p � 	N.
This term, however, may be included with the other
linear terms when the assumption of constant spacing is
made (specifically, to include the outermost step in the
summation). We note incidentally that the matrix ap-
proach is also suitable for imperfect staircases designed
with steps and risers of nonzero and finite slope, re-
spectively.

It remains to be seen whether the shallow-water sys-
tem is adequate for planetary atmospheres with vertical
structure and overturning circulations (Plumb 1982) as-
sociated with thermal and mechanical forcings of the
mean zonal flow. These circulations commonly act to
offset eddy forcings so as to maintain gradient wind
balance of the mean state. The net response (e.g., of U)
to eddy forcing is therefore less than anticipated from
eddy fluxes alone. More to the point, the induced mean
meridional circulations vary in amplitude with latitude,
introducing another variation in addition to that of
(equatorially confined) eddy PV fluxes. It is thought
that a PV staircase like that of Jupiter is less subject to
the momentum-redistributing effects of radiative
damping in the tropics than in midlatitudes (Scott and
Polvani 2007) accounting for the pronounced tropical
jets in comparison to those in midlatitudes (Ingersoll et
al. 2004). This behavior was seen in one of Scott and
Polvani’s shallow-water experiments with radiative
damping. A suitable analytical model of such a hybrid
staircase requires, among other things, more detailed

5 The assumption of PV homogenization presumes an advective
flux of PV substance, which, in effect, has the character of local or
nonlocal diffusive mixing. This assumption is more reasonable for
low-frequency Rossby waves that stir PV horizontally than for
high-frequency inertia–gravity waves, which may overturn and
break, leading to nonadvective fluxes of PV substance. Gravity
waves may of course contribute to formation of PV jumps, as seen
in the westerly phase of the quasi-biennial oscillation of the equa-
torial lower stratosphere. Additional knowledge of wave forcings
is necessary to constrain the PV staircase, and the global angular
momentum constraint must be extended to include the vertical
dimension when the waves transport momentum vertically.
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knowledge of the partial cancellation of eddy forcing
and mean meridional circulation.

5. Conclusions

An idealized analytical model of the barotropic po-
tential vorticity (PV) staircase was constructed with the
guidance of recent numerical findings, constrained by
global conservation of absolute angular momentum,
perfect homogenization of PV in mixing zones between
(prograde) westerly jets, and an imposed functional re-
lationship between jet speed and their latitudinal sepa-
ration using a multiple of the “dynamical Rossby wave”
Rhines scale inferred from the strength of westerly jets.
A barotropic model was employed here for (i) its
simple relation between absolute angular momentum
and PV (or absolute vorticity) and (ii) the model’s ten-
dency (at large deformation radius) to produce westerly
jets of approximately equal magnitude in a staircase
extending to polar latitudes. Modes of arbitrary index
were constructed assuming symmetry between hemi-
spheres. Asymptotic analysis of the theoretical solution
indicates a limiting ratio of jet spacing to dynamical
Rhines scale equal to the square root of 6. In other
words, westerly jets are spaced farther apart than pre-
dicted by the dynamical Rhines scale in order to satisfy
the global angular momentum constraint and to main-
tain a barotropically stable configuration of the stair-
case.

We infer that an alternative geometrical Rhines scale
for jet spacing can be obtained from conservation of
absolute angular momentum on the sphere if the
strength of zonal jets is known from other consider-
ations. The geometrical argument complements the no-
tion of a dynamical Rhines scale derived from the
Rossby wave dispersion relation (Rhines 1975) and a
spectral Rhines scale derived from the spectral flux of
energy (Maltrud and Vallis 1991). Unlike the former,
the geometrical Rhines scale is independent of the de-
tails of wave transport, PV mixing, and turbulence phe-
nomenology. We merely require a PV staircase that (i)
is completely homogenized within mixing zones located
between (prograde) westerly jets and (ii) is barotropi-
cally stable. The evolution of the PV staircase originat-
ing from an upscale cascade of energy in the barotropic
model is therefore seen to depend on conservation of
energy (for the strength of jets) and conservation of
absolute angular momentum (for the spacing and num-
ber of jets).

The numerical results suggest that an upscale energy
cascade triggered by small-scale forcing leads to west-
erly jets and PV jumps that increase in amplitude with
time but also occasionally merge, increasing the spacing

of, while decreasing the number of, jets and jumps. In a
system where energy increases linearly in time owing to
a constant injection of energy at small scales, the length
of time between successive mergers varies roughly as
the one-fourth power of time. Although individual
mergers are always abrupt, the frequency of jet merger
is low, and increasingly so with time, in these simula-
tions. Closer examination of jet merger events suggests
that the nearby flow approaches neutral stability prior
to merger; that is, the PV step becomes nearly flat be-
tween adjacent jets. This result indicates that the tem-
poral development of the staircase can be understood,
to some extent, via the angular momentum constraint.
Moreover, the geometrical Rhines scale provides a
simple interpretation of the simulated variations of jet
strength and spacing over a wide range of energy injec-
tion rates.6

We caution that the ideal PV staircase is a limiting,
marginally stable profile; it does not describe observed
staircases that are stable (having steps and risers of
nonzero and finite slope, respectively) or unstable (hav-
ing a sawtooth shape). It remains to be seen how well
the angular momentum constraint governs the evolu-
tion and maintenance of imperfect staircases, the kind
that one might encounter in a haunted house or on a
mountain trail. As already noted, a simple modification
of the ideal structure together with an alternative ma-
trix method allows a similar analytic solution when the
Taylor series are truncated to two terms. The question
is not how to solve the problem, but how to constrain
the modified staircase. It is reasonable to suppose that
an observed staircase might appear subcritical to baro-
tropic instability because the barotropic adjustment
acts locally, not on the zonal mean. If external forcings
are slow with respect to the adjustment, the mean zonal
flow will remain stable by a finite amount. A statistical
model taking into account the fraction of longitudes
populated by barotropic instabilities should be suffi-
cient to constrain a modified zonal-mean structure.
This argument leaves unexplained the occurrence of
apparently unstable staircases. For small supercritical-
ity, a weakly nonlinear theory of the instability and its
effect on the mean flow may be sufficient to constrain
the PV staircase in a time-averaged sense.

6 We may imagine all such simulations concatenated into a
single long simulation with an abrupt increase of injection rate
between runs. In this case, jet mergers become increasingly sepa-
rated in time. As an alternative, it would be interesting to perform
a single experiment with a accelerating rate of injection (varying
as t 4, say) that would presumably trigger a series of mergers over
a wide range n (decreasing from very large to small values) with
roughly constant temporal spacing between merger events.
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The concept of the PV staircase is evidently relevant
to atmospheres with vertical structure other than
equivalent barotropic in which radial exchanges of an-
gular momentum may be important to the staircase
structure. Application of our results to such systems is
possible but the degree of difficulty depends on the
nature of the vertical transport and whether it rein-
forces or overwhelms the processes responsible for
staircase formation. Our analysis pertains to a simple
flow system. The theoretical model and parameter
choices were guided, in large measure, by the compan-
ion paper of Scott and Polvani, in the barotropic limit of
the shallow-water system. Their setup is a forced con-
figuration (random small-scale forcing), but one which
also conserves angular momentum. The latter point was
verified by close inspection of the numerical results.
This forcing configuration—and others having the same
property of zero net vertical transport of angular mo-
mentum—lies within the scope of the theoretical analy-
sis of this paper.7 For a PV staircases (in other words,
“jets”; Baldwin et al. 2007) to exist in more complex
flows, the most important requirement is that the flow
be vertically stratified, that is, that a potential vorticity
(defined in terms of the vertical gradient of stratifica-
tion) is meaningful and governs the evolution of the
large-scale flow in all essential respects, namely, Rossby
wave transport, forced overturning circulations, hydro-
dynamic instability, and quasi-2D turbulent lateral mix-
ing. Absolute angular momentum is also relevant in
such a system, but unlike PV, which, in substance form,
is conserved between stratification isosurfaces (Haynes
and McIntyre 1987), angular momentum may be trans-
ported vertically owing to stresses on the (vertically
displaced) stratification isosurfaces.

In general, angular momentum of the entire body
(atmosphere and whatever lies beneath) is conserved if
the interaction with neighboring bodies is negligible.
The concern, however, is not with the vertically aver-
aged system, but with individual layers in which stair-
cases may form. A shallow atmosphere atop another
fluid layer or solid core may not, by itself, conserve
angular momentum owing to radial exchanges of angu-
lar momentum. Three situations can be imagined. (i) If
the underlying layer is a fluid (gas or liquid), presum-

ably this layer also supports waves and turbulence, so
that one needs to consider the PV staircase as part of a
multilayer system, connected by vertical wave propaga-
tion, mean meridional circulations, and turbulent
stresses. In a balanced large-scale flow, forced over-
turning circulations (required to maintain balance) are
coupled to PV transport and therefore have a coherent
relationship to the staircase and its morphology. In
cases of strong external forcing (e.g., tropical cyclone)
the overturning circulation is relevant to staircase for-
mation at leading order (and in extreme cases may be
entirely responsible for the staircase). (ii) If the system
consists of plasma, one may also need to consider elec-
tromagnetic forces that effectively exchange angular
momentum within and between layers. (iii) If the un-
derlying layer is a rigid solid core, exchanges of angular
momentum between the surface and atmosphere sim-
ply alter the rotation rate of the core (length of day).

The last example reminds us that in the atmosphere
above, any change in the meridional profile of axial
angular momentum can be represented as the sum of a
global mean (effective rotation rate) and departure
therefrom. Because angular momentum is conserved in
the entire system, global-mean changes of the solid and
atmospheric angular momentum are exactly equal and
opposite. In the atmosphere, the change of effective
rotation rate expands or contracts the resting parabola,
altering the slope of the resting PV profile. This alter-
ation satisfies the integral conservation of PV sub-
stance, as the change in one hemisphere trivially can-
cels that in the other. If the same change of global mean
were imposed on a preexisting ideal staircase, the per-
fect flatness of existing steps would be altered, subse-
quently requiring horizontal exchanges of angular mo-
mentum and PV in order to return to a perfect stair-
case. If these exchanges were local, that is, without
transport across preexisting jets, the location and mag-
nitude of jets would be altered in a predictable way,
without knowing any details of the exchange other than
that they are local. So, although we do not need to
consider alterations of global-mean angular momentum
in the Scott and Polvani system, we anticipate that the
PV staircase thinking developed for our ideal case may
be useful in a more general flow system in which some
exchange of global-mean angular momentum with an
underlying fluid or solid takes place. We also anticipate
that it will be useful to decompose the problem into a
global-mean contribution and staircase adjustment.
The key point is that even when the details of horizon-
tal and/or vertical exchange are not known, the PV
staircase concept provides important guidance on real-
izable flow structures when the strength or spacing of
jets is known from other considerations. The require-

7 The possibly important effect of cumulus momentum trans-
port in the troposphere of Earth, and vertical transport in other
deep convecting atmospheres, does not automatically preclude
PV staircase thinking. Such forcings must be evaluated individu-
ally to ascertain whether systematic transport is occurring that
might alter the staircase structure. Cumulus transports vary
greatly according to, for example, how vertical wind shear orga-
nizes the convection (LeMone et al. 1998).
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ment of hydrodynamic stability, in particular, applies to
realizable staircases whether or not the global integral
of angular momentum is conserved between any pair of
stratification isosurfaces.
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