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The Hasegawa-Wakatani equations, coupling plasma density, and electrostatic potential through an
approximation to the physics of parallel electron motions, are a simple model that describes resistive
drift wave turbulence. Numerical analyses of bifurcation phenomena in the model are presented, that
provide new insights into the interactions between turbulence and zonal flows in the tokamak
plasma edge region. The simulation results show a regime where, after an initial transient, drift wave
turbulence is suppressed through zonal flow generation. As a parameter controlling the strength of
the turbulence is tuned, this zonal-flow-dominated state is rapidly destroyed and a
turbulence-dominated state re-emerges. The transition is explained in terms of the Kelvin-Helmholtz
stability of zonal flows. This is the first observation of an upshift of turbulence onset in the resistive
drift wave system, which is analogous to the well-known Dimits shift in turbulence driven by ion
temperature gradients. © 2007 American Institute of Physics. �DOI: 10.1063/1.2796106�

I. INTRODUCTION

Fusion plasmas and other turbulent flows in quasi-two-
dimensional �2D� geometry can undergo spontaneous transi-
tions to a turbulence-suppressed regime. In plasmas they are
known as L-H �low-to-high confinement� transitions and are
studied intensively because they effectively enhance the con-
finement, through suppression of anomalous or turbulent par-
ticle and heat fluxes. It is now widely accepted that emergent
zonal flows are crucial to achieving confinement
improvement.1 The L-H transition is associated with nonlin-
early self-generated poloidal E�B shear or zonal flows2 in
the tokamak edge region, which is comprised of the transi-
tion zone from the inner hot core plasma to the outer cold
scrape-off layer. Zonal flows reduce anomalous transport by
absorbing energy from drift waves and by shearing apart
eddies which mediate turbulent transport, and thus play a key
role in its regulation.

In this paper we present the results of analytic and nu-
merical investigations of transitions between turbulence-
dominated and zonal-flow-dominated regimes, using the
Hasegawa-Wakatani �HW� model3,4 for electrostatic resistive
drift wave turbulence in 2D slab geometry. We find that bi-
furcations in the model correspond to the onset of drift wave
turbulence, the generation of zonal flows, and the re-
emergence of turbulence as the zonal flows become unstable,
and observe that this is the drift wave turbulence analog of
the Dimits shift5 in ion-temperature-gradient �ITG� driven
turbulence.

Three energetic subsystems interact to produce the com-
plexity observed in L-H transition dynamics: the kinetic en-
ergy of turbulence, the kinetic energy of shear flows, and the
potential energy contained in density or pressure gradients.
The three major governing processes are generation of tur-
bulence by drift waves, self-organization of zonal flows, and
destabilization of the zonal flows. The instabilities that lead

to these changes correspond to bifurcations of equilibrium
solutions of model equations. If a tunable parameter crosses
a stability threshold the qualitative nature of the solution
changes. We say that a primary instability occurs at a linear
stability threshold of the equilibrium with zero background
flow, which physically corresponds to the onset and growth
of drift waves. Theoretical6 and experimental7 studies have
indicated that the generation of drift wave turbulence in plas-
mas may occur by the Ruelle-Takens mechanism,8 in which
a limit cycle generated by a Hopf bifurcation undergoes a
Niemark-Sacker bifurcation to a torus, which may undergo
one or more bifurcations to higher-dimensional tori before
the motion becomes chaotic.

However, to complicate this generic turbulence onset
scenario, in plasmas zonal flows will be generated beyond
the primary threshold due to an instability of the drift waves,
effectively suppressing drift wave activity. This instability
causing the zonal flow onset is termed a secondary instabil-
ity. We can consider the turbulence to be well-developed at
the secondary instability; i.e., for heuristic purposes we as-
sume the Ruelle-Takens sequence to have already occurred.

A strong candidate for this secondary instability mecha-
nism is modulational instability,9,10 a special case of nonlin-
ear mode coupling whereby modulation of a small scale
monochromatic wave can transfer energy nonlocally to a
longer wavelength structure due to the ponderomotive force
effect leading to excitation of zonal flows. One might also
expect an inverse energy cascade, endemic to quasi-two-
dimensional flows in general, whereby local mode coupling
channels energy into large scale structures.

A different mechanism for this secondary instability that
generates zonal flows is Kelvin-Helmholtz �KH�
instability.11,12 In this scenario the KH instability may be
driven by radially elongated drift wave eigenmodes. The KH
mode of the drift waves necessarily possess a zonal flow
component, and provide a natural mechanism for the zonal
flow growth.a�Electronic mail: ryusuke.numata@anu.edu.au
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As the zonal flows become more energetic they are sub-
jected to tertiary instability which breaks up the coherent
zonal structuring of the flow into turbulent small scale eddies
via KH instabilities of the zonal flows. The small scale tur-
bulence may again cohere via secondary instabilities. These
interactions are schematized in Fig. 1.

Nonlinear interactions between zonal flows and drift
waves results in an upshift of the boundary in parameter
space for the tertiary onset of turbulence. This is known as
the Dimits shift in ITG turbulence, and the turbulence sup-
pressed regime was mapped by gyrokinetic and gyrofluid
simulations.5

The simplest approach that captures the essential physics
underlying the problem is low-dimensional dynamical mod-
eling and analysis,13–16 which can provide a very economical
tool to predict the transition. However, the tradeoff with such
highly coarse-grained modeling is that it necessarily whites
out information, and may therefore miss important physics
and predict unphysical singular behavior.15 Thus we require
validation of the low-dimensional modeling results by com-
putational simulations of finer models.

The HW model3,4 was developed to investigate anoma-
lous edge transport due to collisional drift waves, and has
been widely studied.17–21 It includes the effects of inhomo-
geneous background density and parallel electron dynamics
described by Ohm’s law. The density gradient drives the drift
waves, which are destabilized by the parallel electron resis-
tivity. Convective nonlinearity regulates the linear growth of
the resistive drift wave instability, and a quasistationary state
is achieved where the resistive coupling balances the input.
The HW model is particularly simple yet includes the essen-
tial physics for studying the self-consistent generation of tur-
bulence and growth and decay of coherent macroscopic
structures such as zonal flows,17 even though it does not
describe physics that can be important in specific situations,
such as magnetic curvature, magnetic shear, and electromag-
netic effects.

We emphasize that the parallel electron motion is impor-
tant for generation, stabilization, and destabilization of zonal
flows. The parallel electron response given by the general-
ized Ohm’s law leads to resistive coupling between the elec-
trostatic potential and the density fluctuations. In toroidal
geometry this coupling does not act on the flux-averaged
parts,22 and in the original or unmodified HW model we do

not observe zonal flows. Modification of the resistive cou-
pling term, described in Sec. II, enables the generation of
zonal flows. This corresponds to the difference between the
ITG and the electron-temperature-gradient �ETG� cases dis-
cussed by Jenko et al.,12 who found that suppression of the
secondary KH instability in the ETG case, due to the adia-
batic electron response, is removed in the ITG limit.

In Sec. II, we describe the HW model and discuss the
treatment of parallel electron motions. Linear stability analy-
sis of the zero-flow background is also given to calculate
transition points in parameter space. Numerical simulation
results are given in Sec. III. We carry out a systematic pa-
rameter survey to locate the transition from a zonal-flow-
dominated state to a turbulent state. To examine the hypoth-
esis that this transition may be ascribed to the tertiary KH
instability of the zonal flow, we study the KH stability of the
generated zonal flows in the HW model in Sec. IV and com-
pare the KH stability threshold with the transition boundary
determined by simulation. Discussions and conclusions are
presented in Sec. V.

II. MODIFIED HASEGAWA-WAKATANI MODEL

The physical setting of the HW model may be consid-
ered as the edge region of a tokamak plasma of nonuniform
density n0=n0�x� and in a constant equilibrium magnetic
field B=B0�z. Following the drift wave ordering,23 the
ion vorticity ���2� �� is the electrostatic potential,
�2=�2 /�x2+�2 /�y2 is the 2D Laplacian� and the density
fluctuations n are governed by the equations

�

�t
� + ��,�� = ��� − n� − D�4� , �1�

�

�t
n + ��,n� = ��� − n� − �

��

�y
− D�4n . �2�

Here �a ,b����a /�x���b /�y�− ��a /�y���b /�x� is the Poisson
bracket, D is the dissipation coefficient. The background
density is assumed to have an unchanging exponential pro-
file, ���� /�x�ln n0. Electron parallel motion is determined
by Ohm’s law with electron pressure pe=nTe,

jz = − enve,z = −
1

�

�

�z
�� −

Te

e
ln n	 , �3�

assuming electron temperature Te to be constant �isothermal
electron fluid�. This relation gives the coupling between
� and n through the adiabaticity operator
��−Te / ��n0�cie

2��2 /�z2 appearing in Eqs. �1� and �2�. In
our 2D setting � becomes a constant coefficient when acting
on the drift wave components of � and n by the replacement
� /�z→ ikz, where 2� /kz=L
 	Ly is a length characteristic of
the drift waves’ phase variation along the field lines. How-
ever, for the zonal flow components, this resistive coupling
term must be treated carefully because zonal components of
fluctuations �ky =kz=0 modes� do not contribute to the paral-
lel current.22 Recalling that turbulence in the tokamak edge
region, where there is strong magnetic shear, is considered
here, ky =0 should always coincide with kz=0 because any
potential fluctuation on the flux surface is neutralized by par-

FIG. 1. �Color online� Primary instabilities generate turbulence from a po-
tential energy reservoir, secondary instabilities lead to the growth of shear or
zonal flows at the expense of turbulence kinetic energy, and tertiary insta-
bilities may destabilize the shear or zonal flows. Zig-zag green arrows rep-
resent dissipative channels.
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allel electron motion. Let us define zonal and nonzonal com-
ponents of a variable f as

zonal: �f� =
1

Ly
 fdy, nonzonal: f̃ = f − �f� ,

where Ly is the periodic length in y, and remove the contri-
bution by the zonal components in the resistive coupling
term in Eqs. �1� and �2�. Subtraction of the zonal components
from the resistive coupling term ���−n�→���̃− ñ� yields
the modified HW �MHW� equations,

�

�t
� + ��,�� = ���̃ − ñ� − D�4� , �4�

�

�t
n + ��,n� = ���̃ − ñ� − �

��

�y
− D�4n . �5�

Evolutions of the zonal components can be extracted from
Eqs. �4� and �5� by averaging in the y direction,

�

�t
�f� +

�

�x
�fvx� = − D

�4

�x4 �f�, vx � −
��̃

�y
,

where f stands for � and n.
Wakatani and Hasegawa found4 that excitations of waves

having kz that maximizes the linear growth rate �for given kx

and ky� are most likely to occur, since the plasma can choose
any parallel wavenumber �kz�. Using the parallel wave
number of the maximum growth rate, � is given by
�=4k2ky� / �1+k2�2. This also gives �=0 for the zonal mode.

The MHW model spans two limits with respect to the
adiabaticity parameter �. In the adiabatic limit �→
 �colli-
sionless plasma�, the nonzonal component of electron den-
sity obeys the Boltzmann relation ñ=n0�x�exp��̃�, and the
equations are reduced to the Hasegawa-Mima equation.23 In
the hydrodynamic limit �→0, the equations are decoupled.
The vorticity is determined by the 2D Navier-Stokes equa-
tion, and the density becomes a passive scalar. The advan-
tage of our choice of � as a free parameter is the capability
for treating the limits in a unified manner.

The variables in Eqs. �4� and �5� have been normalized
by

x/�s → x, �cit → t, e�/Te → �, n1/n0 → n ,

where �s��Te /m�ci
−1 is the ion sound Larmor radius

�vsi��Te /m is the ion sound velocity in the cold ion limit�,
n1 is the fluctuating part of the density.

In the adiabatic, ideal limit ��→
 ,D→0� the MHW
system has two dynamical invariants, the energy E and the
potential enstrophy W,

E =
1

2
 �n2 + ����2�dx, W =

1

2
 �n − ��2dx , �6�

where dx=dxdy, which constrain the fluid motion. Conser-
vation laws are given by

dE

dt
= �n − D� − DE,

dW

dt
= �n − DW, �7�

where fluxes and dissipations are given by

�n = − � ñ
��̃

�y
dx ,

D� = � �ñ − �̃�2dx ,

DE = D ���2n�2 + ����2�dx ,

DW = D ��2n − �2��2dx .

Unlike the Hasegawa-Mima model which is an energy-
conserving system, the MHW model has an energy source
�n. Due to the parallel resistivity, ñ and �̃ can fluctuate out of
phase which produces nonzero �n. The system can absorb
free energy contained in the background density profile
through the resistive drift wave instability.

Note that the same conservation laws hold for the un-
modified original HW �OHW� model, Eqs. �1� and �2�, ex-
cept that D� is defined by both zonal and nonzonal compo-
nents; D�

OHW����n−��2dx. In the OHW model, the zonal
modes as well as the nonzonal modes suffer resistive dissi-
pation.

We present the linear stability analysis for the zero back-
ground �the primary instability�. Beyond this stability thresh-
old we expect excitation of drift waves. Since the zonal
modes have linearly decaying solutions, we only consider the
form exp i�kxx+kyy−�t� �ky �0�. Linearization of Eqs. �4�
and �5� around the zero equilibrium ��=n=0� yields the dis-
persion relation,

�2 + i��b + 2Dk4� − ib�* − �Dk2�k2 + 1� − D2k8 = 0, �8�

where we defined k2=kx
2+ky

2, b���1+k2� /k2, and the drift
frequency �*�ky� / �1+k2�. Solutions to the dispersion rela-
tion �8� are given by

FIG. 2. �Color online� Primary stability boundary in the
�-� plane and kx-ky plane.
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�r = ±
b

2
�1 +

16�*
2

b2 	1/4

cos


2
,

�i = −
1

2
�b + 2Dk4 � b�1 +

16�*
2

b2 	1/4

sin


2
� ,

�=�r+ i�i, tan =−4�* /b. In the limit where D=0, it is
readily proved that one of the growth rates �i is positive if
b�* is finite, thus unstable. However, there exists a range of
D where the drift wave instability is suppressed. The stability
threshold is given by

b + 2Dk4 � b�1 +
16�*

2

b2 	1/4

sin


2
, �9�

and is depicted in Fig. 2. The first unstable mode shown in
the figure is the �kx�s ,ky�s�= �0,0.15� mode. Below this
threshold, an initial perturbation damps out and nothing hap-
pens. If we choose the parameters in the region beyond the
threshold, more than one mode starts to grow linearly until
the nonlinear terms set in. The right panel shows how many
modes are excited for given parameters. Most unstable
modes are on the kx=0 axis.

III. SIMULATION RESULTS

The HW equations are solved in a doubly periodic
square slab domain with box size L=2� /�k where the low-
est wavenumber �k=0.15 �L�42�. The equations are dis-
cretized on 256�256 grid points by the finite difference
method. Arakawa’s method is used for evaluation of the
Poisson bracket.24 The time stepping algorithm is the third

order explicit linear multistep method.25 We examine the ef-
fects of the parameters � and � on the nonlinearly saturated
state, and fix D=10−4 throughout this paper.

We start simulations by imposing small amplitude ran-
dom perturbations. The perturbations grow linearly in the
initial phase and generate drift waves, then the drift waves
undergo secondary instabilities which excite zonal flows un-
til nonlinear saturation occurs. In the saturated state, we ob-
serve that �n�D�	DE ,DW. We compare the MHW and the
OHW models by showing the spatial behavior of the satu-
rated electrostatic potential in Fig. 3, and the time evolution
of the total kinetic energy, the zonal component of the kinetic
energy, and the cross-field transport �n in Fig. 4. From Fig. 3
we see that zonally elongated structures of the electrostatic
potential are generated in the MHW model, while rather iso-
tropic vortices are generated in the OHW model. From Fig. 4
we see that growth of the drift waves is not changed by the
modification, but that in the MHW model the zonal flows
saturate at a higher amplitude �because the modification re-
moves the unphysical resistive dissipation of the zonal
modes�. In fact, in the MHW model, the zonal flows carry
nearly all the kinetic energy in the final state—they have
absorbed nearly all the energy from the drift waves. In both
models, the cross-field transport initially increases as the tur-
bulent kinetic energy level increases, but in the MHW model
it begins to fall as zonal flows absorb the drift wave energy.
The build-up of the zonal flow in the MHW model and the
resulting transport suppression highlight the importance of
the difference between the MHW and the original HW model
in the nonlinear regime.26

Let us show how the parameters � and � affect the
saturated state in the MHW model. In Fig. 5, we plot

FIG. 3. �Color online� Contour plot of � in the saturated state. Zonally
elongated structure of the electrostatic potential is clearly visible in the
modified HW model �a�, while isotropic vortices are generated in the HW
model �b�.

FIG. 4. �Color online� Time evolution plots of total
kinetic energy, zonal flow kinetic energy, and transport
of MHW and HW models.

FIG. 5. �Color online� Parameter dependence of the zonal kinetic energy
normalized by the total kinetic energy. Transitions from a zonal-flow-
dominated state to a turbulence-dominated state occur.
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the ratio of the kinetic energy of the zonal flow
�F�1/2������ /�x�2dx� to the total kinetic energy
�Ek�1/2� ����2dx� against � and �. It is clearly seen that
there are two types of saturated states. One is a zonal-flow-
dominated state where turbulence is almost completely sup-
pressed, and the other is an isotropic turbulence-dominated
state. The zonal-flow-dominated state suddenly jumps to the
turbulent state in a narrow range of the parameter space. If
we strongly drive the drift wave instability by increasing �,
the system is likely to reach the turbulent state. From the
dependence on �, we can see that zonal flows are generated
in the adiabatic regime ��	1� while isotropic flows are gen-
erated in the hydrodynamic regime ���1�. These results are
compatible with the properties of the Hasegawa-Mima model
and of hydrodynamic flows as discussed in the next section.

Let us assume that the generated zonal flows in the y
direction can be expressed by a sinusoidal profile,

V�x� = V0 sin��x� . �10�

The amplitude V0 and wavenumber �=n�� /L are deter-
mined from the simulation results. To estimate � we plot the
average wavenumber of the generated zonal flow

�kx� =
� kxEk�kx,ky = 0�dkx

� Ek�kx,ky = 0�dkx

�Ek is the kinetic energy spectrum� �11�

in Fig. 6, and amplitude of the zonal flow in Fig. 7. The
average wavenumbers are small and rather insensitive to the
parameters. This illustrates a feature of 2D flows, which tend
to generate large scale structures. The wavenumber of a
stable zonal flow is typically 0.3 �corresponding to n�=4�.
The amplitudes of zonal flows are roughly proportional to �2

and are independent of �.

IV. STABILITY OF ZONAL FLOW

We examine the stability of the zonal flows obtained
from the numerical simulations, and compare the stability
threshold and the transition point in this section. We consider
the perturbation around the zonal flow background. The elec-
trostatic potential and the density are decomposed as
�=�0�x�+ �̂�x�exp i�kyy−�t�, and n= n̂�x�expi�kyy−�t�,
where d�0 /dx=V gives the background flow in the y direc-
tion. By linearizing the MHW equations, we obtain an eigen-
value equation containing the effect of � and �,

� d2

dx2 − ky
2 +

kyV�

� − kyV
−

i�

� − kyV + i�
�1 −

ky�

� − kyV
	��̂

= 0. �12�

We neglect the viscosity. The density fluctuation is deter-
mined by

n̂ =
i� + ky�

� − kyV + i�
�̂ . �13�

We solve the eigenvalue equation by the standard shooting
method in the domain D= �x �−L /2�x�L /2�. The boundary
is assumed to be rigid �̂�±L /2�=0 for simplicity.

A. Hydrodynamic and adiabatic limit

Before going to the analysis of the HW case, we briefly
review the results in two limits: the hydrodynamic limit
��→0� and the adiabatic limit ��→
�.

In the �→0 limit, we recover the Rayleigh eigenvalue
equation for neutral fluids,

� d2

dx2 − ky
2 +

kyV�

� − kyV
��̂ = 0. �14�

The well-known Rayleigh’s inflection point theorem de-
mands existence of an inflection point for the instability.27

The necessary and sufficient condition is also known for this
case. Tollmien28 showed the existence of a marginally stable
eigenfunction �s satisfying �s /ks,0=V�xs�, where xs is the
inflection point. �s satisfies

�s� + ��2 − ks,0
2 ��s = 0. �15�

The solution is given by

�s = �sin�n�

L
x	 �n:even�

cos�n�

L
x	 �n:odd� � , �16�

and the critical wavenumber is

ks,0 =��2 − �n�

L
	2

�n = ± 1, ± 2, . . . � . �17�

If ��� /L, the marginally stable wavenumber ks,0 exists. It
should be noted that Tollmien does not exclude the possibil-
ity that the marginally stable mode is isolated. However, per-
turbation analysis around the marginally mode shows the ex-

FIG. 7. �Color online� Zonal flow amplitude vs � and �.FIG. 6. �Color online� Average zonal flow wavenumber versus � and �.
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istence of solutions smoothly connected to the marginal
solution.29,30

A similar analysis can be applied to the adiabatic limit,

� d2

dx2 − �ky
2 + 1� +

ky�V� + ��
� − kyV

��̂ = 0 �18�

if �=0. The marginally stable eigenfunction satisfies

�s� + ��2 − ks,

2 − 1��s = 0. �19�

The solution is identical to the previous case, but the critical
wavenumber is slightly modified to

ks,
 =��2 − �n�

L
	2

− 1. �20�

The necessary and sufficient condition of the flow shear for
instability is �2� �� /L�2+1.

We can judge the stability by finding the critical wave-
number. We consider the flow given by Eq. �10� with
�=0.3. The critical wavenumber exists only in the hydrody-
namic limit for the given profile. On the other hand, the
given flow is stable in the adiabatic limit. The difference of
the two stability conditions �17� and �20� comes not from �
but from the strong coupling between � and n, and reflects
the stabilizing effect of adiabatic parallel electron motion.

Figure 8 shows the imaginary parts of the eigenvalues
for the n�=4 case in the hydrodynamic limit. The eigenval-
ues are pure imaginary in this limit because of antisymmetry
of the flow �V�x�=−V�−x��. Another property in this limit is
the scale invariance. The eigenvalues do not depend on L and
�, but are determined by n�.

We set V0=1. Or, in other words, V0 is normalized out
by considering � /V0→�. The eigenvalue problem of the
given flow profile with n�=4 has the same eigenvalues

as that of the flow with n�=2 in the half domain �solid
line�. The critical wavenumber for this curve is given by
ks,0�n�=2�L�10.9. In addition, we find another branch of
solutions �broken line� which continue to exist until
kyL�ks,0�n�=4�L�12.2.

Next, let us consider the effect of �. Since the critical
wavenumber does not exist for the profile with �=0.3, we
examine a profile having stronger flow shear by setting
L=5, and take n�=2 for simplicity. In this setting the mar-
ginal wavenumber exists �ks,
L�2.14�.

Figure 9 shows the eigenvalues obtained in the adiabatic
limit for L=5 and �=2� /L. � is also normalized by � /V0

→�. ks,
 seems independent of �. Thus the same stability
condition still holds for finite, but not too large, �. As we see
from the figure, the growth rate �i decreases with increasing
� and disappears for large � even though ks,
 exists. We need
another condition for �. Multiplying �18� by the complex
conjugate of �̂ and integrating over the domain, we obtain

�i
D

ky�V� + ��
�� − kyV�2

��̂�2dx = 0. �21�

If �i�0, V�+�=0 must be satisfied somewhere in the
domain.31 Applying this condition to our assumed flow pro-
file, we obtain the condition ���2 for the instability. This
gives only a necessary condition for the instability, but pro-
vides a good estimate �Fig. 9�.

If we find the eigenvalue � and the corresponding eigen-
function �̂, the complex conjugate of � is also an eigenvalue
and the corresponding eigenfunction is given by the complex
conjugate of �̂. Thus, we can always restrict our quest for
eigenvalues in the upper half plane of the complex � plane
without loss of generality. This greatly simplifies the situa-
tion because we can neglect the continuous spectrum on the
real � axis.

B. Hasegawa-Wakatani case „intermediate value of �…

Unlike the previous cases, the complex conjugate of an
eigenvalue is not an eigenvalue if we include finite �. In this
case we must solve for negative �i as well. Moreover, there
exist two continuous spectra in this case,

� = kyV, kyV − i�, where �V� � V0. �22�

Both represent convective transport due to the background
flow. One of them is damped by the resistivity. These con-
tinua may interact with the point spectrum. Thus the situation
is much more complicated in the intermediate � case com-

FIG. 8. �Color online� Growth rates for �=0.3 flow in the hydrodynamic
limit as described in the text.

FIG. 9. �Color online� Growth rate in the adiabatic limit
�L=5, n�=2�. �a� ky dependence, �b� � dependence.
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pared with the adiabatic and hydrodynamic limits.
First, we show the effect of � and neglect the effect of �.

We consider n�=2 for simplicity. Figure 10 shows the imagi-
nary parts of the eigenvalues. Three different � cases, and
the � dependence of the positive branches, are shown. The
continuous spectra are shown by thick solid lines. In the �
=0.0001 case, two branches from the �→0 case �dotted line�
are also shown for reference, so that it is seen that �i is
slightly shifted downwards for finite �. As kyL decreases, the
upper �unstable� branch intersects the continuous spectrum at
marginal stability, and there exists a gap �interval in kyL�
occupied by the two continuous spectra before this branch
continues as a stable mode. The eigenfunctions belonging to
the eigenvalues in the point spectrum close to this gap be-
come singular.

For increasing �, we observe the positive eigenvalues
disappearing at ��0.000 417. In addition to the two stable
branches seen at �=0.0001, at �=0.001 another stable
branch has appeared in the small ky region. By further in-
crease of � we find that the lower two branches merge. Be-
yond this merging point, finite real parts appear, and the
eigenmode starts to travel in the y direction.

Our concern is to determine the stability threshold in the
�-� plane. Next, we consider the effect of � in addition to �.
Since � always appears in the form of �� and � is small in
the vicinity of the threshold, the effect of � is rather minor. �
does not significantly affect the behavior of the eigenvalues
except that � controls the amplitude of flow. As we stated
earlier, the parameters are normalized by V0, � /V0→�,
� /V0→�, in the shooting calculation, where V0 is propor-
tional to �2.

Finally, we summarize the shooting calculation by show-
ing the bifurcation diagram in �-� plane together with the
numerically obtained results. The only excitable mode that
can be resolved in the numerical simulation is the ky =0.15
mode, which is the first unstable mode of the primary insta-
bility �see Sec. II�. In Fig. 11, we show the stability threshold
of the ky =0.15 mode for the primary instability �resistive
drift wave instability� and the tertiary instability �KH insta-

bility�. Each mark in the figure denotes a numerically ob-
tained saturated state: �, �, � represent, respectively, the
zonal-flow-dominated, transitional, and turbulence-
dominated states. In these states zonal flows contain more
than 90%, 20%–90%, and less than 20% of the total kinetic
energy, respectively. The qualitative tendency of the thresh-
olds in the bifurcation diagram shows agreement between the
numerical simulations and the KH analysis, i.e., increasing �
��� is stabilizing �destabilizing�. Zonal-flow-dominated
states are observed in between the primary and the tertiary
instability thresholds. The emergence of a turbulent state is
shifted from the primary threshold to the tertiary threshold
due to the turbulence suppression effect of the zonal flow,
which is analogous to the Dimits shift observed in ITG tur-
bulence.

The reasons for the quantitative discrepancy between the
boundary of the zonal and the turbulent states may be be-
cause of the simplification made in the KH analysis; the
simplified flow profile, the boundary condition and viscosity
may also affect the results.

V. CONCLUSION

In summary, we have analyzed bifurcation phenomena in
two-dimensional resistive drift wave turbulence. First, we
have performed numerical simulations of the modified HW
model to study bifurcation structures in a two-parameter
��-�� space. We have shown that, in the MHW model, zonal
flows are self-organized and suppress turbulence and turbu-
lent transport over a range of parameters beyond the linear
stability threshold for resistive drift waves. By performing a
systematic parameter survey, we have found that such zonal-
flow-dominated states suddenly disappear as a threshold is
crossed, being replaced by a turbulence-dominated state.

The threshold of the onset of turbulence has been com-
pared with the linear stability threshold of an assumed lami-
nar zonal flow profile. Simple theoretical predictions in lim-
iting cases explain the qualitative tendency of the stability of
the zonal flow. � determines the amplitude of the zonal
flows, thus, large � destabilizes the zonal flows. On the other
hand, the adiabatic response of parallel electrons given by �
stabilizes them. Numerical analysis of the eigenvalue prob-
lem determining the stability of the assumed zonal flow pro-

FIG. 10. �Color online� Growth rates for the HW case as described in the
text.

FIG. 11. �Color online� Bifurcation diagram showing the correlation be-
tween the linearized stability estimates described in the text and the regimes
observed in our turbulence simulations.
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file in the HW model also confirms this trend. The con-
structed bifurcation diagram in the �-� plane for the HW
model confirms the scenario of the onset of turbulence in the
drift wave/zonal flow system being due to the disruption of
zonal flows by KH instability.

The HW model considered here is a particularly simple
model, but includes the essential physics of interactions be-
tween turbulence and coherent structures. This system exhib-
its many other interesting phenomena, but in this paper we
have focused on the effect of the linear driving term � and
the parallel electron response � �including the resistivity�. To
do so, we set the viscosity very small. In this case the zonal
flow survives for a very long time. However, when the vis-
cosity comes into play, the zonal flows are damped rapidly,
and the turbulence grows again until zonal flows can be non-
linearly excited and the cycle repeats. Thus the system ex-
hibits predator-prey oscillatory behavior.
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