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XX1. Stability of Fluid Motion (continued from the May and
June numbers).—Rectilineal Motion of Viscous Fluid between

tano Parallel Planes®. By Sir W. TromsoN, LL.D., F.R.S.

97. OVINCE the communication of the first of this series of

articles to the Royal Society of Edinburgh in April,
and its publication in the Philosophical Magazine in May and
June, the stability or instability of the steady motion of a
viscous fluid has been proposed as subject for the Adams
Prize of the University of Cambridge for 1838 . The pre-
sent communication (§§ 27-40) solves the simpler of the two
cases specially referred to by the Examiners in their announce-
ment, and prepares the way for the investigation of the less
simple by a preliminary laying down, in §§ 27-29, and equa-
tions (7) to (12) below, of the fundamental equations of
motion of a viscous fluid kept moving by gravity between
two infinite plane boundaries inclined to the horizon at an
angle 1, and given with any motion deviating infinitely little
from the determinate steady motion which would be the
unique and essentially stable solution if the viscosity were
sufficiently large. It seems probable, almost certain indeed,
that analysis similar to that of §§ 38 and 39 will demonstrate
that the steady motion is stable for any viscosity, however
small ; and that the practical unsteadiness pointed out by
Stokes forty-four years ago, and so admirably investigated
experimentally five or six years ago by Osborne Reynolds, is
to be explained by limits of stability becoming narrower and
narrower the smaller is the viscosity.

Let OX be chosen in one of the bounding planes, parallel
to the direction of the rectilineal motion ; and OY perpen-
dicular to the two planes. Let the z-, y-, z-, component
velocities, and the pressure, at (=, y, 2, ¢), be denoted by
U +u, v, w,and prespectively ; U denoting a function of (v, ¢).
Then, calling the density of the fluid unity, and the viscosity
1, we have, as the equations of motiont, )

du dv dw

*# Communicated by the Author, having been read before the Royal
Society of Edinburgh, July 18, 1887.

1 See Phil. Mag. July 1887, p. 142.

1 Stokes's Collected Papers, vol. i. p. 93.
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98. If we have u=0, v=0, w=0; p=C—gcos1y; the
four equations are satisfied identically ; except the first of (2),
which becomes

dU %o B

dt ~ Ve (3)-
This is reduced to

dv d?v

I ay? (4),

if we put

' U=v+igsinl/p. (82—y?) (5).
For terminal conditions (the bounding planes supposed to be
y=0 and y=>0), we may have

v=F(¢) when y=0 (6)

v="§(%) yy y=b ,
where F and §§ denote arbitrary functions. These equations
(4) and (6) show (what was found forty-two years ago by
Stokes) that the diffusion of velocity in palallel layers, pr ovided
it is exactly in parallel layers, through a viscous fluid, follows
Fourier’s law of the ¢ linear” diffusion of heat through a
homogeneous solid. Now, towards answering the highly
important and interesting question which Stokes raised,—Is
this laminar motion unstable in some cases 7—go back to (1)
and (2), and in them suppose u, v, w to be each infinitely

small : (1) is unchanged ; (2), with U eliminated by (5),
become :
du dv d
Gl @y G (F-a)=svu—F .. (@,
d - d
dfﬁ-[v“c(bg—-yg)]dx =uV — EE .- (8),
d
=] =V —3E . (9
Where

(10)

c=g sin I/p.

(U+u)+w-—— —MVQ(U+u)—%§ +gsin ]

1

|

d
— 25 —9esL, b (@)
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and, for brevity, p now denotes, instead of as before the pres-
sure, the pressure + ¢ cos Ly. e :

We still suppose v to be a function of y and ¢ determined
by (4) and (6). Thus (1) and (7), (8), (9) are four equa-
tions which, with proper initial and boundary conditions,
determine the four unknown quantities u, v, w, p ; in terms
of &, 5, 2, L.

99. It is convenient to eliminate » and w; by taking

d a d

e of (7), (8), (9), and adding. Thus we find, in
virtue of (1), C(dv DooRdeL s
z & s N e (11).

This and (8) are two equations for the determination of v
and p. Eliminating p between them, we find

dvglj dQU d'U 1 ) 2 dvgv e 4

di —(@9 —C)E+[U_§c(b —Y )] dox =pVv .. (12>7

a single equation which, with proper initial and boundary
conditions, determines the one unknown, v. When v is thus
found, (8), (7), (9) determine p, %, and w.
- 80. An interesting and practically important case is pre-
sented by supposing one or both of the bounding planes to be
kept oscillating in its own plane ; that is, T and § of (6) to
be periodic functions of t. For example, take

F=acoswt, §=0 . . . . . (13)

The corresponding periodic solution of (4) is

b— -l —(5— 2.

Ve G - ®

v=a cos {wt—ya / — ) . . (14).
B - 2
€ fp 2

€

 In connexion with this case there is no particular interest
m supposing a current to be maintained by gravity; and we

shall therefore take ¢=0, which reduces (7), (8), (9), (11),

(19
e Z—; +v% + %v=#vgu— % S
g%)+vg_g T _% MR ¢ | . §
GoE Swm-? L ap,
2%% == ..ol [18),
dgtgv—%;%ﬂédv‘jzﬂv‘v coee e (19)5

in all of which v is the function of (y, t) expressed by (14)..
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These equations (15) ... (19) are of course satisfied by
g=A), v="0, w=10, p=0 The question of stability is, Does
every p0551ble solution of them come to this in time? It
seems to me probable that it does ; but I cannot, at present
at all events, enter on the mvestlcmtlon The case of b=
is specially unportant and mtele\atmcr

31. The present communication is confined to the much
simpler case in which the two bounding planes are kept moving
relatively with constant velocity ; mcludmg as sub-case, the
two planes held at rest, and the fluid caused by grawty to
move botween them. But we shall first take the much simpler
sub-case, in which there is relative motion of the two planes,
and no gmwty This is the very simplest of all cases of the
general question of the St‘lblhty or Instability of the Motion
of a Viscous Fluid. It is the second of the two cases pre-
scribed by the Examiners for the Adams Prize of 1888. 1
have ascertdined, and I now give (§§ 32...39 below) the
proof, that in this sub-case the steady motion is wholly stable,
however small or however great be the viscosity ; and this
without limitation to two-dimensional motion of the admis-
sible disturbances.

32. In our present sub-case, let Bb be the relative velocity of
the two planes; so that in (6) we may take '=0,§F=8b; and
the corresponding steady solution of (4) is

v=8y » - . « » « - {(20)
Thus equation (19) becomes reduced to

I
21);
where |> (20);
a = \*% )
and (18), (15), (16), (17) becomse
dv
QBd—mz—Vzp P P )
du By du +Bu-—#vzu—§£ C.L L (29),
2
d’u 4 dp. ¢
By dx =/J,V2v—— d—g S i M (24),
dw dw e dp
—-—+,8yzi—$~ =pVio—o— . . .. (25).

It may be remarked that equations (22)...(25) imply (1),
and that any four of the five determjnes the  four quantities
u, v, w, p. It will still be convenient occasionally to use (1).
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We proceed to find the complete solution of the problem

before us, consisting of expressions for u, v, w, p satisfying
(22).. 95) for all values of Bl 25 1 ‘and the followi ing
initial and boundary conditions :—

when t=0: 1, v, w to be arbitrary functions (26);
of z, y, z, subject only to (1) e

u=0, v=0, w=0, for y=0 and all values of z, z, } @),
u=0, v=0, w=0, for y=0b 5

33. First let us find a particular solution u, v, w, p, which
shall satisfy the initial conditions (26), irrespectively of the

boundary conditions (27), except as follows :—
v=0, when t=0 and y=0 (28).
v=0, when ¢=0 and y=5

Next, find another particular solution, u, v, v, p, satisfying
the followmor initial and boundary equatlons —

=0, =0, w=0, when t=0 . . . (29);
u+u=0, v+v=0, w+w=0, when y=0

and when y=5 i
The required complete solution will then be
u=0u+1, v=0+v, w=w+w . . . (31).

34. To find u, v, w, remark that, if x were zero, the com-
plete integral of (‘)1 Would be

o = arb. func. (z— Byt) ;

and take therefore as a trial for a type-solution with x not
Zero,
G‘ZT"L[mI+(n—th)y+q21 o . (32),

where T is a function of ¢ and ¢ denotes V:I Sub-
stituting accordingly in (21), we find

dT
5 = R+ (n—mpBr)?+¢]T. . . (33);

whence, by integration,

gt - g™ g
Tzl i il (34).
By the second of (21), and (32), we find

lmr+(n—mBtyy+4z]

= —T — 5) -
b m2+(n—”lBt)2+g2 . . . . (30)’
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whence, by (22), ey.[mr+(n—-mﬁt)_/+q.2]
p=—28m.T = T o o (36).
Using this in (25), and putting
PRI e o S (37),
we find
dW 2quT

T —pu[mr+(n—mBt) + W —
which, integrated, gives W.
chmg thus iound v and w, we find u by (1), as follows:—

—mBt)v + qw
@ m)f..-..(39).

35. Realizing, by adding type-solutions for +¢ and +n,
with proper values of C, we arrive at a complete real type-
solution with, for v, the followmg—m which K denotes an
arbitrary constant

v:%K{

[m* + (n—mBt)? +g]

U= —

—ut[m24n2+¢q2 —nmBé+$m2p242] cos

m? + (n—mBt)* + lj" sin
g~ tlm2tn? +g2tnmpBlt mPp2] o
m? + (n+mBt)* + ¢* sin [ o= kBl g }
This gives, when t=0,
et sin
=y oy () (4D)

[ma+ (n—mfBt)y +g2]

m* -+ n*

which fulfils (28) if we make
n=imylb. . & « . o (42);

and allows us, by proper summation for all values of ¢ from 1
to «o , and summation or integration with reference to m and
q, with properly determined values of K, after the manner of
Fourier, to give any arbifrarily assigned value to v,_, for
every value of #, 4,4

T y:O 2 y=b, (43‘)"

» Z=—w , Z=+®

from z=—w to .2:=+oo,}

The same summation and integration applied to (40) gives
v for all values of ¢, 2, y, z; and then by (38), (37), (39) we
find corresponding determinate values of w and w.

36. To give now an arbitrary initial value, w, to the
Phil. Mag. S 5. Vol. 24. No. 147. August 1887, O

(38),

(40).
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z-component of velocity, for every value of z, y, =, add to the
solution (u, v, w), which’we have now found, a particular
solution (i, v/, w') fulfilling the following conditions :—

o' =0 for all values of ¢, 2, y, 2; }
w =wy,—w, for t=0, and all values of 2, y, 2
and to be found from (25) and (1), by remarking that +'=0

2

makes, by (22), =0, and therefore (23) and (25) become

(44),

du’ du' -

R _— = ° s . . ® 4
TR S N (45),
|, dw

ARy =T . L L (46).

Solving (46); just as we solved (21), by (32), (33), (34); and
then realizing and summing to satisfy the arbitrary initial
condition, as we did for v in (40), (41), (42), we achieve the
determination of «'; and by (1) we determine the corre-
sponding u, ipso facto satisfying (45). Lastly, putting
together our two solutions, we find

u=u+u, v=v, w=w+w . . . (47)

as a solution of (26) without (27), in answer to the first
requisition of §33. It remains to find u, v, W, in answer to
the second requisition of § 33.

37. This we shall do by first inding a real (simple harmonic)
periodic solution of (21), (22), (23), (25), fulfilling the
condition

3

u=A cos ot + B sin ot

v=C cos @t + D sin ot } when y=0

w=K cos ot + F sin wt

u=9Y cos wt+B sin w? ;-

=8 cos wt+D sin wt } when y=06

w=(§ cos wt+ F sin wt J
where A, B, C, D, B, F, %, B,¢, D, ¢ § are twelve
arbitrary functions of (z,2z). Then, by taking | de f(w)

0

of each of these after the manner of Fourier, we solve the
problem of determining the motion produced throughout the
fluid, by giving to every point of each of its approximately
plane boundaries an infinitesimal displacement of which each of
the three compenents is an arbitrary function of z,z,t. Lastly,
by taking these functions each =9 from t=— o0 to t=0, and

(48),




Viscous Flwid between two Parallel Planes. 195

each equal to minus the value of u, v, w for every point of
each boundary, we find the u, v, 1 of §33. The solution of
our problem of § 32 is then completed by equations (31). To
do all this is a mere routine after an lmaginary type solution
is provided as follows.

38. To satisfy (21) assume

— ea(mf+mz+qz) @

et (V4D K i/t 4 Ty L MRy} . (49),
where H, K, L, M are arbitrary constants and £, F any two
particular solutions of

[d? 5 -
(w+mBy)o=p Zzﬁ—(m‘-{—g‘)a] N 1
This equation, if we put
mBlu=ry, and m*+ ¢ +wfu=1 . . . (51),
becomes
d'c »
a7 =A+uwy)e . . . . . (52);

which, integrated in ascending powers of (A +¢yy), gives two
particular solutions, which we may conveniently take for our
Jfand F, as follows :—

- 3 —4 6 -8 9 )
S 1Y Adey)” T (Nwyy)” T (Mteyy)
A= 355 Tt §53.9 986533 % L(%)
—3 4 —4 7 =8 10 :
» Y (M Feyy)” vy Ney) v (M) '
) =Noy 2.3 T 7.8.4.3 10.9.7.6.4.3+&C'J

39. These series are essentiully convergent for all values of y.
Hence in (49) we have a solution continuous from y=0 to
y=2>0; and by its four arbitrary constants we can give any
prescribed values to ¢/, and d;%, for y=0 and y=»5. This

dy
done, find p determinately by (24); and then integrate (25)
for w in an essentially convergent series of ascending powers of
A+ uyy, which is easily worked out, but need not be written
down at present, except in abstract as follows :—

w=qletinere (54
where
W=HE: A+ vyy) + KFo (A +oyy) + LF( A+ vry) }’ (55
+ M%;(?\- + Lryy) 4 Pevd(m2+ g2) & Qe—yJ(mz+q3) )-

Here P and Q are the two fresh constants, due to the inte- -

gration for w. By these we can give to %/ any prescribed
02
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values for y=0 and y=>b. Lastly, by (1), with (49), we

have
U= @Zet(mt-i—m:t-l'gz) 1

l
where 1 a% T 1

Our six arbitrary constants, H, K, L, M, P, Q, clearly
allow us to give any prescribed values to each of %, ¥V, %,
for y=0 and for y=>b. Thus the completion of the realized
problem with real data of arbitrary functions, as described in
§ 37, becomes a mere affair of routine.

40. Now remark that the (u, v, w) solution of § 34 comes
essentially to nothing, asymptotically as time advances, as we
see by (33), (34), and (38). Hence the (i, v, w) of § 37,
which rise gradually from zero at t=0, comes asymptoticall
to zero again as ¢ increases to . We conclude that the
steady motion is stable.

[To be continued. )

XXII. On Evaporation and Dissociation.—Part VI.(continued).
On the Continuous Change from the Gaseous to the Liguid
State at all Temperatures. By WiLriam Ramsay, Ph.D
and SYDNEY Youwe, D.Se.®

[Plates II1.-V.]

THE following pages give a further proof of the correctness

of the relation p=0t—a, where v=constant, applicable
both to gases and liquids. The data for methyl alcohol apply
solely to the gaseous state, for the very high pressures which
its vapour exerts precluded measurements at temperatures
above its critical point.  With ethyl alcohol the determinations
of the compressibility of the liquid are more complete than
with ether ; the experimental observations in the neighbour-
hood of the critical volume are, however, not very numerous
for the highest temperature for which an isothermal was con.
structed is 246°, the critical temperature being 243>1. The
values of a and b at volumes near the ecritical are con.
sequently somewhat uncertain. The data for the gaseous
condition are, however, pretty full. We have also a consider-
able number of data for acetic acid (Trans. Chem. Soc. 1886
p. 790). Here the temperature at which the hichest iso.
thermal was measured was the highest convenient]yczjmttainable
by our method, viz. 280°. But as the critical Eemperature

¢ Communicated by the Physical Society : read April 28, 1887.

°
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lies much higher, the pressures were in no case very great.
The behzwlom of acetic acid, however, contrasted Wlth that
of the alcohols, ether, and calbon diox1de is very striking.
The equation p-bt-—a does not apply; in other words lines
of equal volume are not straight, but are curves of double
flexure. We shall consider the meaning of this peculiarity
after adducing data.

1. Methyl Alcohol.—The data are at present in the hands
of the Royal Socicty. Tho values of b were, as before, deter-
mined by reading points on the isothermal curves at equal
volumes ; constr u(,tmw isochors graphically, and having thus
obtained appnoumatc values ot b, these were smoothed by
plotting them as abscissee, the ordinates being the reciprocals
of the volumes. The values of & given in the Table which
follows were those read from this curve. The values of a
were calculated from the equation a=0t—p, the mean value
obtained from all the readings at each volume being taken
as correct.

TasLe L.
Vol b. log b. a.
c. ¢. per gram.

6265 279692 263430
8 5690 275511 235370
9 5090 270672 206290
10 4525 265562 179090
11 4053 2-60778 156660
12 3650 2-56229 137810
14 2990 247567 107460
16 2485 2-39533 84730
18 211-0 2:32428 638364
20 1848 2-26670 57474
25 139-8 2-14551 39724
30 1125 ~ 2:05115 29834
40 800 1-90309 18913
50 620 179239 13401
70 435 1-63849 8631
100 2695 143056 4092
135 1895 1-27761 2308
170 1450 1-06137 1624
200 12-00 1-07918 1187
240 965 098453 794
280 8-00 0-90309 455
340 6-30 0-79934 307
400 515 0-71181 159
450 457 0-65992 130

The following Table gives the pressures read from the iso-
thermals from which these values of @ and & were obtained;
and we have added, for the sake of comparison, the pressures
recalculated by help of these values.
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XXXIV. Stability of Motion (continued from the May, June,
and August Numbers).—Broad Itwer flowing down an
Inclined Plane Bed. By Sir WiLLiam THoMsoN, FLR.8*

41. ONSIDER now the second of the two cases referred
' {o in § 27—that is to say, the case of water on an
inclined plane bottom, under a fixed parallel plane cover
(ice, for example), both planes infinite in all directions and
gravity everywhere uniform. We shall include, as a sub-
case, the icy cover moving with the water in contact with
it, which is particularly interesting, because, as it annuls
tangential force at the upper surface, it is, for the steady
motion, the same case as that of a broad open river flowing
uniformly over a perfectly smooth inclined plane bed. It is
not the same, except when the motion is steadily laminar,
the difference being that the surface is kept rigorously plane,
but not free from tangential force, by a rigid cover, while the
open surface is kept almost but not quite rigorously plane by
gravity, and rigorously free from tangential force. But, pro-
vided the bottom is smooth, the smallness of the dimples and
little round hollows which we see on the surface, produced
by turbulence (when the motion is turbulent), seems to prove
that the motion must be very nearly the same as it would be
if the upper surface were kept rigorously plane, and free from
tangential force.
42. The sub-case described in §31 having been disposed of
in §§ 32-40, we now take the including case, described in the
first half-sentence of § 381 ; for which we have, as steady

solution, according to (5),
U= By—1ic

if we reckon y from the bottom upwards. Thus (7), (8), (9),
(11), (12) become

G+ By =3 T+ B—ar=pvu— L . (39),
ol e oL . 69),
By =) =iy F . (60),

2B-ap) =~ . (6D)
PO + =)y L L (69).

o #s T T
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43. We have not now any such simple partial solution as

that of §§ 34, 35, 36 for the sub-case there dealt with; and

we proceed at once to the virtually inclusive® investigation
specified in § 37, and, as in § 38, assume

,U:.et,(wt-i-mr—}-qz)@/ g . . . . (63).
This gives
d _ . pd , 2_i2__,°z 2 I
Y and = m?—q* . (64) :
and (62) becomes therefore
d‘q . QY
o {2u(m? +¢%) + 1 [w+m(By—ey’) 1§ 7

+ $p(m’ 4+ ) +[o +m(By—ioy’) J(m* + ¢*) —iem [ =0 . (65),

or, for brevity,
4 2

a*q Y R
M—d—y—;+(e+fy+9y);l;]z+(b+ky+ly)fz/__o . (66).

To integrate this, assume
Y=co+oy+ey’ +esy’ eyt +&e. . . L (67);

and, by equating to zero the coefficient of y*in (66), we
find

G+4)G+3)(G +2)G+ Duey, + (G +2)(E + Decy,
+ G+ D)ife,,, + [iG—1)g+ e, + ke, +1o,_,=0 . (68).

Making now successively =0, =1, 1=2, ..., and re-
membering that ¢ with any negative suffix is zero, we find

4.3.2.1.pes+2.1.ecy+hey=0, A
5.4.3.2.pes+3.2.ec3+2. 1. fo,+he, +key=0,
6.5.4.3. ucg+4.3.ec,+3.2. fes+(2.1.9g+h)eo+key+1ee=0, > (69)
1.6.5.4.pc;+5.4.ecs+4.3.fe,+(3.2.9+N)cs+ keg + 1ey,=0,

&e. &e. &e.

These equations, taken in order, give successively ¢y, ¢;, ¢, ...,
each explicitly as a linear function of ¢y, ¢;, ¢z, ¢3; and by

# The Fourier-Sturm-Liouville analysis (Fourier, T%éorie de la Chaleur ;
Sturm and Liouville, Liouville’s Journal for the year 1836, and Lord
Rayleigh’s ¢Theory of Sound,’ § 142, vol. ii. shows how to express an
arbitrary function of x, y, z by summation of the type solutions of §§ 37,
39 above and § 43 (63), (67), (70) here, and so to complete, whether for
our present case or former sub-case, the fulfilment of the conditions (26),
(27), without using the method of §§ 34, 35, 36.

Phil. Mag. S. 5. Vol. 24. No. 148. Sept. 1887. i
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using in (67) the expressions so obtained, we find

Y=cFo(y) +aF(y) +&Foly) +eFsly) - - (70),
where ¢, ¢,, 3, ¢ are four arbitrary constants, and $§o, T1, Te,
%, four functions, each wholly determinate, expressed in a
series of ascending powers of y which by (68) we sec to
be convergent for all values of y, unless wu be zero. The
essential convergency of these series proves (as in § 39 for
the case of no gravity) that ¢ke steady motion (u=0, »=0,
w=0) is stable, however small be p, provided it is not zero.

44. The less is w, the less the convergence. When u is
very small there is divergence for many terms, but ultimate
convergence. |

45. In the case of p=0, the differential equation (66), or

(67), becomes reduced from the 4th to the 2nd order, and

may be written as follows :—
dq)

cm e
2 JER . L9 . . (7).
dy’ { (iR A M(B@/-—%cy"')} (L)

This, for the case of two-dimensional motion (9=0), agrees
with Lord Rayleigh’s result, expressed in the last equation of
his paper on “ The Stability or Instability of certain Fluid
Motions” (Proc. Lond. Math. Soc. Feb. 12, 1880). The
integral, but now with only two arbitrary constants (¢, ¢;),
is still given in ascending powers of 7 by (67) and (68),
which, with 4 =0, and the thus-simplified values of ¢, £, ¢ put
in place of these letters, becomes

—[(+2)@+ 1)wci+2 + (i + l)z'm,BciH]

+ | = Dmet k| o ke, 1o =0 . (72).
For very great values of ¢ this gives

oc, ,+mBe, —fmee,=0 . . . . (73),

which shows that ultimately, except in the case of one
particular value of the ratio ¢,/e,,

I L o T P ()
where ¢ denotes the smaller root of the equation -
o+mBy—gmey*=0. . . . . (75).

Hence there is certainly not convergence for values of y
exceeding the smaller root of (75), and thus the proof of
stability is lost.

46. But th.e differential equation, simplified in (71) for the
case of no viscosity, may no doubt be treated more appro-

e
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priately in 1espect to the question of stability or instabilit
by writing it as follows [&, { denoting the two roots of (75) ],

S =l i

g+ Gt~ s 1D
7o\ Tt rohemy Temy) 5V - 06,
and integrating with special consideration of the infinities at

i é’and y= Z’ One way of doing this, which I merely sug-
gest at present, and do not follow out for want of time, is to
a;:ume

V=C{l —y+e (—y)* +e (§—y)° +&e.},

+ O —y+e (T —y)° +6' (§ —y) +&e.} . . (T7),
where C and C" are two arbitrary constants, and ¢,, ¢, .
¢, sy . .. coefficients to be determined so as to satisfy thu
differential equation. This is very easily donc; and when
done shows that each series converges for all values of y less
in absolute magnitude, than ¢{'—¢ and diverges for values of
y exceeding &' —{&  The working out of this in detail would
be very interesting, and would constitute the full mathematical
treatment of the problem of finding sinuous stream lines
(cun es of sines) throughout the space between two “ cat’s-
eye” borders (corresponding to y=_{and y={’) which I pro-
posed in a short communication to Section A of the British
Association at Swansea, in 1830%, ¢ On a Disturbing Infinity
in Lord Rayleigh’s solution for Waves in a plane Vortex
stratum.” It is to be remarked that this disturbing infinity
vitiates the seeming proof of stability contained in Lord
Rayleigh’s equations (56), (57), (58).

47. Realizing (63), and interpreting the result in con-
nexion with (57), we see that

(a) The solution which we have found consists 6f a wave-
disturbance travelling in any (2, z) direction, of which the
propagational velocxty in the a-direction is ——-w/m

(b) The roots (&, ¢') of (75) are values of y at places where
the velocity of the undisturbed laminar flow is equal to the
z-velocity of the wave-disturbance.

Hence, supposing the bounding-planes to be plastic, and
force to be applied to either or both of them so as to pro-
duce an infinitesimal undulatory corrugation, according to
the formula cos (wt +ma +¢z), this surface-action will cause
throughout the interior a corresponding infinitesimal wave-
motion if w/m s not equal to the value of U for any plane of

* Of which an abstractis published in ¢ Nature’ for Noven.oer 11, 1880,
and in the British Association volume Report for the year. In this ab-

stract cancel the statement “ is stable,” with reference to a certain steady
motion described in it.
T2
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the fluid between its boundaries. But the infinity corre-
sponding to y={ or y={ will vitiate this solution 2f w,{m 18
equal to the value of U for some one plane of the flud or
for two- planes of the fluid ; and the true solution will involve
the ¢ cat’s-eye pattern” of stream-lines, and the enclosed
elliptic whirls*, at this plane or these planes.

48. Now let the fluid be given moving with the steady
laminar flow between two parallel boundary planes, expressed
by (57), which would be a condition of kinetic equilibrium
(proved stable in §43) under the influecnce of gravity and
viscosity ; and let both gravity and viscosity be suddenly
annulled. ~ The fluid is still in kinetic equilibrium ; but is the
equilibrium stable ?  To answer this question, let one or both
bounding-surfaces be infinitesimally dimpled in any place and
made plane again. The Fourier synthesis of this surface-
operation 1s

p® © Po
j é j dwdmdg flo) F(m) F(q) cos ol cos ma cos qz (78),
6 0 0

or
%j 5 j dodmdg f(o) F(m) %’(Q){COS (wt—me)
0 Js Jo  —cos (ot +ma)} cos gz . (79),

which implies harmonic surface-undulations travelling in
opposite z-directions, with all values from 0 to «o of (w/m),
the +a& of wave-velocity. Hence (§ 47) the interior dis-
turbance essentially involves elliptic whirls. Thus we see
that the given steady laminar motion is thoroughly unstable,
being ready to break up into eddies in every place, on the
occasion Ot the slightest shock or bump on either plastic
plane boundary. The slightest degree of viscosity, as
we have seen, makes the laminar motion stable; but the
smaller the viscosity with a given value of ¢gsinl, or the
greater the value of g sinl with the same viscosity, the nar-
rower are the limits of this stability. Thus we have been led
by purely mathematical investigation to a state of motion
agreeing perfectly with the following remarkable descriptions
of observed results by Osborne Reynolds (Phil. Trans. March
15, 1883, pp. 955, 956) :— :
“The fact that the steady motion breaks down suddenly,
shows that the fluid is in a state of instability for disturbances
of the magnitude which cause it to break down. But the
fact that in some conditions it will break down for a large
disturbance, while it is stable for a smaller disturbance, shows

* Seemy former paper on the “ Disturbing Infinity ” already referred to.
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that there is a certain residual stability, so long as the dis-
turbances do not exceed a given amount.”. . .

« And it was a matter of surprise to me to see the sudden
force with which the eddies sprang into existence, showing a
highly unstable condition to have existed at the time the
steady motion broke down.”

“ This at once suggested the idea that the condition might
be one of instability for disturbance of a certain magnitude,
and stable for smaller disturbances.”

49. The motion investigated cxperimentally by Reynolds,
and referred to in the preceding statements, was that of
water in a long straight uniform tube of circular section. It
is to be hoped that candidates for the Adams Prize of 1888
may investigate this case mathematically, and give a complete
solution for infinitesimal deviations from rectilineal motion.
It is probable that for it, and generally for a uniform straight
tube of any cross section, including the extreme, and extremely
simplified, case of rectilinear motion of a viscous fluid between
two parallel ized planes, which I have worked out above, the
same general conclusion as that stated at the end of § 26 and
in §§43-48 will be found true.

50. In the case of no gravity {¢sin I=0), and the viscous fluid
kept in “shearing ” or “ laminar”” motion by relative motion
of the two parallel planes, there is, when viscosity is annulled,
no disturbing instability in the steady uniform shearing mo-
tion, with its uniform molecular rotation throughout, which
viscosity would produce; and therefore our reason for sus-
pecting any limitation of the excursions within which there
is stability, and for expecting possible permanence of any kind
of turbulent or tumultuous motion between two perfectly
smooth planes (or between two polished planes with any
practical velocities) does not exist in this case. But a
great variety of general observation (and particularly Ran-
kine and Froude’s doctrine of the * skin-resistance” of
ships, and Froude’s experimental determination of the re-
sistance experienced by a very smooth, thin, vertical board,
19 inches broad and 50 feet long, moved at different uni-
form speeds® through water in a broad deep tank 278 feet

* ¢ Report to the Lords Commissioners of the Admiralty on Experiments
for the Determination of the Frictional Resistance of Water on a Surface
under various conditions, performed at Chelston Cross (Torquay), under
the Authority of their Lordships.” By W. Froude. (London: Taylor and
Francis. 1874.)

Froude found that, at a constant velocity of 600 feet per minute, the
resistance of the water against one of his smoothest surfaces, at positions
two feet abaft of the cutwater and 50 feet abaft of the cutwater, respec-
tively, was 295 of a pound per square {00, and ‘244 of a pound per square
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long) makes it certain that if water be given at rest between
two infinite planes both at rest, and 1.f one pf the planes
be suddenly, or not too gradually, set in motion, and kept
moving uniformly, the motion of the water will be at first
turbulent, and the ultimate condition of uniform shearing will
be approached by gradual reduction and ultimate annulment
of the turbulence. I hope to make a communication on this
subject to Section A of the British Association in Manches.ter,
and to have it published in the Oqtober nun_lber of the Philo-
sophical Magazine. ~Corresponding questions must be ex-
amined with reference to the corresponding tubular problem,
of an infinitely long, straight, solid bar kept moving in wa‘ter
within an infinitely long fixed tube. I§ 18 to be hppcd that
the 1888 Adams 1’rize will bring out important investiga-
tions on this subject. _
[To be continued. ]

XXXV. Note on an Elementary Proof of certain T heorems
reqarding the Steady Flow of Electricity in a Ne_fwor/c of
Conductors. By ANDREW GR.AY, M.A., F.R.S.F., Pro-
fessor of Physics in the University College of North Wales*.

HE following elementary proof of the principal theoren_ls
T of a network of conductors may be of interest. It will
be necessary to consider first the well known and, for our
purpose, typical case of a network of five conductors, shown
In the figure. We assume the so-called laws of Kirchhoff,
namely the principle of continuity applied to the steady flow
of electricity in a linear system ; :
and the theorem (2t once deducible
from Ohm’s law) that in any closed
circuit of conductors forming part
of a linear system, the sum of the
- products obtained by multiplying

the current in each part taken in
order round the circuit by its resist-
ance, is equal to the sum of the
electromotive forces in the circuit. A

Let the wire joining A B contain

foot. Remark that this astonishingly great force of 5 quarter of a pound
ger square foot (!!) is the resistance due to uniform laminar flow of ‘water
etween two parallel planes 51

anes gy of a centimetre (31, of a foot !) asunder,
when one of the planes is moving relatively to t

; , he other at 10 feet (300
centimetres) per second, if the water be at the temperature 0° Cent., for
which the viscosity, calenlated from Poiseuille’s ohservations on the flow
of water in capillary tubes, is 1-34% 105 of a gramme weight per square
centimetre.

* Communicated by the Author,




