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1. Lighthill’s idea

Lighthill’s most important idea is in our opinion the following, when expressed
in a form appropriate to geophysical fluid dynamics. The idea is that the
spontaneous-adjustment! emission of inertia—gravity waves by unsteady vortical
motion is sufficiently weak, in parameter regimes of interest, that the emission
may be neglected when solving for the vortical motion. The sufficient weakness,
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! As in Ford et al. (2000), we (a) distinguish spontaneous adjustment from Rossby or initial-
condition adjustment, and (b) avoid the term “geostrophic adjustment”, since an adjustment
toward balance is often an adjustment away from geostrophy. The example of a circular
vortex adjusting toward ageostrophic, gradient-wind balance is enough to illustrate the point.
The self-contradictory notion of “ageostrophic geostrophic adjustment” may be compared to
other such notions, which tend to invade human language, such as “variable solar constant”,
“asymmetric symmetric baroclinic instability”, and “fuzzy manifold”.



in this sense, of the wave emission or “Lighthill radiation”, as we also called it,
is the fundamental reason — transcending all details of mathematical method
and physical mechanism — why the concepts of balance, balanced model, slow
quasimanifold, and potential-vorticity inversion are useful in parameter regimes
of interest. The weaker the emission, the more useful the concepts.

Lighthill’s idea also provides the surest way of seeing that these same con-
cepts, in their full fluid-dynamical context, beyond low-order models, have ulti-
mate limitations throughout the parameter regimes of interest. Though useful,
indeed sometimes astonishingly accurate, these concepts are also inherently ap-
proximate. That was the key message of the Ford et al. (2000) paper. In other
words, Lighthill’s idea is the surest way of recognizing that the existence of a
strict slow manifold — implying the exact “slaving of fast variables” and exact
versions of all the above concepts — is overwhelmingly improbable.

For if the wave emission is so weak that one can regard the vortical motion
as known, or knowable, independently of the emission to good approximation,
then one can also regard the source term for the emission as known to good
approximation, as soon as one knows the vortical motion. One can then confirm,
as in the original analysis of Lighthill (1952) and in those that followed (e.g.
Crow 1970; Crighton 1975, 1981, & refs.), taking note of the special quadrupole
form of the source term, that the emission is indeed weak in parameter regimes
of interest, yet almost always nonvanishing. See also Section 4 below, regarding
the function a(t) defined in Ford et al.’s Eq. (54).

The weakness of the emission makes the whole picture self-consistent, as
Lighthill recognized: the emission is, in his own words (op. cit., p. 565), “so
weak relative to the motions producing it that no significant back-reaction can
be expected.” The nonvanishing of the emission, on the other hand, precludes
the exact slaving of fast variables.

Thus it is the sufficient weakness of the wave emission that is the key —
both to Lighthill’s original analysis and to its generalization to geophysical fluid
dynamics. The question of exactly how weak is a secondary question, from
this viewpoint, interesting but less fundamental. It was with all these points
in mind that we wrote in Section 2 of Ford et al. that “the emission is very
weak... helping to explain why balance and potential-vorticity inversion, though
inherently approximate, can be far more accurate than might be suggested by the
standard order-of-magnitude considerations and filtered balanced models.” And
Lighthill’s idea applies even more powerfully in the context of geophysical fluid
dynamics than in its original context, aerodynamic sound generation, because
“Coriolis effects can be expected to weaken the emission still further” (Ford
et al., p. 1237b). The weaker the emission, the more secure the whole picture!

If, as speculated by Saujani and Shepherd (2002, hereafter SS), the further
weakening manifests itself as exponential rather than algebraic smallness in
the limit of small Rossby number R — as concretely illustrated by the Ford
(1994) example quoted both by SS and by ourselves — then in that particular
parameter regime the power of Lighthill’s idea is very great indeed. Exponential
smallness is, of course, far smaller — almost unimaginably smaller — than
anything one might guess from “standard order-of-magnitude considerations
and filtered balanced models”.



We agree with SS that exponential smallness is generally speaking plausible,
in the small-R limit, though unproven. A proof would require one to prove
among other things that some counterpart of the function «(t) is infinitely
differentiable.

2. Parameter regimes

In the thinking that led to the Ford et al. work, we were interested in all the
parameter regimes where Lighthill’s idea is applicable, i.e., in all regimes, in-
cluding limiting cases and other cases, where spontaneous-adjustment emission
is in some sense weak, not just the particular small-R limit discussed by SS.
That small-R limit is, as they mention, the limit involved in a particular filtered
model, the standard extratropical quasigeostrophic theory. We may specify the
limit more precisely, following SS and using their notation and definitions, as
R — 0 with L ~ Lpg, implying F' — 0 with R ~ F. Here Lp is the radius
of deformation, F' is the Froude number, and the flow is assumed, rightly or
wrongly, to have a single lengthscale L.

A specific reason for our interest in a wider range of parameter regimes was
the existence of the astonishingly accurate results described in Norton (1988)
and in McIntyre and Norton (1990, 2000). These came from high-order balanced
models of shallow-water flows on a hemisphere with strong, unsteady vortical
activity deep within the tropics, showing initial-condition sensitivity. We were
therefore especially concerned to include parameter regimes appropriate to the
tropics in our thinking.

Standard quasigeostrophic theory is grossly inaccurate for these flows. As
remarked in McIntyre and Norton (1990), a geostrophic computation for one
of them “gives maximum velocities typically wrong by a factor ~ 2.” That is
no great surprise: although L ~ Lg, flow speeds are so high that R and F are
anything but numerically small. Numerically, F’ attains values of 0.7 or more, in
subtropical jets, and R is typically somewhere near unity, and of course infinite
at the equator. For these flows there is no parameter limit, no rational hope of
using asymptotic methods, no clear timescale separation and therefore no clear
distinction between “fast motion” and “slow motion”.

What was, by contrast, a great surprise, and remains noteworthy and very
remarkable, is that the high-order balanced models are exquisitely accurate even
for the flows just mentioned. By exquisitely accurate we mean that cumulative
accuracy, over several eddy turnaround times, was such as to produce a final
potential-vorticity distribution nearly indistinguishable from that of the corre-
sponding primitive-equation evolution. Yet these highly unsteady flows involve
vortex-merging events and were explicitly demonstrated to be initial-condition
sensitive. The results can therefore be viewed as stunning vindications of Light-
hill’s idea, as understood here and in Ford et al., showing, quite unexpectedly,
the power of that idea in circumstances far wider than the circumstances orig-
inally considered by Lighthill himself (FF — 0 with R = oo, in the present
notation) and far wider than the circumstances considered by SS (F' — 0 with
R ~ F) — indeed, as already emphasized, far beyond the reach of any asymp-
totic analysis whatever.



3. The parameter limit /' — 0 with R > 1

Why Lighthill’s idea should be quite so powerful is still an unsolved mystery,
though clearly it must be related to the short-range character of potential-
vorticity inversion operators when R ~ F' ~ 1 (e.g., McIntyre 2001). Faced
with that mystery, we opted in Ford et al. to consider another parameter limit,
F — 0 with R constant, formally R 2 1 (as stated in our abstract and on
pp- 1238b and 1239b). This was not because we thought it the only interesting
parameter regime, but first of all because it is arguably relevant to the tropics,
and second because it allowed spontaneous-adjustment emission to be analysed
in a precise and detailed way, building on the work of Crow (1970) for R = co.

In considering so subtle and so surprisingly weak a process as spontaneous-
adjustment emission, it seemed to us that there would be great value in having
a class of examples that would allow us to look at the mechanistic details, with
explicit representations of the very weak back-reaction or radiation reaction of
the emission upon the vortical motion, and of the interplay of multiple spa-
tial scales — an interplay that is excluded by low-order, spectrally truncated
models, as SS recognize, but liable to occur in the full fluid-dynamical con-
text because of the way in which frequency matching works. Such explicit and
detailed examples would be valuable, we thought, even if unable to cover the
entire parameter space of interest.

Frequency matching is not, of course, a matter of choice. It is simply an
automatic and inescapable property of any wave emission process. Any waves
emitted must have frequencies that match frequencies in the spectrum of the
wave source. One might say that when one hears a Mozart symphony the air
carrying the sound has performed “multiscale frequency matching” with the
source; it is “multiscale” for the bass notes at least, whose wavelengths can
dwarf the size of the sound source. Alternatively, and more clearly and simply,
we think, one might say that the frequency spectrum of the waves emitted is
governed by the (known) frequency spectrum of the source, having regard to
the possible range of frequencies of freely propagating waves.

We therefore, having regard to the range of frequencies of freely propa-
gating inertia—gravity waves, agree with SS and with Errico (1981) that the
strength of the wave emission in the limit R — 0 depends exclusively on the
high-frequency tail of the source spectrum. That is why, after the remark
that “Coriolis effects can be expected to weaken the emission still further,” we
went on to say that Coriolis effects would “not...make it exactly zero, even for
arbitrarily small Rossby number...because of the expectation that typical vorti-
cal flows, being chaotically unsteady,...will have a frequency spectrum with no
high-frequency cutoff.” The absence of a high-frequency cutoff has never been
proven rigorously, to our knowledge, but seems overwhelmingly probable for
chaotic vortical flows.

4. Cases in which R is numerically small

Although the detailed analysis in Ford et al. does not formally cover the lim-
iting case R — 0, the analysis does, arguably, point toward what must happen



in such cases. It does so through the complex-valued function «(t) defined
in Eq. (54). The frequency spectrum of a(t) governs the leading-order wave
emission. The definition says that a(t) has real and imaginary parts propor-
tional to certain second spatial moments of the potential-vorticity distribution,
quantities that are nonvanishing, and temporally fluctuating, for all vortical
flows outside a tiny set of exceptional cases. The reader who would like to
see this last point illustrated in more detail may consult the recent work of
Bridges and Hussain (1992, 1995), in which a function closely analogous to
a(t) is examined, together with the associated wave emission, both theoreti-
cally and through high-precision laboratory experiments on three-dimensional,
axisymmetric aerodynamic sound generation.

The dependence of a(t) exclusively upon second spatial moments stems
directly from the multiscale spatial structure of the emission problem, and from
the fact that the zeroth and first moments cannot fluctuate and hence cannot
contribute to wave emission. The zeroth and first moments are constrained to
be steady by the laws of free vortex motion, indirectly expressing the quadrupole
nature of the emission source. The third and higher moments are relevant but
only as small corrections. All this structure is present in the emission problem
as soon as F becomes small. Ford et al.’s analysis does cover cases in which
R is numerically small, provided only that R is bounded away from zero as
F — 0. In the usual manner of an asymptotic analysis, the formal condition
conventionally written as R 2 1 has no absolute numerical significance when
we take the limit F — 0.

Making R numerically small tends to reinforce, not to diminish, the mul-
tiscale structure. For given «(t) the emitted wavelengths are lengthened, not
shortened, and the dominance of second moments should be enhanced. This is
a direct consequence of the dispersion properties of inertia—gravity waves. It is
therefore reasonable to speculate that even for arbitrarily small R the strength
of the emission will continue to be governed to some first approximation by the
function «(t) or, more precisely, by its Fourier transform &(w), in the frequency
range |w| > f of freely-propagating inertia—gravity waves, where f is the Corio-
lis parameter. If &(w) has an exponentially decreasing tail as |w| — oo, as seems
likely for chaotic vortical flows, then we have a clear pointer not only toward
exponential weakness of the emission but also, again, toward its nonvanishing
for arbitrarily small R, precluding the exact slaving of fast variables.

5. Velocity splitting

Cases like those mentioned in Section 2 pose an even greater challenge to our
understanding. When neither F' nor R can be considered small, the multiscale
spatial structure disappears. Asymptotic methods are no longer applicable,
Lighthill’s idea has no formal justification, and the function «(t) is sure to
be replaced by something much more complicated. Why Lighthill’s idea nev-
ertheless seems to survive as numerically valid in such extreme circumstances
remains an unsolved mystery. There is no a priori expectation that spontaneous-
adjustment emission is necessarily weak even though, in cases studied so far,
we have striking evidence that it is, nevertheless, weak in some numerical sense,



as mentioned in Section 2. That evidence comes solely from numerical experi-
ments.

However, the other aspect of the problem with which we were concerned,
the nonvanishing of the emission for unsteady vortical motion, and its most
fundamental implication, the nonexistence of a strict slow manifold, has recently
been illuminated from an unexpected new angle that may be worth mentioning
briefly.

The new insight comes via the so-called “velocity splitting” phenomenon,
first noticed in the context of Hamiltonian balanced models (Salmon 1988,
McIntyre and Roulstone 2002, & refs.), but now known to be a general prop-
erty of high-order non-Hamiltonian balanced models as well (Mohebalhojeh
and MclIntyre, in preparation). By directly analysing the (rather complicated)
equations defining a general class of high-order balance conditions and potential-
vorticity inversion operators — which includes those that produced the accurate
results mentioned in Section 2, and those that produced the further such results
of Mohebalhojeh and Dritschel (2001) — we have found that such models are
inherently “schizophrenic” in that they possess not one but two velocity fields.
One field advects the potential vorticity while the other advects the mass; the
two fields are nearly but not quite equal.

The key point is that such velocity splitting or schizophrenia is not, as
one might at first think, merely the result of imperfections in formulating the
high-order balance conditions. Rather, it is an inherent property of any balance
condition and potential-vorticity inversion operator that exceeds a certain stan-
dard of accuracy. The critical accuracy is that of the well known Bolin—Charney
balanced model. The splitting of the velocity field for any balanced model of
greater accuracy may seem paradoxical until one recognizes it as simply an-
other strong line of evidence against the existence of a strict slow manifold,
and against the vanishing of spontaneous-adjustment emission. A fuzzy slow
quasimanifold or stochastic layer, regarded as a constraint on the motion, is
itself, so to speak, schizophrenic; and this becomes noticeable as soon as one is
computing with enough accuracy to see the fuzziness.

6. Remark concerning SS Figure 1

We note finally that, in interpreting SS Figure 1b, the sloping lines w = wy
need to be pictured as being smeared out, filling the entire figure upward and
leftward and thus showing the overlap of the hyperbola w = wg with the weak
but infinitely broad spectral tail appropriate to chaotic vortical motion. This
is necessary in order that the figure express the relevant frequency matching.
As in all wave emission problems, as already noted, the frequencies of waves
emitted must agree with frequencies in the wave source spectrum. The symbol
“~” in SS Eq. (1), replacing the symbol “=" and acknowledging the “nonlinear
broadening of the zero-frequency linear mode”, needs to be, as it were, stretched
out infinitely in order to acknowledge the infinite nonlinear broadening involved
in the spectral tail.



Postscript by MEM: The foregoing may well be Rupert Ford’s last scientific pub-
lication. It has had to be revised in his absence, in response to the final revision
of SS, using extensive notes made during our last co-authors’ consultation. The
revision tries to echo Rupert’s wonderful spirit of generosity, engagement, and
enthusiasm, and above all tries to be something like what would have emerged
had he still been with us — conveying some sense of his penetrating insight
and rigor and of his joy in serious intellectual endeavour, of his joy in trying to
bring understanding to a difficult problem area. There are a few more remarks
about Rupert’s life and about his brief yet brilliant research career, so tragically
cut short in March 2001, in the obituary published in the Quarterly Journal
of the Royal Meteorological Society, 127, 1489-90, April 2001 B. The Royal
Meteorological Society, in which Rupert was active as Secretary of the Dynam-
ical Problems Specialist Group, now administers a Rupert Ford Memorial Fund
supporting travel and exchange among young scientists of any nationality.
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