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Three examples of wave-vortex interaction are studied, in analytically-tractable weak refraction regimes5

with attention to the mean recoil forces, local and remote, that are associated with refractive changes in6

wave pseudomomentum fluxes. Wave-induced mean forces of this kind can be persistent, with cumulative7

effects, even in the absence of wave dissipation. In each example, a single wavetrain propagates past a single8

vortex. In the first two examples, in a two-dimensional, non-rotating acoustic or shallow-water setting, the9

focus is on whether or not the wavetrain overlaps the vortex core. In the overlapping case, the recoil has10

a local contribution given by the Craik–Leibovich force on the vortex core, the vector product of Stokes11

drift and mean vorticity. (For a quantum vortex this contribution is called the Iordanskii force arising from12

the Aharonov–Bohm effect on a phonon current.) However, in all except one special limiting case there13

are additional ‘remote’ contributions, mediated by Stokes-drift-induced return flows that can intersect the14

vortex core well away from locations where the waves are refracted.15

The third example is a non-overlapping, remote-recoil-only example in a rapidly rotating frame, in which16

the waves are deep-water gravity waves and the mean flow obeys shallow-water quasigeostrophic dynamics.17

Contrary to what might at first be thought, the Ursell ‘anti-Stokes flow’ induced by the rotation – an18

Eulerian-mean flow tending to cancel the Stokes drift – fails to suppress remote recoil. There are nontrivial19

open questions about extending these results to regimes of stronger refraction, especially regarding the scope20

of the ‘pseudomomentum rule’ for the wave-induced recoil forces.21
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1. Introduction24

The following is a shortened, mainly descriptive version of a longer paper (McIntyre 2019,25

hereafter M19), to which the reader is referred for full technical details. M19 explores ana-26

lytically tractable, precisely soluble versions of the wave–vortex interaction problems to be27

discussed, with careful attention to asymptotic validity, and with cross-checks via indepen-28

dent analyses in complementary, but overlapping, asymptotic regimes. The present, shorter29

paper tries to add value to M19 by providing a relatively concise summary of the main results30

together with some additional discussion. The problems look simple at first sight but have31

proved to be surprisingly tricky – conceptually as well as technically. They are fundamental,32

moreover, to any attempt to complete our understanding of the O(a2) wave-induced mean33

forces arising from wave-induced momentum transport, where a is wave amplitude defined34

such that a� 1 validates linearization.35

It hardly needs saying that mean forces of this kind are scientifically important. They36

have long been recognized as playing a key role in, for instance, global-scale atmospheric37

dynamics, as recalled in M19 and in greater detail in the reviews by Fritts (1984), Holton38

et al. (1995), and Baldwin et al. (2001). See also Dritschel and McIntyre (2008, & refs.).39

Examples include what used to be the enigma of the quasi-biennial oscillation or 13-monthly40

reversal of the east-west winds in the equatorial lower stratosphere (e.g. Baldwin et al. 2001),41

and the enigma of the cold summer mesopause with its noctilucent clouds (e.g. Fritts 1984).42

(A global-scale circulation, gyroscopically pumped by wave-induced mean forces, turns the43
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summer mesosphere into a giant refrigerator.) Some of the waves involved in these phenomena44

are internal gravity waves whose scales are too small to be resolved in weather and climate45

forecasting models, and whose mean effects are therefore routinely represented in the models46

via so-called gravity-wave parametrization schemes (e.g. Garcia et al. 2017, & refs.).47

The parametrization schemes and the associated theoretical literature have always, however,48

neglected the nondissipative wave-induced mean recoil forces associated with the deflection49

of waves by vortices, and other horizontal-refraction effects. Here, the word ‘refraction’ will50

be used in its most general sense – which is the sense that is relevant here – to mean not51

just the bending of rays but any distortion of the wave field by the vortex flow. Examples52

include those illustrated in equations (2)–(5) below, as well as in studies like those of, for53

instance, Sakov (1993), Sonin (1997), Coste et al. (1999) and Ford and Llewellyn Smith (1999,54

hereafter FLS99). In various ways those examples include, but also go beyond, standard ray55

theory (JWKB theory). The present work makes use of ray theory but also goes beyond it in56

significant ways.57

The nondissipative recoil forces in question are potentially important because they can58

be persistent, in the same sense that the more familiar dissipative wave-induced forces are59

persistent. They can act cumulatively over an arbitrary number of wave periods. And one of60

the conceptually tricky questions about them is the question of where such forces are exerted.61

Even the simplest problems, or thought-experiments, in which a single wavetrain is refracted62

by a single vortex, illustrate what is involved. Consider the problem sketched schematically in63

figure 1(a). A steady train of gravity waves or sound waves passes to one side of a vortex, in an64

inviscid, two-dimensional, non-rotating shallow water or homentropic gas dynamical system.65

The vortex flow has small Froude or Mach number66

ε = U/c0 � 1 , (1)

and the wave refraction is correspondingly weak (and left invisible in the figure, but see67

section 2 below). Here U is a vortex flow speed and c0 an intrinsic wave speed. For definiteness,68

c0 will be taken as the wave speed at r =∞ and U as the flow speed at the edge of the vortex69

core, r = r0, say, where r2 = x2 + y2 in the notation of the figure.70

The question of where the mean recoil force is exerted is ambiguous. It can be asked and71

answered in more than one way. Simplest and most useful is to ask the question in the way72

that is relevant to gravity-wave parametrization. What force would be required if the waves73

were removed, in order to have the same effect on the mean flow? For the problem sketched in74

figure 1(a) the answer was found in an earlier study by Bühler and McIntyre (2003, hereafter75

BM03). The answer may seem surprising at first sight. The force has to be exerted not where76

the waves are refracted, within the wavetrain as it passes the vortex, but, rather, on the vortex77

core. Because the core can be at an arbitrary distance from the wavetrain, BM03 called this78

effective mean force a ‘remote recoil’.79

Of course there is no mystery here – no violation of Newton’s Third Law – because a80

fluid medium has a mean pressure field that can mediate actions and reactions continuously,81

across substantial distances, just as in ordinary vortex–vortex interactions. The point may be82

obvious, but is sometimes overlooked when problems like these are discussed from a particle-83

physics perspective. And it is perfectly reasonable to say, alternatively, that when the waves84

are present the mean force is exerted where they are refracted. However, to make sense of the85

resulting picture one would then have to solve for the O(a2) mean pressure field and explicitly86

describe how it transmits the force across the gap between the wavetrain and the vortex core.87

BM03 also found that the mean force complies with what is now called the ‘pseudo-88

momentum rule’ (e.g. Bühler 2014, hereafter B14). Its validity is tacitly assumed in, for89

instance, parts of the literature on gravity-wave parametrization, and on quantum vortices as90

well (e.g. Sonin 1997). When valid, it avoids any consideration of the O(a2) mean equations.91

It says that the magnitude and direction of the mean force can be calculated from linearized92
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Figure 1. Panels (a) and (b) are schematics of wave–vortex interaction problems (i) and (ii) respectively. Waves of
wavenumber k are incident from the left and are weakly refracted by the vortex. The refraction effects are left invisible
to emphasize their extreme weakness (but see section 2 below). The azimuthal angle θ is defined unconventionally but
in a way that will be convenient when discussing the Aharonov–Bohm effect, which turns out to be one of the significant
wave refraction effects.

wave theory alone as if pseudomomentum were momentum, and as if the fluid medium were93

absent.94

(Pseudomomentum, also called quasimomentum or wave momentum, or phonon momen-95

tum, is the O(a2) linear-theoretic wave property whose nondissipative conservation depends,96

through Noether’s theorem, on translational invariance of the mean or background state on97

which the waves propagate, as distinct from translational invariance of the entire physical sys-98

tem, background plus waves, which implies conservation of momentum (e.g. McIntyre 1981,99

Peierls 1991, & refs.). In a linearized ray-theoretic description the pseudomomentum p per100

unit mass is Ak, where k is the wavenumber vector and A the wave-action, the intrinsic wave101

energy divided by the intrinsic frequency, per unit mass. B14 gives more general expressions102

for p outside the scope of linearized ray theory.)103

Another way to state the pseudomomentum rule is to say that the magnitude and direction104

of the recoil can be calculated as if the problem were one of particles such as photons hitting105

an obstacle in a vacuum, i.e. ignoring the O(a2) pressure field and treating the waves as106

bullet-like, with momentum equal to their pseudomomentum. Such ideas are implicit in the107

phraseology sometimes encountered in which the waves are described as exchanging ‘their108

momentum’ with the mean state. A tendency to conflate momentum with pseudomomentum109

can be found scattered throughout the physics literature under headings such as ‘Abraham–110

Minkowski controversy’ (e.g. Peierls 1991).111

The problem sketched in figure 1(a) is the first of a set of three problems, or thought-112

experiments, considered here. It is shown in M19 that the pseudomomentum rule holds in all113

three of them, at least to leading order in ε. The first two problems are in the two-dimensional,114

non-rotating setting and the third involves rotation:115

(i) As in figure 1(a). The vorticity ω0(r) is zero outside the vortex core.116

(ii) As in figure 1(b). The wavetrain overlaps the vortex core. This brings in an additional117

refraction effect, familiar in the quantum literature as the so-called Aharonov–Bohm118

topological phase jump (figure 2 below).119

(iii) As in figure 1(a) but in an inviscid, unstratified, incompressible, rapidly-rotating120

system of finite depth H with a free upper surface, under gravity g. The quasi-121

geostrophic potential vorticity is uniform outside the vortex core. The waves are122

surface gravity waves with kH large enough to make exp(−kH) negligible, where123

k is the magnitude of the wavenumber vector k. The mean-flow Rossby number is124

small, but the intrinsic wave frequency (gk)1/2 � f , the Coriolis parameter.125

In all three problems it is assumed that a� ε� 1, allowing linearized wave theory to be used126
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to describe the weak wave refraction. In problem (iii) we take the mean-flow Rossby number127

to be of the same order as ε. In some but not all cases, the wavenumber k is assumed large128

enough to permit the use of ray theory.129

The plan of the paper is as follows. In section 2 and figure 2 we present and discuss a simple130

asymptotic solution for the O(a) wave field far from the vortex core, applicable to problems (i)131

and (ii) and describing the Aharonov–Bohm phase jump and other relevant wave-refraction132

effects. In a significant sense this solution encompasses ray theory but also goes beyond it.133

In section 3 we introduce what turns out to be the simplest way to compute the mean recoil134

forces and to understand their origin. It is to compute the complete nondissipative O(a2)135

mean flows associated with the wavetrains, sometimes called ‘Bretherton flows’. Such a flow136

consists of the Stokes drift within the wavetrain together with the return flow required by mass137

conservation. For a narrow wavetrain the return flow takes place mostly outside it. Figure 3138

shows an example. Section 4 presents the very simple mean-flow equations derived in M19.139

They govern the Bretherton flows that are relevant to leading order in our three problems.140

As noted in BM03 and in M19, this route to the results avoids any need to analyse the wave141

refraction explicitly, a remarkable simplifying feature. To leading order in ε it is enough to142

compute Bretherton flows for the unrefracted wavetrains, i.e. correct to O(a2ε0). And that in143

turn shows the leading-order results to be robust, in that they hold outside the ray-theoretic144

and other regimes within which the wave refraction can be computed explicitly.145

In section 5 we present the resulting formulae for the recoil forces in all three problems,146

correct to leading order, in limiting cases for which the formulae become very simple. In147

problem (ii) the simplest results are for wavetrains whose width W and length L are both148

infinite. But immediately we encounter a surprise. The results depend strongly on the limiting149

value of W/L. The limits W → ∞ and L → ∞ are noninterchangeable. Problem (iii) is150

interesting in a different way. It exhibits remote recoil just as in problem (i), contrary to what151

might be suggested by the effects of rapid rotation. Rotation produces a tendency for the152

Stokes drift to be cancelled by the well-known ‘anti-Stokes flow’ (Ursell 1950). Nevertheless,153

the cancellation is incomplete such that there is still a significant Bretherton flow giving rise to154

a non-vanishing remote recoil, which moreover satisfies the pseudomomentum rule to leading155

order in ε.156

Section 6 summarizes M19’s independent and more lengthy, and indeed more delicate,157

derivations of the same results from refraction calculations. Those derivations make use of158

an appropriate ‘impulse–pseudomomentum theorem’, which justifies the pseudomomentum159

rule independently, alongside direct calculations of the pseudomomentum fluxes in the re-160

fracted wave fields correct to O(a2ε1). Ray theory is used in some of these calculations, and161

the non-ray-theoretic results of FLS99 in others. Section 7 offers brief concluding remarks162

in which some challenges for future work are noted, particularly regarding what happens at163

higher orders in ε, for which the impulse–pseudomomentum theorem fails. In some but not all164

circumstances the pseudomomentum rule still holds, but the precise circumstances remain to165

be clarified.166

2. Wave refraction in problems (i) and (ii)167

Before considering the O(a2) mean flows, we note some key wave-refraction effects in problems168

(i) and (ii). As shown in M19, the linearized equations – see (2.1)–(2.3) of M19 – have the169

following far-field solution. For sufficiently large r, the velocity potential φ′ describing the170

waves has the asymptotic form φ′ = A exp(iΦ) where the O(a) amplitude envelope A is171

slowly-varying and where the phase Φ is given by172

Φ = k0(x− c0t) − αθ + const. + O(ε2r2
0/r

2) . (2)
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Figure 2. Wavecrests plotted from the far-field solution (2), with α = 0.75. The unit of length is taken as k−1
0 so that

the unrefracted wavelength is 2π. The Aharonov–Bohm phase jump appears as a phase discontinuity on the positive
x axis. In a full solution this discontinuity is smoothed out across a relatively narrow ‘wake’ region. The other relevant
refraction effect is the very slight rotation of the wavecrests that can be seen, for instance, by careful inspection of the
left-hand edge of the plot.

The incident wavenumber k0 and far-field phase speed c0 are constants, and α is another173

constant, to be defined in (3). The azimuthal angle θ is defined as in the figures. It ranges174

from −π to π.175

In problem (ii), with the main focus on a wavetrain that is infinitely wide and infinitely176

long, we can take A to be a real constant. The constant α in (2) is defined by177

α = Γk0/2πc0 = Uk0r0/c0 = k0r0ε (3)

where Γ is the Kelvin circulation of the vortex, equal to
∫∫
ω0 dxdy. The phase jump 2πα across178

the positive x axis is the Aharonov–Bohm phase jump, a topological defect or dislocation of179

Φ. In a full solution it is smoothed out across a relatively narrow ‘wake’ region surrounding180

the positive x axis. The phase jump measures the effect of the vortex flow outside the core,181

u0(r) = Ur0r
−1θ̂ = εc0r0r

−1θ̂, where θ̂ is the unit vector in the θ direction, in compressing the182

wavetrain on one side while stretching it on the other, at positive and negative y respectively.183

Figure 2 plots the far-field wavecrest shapes Φ = constant described by (2) with the er-184

ror term neglected. We have taken α = 0.75, fixing the phase jump at three quarters of a185

wavelength to make it clearly visible. Also visible, less clearly, is another refraction effect that186

nevertheless has comparable importance. Except on the y axis, the wavecrests are slightly187

rotated away from the y direction, through angles O(εr0r
−1). The effect can be seen by care-188

ful inspection of the left-hand edge of the plot. The local wavenumber vector k = ∇Φ has a189

refractive contribution −αr−1θ̂ = −εk0r0r
−1θ̂ directed against the vortex flow:190

k = ∇Φ = k0{x̂− εr0r
−1 θ̂ +O(ε2r2

0r
−2)} , (4)
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where x̂ is the unit vector in the x direction. As in M19 we note that (2) and (4) are consistent191

with ray theory, but also go beyond it in the sense that phase changes over long distances of192

order r are represented accurately enough to describe the Aharonov–Bohm phase jump.193

Despite the rotation of the wavecrests and of k, the absolute group velocity Cabs remains194

parallel to the x axis correct to O(εr0r
−1), as can be checked from its leading-order expression195

Cabs = =
c0k

|k|
+ u0(r) +O(ε2c0r

2
0r
−2) (5)

by taking the y components of (4) and of u0(r) = εc0r0r
−1θ̂. Propagation due to the y196

component of k cancels advection due to the y component of u0. The cancellation follows197

alternatively from the vanishing of the vorticity outside the vortex core, in virtue of the curl-198

curvature formula of ray theory, B14 p. 86, which was first derived by Landau and Lifshitz199

(1959) and generalized to dispersive waves by Dysthe (2001). Dysthe’s result is made use of200

in problem (iii).201

The property of Cabs just noted means that (2) can also be applied to problem (i), with a202

y-dependent amplitude envelope A, as long as the wavetrain passes the vortex at a distance203

great enough for the expression (2) and ray theory to be asymptotically valid, as was assumed204

in BM03. Then A can be taken to depend on y alone in a way that restricts the wavetrain as205

sketched in figure 1(a). The width scale W of this envelope � k−1
0 for consistency with ray206

theory, yet small by comparison with the distance to the vortex core.207

The phase function (2) is well known in the quantum literature. It applies not only to the208

vortex problem but also to the original Aharonov–Bohm problem, in which the waves represent209

nonrelativistic electrons going past a thin magnetic solenoid, as recalled in M19 Appendix A,210

with the magnetic vector potential in the role of the vortex flow u0(r).211

What is not apparent from (2) is the character of the wake region that smooths out the212

Aharonov–Bohm phase jump. In the original Aharonov–Bohm problem the wake is symmetric213

about the x axis, for arbitrary α, and within it the discontinuous structure (2) is replaced by214

a smooth Fresnel-diffractive structure with angular size tending toward zero like (k0x)−1/2 as215

x → ∞. In the vortex problem, by contrast, the wake generally has small but non-vanishing216

angular size O(ε) and an asymmetry about the x axis of the same order, except in an extreme217

long-wave limiting case with both ε and k0r0 tending to zero. In that case the wake structure218

tends toward a Fresnel-diffractive structure symmetric about the x axis, as shown in Sakov219

(1993) and in FLS99. In cases of stronger refraction at finite ε, the wave field becomes more220

complicated and the wake asymmetry increased (Coste et al. 1999). In all cases, however, the221

phase jump seen in figure 2 is smoothed out in some manner.222

3. Bretherton flow and Kelvin impulse223

Following the past literature including the pioneering work of Bretherton (1969), we use224

the term Bretherton flow to denote the entire O(a2) wave-induced Lagrangian-mean flow.225

For instance in cases with relatively narrow wavetrains such as that of figure 1(a) the mean226

flow includes not only Stokes drifts but also any sideways return flows required by mass227

conservation. An example from BM03 is shown in figure 3. This represents schematically a228

version of problem (i) analysed in section 5.1 of BM03, in a particular formal limit, namely229

that of an infinitely long wavetrain slightly deflected by the vortex.230

Within the wavetrain (which again is considered wide by comparison with k−1
0 , like a laser231

beam, even though narrow by comparison with the distance to the vortex core), the Stokes232

drift is toward the right. Therefore the return part of the Bretherton flow advects the vortex233

core toward the left. The core translates leftward at velocity utr say. The resulting rate of234

change in the Kelvin impulse I of the vortex, eq. (7) below, is the same as if the waves235
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Figure 3. Schematic of the Bretherton flow arising in a version of problem (i) studied in BM03. The O(a2) mean flow
within a narrow wavetrain, whose ray path is shown by the heavy curve, is dominated by the Stokes drift. A small portion
of its mass flux, O(a2ε1) in this case, leaks sideways as a consequence of wave refraction. To describe this situation the
refraction problem must be considered correct to two orders in ε, as was done in section 5.1 of BM03. Refraction effects
enter at both orders, not only the O(ε) effects illustrated in figure 2 but also an O(ε2) change in the direction of the
absolute group velocity, exaggerated in this schematic.

were removed and a suitably tailored body force field F , pointing in the +y direction, were236

artificially applied to the vortex core. As already indicated, this is the effective mean recoil237

force in the sense considered here. It is exactly the sense required by – though, in fact, so far238

neglected in – gravity-wave parametrizations in weather and climate forecasting models.239

The ‘remoteness’ of the recoil can now be seen to be related to the fact that the return240

flow extends well outside the wavetrain in cases like this. The Stokes drift does not directly241

contribute to utr, but only the return part of the Bretherton flow. In problem (ii), by contrast,242

the wavetrain overlaps the vortex core so that the local Stokes drift uS contributes to utr, as243

well as remote contributions from other parts of the wavetrain.244

For our core with vorticity ω0(r) it is easy to verify that the effective force is just F =245

−ω0 ẑ×utr where the unit vector ẑ points out of the paper.1 Being transverse to the vortex246

motion, the resultant force R has the character of a Magnus force, namely247

R =

∫ ∫
F dxdy = −ẑ×utr

∫ ∫
ω0 dxdy = −Γẑ×utr . (6)

We note that the Kelvin circulation Γ is an O(ε) quantity and that, in the case of figure 3,248

BM03 found that utr is O(a2ε1) so that R is O(a2ε2). It is readily shown (M19, eq. (3.7))249

that dI/dt = R for our translating vortex core, with vorticity ω0(r′) where r′ = |x − utrt|.250

The two-dimensional Kelvin impulse I is defined by251

I =

∫ ∫
(y, −x)ω0 dxdy =

∫ ∫
−ẑ×x ω0 dxdy (7)

(e.g. Batchelor 1967, equation (7.3.7)). In the case of figure 3, BM03 also found that utr is252

just such that R satisfies the pseudomomentum rule.253

The effect on the vortex, continually moving it parallel to the x axis, is persistent and254

cumulative, over an arbitrary number of wave periods. In that respect the wave-induced recoil255

1The curl of this two-dimensional force field F is just that required to move the vortex core leftward through the fluid
at velocity utr, while the divergence of F sets up the dipolar pressure field required to produce the corresponding
changes outside the core, where the velocity field is irrotational. Thus defined, F has the dimensions of acceleration,
length/(time)2, i.e. force per unit mass, since it is a forcing term on the right-hand side of the standard momentum
equation having ∂u/∂t on the left, whose curl is the standard vorticity equation. So for instance the resultant force on
a two-dimensional vortex core of depth H is ρH

∫∫
F dxdy where ρ is fluid density. The factor ρH will be ignored in

what follows. Strictly speaking, therefore, ‘resultant force’ and ‘impulse’ in the main text should be read as ρ−1 times
resultant force and impulse per unit core depth.
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is like the wave-induced mean forces that arise from wave dissipation, even though in our three256

problems there need not be any such dissipation. Even the wave sink need not be dissipative.257

It can be a wavemaker whose amplitude and phase are contrived to give perfect absorption,258

as for instance in the thought-experiments used by Léon Brillouin in his classic works on259

radiation stress (e.g. Brillouin 1936, & refs.).260

Two further points to note are first that the wave field can be taken as steady only as an261

approximation, for small a and ε, and second that the weakness, O(a2), of the return flow262

and its strain-rate means that the vortex core is advected bodily without significant distortion263

(Kida 1981) as indeed was already assumed below (6), simplifying the calculation of dI/dt264

from (7).265

In problem (ii), as already said, there is an additional, local contribution to utr and therefore266

to R, from the Stokes drift uS of the wavetrain where it overlaps the vortex core. This local267

contribution is just the Craik–Leibovich vortex force as usually defined, FCL = uS× ω0,268

where ω0 = ω0 ẑ. The remote or return-flow contribution, from other parts of the wavetrain,269

varies with W/L. So it is the remote and not the local contribution that gives rise to the270

noninterchangeability of limits already mentioned.271

4. Mean-flow equations at leading order272

From here on we restrict attention to leading-order, O(a2ε1) recoil forces, thus excluding273

further consideration of cases like that of figure 3 in which the recoil is O(a2ε2) or smaller.274

Then (6) can be used with utr correct to O(a2ε0) only, because of the factor Γ = O(ε). So as275

said earlier we need only compute Bretherton flows for unrefracted wavetrains.276

As shown in M19, at this order the Bretherton flows uL
B are nondivergent, with streamfunc-277

tion278
ψ̃B = ψ̃ − ψ̃0 (8)

say, where ψ̃0 = ψ̃0(r′) is the streamfunction for the nondivergent velocity field u0(r′) of the279

vortex flow, and where the complete Lagrangian-mean flow uL, vortex flow u0 plus Bretherton280

flow uL
B, has x and y components281

uL = − ∂ψ̃

∂y
and vL =

∂ψ̃

∂x
. (9)

M19 showed that correct to O(a2ε0) the mean-flow equations can be written in the very simple282

forms283

∇2
Hψ̃B = ẑ ·∇×p in problems (i) and (ii) (10)

and284 (∇2
H − L−2

D )ψ̃B = ẑ ·∇×〈p〉 in problem (iii) , (11)

where p is the wavetrain’s pseudomomentum per unit mass, as before, ∇2
H is the Laplacian in285

the xy plane, and LD in problem (iii) is the Rossby deformation length-scale LD = f−1(gH)1/2.286

The angle brackets denote vertical averaging, needed in problem (iii) because of the strong287

dependence of p upon the vertical coordinate z, namely p ∝ exp(2k0z). The streamfunction288

ψ̃B need not be averaged vertically, in problem (iii), because at small Rossby number the289

Taylor–Proudman effect makes it z-independent.290

The simplicity of eqs. (10) and (11) comes from their close relation to Kelvin’s circulation291

theorem as expressed most succinctly by GLM (generalized Lagrangian-mean) theory; see for292

instance section 10.2.7 of B14, and equations (2.9)–(2.11) of M19.293

Because the wavetrains are unrefracted, they can be taken to have the simple sinusoidal294

structure A exp(iΦ) with Φ = k0(x − c0t), and constant or slowly-varying A. From this, and295

from the irrotationality of the wavemotion in all three problems, we have p = uS. See for296

instance B14, eqs. (10.15) and (10.17). The elliptic operators on the left of (10) and (11) show297

why Bretherton flows extend well outside any relatively narrow wavetrain.298
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Figure 4. Schematic of Bretherton-flow streamlines in problem (i), as analysed in BM03 correct to lowest order O(a2ε0)
for the finite wavetrain whose ray path is shown by the heavy straight line. At this order the Stokes drift is nondivergent
except within the wave source and sink regions. The waves propagate from a source on the left to a sink on the right.

5. Bretherton flows and recoil forces at leading order299

To take advantage of the simplifications just noted, with Bretherton flows computed from300

unrefracted wavetrains, we need to consider a wavetrain of finite length in the case of problem301

(i) as was done in BM03. In the formal limit of an infinitely long wavetrain, in that problem,302

to leading order in ε, the recoil and net pseudomomentum flux vanish because the rays remain303

straight and parallel to the x axis thanks to the cancellation already noted in the absolute304

group velocity (5), between the y components of the leading terms. (The bending of rays305

indicated in figure 3 takes place at the next order in ε, with the mean-flow equations becoming306

less simple, though still elliptic, as shown in section 5.1 of BM03.)307

So for problem (i) at leading order we consider the situation sketched in figure 4, with an308

unrefracted wavetrain of finite length marked by the heavy straight line, along with its sur-309

rounding return flow satisfying eq. (10). The heavy straight line corresponds to the wavetrain310

sketched in figure 1(a), whose width scale W � k−1
0 to permit the use of ray theory as in311

BM03. So once again the wavetrain is wide by comparison with k−1
0 , like a laser beam, even312

though narrow by comparison with the distance to the vortex core.313

The wave source and sink are modelled as irrotational body-force fields, with k0 large enough314

to allow the wave source and sink to be considered approximately localized near positions315

(x, y) = (±X,Y ), say, with X,Y � W . The Stokes drift is toward the right, straight along316

the wavetrain where the right-hand side of (10) is nonzero, and the return flow with right-317

hand side zero is irrotational, emanating from the wave sink and returning through the wave318

source. Its streamlines are mirror-symmetric about the wavetrain, because the wavetrain is319

unrefracted at this order. As in BM03 and M19 the O(a2ε0) flow advecting the vortex core at320

(x, y) = (0, 0) can then be shown to be321

utr = uL
B(0, 0) =

S

π

X

X2 + Y 2
(−x̂) , (12)

where322

S =

∫
p1(y)dy =

∫
uS(y)dy . (13)

The pseudomomentum per unit mass within the wavetrain has been written as p = p1(y)x̂ =323

uS(y)x̂, and the integral is taken across the wavetrain. Applying the Magnus formula (6) we324

see that the corresponding recoil force is325

R =
ΓS

π

X

X2 + Y 2
(+ŷ) (14)

correct to O(a2ε1), where ŷ is the unit vector in the y direction. As shown in BM03 and in326

B14 there is a corresponding imbalance between the mean forces exerted by the wave source327

and sink, as implied by Newton’s third law.328
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We note that (12) and (14) tend toward zero in the formal limit of an infinitely long329

wavetrain, X →∞. More precisely, since (13) implies the scaling S ∼W |uS|, we have330

|utr| ∼ W |uS|/X and |R| ∼ ΓW |uS|/X as X →∞ , (15)

going to zero like X−1. The irrotational return part of the Bretherton flow becomes increas-331

ingly spread out in the y direction, diluting its effect at (x, y) = (0, 0). The vanishing ofR in332

this formal limit in problem (i) is consistent with the straightness of the rays and the vanishing333

of all refractive distortions as |x| → ∞, at fixed y = Y in (2). In the limit the incoming and334

outgoing pseudomomentum fluxes become equal, and the wave source and sink exert equal335

and opposite mean forces.336

The dilution effect summarized by (15) is key to understanding the noninterchangeability337

of limits in problem (ii). For instance, the same dilution effect occurs for any unrefracted338

wavetrain whose width W is given an arbitrary fixed value while its length L = 2X → ∞,339

whether or not it overlaps the vortex core. When it does overlap, the local Stokes drift uS
340

contributes to utr while the diluted return flow is still governed by (15), going to zero in the341

limit. It remains zero if the limit W → ∞ is taken subsequently. Therefore, for problem (ii)342

in the limit L→∞ followed by W →∞, the formulae (12) and (14) are replaced by343

utr = uS(0, 0) = p1(0)(+x̂) (16)

and344
R = Γp1(0)(−ŷ) . (17)

Not only the magnitudes but also the signs have changed. Notice again that (17) is equal to345

the Craik–Leibovich vortex force FCL = uS×ω0 integrated over the vortex core, corresponding346

to what is called the Iordanskii force in the quantum vortex literature (e.g. Sonin 1997, Stone347

2000), with uS = p corresponding to the phonon current per unit mass.348

If we take the limits in the opposite order, W →∞ followed by L→∞, it is easy to see that349

utr and R both go to zero. For an infinitely wide wavetrain of finite length, with p1 uniform350

across the wavetrain, the dilution effect is banished to |y| =∞ so that the return flow at each351

finite |y| is just −uS. Thus utr = uS − uS = 0. For intermediate cases in which W/L has a352

finite limiting value, and in which the wavetrain is uniform and symmetric about the |x| axis,353

we obtain the intermediate values354

R = −
{

1− 2

π
lim arctan

(
W

L

)}
Γp1 ŷ , (18)

as shown in M19, where lim denotes the limit W → ∞ and L → ∞ with W/L tending355

to a constant. In cases where the constant has a value of order unity, the local and remote356

contributions have comparable importance.357

In problem (iii) there is no dilution effect as L→∞, because the Bretherton flow satisfies358

(11) and therefore, for a long wavetrain, decays sideways like exp(−|y|/LD) on the fixed length-359

scale LD. In the formal limit L → ∞, and with a narrow wavetrain, W � Y and W � LD,360

we have uL
B = uL

B(y) = (S/2LD) exp(−|y − Y |/LD)(−x̂) for |y − Y | > W , i.e. outside the361

wavetrain, so that, for a small vortex core r0 � LD, the vortex-core advection velocity and362

recoil force are363

utr = uL
B(0) = (S/2LD) exp(−|Y |/LD)(−x̂) (19)

and364
R = (ΓS/2LD) exp(−|Y |/LD)(+ŷ) (20)

with Γ evaluated at the edge of the core and with vertical averaging understood in (13). Notice365

that the signs have reverted to those in problem (i).366
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6. Cross-checks from refraction calculations367

The foregoing recoil formulae were rederived in M19 via a completely independent route,368

in two stages. Firstly, it was shown that an appropriate ‘impulse-pseudomomentum theorem’369

holds for any vortical flow and any wave field with irrotational sources and sinks, provided that370

the mean flows comply with either (10) or (11). This means that the pseudomomentum rule is371

guaranteed to hold in any such situation. Then, secondly, explicit linear-theoretic calculations372

of wave refraction were carried out to yield the incoming and outgoing pseudomomentum373

fluxes in our three problems. They were found to be precisely consistent with the foregoing374

results (14), (17), (18), and (20).375

The calculations used ray theory in all three problems and, in addition, in problem (ii), used376

the long-wavelength asymptotics and Fresnel-diffractive wake structure analysed in FLS99.377

FLS99’s careful analysis completes the picture described by (2) in an elegant way when both378

k0r0 and ε are small, making the Aharonov–Bohm phase jump 2πα even smaller, being the379

product of two small quantities as seen in (3).380

In problem (ii), the two contributions to R in (18) can be attributed separately to the381

two refraction effects seen in figure 2. The first contribution in (18), which is the same as382

(17), arises solely from the wake and the Aharonov–Bohm phase change across it, while383

the second contribution arises solely from the other refraction effect noted earlier, the O(ε)384

rotation of wavecrests in the larger domain outside the wake. This second contribution becomes385

significant in problem (ii) when the width W of the wavetrain is large enough, accounting for386

the dependence on W/L. These attributions hold good not only when k0r0 � 1 but also387

when k0r0 � 1, allowing the use of ray theory. In that case the wake has a different structure388

involving a ray caustic, but continues to account solely for the first contribution in (18) while389

the O(ε) rotations of wavecrests outside the wake, which as noted earlier are consistent with390

ray theory, account solely for the second contribution. In particular, therefore, the Aharonov–391

Bohm effect is the only relevant refraction effect – as often assumed in the quantum vortex392

literature – only in the special limiting case for which lim (W/L) = 0.393

In problem (iii), ray theory is used. Because the vortex now has quasigeostrophic structure394

with finite scale LD it is the potential vorticity, not the vorticity ω, that vanishes outside the395

vortex core. Therefore the curl-curvature formula of Dysthe (2001) implies that rays passing396

outside the vortex core, as in figure 1(a), are now deflected at leading order in ε. The formula397

tells us that the ray curvature is just ω/C where C = 1
2(g/k)1/2, the intrinsic group velocity398

for deep-water gravity waves. When the formula is used and the calculations carried out (M19399

section 8), the result is found to agree perfectly with (20).400

7. Concluding remarks401

All the foregoing results depend on the restriction to leading order in ε, which is essential402

to the derivation of (10) and (11) and therefore essential to our computations of Bretherton403

flows, and to the proof of the impulse–pseudomomentum theorem. Yet cases are known in404

which the pseudomomentum rule holds at higher orders of accuracy in ε. One of them is the405

case of figure 3, which requires one further order of accuracy, and in which the mean-flow406

equations are less simple than (10) and (11). Indeed, in BM03 section 5.2 it was shown that407

there is a version of that case for which the rule holds to all orders in ε. On the other hand,408

as recalled in M19, exceptions to the rule have long been known.409

There is a major unresolved puzzle here, and a challenge for future work. For now, one may410

speculate that the present restriction to leading order in ε may be a limitation of the Kelvin411

impulse concept, rather than of the pseudomomentum rule itself. Some further discussion of412

this issue is given in section 9 of M19.413
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