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Three examples of non-dissipative yet cumulative interaction between a single wavetrain7

and a single vortex are analysed, with a focus on effective recoil forces, local and remote.8

Local recoil occurs when the wavetrain overlaps the vortex core. All three examples9

comply with the pseudomomentum rule. The first two examples are two-dimensional and10

non-rotating (shallow water or gas dynamical). The third is rotating, with deep-water11

gravity waves inducing an Ursell “anti-Stokes flow”. The Froude or Mach number, and12

the Rossby number in the third example, are assumed small. Remote recoil is all or part13

of the interaction in all three examples, except in one special limiting case. That case is14

found only within a severely restricted parameter regime and is the only case in which,15

exceptionally, the effective recoil force can be regarded as purely local and identifiable16

with the celebrated Craik–Leibovich vortex force – which corresponds, in the quantum17

fluids literature, to the Iordanskii force due to a phonon current incident on a vortex.18

Another peculiarity of that exceptional case is that the only significant wave refraction19

effect is the Aharonov–Bohm topological phase jump.20

1. Introduction21

In the vast literature on wave–mean and wave–vortex interactions, there is a tradition22

of thinking in terms of wave-induced mean forces and the associated wave-induced23

momentum fluxes or radiation stresses. The tradition goes back many years, to the work24

of Lord Rayleigh, Léon Brillouin and other great physicists. It continues today in, for25

instance, work on the fluid dynamics of atmospheres and oceans, as well as on quantum26

vortices where the wave-induced mean forces are called “Iordanskii forces”.27

Within the atmosphere–ocean community, the force-oriented viewpoint is important28

because wave-induced mean forces are recognized as key to solving what used to be three29

great enigmas – three grand challenges – in atmospheric science. They were to understand30

the quasi-biennial oscillation of the zonal winds in the equatorial stratosphere, the31

“antifrictional” self-sharpening of jet streams, and the gyroscopic or Coriolis pumping of32

global-scale mean circulations in the stratosphere and mesosphere (i.e. between altitudes33

∼10–100km) and the consequent water vapour, ozone and pollutant transport and, most34

dramatically, the refrigeration of the summer mesopause – down to temperatures∼ 100◦C35

below radiatively determined temperatures. The history is tortuous and goes back to36

the 1960s, when all three phenomena were observationally conspicuous but, in terms37

of mechanism, completely mysterious. See for instance Wallace & Holton (1968), Fritts38

(1984), Holton et al. (1995), Baldwin et al. (2001), Dritschel & McIntyre (2008), and39

Garcia et al. (2017).40

Recognition of wave-induced mean forces as key to solving all three enigmas, and as41
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essential components of weather and climate models, constituted a gradual, but major,42

paradigm shift regarding the nature of large-scale momentum transport in atmospheres43

and oceans. Before the 1960s, such transport tended to be thought of in terms of turbulent44

eddy viscosities, missing the point that wave-induced momentum transport can be a long-45

range process more likely to dominate, as in fact it does, over large scales limited not46

by parcel displacements and mixing lengths but instead by the far greater distances over47

which waves can propagate.48

Much of the atmosphere–ocean literature, especially where it deals with mean forces49

induced by gravity waves, often takes for granted that the forces can be computed from50

linearized wave theory alone using what is now called the pseudomomentum rule (e.g.51

Bühler 2014, hereafter B14). That is the accepted basis of gravity-wave “parametrization52

schemes” in weather and climate models, designed to incorporate the mean forces coming53

from gravity waves whose wavelengths are too small to be resolved explicitly. It is also the54

usual basis on which, for instance, Iordanskii forces are computed (e.g. Sonin 1997; Stone55

2000a). Pseudomomentum, also called quasimomentum or wave momentum, or phonon56

momentum, is the linear-theoretic wave property whose nondissipative conservation de-57

pends, through Noether’s theorem, on translational invariance of the mean or background58

state on which the waves propagate, as distinct from translational invariance of the entire59

physical system, background plus waves, which implies conservation of momentum.60

In a linearized ray-theoretic description the pseudomomentum p per unit mass is Ak,61

where k is the wavenumber vector and A the wave-action, i.e. wave-energy divided by62

intrinsic frequency, per unit mass (e.g. Bretherton & Garrett 1968). The wave-action,63

wave-energy and pseudomomentum are linear-theoretic wave properties and are O(a2)64

in magnitude, where a measures wave amplitude (and will be defined in such a way that65

a� 1 validates linearization). The pseudomomentum rule says that O(a2) wave-induced66

mean forces can be calculated as if pseudomomentum were momentum and the fluid67

medium were absent.68

As discussed for instance in B14, the rule has been justified mainly for simplified69

mean flows that are themselves translationally invariant. In such cases it is typical, as70

is well known, for persistent mean forces with cumulative effects to arise only when71

the waves break or are otherwise dissipated, leading to a persistent pseudomomentum-72

flux convergence. However, when the waves are refracted by realistic, three-dimensional73

backgrounds involving vortices, the situation is fundamentally different. One can get74

persistent mean forces with cumulative effects in the absence of wave dissipation. Also, it75

is unclear whether, or when, or in what sense the pseudomomentum rule should hold. The76

fluid medium is not absent, and it supports a mean pressure field that mediates long-range77

mean forces of the same order, O(a2), as those computed from the pseudomomentum rule.78

Such pressure fields are not wave properties and cannot be computed from linearized79

wave theory alone. Rather, they require the solution of equations governing the mean or80

background state correct to O(a2). Cases in which the rule fails for this reason have long81

been known, going back as far as Brillouin’s pioneering work on acoustic radiation stress82

(e.g. Brillouin 1936, B14 §12.2.2).83

For gravity-wave parametrization, in particular, there are therefore unresolved ques-84

tions as to how to compute, and indeed how to think about, the wave-induced mean forces85

for realistic, three-dimensional backgrounds. Current parametrization schemes ignore86

these questions because they altogether neglect horizontal refraction, giving rise to what87

is sometimes called the “missing forces” problem for such schemes.88

The simplest wave–vortex problems in which these questions arise are to be found in89

a two-dimensional, non-rotating shallow-water or acoustical setting, with no viscous or90

other wave dissipation. Two basic examples, the main examples to be studied in this91



Remote recoil and the Aharonov–Bohm effect 3

● ● 

k 

k 

(a) (b) 

x 

y 

θ 

Figure 1. Panels (a) and (b) are schematics of wave–vortex interaction problems (i) and (ii)
respectively. Waves of wavenumber k are incident from the left and are weakly refracted by the
vortex. Rays are nearly parallel to the x axis. The azimuthal angle θ is defined unconventionally
but in a way that will be convenient when discussing the Aharonov–Bohm effect.

paper, are sketched in figures 1(a) and 1(b). They will be referred to as problem (i)92

and problem (ii), respectively. The background flow is a single vortex whose vorticity is93

confined to a core of radius r = r0, say, with irrotational flow outside. The coordinates94

are as shown in figure 1(a), with r2 = x2 + y2. The vortex weakly refracts a train95

of gravity waves or sound waves incident from the left. The refraction induces a small96

difference between incoming and outgoing pseudomomentum fluxes – corresponding to97

the background not being translationally invariant – and the pseudomomentum rule98

leads us to expect a persistent O(a2) mean recoil force to be exerted. That expectation is99

independent of whether or not the waves overlap the vortex core. One reason for studying100

the two problems side by side is a desire to understand how overlap or non-overlap affect101

the way in which the recoil force arises, and where it is exerted, as well as whether it102

complies with the pseudomomentum rule.103

Problem (i), with no overlap, has already been studied in an earlier paper (Bühler104

& McIntyre 2003, hereafter BM03) but will be revisited here in order to compare it105

with problem (ii), for which new results will be obtained. Also new will be results for106

a rapidly-rotating version of problem (i), to be defined below and to be referred to as107

problem (iii).108

Implicit here, as above, is the assumption that the waves can be described by linearized109

theory for a� 1 on a background flow of much greater magnitude. Our aim is to obtain110

precise results by analytical means, in order to gain insight into the questions just noted.111

To get analytically tractable, precisely soluble problems it turns out that we must also112

assume, as was done in BM03, that the background flow and the resulting refraction are113

very weak in the sense that the vortex must be assumed to have small Froude or Mach114

number115 ε = U/c0 � 1 , (1.1)

where U is a vortex flow speed and c0 an intrinsic wave speed. Thus the analyses to be116

presented fall within the asymptotic regime a � ε � 1. For definiteness, U will be117

taken to be the flow speed at the edge r = r0 of the vortex core, and c0 the wave speed118

far from the core. For general r > r0 the wave speed c = c(r) = c0{1+O(ε2r20/r
2)}, from119

the Bernoulli effect and the r−1 dependence of the vortex flow speed.120

The regime a � ε � 1 also encompasses the celebrated Lighthill theory of spontaneous121

sound emission from, and scattering by, unsteady systems of vortices. It can be contrasted122

with, for instance, the regime a ∼ ε � 1 (e.g. Lelong & Riley 1991; Ward & Dewar 2010;123

Thomas 2017), in which wave–vortex interactions of the resonant-triad type are possible.124

The vortical field, if sufficiently complex spatially, can then act as a passive “catalyst” of125

wave–wave energy transfer very like the Bragg scattering or “elastic scattering” studied126
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in McComas & Bretherton (1977), in a somewhat different context. Yet another regime127

of interest, one that has been studied very often in past decades, is a2 ∼ ε � 1, for128

instance in connection with the generation of Langmuir vortices by the nondissipative129

Craik–Leibovich instability (e.g. Craik & Leibovich 1976; Leibovich 1980, B14 §11.3).130

Indeed the regime a2 ∼ ε � 1 arises naturally in a great variety of problems where131

mean flows are generated nondissipatively, from rest, entirely through the presence of132

waves. Then refraction of the waves by the mean flow comes in only at higher order.133

Further such examples include, among many others, those studied by Longuet-Higgins134

& Stewart (1964), Bretherton (1969), McIntyre (1981, 1988), Wagner & Young (2015),135

Haney & Young (2017), Thomas et al. (2018), and Thomas & Yamada (2019).136

Returning now to problems (i)–(iii), in which a � ε � 1 and refraction takes place137

at leading order in ε, it will be shown in this paper that the pseudomomentum rule is138

satisfied not only in problem (i) but also in the other two problems, to leading order at139

least. In all three problems, the background feels a persistent O(a2ε1) mean recoil force140

satisfying the rule.141

Problem (ii) is a classical version of the phonon–vortex problem studied in the quantum142

vortex literature. This classical version is considered for instance by Sonin (1997) and143

Stone (2000a), who take the wavetrain to be infinitely wide, and incident from x = −∞.144

They argue not only that the pseudomomentum rule holds but also that there is a145

remarkable simplification, namely that the dominant wave-refraction effect, the sole effect146

that comes in at leading order, O(a2ε1), is the topological phase jump arising from what147

is called Aharonov–Bohm effect. We will find, however – with cross-checks from two148

independent methods – that another, quite different refraction effect is also relevant in149

problem (ii), except in one special limiting case where the Aharonov–Bohm phase jump is150

indeed dominant. In that special case the length of the wavetrain is taken to infinity first,151

followed by the width. If the order of limits is reversed, a different answer is obtained152

and the Aharonov–Bohm phase jump, while still relevant, is no longer the only relevant153

refraction effect. However, as already emphasized we find that the pseudomomentum rule154

is still satisfied to leading order, that is, correct to O(a2ε1).155

The Aharonov–Bohm phase jump is a topological property of the wave field most156

simply expressed via the following far-field solution to the linearized equations. The157

solution is well known in the quantum literature and will be verified below, in §2 and158

Appendix A. For sufficiently large r, and outside a relatively narrow “wake” region159

surrounding the positive x axis, the wave field has the asymptotic form A exp(iΦ) where160

the amplitude A = O(a) is a real constant, with error O(aε2r20/r
2), and the phase Φ is161

given by162

Φ = k0(x− c0t) − αθ + const. + O(ε2r20/r
2) . (1.2)

The incident wavenumber k0 is a constant. The azimuthal angle θ is defined as in163

figure 1(a) and ranges from −π to π, while α is a constant defined by164

α = Γk0/2πc0 = Uk0r0/c0 = k0r0ε (1.3)

where Γ is the Kelvin circulation of the vortex. The phase jump 2πα across the positive165

x axis is the Aharonov–Bohm phase jump, a topological defect of (1.2). In a full solution166

it is smoothed out across the wake region. It measures the effect of the vortex flow167

in compressing the wavetrain on the positive-y side and stretching it on the negative.168

The wavecrest shapes Φ = const. described by (1.2), with the error term neglected, are169

plotted in figure 2 for α = 0.75, fixing the phase jump at three-quarters of a wavelength.170

Depending on the value of k0r0 this can take us outside the range of validity of our171

asymptotic regime (see for instance §7), but α = 0.75 is chosen here to make the refraction172

effects visible in the figure. They include the other relevant effect already mentioned,173
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Figure 2. Wavecrests plotted from the far-field solution (1.2), with α = 0.75. The unit of
length is taken as k−1

0 so that the unrefracted wavelength is 2π. The Aharonov–Bohm phase
jump appears as a phase discontinuity on the positive x-axis. In a full solution this discontinuity
is smoothed out across a relatively narrow “wake” region.

which is that, except on the y axis, the wavecrests are slightly rotated away from the174

y direction, by O(εr0/r). This latter effect is also important in problem (i), as noted in175

BM03 and in B14 §14.2.176

There remains the question of where the wave-induced recoil force is exerted. The177

question is ambiguous as it stands, and can be answered in more than one way, but there178

is one and only one way that avoids bringing in the O(a2) mean pressure field. It has the179

further advantage of being the only way that is relevant to gravity-wave parametrization.180

It is to ask, then answer, the question thus: if the waves were removed and the recoil181

force exerted artificially, as an external applied force, where should it be exerted in order182

to have the same effect on the mean flow? As shown in BM03 and B14 §14.2, in the183

case of problem (i), the answer is not at locations where the waves are refracted – as a184

naive invocation of the pseudomomentum rule might suggest – but, rather, solely at the185

location of the vortex core. BM03 therefore called the recoil “remote”. In problem (i),186

the vortex core can be arbitrarily distant from locations where the waves are refracted.187

There is of course nothing mysterious about this remoteness – no violation of Newton’s188

Third Law – because pressure fields can mediate actions and reactions continuously, over189

substantial distances, just as they do in ordinary vortex–vortex interactions.190

To arrive at this picture BM03 relied mainly on a thought-experiment in which an191

artificial “holding force” was applied to the vortex core, in such a way as to cancel the192
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recoil due to the waves. It was shown by careful analysis that, by applying this holding193

force, the mean flow and wave field can be kept exactly steady, with exactly constant total194

momentum. Here, following B14 §14.2, we ask instead how the mean flow responds to the195

net pseudomomentum flux in the absence of a holding force. The answer is then that the196

vortex translates, and keeps on translating persistently, in a direction perpendicular to197

the recoil force – a classic Magnus-force-like scenario. It translates because it is advected198

by an O(a2) “Bretherton flow” induced by the wave field (Bretherton 1969). With no199

holding force, therefore, the Kelvin impulse of the vortex (e.g. Batchelor 1967, eq. (7.3.7),200

and eq. (3.3) below) changes in just the same way as if the waves were removed and the201

recoil force artificially applied to the vortex core. Because a2 � a� ε, the wave field can202

still be treated as steady. And in each problem studied here and in BM03, the Bretherton203

flow organizes itself such that the rate of change of impulse corresponds to a recoil force204

that is consistent with the pseudomomentum rule.205

By way of illustration, figure 3 depicts schematically the Bretherton flow in a version206

of problem (i) solved in §5.1 of BM03, q.v. for the analytical details. The heavy curve207

represents a narrow wavetrain that is slightly deflected as it goes past the vortex, in208

such a way that the net pseudomomentum flux into the region points in the positive209

y direction. Ray theory is used to describe the waves, as throughout BM03, assuming210

k0r0 � 1. The O(a2) mean flow within the wavetrain is dominated by the Stokes drift.211

A small portion of its mass flux leaks sideways as a consequence of wave refraction,212

forming the Bretherton flow, which is irrotational outside the wavetrain. In the example213

shown it advects the vortex core leftward, in the negative x direction. The corresponding214

recoil force – a force that would move the vortex core leftward in the absence of waves215

– is therefore a force in the positive y direction, like the net pseudomomentum flux. Its216

magnitude is shown by BM03’s analysis to be consistent with the pseudomomentum rule.217

In BM03 and B14, as in the present work, it is assumed that the vortex core size r = r0218

is small enough to allow the core to be carried bodily along by the Bretherton flow, whose219

scale is much larger, with strain rate much less than vorticity since a2 � a� ε (cf. Kida220

1981). That in turn makes the results independent of detailed core structure, i.e. of the221

function ω0(r) where ω0 is the vorticity, but dependent only on the Kelvin circulation222

Γ =
∫∫
ω0 dxdy.223

In the case of problem (ii), the same remote-recoil effects will be found to occur. In224

addition, because of overlap, there is a local recoil corresponding to advection of the vortex225

core by the Stokes drift of the wavetrain. This local contribution is given by the celebrated226

Craik–Leibovich vortex force, ω0 times the Stokes drift, equation (2.12) below, and is227

directed toward negative y in the case of figure 1(b). Its quantum vortex counterpart228

is the Iordanskii force, with the Stokes drift corresponding to the phonon current. The229

special limiting case where the Aharonov–Bohm effect is dominant is also special in230

another way, namely that the local contribution is the only contribution. The remote231

contribution vanishes, in that particular limit. Generically, however, both contributions232

are important, as will be shown.233

The plan of the paper is as follows. §2 introduces the equations to be used, and verifies234

the far-field solution (1.2). §3 recalls how the Kelvin impulse I of a vortex responds to235

a force applied to its core, and proves a general theorem relating the pseudomomentum236

field to the rate of change of I. This is a variant of the impulse–pseudomomentum237

theorem first proved in Bühler & McIntyre (2005). It provides one way of seeing that238

the pseudomomentum rule holds in all three of our problems, independently of our239

explicit calculations of wave refraction and net pseudomomentum flux. The theorem does,240

however, depend heavily on the smallness of ε and leaves open some challenging questions241

about the wider validity of the rule. §4 briefly revisits problem (i), in preparation for its242
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Figure 3. Schematic of the Bretherton flow arising in a version of problem (i) studied in BM03.
The O(a2) mean flow within a narrow wavetrain, whose ray path is shown by the heavy curve,
is dominated by the Stokes drift. A small portion of its mass flux, O(a2ε1) in this case, leaks
sideways as a consequence of wave refraction. To describe this situation the refraction problem
must be considered correct to two orders in ε, as was done in §5.1 of BM03. Refraction effects
enter at both orders, not only the O(ε) effects illustrated in figure 2 but also an O(ε2) change
in the direction of the absolute group velocity, exaggerated in this schematic.

extension to problem (ii) in §§5–7. In §8 we formulate and solve problem (iii), the rapidly-243

rotating version of problem (i). In that version, the waves are high-frequency deep-water244

surface gravity waves, and the mean flow obeys quasigeostrophic shallow-water dynamics245

in a fluid layer whose depth H is sufficiently large by comparison with k−10 . The mean246

flow feels rotation strongly but the waves feel it only weakly. The O(a) wavemotion can247

be treated as irrotational to sufficient accuracy. A point of interest is that the rotation248

produces a tendency for the Stokes drift to be cancelled by the well-known Eulerian-249

mean “anti-Stokes flow” (Ursell 1950; Hasselmann 1970; Pollard 1970; Lane et al. 2007).250

It might be thought that the cancellation suppresses the Bretherton flow and hence the251

remote recoil, but the analysis will show otherwise. §9 offers some concluding remarks,252

emphasizing challenges for future work.253

2. Equations used254

To verify the far-field wave solution (1.2) we need the linearized equations outside255

the vortex core. The irrotational background velocity field u0 is u0(r) = Ur0r
−1θ̂ =256

εc0r0r
−1θ̂ where θ̂ is the unit vector in the θ direction. The equations are most succinctly257

written in their Bernoulli form258 (
∂

∂t
+ u0 ·∇

)
φ′ = − c2η′ + χ′ , (2.1)(

∂

∂t
+ u0 ·∇

)
η′ = −∇2φ′ , (2.2)

where φ′ is the velocity potential for the irrotational wavemotion, u′ = ∇φ′, say, while η′259

is the fractional layer-thickness or density disturbance, in the shallow water or acoustical260

interpretation respectively, and χ′ is a prescribed oscillatory forcing potential. Such261

forcing is a convenient way of representing wave sources and sinks, as used in BM03 and262

B14. In the limiting cases of problem (ii) these sources and sinks will recede to infinity,263
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leaving χ′ = 0 for all finite (x, y). Equation (2.2) is the linearized mass-conservation264

equation. Eliminating η′ and noting that (∂t + u0 ·∇)c = 0, because c is a function of r265

alone, we have266 (
∂

∂t
+ u0 ·∇

)
2
φ′ − c2∇2φ′ =

(
∂

∂t
+ u0 ·∇

)
χ′ . (2.3)

Now if φ′ ∝ exp(iΦ) with Φ as in (1.2)–(1.3), we have a local wavenumber vector267

k = ∇Φ = k0x̂− αr−1θ̂ +O(ε2k0r
2
0 r
−2) = k0{x̂− εr0r−1 θ̂ +O(ε2r20 r

−2)} (2.4)

where x̂ is the unit vector in the x direction and where the error term has been assumed268

to have length-scale & k−10 . We note that k is slightly rotated away from the x direction,269

pointing slightly into the background flow, as already seen in figure 2 where the wavecrests270

are rotated away from the y direction. So271

∇φ′ = ikφ′ = ik0
{
x̂− εr0r−1θ̂ +O(ε2r20 r

−2)
}
φ′ , (2.5)

and with u0(r) = εc0r0r
−1θ̂ we have, noting that θ̂ · x̂ = sin θ ,272 (

∂

∂t
+ u0 ·∇

)
φ′ = ik0c0

{
−1 + εr0r

−1 sin θ +O(ε2r20 r
−2)
}
φ′ (2.6)

and273 (
∂

∂t
+ u0 ·∇

)
2
φ′ = −k20c20

{
1− 2εr0r

−1 sin θ +O(ε2r20 r
−2)
}
φ′ , (2.7)

which equals c20∇2φ′ = −|k|2c20φ′ to the same accuracy and therefore satisfies (2.3)274

with χ′ = 0, to that accuracy. The next order O(ε2r20 r
−2) fails to satisfy (2.3), because275

a contribution −2k20c
2
0ε

2r20 r
−2φ′ on the right of (2.7) disagrees with a contribution276

−k20c20ε2r20 r−2φ′ to c20∇2φ′ , with no coefficient 2. At higher orders there are contri-277

butions from ∇(sin θ) that also disagree. We note in passing that, by contrast, exp(iΦ)278

with no error term is an exact, and not merely a far-field asymptotic, solution to the279

Schrödinger equation of the original Aharonov–Bohm problem (details in Appendix A).280

The Schrödinger equation (A 1) differs from (2.3) except in the limit ε → 0 (e.g. Stone281

2000a).282

The expression (2.4) for k is consistent with ray (JWKB) theory, as can be checked283

from BM03 (4.12) or B14 (14.5). Also of interest is the direction of the absolute group284

velocity285

Cabs =
ck

|k|
+ u0(r) =

c0k

|k|
+ u0(r) +O(ε2c0r

2
0 r
−2) . (2.8)

Correct to O(εc0r0r
−1), Cabs is parallel to x̂, as can be checked by taking the y286

components of (2.4) and of u0(r) = εc0r0r
−1θ̂. Propagation due to the y component287

of k cancels advection due to the y component of u0. The cancellation follows also288

from the irrotationality of the background flow outside the vortex core, in virtue of the289

curl-curvature formula of ray theory, B14 p. 86.290

We avoided relying on ray theory here, when verifying (1.2), because integrating the291

ray equations over large distances might, conceivably, accumulate significant errors in Φ,292

giving incorrect values for the Aharonov–Bohm phase jump, whereas the error O(ε2r20/r
2)293

in (1.2) is small enough to rule out any such accumulation. A convenient corollary is that294

(1.2) can be used in problem (i) as well as in problem (ii), because when ray theory295

is valid it is permissible, correct to O(ε), to replace the constant amplitude A by a y-296

dependent amplitude envelope that restricts the wavetrain appropriately, as sketched in297

figure 1(a), again using the O(ε) property Cabs || x̂ just noted (as contrasted with the298

O(ε2) bending of ray paths in figure 3).299

Ray theory will, on the other hand, be sufficient for our treatment of problem (iii), in300

which the Aharonov–Bohm phase jump has no role. Details are postponed until §8.301
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For the mean flow, a natural and efficient framework for solving problems (i)–(iii)302

is that of generalized Lagrangian-mean (GLM) theory, as laid out for instance in B14.303

However, except where stated otherwise the reader unfamiliar with GLM theory can read304

the equations as involving, to sufficient accuracy, only the Eulerian-mean velocity u and305

the Stokes drift uS, or phonon current per unit mass. Whenever the O(a) wavemotions306

are irrotational and describable by ray theory, the exact GLM pseudomomentum p per307

unit mass can be replaced by uS and the exact Lagrangian-mean velocity uL by u+uS,308

with error O(a2ε2); see e.g. B14, equations (10.15) and (10.17). Then the combination309

uL − p, which occurs frequently in the exact theory, can be read simply as u, and the310

exact mean vorticity ω̃ defined by311

ω̃ = ∇× (uL − p) (2.9)

can be read simply as ω, the Eulerian-mean vorticity. (The quantity ω̃ is the simplest312

exact measure of mean vorticity. It arises from frozen-field distortions of the three-313

dimensional vorticity field by the wave-induced displacement field.) The relation p = uS
314

is always valid sufficiently far from the vortex core, in all three problems, where ray315

theory is always valid. In problems (i) and (ii) we need only the vertical or z component316

of (2.9).317

The power and economy of the GLM formalism comes from Kelvin’s circulation318

theorem and its consequence, e.g. B14 §10.2.9, that uL exactly advects mean vorticities319

ω̃, or ω̃+f in problem (iii), with f the vector Coriolis parameter. This will prove useful320

throughout our analyses. In problem (iii) it expresses Ursell’s insight into the anti-Stokes321

flow, in a succinct and natural way to be pointed out in §8. The advection property is322

neatly summarized by the exact three-dimensional form of the nondissipative equation323

for ω̃; see e.g. B14, equations (10.99) and (10.153). It is324

∂ω̃

∂t
− ∇×{uL× (f + ω̃)} = 0 (2.10)

or alternatively325

D
L
ω̃

Dt
+ (f + ω̃)∇· uL = (f + ω̃) ·∇uL, (2.11)

where D
L
/Dt = ∂/∂t + uL ·∇. If we now set f = 0 and apply the foregoing recipe326

to (2.10), replacing ω̃ by ω and uL by u + uS, then we get the approximate version of327

(2.10) known as the Craik–Leibovich equation:328

∂ω

∂t
−∇× (u×ω) = ∇× (uS×ω) . (2.12)

The right-hand side of (2.12) is the curl of the Craik–Leibovich vortex force uS× ω,329

which as mentioned earlier makes a local contribution uS×ω0 to the effective force on330

the vortex in problem (ii), where ω0 = ∇×u0. Equation (2.12) was originally derived331

by Craik & Leibovich (1976), via a much longer route, to study another problem – the332

dynamics of Langmuir vortices – assuming incompressible flow ∇ · u = 0 and steady333

wave fields, and under the strong parameter restriction a2 ∼ ε � 1, i.e. that all mean334

flows, whether wave-induced or pre-existing, have order of magnitude O(a2). The route335

via GLM just recalled, which is not only much shorter but also has wider validity, was336

first pointed out by Leibovich (1980).337

To complete the mean-flow equations we need a mass-conservation equation. As usual338

in GLM, we define a mean two-dimensional density or layer depth h̃ such that the339

areal mass element ∝ h̃dxdy exactly; see equations (10.42)–(10.47) of B14. Then mass340

conservation is expressed by341
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∂h̃

∂t
+ ∇H · (h̃uL

H) = 0 , (2.13)

where suffix H denotes horizontal projection, on to the xy plane, superfluous in the342

two-dimensional acoustical setting but needed in the shallow-water setting and in prob-343

lem (iii). In all three problems, however, we shall find that (2.13) can be simplified to344

∇H · uL
H = 0 (2.14)

if we are willing to work to the lowest significant accuracy – the lowest that captures345

the remote-recoil effects to be discussed. This will keep the analysis extraordinarily346

simple yet able to illustrate the main points. Equation (2.14) will be justified shortly347

for problems (i) and (ii) and in §8 for problem (iii), with error estimates. We can then348

define a streamfunction, ψ̃ say, such that the horizontal velocity components can be349

written as350

uLH = − ∂ψ̃

∂y
and vLH =

∂ψ̃

∂x
. (2.15)

The Bretherton flow has streamfunction351

ψ̃B = ψ̃ − ψ̃0 (2.16)

where ψ̃0 is the streamfunction for the nondivergent velocity field u0 of the vortex flow.352

To compute the Bretherton flows in problems (i) and (ii) to sufficient accuracy (see353

§4), we need only (2.15)–(2.16) and the vertical component of (2.9). We have ω̃ = ∇×354

(uL−p) = ∇×u0 = ω0 , expressing irrotationality outside the vortex core. The vertical355

component of ∇× (uL − u0) is just ∇2
Hψ̃B. We therefore have356

∇2
Hψ̃B = ẑ ·∇×p (2.17)

where ẑ is the vertical unit vector. The right-hand side of (2.17) is known as soon as we357

know the wave pseudomomentum field p, which as mentioned earlier can be identified358

with the uS field whenever the wavemotion is irrotational and ray theory applies.359

For problem (iii) it will be shown in §8 that we need only two modifications. First,360

the vorticity ∇2
Hψ̃B must be replaced in the standard way by (∇2

H − L−2D )ψ̃B, the361

quasigeostrophic potential vorticity (PV), of the Bretherton flow, where LD is the Rossby362

deformation length-scale LD = f−1(gH)1/2 where g is gravity and f = |f |. Second, we363

must replace p, which for deep-water surface gravity waves is strongly z-dependent, by364

its vertical average 〈p〉. So in place of (2.17) we have simply365

(∇2
H − L−2D )ψ̃B = ẑ ·∇×〈p〉 . (2.18)

The derivation of (2.18) involves some delicate arguments about the asymptotics and366

will be postponed until §8 and Appendix C. The elliptic operators in (2.17) and (2.18)367

illustrate, by implication, a generic property of Bretherton flows, that they can extend368

well outside the wavetrain where p 6= 0. That is one way of seeing the generic nature of369

remote recoil.370

We now justify replacing (2.13) by (2.14) for problems (i) and (ii). Among the errors371

thus incurred, the largest is O(a2ε1). It arises in problem (i), from the variation of372

wave amplitude A across the wavetrain and illustrating, incidentally, a need to avoid373

textbook arguments for the near-incompressibility of low-Mach-number or low-Froude-374

number flows. Those arguments do not take into account the kinds of spatial heterogeneity375

that are possible here, especially in problem (i).376

For our asymptotic regime we need to let a→ 0 and ε→ 0 keeping a� ε, for a given377

geometry of the background flow and incident wave field. Where the vortex flow u0(r)378

crosses the wavetrain, in problem (i), it encounters h̃ values that are reduced by O(a2ε0)379
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because of the Brillouin radiation stress in the wavetrain. And since ∇H · u0 = 0, the380

resulting contribution to ∇H·(h̃uL
H) in (2.13), which is neglected in going to (2.14), is just381

u0 ·∇H h̃ to leading order, with magnitude O(a2ε1) since u0 = O(ε). (This contribution382

is significant, however, at the greater accuracy required in the case of figure 3, as can be383

seen from (5.1) of BM03, even though it will not be required in the present analyses.)384

The O(a2ε0) local reduction in h̃ within the wavetrain (set-down, in the shallow-water385

setting) is necessary to ensure that the O(a2) sideways mean fluid acceleration vanishes.386

The sideways gradients of Brillouin radiation stress and O(a2) mean pressure must cancel.387

Only the isotropic part of the Brillouin radiation stress is involved, the so-called “hard-388

spring” contribution, unrelated to pseudomomentum fluxes, and equal to ∂ ln c/∂ lnh389

times wave-energy per unit area, where h is layer depth or two-dimensional mass density390

(e.g. Brillouin 1936, B14 §10.5.1).391

3. Impulse and pseudomomentum392

The impulse–pseudomomentum theorem applies to problems (i)–(iii) as well as393

to a more general set of problems involving multiple vortices and more complicated394

wave fields, with arbitrary wave source and sink regions. The theorem provides an elegant395

way of showing that the pseudomomentum rule is satisfied in all these problems. There396

is, however, a severe limitation. The theorem relies crucially on horizontal nondivergence,397

(2.14). So it applies only at the lowest significant order of accuracy. There is a challenge398

here since the limitation puts the case of figure 3 outside the scope of the theorem. As399

just pointed out, (5.1) of BM03 shows that (2.14) is not accurate enough in that case;400

in fact (2.14) must then be replaced by the anelastic equation401

∇H · (h̃uL
H) = 0 . (3.1)

Yet BM03’s analysis shows that the pseudomomentum rule still holds, a point to which402

we will return.403

Before proceeding, we revisit the thought-experiment in which the waves are removed404

and an artificial external force field F exerted on the vortex core ω0(r), producing a405

rate of change of Kelvin impulse. In order to make the vortex translate bodily without406

change of shape, with velocity utr, say, we need F = −ω0 ẑ×utr. (The curl of this force407

field is just that required to move the vortex core through the fluid at velocity utr, while408

the divergence sets up the dipolar pressure field required to produce the corresponding409

changes outside the core, where the velocity field is irrotational.) Being transverse to410

the vortex motion, the resultant force R has the character of a Magnus force,411

R =

∫ ∫
F dxdy = −ẑ×utr

∫ ∫
ω0 dxdy = −Γ ẑ×utr . (3.2)

The Kelvin impulse is defined for our two-dimensional shallow water or acoustical domain412

as413

I =

∫ ∫
(y, −x)Qdxdy =

∫ ∫
−ẑ×x Qdxdy (3.3)

(e.g. Batchelor 1967, equation (7.3.7)) where x = (x, y) and where Q is the vorticity,414

Q = ω0 in this case. When the vortex translates in response to F , the rate of change of415

I is just R; cf. (3.7) below. In the corresponding thought-experiment for problem (iii),416

the same statements hold if Q is redefined as the quasigeostrophic PV.417

The impulse–pseudomomentum theorem makes the following assumptions, in addition418

to (2.14) and its consequences (2.15)–(2.18). The wave field together with its sources and419

sinks is taken to have finite extent, prior to taking any infinite-wavetrain limits that might420

be of interest, while the domain of integration is taken infinite so as to enclose within it421

the vortex core, or cores, as well as all the waves and their source and sink regions. It422
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is assumed that the pseudomomentum field satisfies a two-dimensional equation of the423

form (see Appendix D)424

∂p

∂t
+ ∇H · B = − (∇Hu

L) · p + FFF , (3.4)

with vertical averaging understood in problem (iii). The first term on the right comes425

from wave refraction and scattering by the mean flow, and FFF is the rate of generation426

or absorption of pseudomomentum in the wave source and sink regions, per unit area.427

In the refraction term, p contracts with uL and not with ∇H. On the left, the precise428

form of the pseudomomentum flux tensor B is immaterial but we note for later reference429

that, wherever ray theory holds, we shall have, in Cartesian tensor notation, with i and430

j running from 1 to 2, the standard group-velocity property431

Bij = pi C
abs
j (3.5)

where Cabs is the absolute group velocity, u0 plus the intrinsic group velocity, ck/|k| in432

problems (i) and (ii) as in (2.8), and ck/2|k| in problem (iii). The divergence operator433

contracts with Cabs so that, in Cartesians, the ith component of ∇H · B is Bij,j . The434

theorem states that435

d

dt
(I + P) =

∫ ∫
FFF dxdy (3.6)

where P =
∫∫

pdxdy, the total pseudomomentum, again with vertical averaging under-436

stood in problem (iii).437

The proof begins by noting that Qdxdy is materially invariant, so that438

dI

dt
=

∫ ∫
D

L

H(y, −x)

Dt
Qdxdy =

∫ ∫
(vLH, −uLH)Qdxdy . (3.7)

From here on, with everything in two dimensions (x, y), we drop the suffixes H so that,439

for instance, ∇H will be denoted by ∇. Then, recalling (2.9) and (2.15)–(2.18), we have440

dI

dt
=

∫ ∫
Q∇ψ̃ dxdy =

∫ ∫ {
(∇2 − L−2D )ψ̃ − ẑ ·∇×p

}
∇ψ̃ dxdy , (3.8)

with LD finite in problem (iii) but infinite in problems (i)–(ii). Now ∇2ψ̃∇ψ̃ contributes441

nothing because, in Cartesians, its ith component is ψ̃,jj ψ̃,i = (ψ̃,j ψ̃,i),j − 1
2 (ψ̃,j ψ̃,j),i ,442

which integrates to zero. The integrated terms at infinity vanish because, if we consider a443

domain of integration having radius r →∞, the integrated terms have integrands O(r−2)444

in problems (i) and (ii) and O(exp(−2r/LD)) in problem (iii), from the vortex-only445

contributions. The Bretherton flows, being dipolar because of the ∇ on the right-hand446

sides of (2.17) and (2.18), decay at the same rate or faster as r →∞. In problem (iii) we447

have the additional contribution −L−2D ψ̃∇ψ̃ ∝ 1
2∇(ψ̃2), which also integrates to zero448

because ψ̃2 = O(exp(−2r/LD)). Therefore (3.8) reduces, in all three problems, to449

dI

dt
= −

∫ ∫
(ẑ ·∇×p)∇ψ̃ dxdy . (3.9)

Upon exchanging the dot with the cross and then integrating by parts, using the finite450

extent of the wave field, we see that the right-hand side is equal to451

−
∫ ∫
{(ẑ×∇) · p}∇ψ̃ dxdy =

∫ ∫
{p · (ẑ×∇)}∇ψ̃ dxdy =

∫ ∫
(∇uL)· p dxdy (3.10)

since ẑ×∇ commutes with ∇, and ẑ×∇ψ̃ = uL by (2.15), so that the integrand on the452

right is minus the refraction term in (3.4). On eliminating that term between (3.4) and453
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(3.10), and noting that ∇·B integrates to zero, again because of the finite extent of the454

wave field, we arrive at (3.6).455

The proof has no dependence on whether or not ray theory applies. It depends only on456

(2.14)–(2.18) and on the form of (3.4), not on any particular formulae for p, B andFFF . The457

group-velocity property (3.5) will, however, be useful when considering pseudomomentum458

budgets in detail, for problems (i)–(iii), because along with ray theory it always holds459

far from the vortex core, together with the approximation p = uS.460

The case of figure 3 prompts the question, can we replace (2.14) by (3.1) and still prove461

the theorem? After considerable effort, the author has been forced to the conclusion that462

we cannot. At higher orders in ε there is an incompatibility between the per-unit-mass463

basis of vorticity – being the curl of velocity rather than of mass transport – and the464

per-unit-volume, or per-unit-area, basis of conservation relations, and their refractive465

extensions such as (3.4), in which p would need to be replaced by h̃p in order to attain466

enough accuracy to be compatible with (3.1) (again see Appendix D). But one cannot467

simply insert a factor h̃ into the integrand of (3.3), because h̃Qdxdy is not materially468

invariant and the subsequent steps from (3.7) onward are invalidated.469

It seems likely that this limitation is not a limitation of the pseudomomentum rule as470

such, but only a limitation of the Kelvin impulse concept. As is well known, the ability471

to replace momentum budgets by impulse budgets depends on incompressibility. Incom-472

pressibility is needed in order to banish to infinity the large-scale O(a2) pressure-field473

adjustments in transient situations, including transient versions of thought-experiments474

like that associated with the Magnus relation (3.2).475

Indeed, there is a variant of the case of figure 3 in which the pseudomomentum rule476

holds to all orders in ε, as was shown in BM03 §5.2. However, that result depended on477

keeping the mean flow exactly steady – over an infinite domain – by applying an artificial478

“holding force” to the vortex core as described in §1, and then taking account of the full479

momentum budget in the far field correct to O(a2). Conditions in the far field are greatly480

simplified by assuming exact steadiness everywhere. The result depends on the generic481

relation between the fluxes of momentum and pseudomomentum. As shown in GLM482

theory they differ only by an isotropic term (see Appendix D), which can be balanced483

by changes in mean pressure. Whether that can lead to further generalization remains484

to be explored.485

4. Bretherton flows and recoil forces for problem (i)486

In this section we review BM03’s leading-order results on recoil forces in problem (i), as487

a preliminary to the subsequent analyses of problem (ii). We confine attention to recoil488

forces computed from Bretherton flows, omitting BM03’s ray-theoretic calculations of489

the O(a2ε1) net pseudomomentum flux. The impulse–pseudomomentum theorem tells us490

that such calculations must give the same results, at this lowest order, as indeed they491

were found to do. However, as pointed out in BM03, the Bretherton flows provide the492

simplest route to the results. Just as R in (3.2) can be computed correct to O(a2ε1)493

from utr correct to O(a2ε0), because Γ is an O(ε) quantity, a wave-induced recoil can be494

computed correct to O(a2ε1) from a Bretherton flow correct to O(a2ε0), that is, from a495

Bretherton flow computed for an unrefracted wavetrain.496

To take advantage of this simplification, in problem (i), we need to consider a wavetrain497

of finite length. That is because of the curl-curvature formula mentioned below (2.8), with498

its implication that the absolute group velocity Cabs remains parallel to x̂ when wave499

refraction is computed correct to O(ε). It remains parallel despite the O(ε) refraction500

effects illustrated in figure 2; recall the cancellation noted below (2.8). The O(a2ε1) net501

pseudomomentum flux and recoil force, which depend entirely onO(ε) wavecrest rotations502
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of the kind illustrated in figure 2, therefore vanish when the wave source and sink are503

allowed to recede to infinity.504

So to obtain the simplest, leading-order version of problem (i), following BM03, we let505

the unrefracted wavetrain extend between wave source and sink regions centred at finite506

locations (x, y) = (−X,Y ) and (+X,Y ), say, as sketched in figure 4 (heavy straight line).507

For consistency with BM03’s use of ray theory we take X,Y �W , and W� k−10 , where508

W is a width-scale for the wavetrain. In order to generate and absorb an approximately509

monochromatic wavetrain, the wave source and sink are prescribed, just as in BM03,510

by taking the oscillatory forcing potential χ′ to be exp(ik · x − ikct) times a slowly-511

varying forcing envelope whose length-scale is at least of the same order of magnitude512

as W , and where the real part is understood. However, the forcing envelope scale is kept513

� X,Y , allowing us to think of the source and sink regions as approximately localized.514

It is convenient to take k ·x = k0x in the source along with kct = k0ct, with constant k0.515

The O(a2ε0) Bretherton flow for the unrefracted wavetrain satisfies (2.17), with evanes-516

cence at infinity. It consists of the Stokes drift uS straight along the wavetrain, parallel517

to x̂, together with irrotational return flows symmetrically on both sides, as sketched in518

figure 4. All the vorticity of this Bretherton flow comes from ẑ ·∇×p on the right-hand519

side of (2.17). Within the wavetrain but outside the wave source and sink, ẑ ·∇× p is520

simply minus the horizontal shear of the Stokes drift.521

In virtue of the incompressibility expressed by (2.14)–(2.16), the irrotational return522

flow outside the wavetrain, which advects the vortex core, is the same as if it were523

induced by a two-dimensional mass sink at the left end of the wavetrain and a mass524

source at the right end whose strengths are equal to the mass flow in the Stokes drift525

within the wavetrain. Omitting factors ρ, where ρ is fluid mass density, we define the526

source and sink strengths ±S as the volume fluxes in a layer of unit depth; thus527

S =

∫
uS(y)dy =

∫
p1(y)dy , (4.1)

with the integral taken across the wavetrain. The pseudomomentum within the wavetrain528

has been written correct to O(a2ε0) as p1(y)x̂. Using W� X andW� Y , again following529

BM03, we can approximate the mass-source flow in problem (i) as radially outward from530

(x, y) = (X,Y ) at speed S/[2π{(x − X)2 + (y − Y )2}1/2], and similarly the mass-sink531

flow as radially inward toward (x, y) = (−X,Y ). When these flows are added vectorially532

we obtain the flow pattern sketched in figure 4; and the net velocity advecting the vortex533

core at (x, y) = (0, 0) is534

uL(0, 0) =
S

π

X

X2 + Y 2
(−x̂) (4.2)

correct to O(a2ε0). Because of the Magnus relation this corresponds to a resultant recoil535

force R = −Γ ẑ×uL(0, 0), i.e.536

R =
ΓS

π

X

X2 + Y 2
(+ŷ) (4.3)

correct to O(a2ε1), where ŷ the unit vector in the y direction.537

Notice that uL(0, 0) andR tend toward zero in the formal limit X →∞, cross-checking538

what was deduced from the direction of Cabs and consequent vanishing of the O(a2ε1)539

net pseudomomentum flux and recoil force in that limit. As the wavetrain gets longer,540

the irrotational return part of the Bretherton flow becomes increasingly spread out in541

the y direction, diluting its effect at (x, y) = (0, 0).542

5. Bretherton flows and recoil forces for problem (ii)543

The dilution effect just pointed out is the easiest way of seeing the noninterchange-544

ability of limits in problem (ii). The same dilution effect occurs for any wavetrain whose545
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Figure 4. Schematic of Bretherton-flow streamlines in problem (i), as analysed in BM03 correct
to lowest order O(a2ε0) for the finite wavetrain whose ray path is shown by the heavy straight
line. At this order the Stokes drift is nondivergent except within the wave source and sink
regions. The waves propagate from a source on the left to a sink on the right.

width W is held fixed while its length L = 2X →∞. In that formal limit the magnitude546

of the return flow at any fixed point tends toward zero; and it remains zero if the formal547

limit W → ∞ is taken subsequently. The vortex core is then advected solely by the548

Stokes drift uS(0, 0) = uS = p1 x̂, which is now constant across the wavetrain, so that549

with L→∞ first in problem (ii), (4.2) and (4.3) are replaced by550

uL(0, 0) = uS = p1 x̂ (5.1)

and551 R = − Γ p1 ŷ . (5.2)

Not only the magnitudes but also the signs have changed. These results hold for arbitrary552

k0r0, because in the unrefracted wavetrain we always have uS = p = p1 x̂. Notice that553

(5.2) is equal to the Craik–Leibovich vortex force uS× ω = uS× ω0 integrated over554

the vortex core, corresponding to the Iordanskii force in the quantum fluids literature555

(e.g. Sonin 1997), with uS = p corresponding to the phonon current per unit mass. The556

relation to the Aharonov–Bohm effect is discussed in the next two sections.557

In any other version of problem (ii) there will be two contributions, one from the558

Craik–Leibovich vortex force and the other from the return part of the Bretherton flow.559

In the opposite formal limit, with the width W of the wavetrain going to infinity first,560

the two contributions cancel. The return flow is then uniform, and equal and opposite to561

the Stokes drift, being diluted only near the extremities y ∼ ± 1
2W . In that formal limit,562

therefore, the recoil force R vanishes.563

In all other versions of problem (ii) there is always some dilution, making the return564

flow weaker than the Stokes drift and keeping the sign of the recoil opposite to that in565

problem (i). For instance, consider the “square” limit L = W → ∞. Then it is readily566

shown that567

uL(0, 0) = 1
2u

S(0, 0) = 1
2 p1 x̂ (5.3)

so that in place of (5.2) we have568

R = − 1
2Γ p1 ŷ . (5.4)

More generally, the factor 1
2 is replaced by {1− 2π−1 lim arctan(W/L)}.569

To derive this last result, one can regard the wide wavetrain as made up of narrow570

wavetrains each with S = p1dy, for constant p1, and then integrate (4.3), with Y replaced571

by y, over the whole wavetrain to get the contribution to R from the return flow. That572

contribution, for L→∞ and W →∞ in various ways, is therefore573
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Γp1
π

lim

∫ 1
2W

− 1
2W

Xdy

X2 + y2
(+ŷ) =

2Γ p1
π

lim arctan(W/L) ŷ . (5.5)

In the next two sections, the foregoing results for problem (ii) will be cross-checked574

against computations of far-field pseudomomentum fluxes correct to O(a2ε1), taking575

account of the refracted wavecrest shapes illustrated in figure 2 and their mathematical576

description (1.2). The impulse–pseudomomentum theorem tells us that the results must577

agree; but it is interesting, nevertheless, not only to carry out the cross-checks but also578

to see how the refraction works in more detail, thereby gaining mechanistic insight, and579

another view of the noninterchangeability of limits.†580

6. Wave refraction in problem (ii): the far field outside the wake581

The impulse-pseudomomentum theorem implies thatR can be computed as−
∮
B·n̂ds,582

correct to O(a2ε1), for a steady wave field whose sources and sinks lie outside the contour583

of integration. The unit normal n̂ is directed outward, and B is the pseudomomentum flux584

tensor appearing in (3.4). We take advantage of the simplicity of the refracted far-field585

solution (1.2), and its compatibility with ray theory and the group-velocity property (3.5),586

by letting the contour expand appropriately as L→∞ and W →∞. It is convenient to587

take the contour to be a rectangle with dimensions L by W , where L is now to be read588

as the length of the wavetrain excluding its source and sink regions, as they recede to589

infinity. Then, correct to O(a2ε1),590

R = − lim

∮
B · n̂ds = lim

(∫ 1
2W

− 1
2W

B · x̂dy
∣∣∣∣
x=− 1

2L

−
∫ 1

2W

− 1
2W

B · x̂dy
∣∣∣∣
x= 1

2L

)
. (6.1)

We have used (1.2) and (3.5) to neglect the contributions from the sides of the rectangle591

parallel to x̂, as follows. For the transverse, y component, the only relevant component592

of (3.5) on the sides parallel to x̂ is B22 = ŷ · p Cabs· ŷ. In the far field, again thanks593

to ray theory, we have p = uS = Ak where A is the wave-action per unit mass594

and where k = ∇Φ = k0{x̂ − εr0r−1 θ̂ + O(ε2r20 r
−2)}, from (1.2) and (1.3) or from595

(2.4). We also have c = c(r) = c0{1 + O(ε2r20 r
−2)}, as noted in §1. Denoting p · x̂596

by p1 as before, and p · ŷ by p2, we have p2/p1 = k · ŷ/k · x̂ = O(εr0r
−1). From597

the formula (2.8), again noting the cancellation of leading-order y components, we have598

Cabs · ŷ = O(ε2c0r
2
0 r
−2). Hence B22 = p1c0 times O(ε3r30 r

−3). For the longitudinal,599

x component, we have B12 = p1C
abs· ŷ = p1c0 times O(ε2r20 r

−2). Both make negligible600

contributions as the rectangle expands to infinity.601

Now it is clear from §5 that R || ŷ, so that R = R ŷ, say, correct to O(a2ε1). For602

the sake of brevity, therefore, we restrict attention from now on to evaluating R from603

the y component of (6.1). We do this in two stages, to be described in this and the604

† Perhaps surprisingly, the quantum fluids literature – going back over the past fifty years or so
– tends to ignore many of the points under discussion, including the O(a2) mean flow problem,
the distinction between momentum and pseudomomentum, and the noninterchangeability of
limits. The author has, however, found one big quantum fluids paper (Sonin 1997) in which
the non-interchangeability of limits is mentioned toward the end of the paper, almost as an
afterthought; see below equation (83) therein. Another paper (Wexler & Thouless 1998) takes a
different path but flags up the dangers of manipulating divergent infinite series. Some but not all
of the O(a2) effects are discussed in Stone (2000b), while all are consistently dealt with in Guo
& Bühler (2014), within the Gross–Pitaevskii superfluid model, but only for problem (i). The
issues still seem to be surrounded by controversy, perhaps involving unconscious assumptions
(e.g. McIntyre 2017) about, for instance, the distinction between particles and quasiparticles.
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next section. The first stage is to compute the contribution Ro from outside the wake.605

The noninterchangeability of limits comes from that contribution. Outside the wake, we606

can again use (1.2), (2.4), (2.8) and (3.5). At the second stage, in the next section, we607

compute R = Ro +Rw , where Rw is the contribution from within the wake. It will be608

found thatRw agrees with (5.2) and that it is proportional to the Aharonov–Bohm phase609

jump. The first contributionRo will be found to agree with (5.5) and to depend solely on610

the other relevant refraction effect, the O(ε) rotation of wavecrests seen in figure 2 and611

expressed by the θ̂ term in k. From here on we denote B evaluated from (1.2), (2.4),612

(2.8) and (3.5) by Bo, so that613

Ro = lim ŷ ·

(∫ 1
2W

− 1
2W

Bo · x̂dy
∣∣∣∣
x=− 1

2L

−
∫ 0−

− 1
2W

Bo · x̂dy
∣∣∣∣
x= 1

2L

−
∫ 1

2W

0+

Bo · x̂dy
∣∣∣∣
x= 1

2L

)
(6.2)

which, in the limit, correctly excludes the wake contribution because of the relative614

narrowness of the wake, whose width w �W , as detailed in the next section.615

We can evaluate ŷ · Bo · x̂ = p2C
abs · x̂ from Cabs · x̂ = c0{1 + O(εr0r

−1)} and616

p2 = p1k · ŷ/k · x̂ = −p1{εr0r−1 θ̂ · ŷ + O(ε2r20 r
−2)} = p1k

−1
0 {∂Φ/∂y + O(ε2r20 r

−2)}617

with Φ as in (1.2), and where p1 can now be read as the incident pseudomomentum,618

neglecting refraction, that is, p1 = const. as in §§4–5. Correct to O(a2ε1), therefore, the619

first integral on the right of (6.2) reduces to c0p1k
−1
0 lim

∫ +αθ̃

−αθ̃ dΦ = c0p1k
−1
0 lim (2αθ̃) =620

(Γ p1/π) lim θ̃, where θ̃ = arctan(W/L) > 0. The noninterchangeability of the limits621

L→∞ and W →∞ is now evident.622

At each fixed y, and correct to O(a2ε1), p2 is an odd function of x, and ŷ ·Bo · x̂ also.623

Therefore the second and third integrals in (6.2) add up to a contribution equal to that624

from the first integral, so that altogether625

Ro =
2Γ p1
π

lim arctan(W/L) (6.3)

correct to O(a2ε1), in agreement with (5.5). Notice incidentally that problem (i) now626

appears as a trivial variant of the above, obtained by selecting appropriate subsets of627

rays in cases where ray theory is valid all along the wavetrain.628

7. Wave refraction in problem (ii): the far field within the wake629

To complete the work on problem (ii) we need to evaluate the remaining contribution630

to the y component of (6.1),631

Rw = − lim

∫
wake

ŷ · Bw · x̂dy
∣∣∣∣
x= 1

2L

, (7.1)

and to verify that it agrees with (5.2). Here Bw stands for B within the wake.632

We evaluate (7.1) in two cases that are analytically tractable, k0r0 � 1 and k0r0 � 1.633

In the second case we use ray tracing across the vortex core, and in the first we draw on634

the work of Ford & Llewellyn Smith (1999, hereafter FLS), who carried out a careful and635

thorough asymptotic analysis of weak refraction and scattering in that case, building on636

earlier contributions including that of Sakov (1993); see also Belyaev & Kopiev (2008).637

7.1. The long-wave case k0r0 � 1638

FLS’s results are subject to a severe restriction on the range of α values for which639

they are valid. From (1.3) we see that α is now the product of two small quantities640

k0r0 and ε. The results are nevertheless attractive for our purposes because, when valid,641

they show that the wake has a simple Fresnel-diffractive structure with width-scale w ∼642

k
−1/2
0 L1/2 � k−10 , and angular scale asymptotically zero, as L → ∞. Across the wake643
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there is a smooth phase transition such that the ray-theoretic formulae used in §6 still644

hold, including p ∝ k and p2 = p1k
−1
0 ∂Φ/∂y, where Φ now denotes the phase within645

the wake, as distinct from the phase given by (1.2). The wave field within the wake still646

has the form A exp(iΦ), where the amplitude A is still real and constant to sufficient647

accuracy across the wake, with relative error O(ε), and where the phase Φ increases by648

2πα going anticlockwise across the wake. Therefore we can evaluate
∫
ŷ·Bw · x̂dy across649

the wake as
∫
c0p2 dy = c0p1k

−1
0

∫
dΦ = 2παc0p1k

−1
0 = Γp1, verifying that (7.1) with650

its minus sign does agree with (5.2).651

FLS’s solution also contains a Born-scattering term with amplitude O(r−1/2), which652

however contributes nothing. The magnitude O(r−1) of its pseudomomentum flux makes653

it potentially able to contribute to −
∮
B·n̂ds. But for our rectangular integration contour654

the contribution to ŷ · B · n̂ is an odd function of y, which integrates to zero.655

The reader who wishes to check the foregoing against FLS in more detail may find656

the following notes useful. Outside the wake, the leading far-field term in FLS’s solution657

agrees with the foregoing for any α� 1 because we then have, from (1.2),658

exp(iΦ) = exp(−iαθ) exp{i(k0(x− c0t) + const.)}
= (1− iαθ) exp{i(k0(x− c0t) + const.)}+O(α2) . (7.2)

This agrees with FLS’s (2.14), (2.20) and the leading term in their (5.7), after allowing659

for their different definition of θ and remembering that our θ jumps from +π to −π,660

going anticlockwise across the positive x axis. In their dimensionless notation, our α661

is written as M2Γω/2π, where their M is our ε and their Γω/2π is our k0r0/ε, all662

taken positive. The Born scattering term is the next, O(r−1/2) term in their (5.7), with663

outgoing waves ∝ r−1/2 exp{ik0(r− c0t)}. The Fresnel wake is described by their (5.12).664

The phase transition at fixed x is given by the sum C + S of two real-valued Fresnel665

integrals, suitably scaled, and is therefore an odd function of y/w, with Φ asymptoting666

toward ±πα + const. with gentle oscillations on the scale w. The factor exp(−iη2) in667

FSL’s (5.11), where η2 = 1
2 (y/w)2, converts a Born-like factor exp{ik0(r − c0t)} into a668

plane-wave factor exp{ik0(x− c0t)}, to sufficient accuracy within the wake, matching up669

with our (7.2).670

Belyaev & Kopiev (2008) reconsider FLS using a different solution technique, that of671

Aharonov & Bohm (1959) and Berry et al. (1980). They also discuss the conceptual issue672

of whether (1.2) above can usefully be regarded as a plane wave outside the Fresnel wake,673

in the limit r →∞. However, the wave field properties required by the foregoing analysis674

of the pseudomomentum budget are unaffected. Those properties are, most crucially,675

the validity of (1.2) outside the wake, the phase continuity across the wake, and the676

y-antisymmetry of the Born contribution to ŷ·B· n̂. And we note again that the analysis677

is independently confirmed by the end-to-end cross-check from §§3–5.678

7.2. The short-wave case k0r0 � 1679

We now evaluate (7.1) in the case kr0 � 1, using ray theory. Attention is restricted680

to the simplest case, the Rankine vortex model in which the core is in solid rotation,681

with constant angular velocity Ω = 1
2 |ω0| = |u0(r)|/r = Γ/2πr20, taken positive, i.e.682

anticlockwise, for definiteness, as in the figures.683

Correct to O(ε) the rays outside the core and its lee are straight, as already remarked,684

with absolute group velocities Cabs parallel to x̂, but slightly rotated wavecrests, as seen685

in figure 2. Inside the core, the ray-tracing equations, e.g. (2.14) of BM03, verify what686

is obvious from rotating the reference frame while keeping the same intrinsic phase and687

group velocity c = c0{1 + O(ε2)}, namely that the wavenumber vector k rotates with688

angular velocity Ω as a ray point crosses the core at velocity c0 x̂+O(ε). Thus the rays689
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Figure 5. Rays emerging from the vortex core and forming a wake with a caustic, computed
correct to O(ε) from the ray-tracing equations. The O(ε) deflections are exaggerated in the plot.
The rays entering the core, not shown, are initially parallel to the x axis at y/r0 = 0, ±0.1,
±0.2, ±0.3, ±0.4, ±0.5, ±0.6, ±0.7, ±0.8, ±0.9, ±0.95, ±0.98, ±0.995, ±1.

bend slightly to the left as they cross the core into its lee, where they are straight again690

but no longer quite parallel to the x axis. In fact the group velocity Cabs rotates twice as691

fast as k, with angular velocity 2Ω, because of the changing O(ε) contribution from the692

y component of u0 = Ω(−y, x) in (2.8) as the ray point crosses the core. This and the693

straightness of the rays outside the core are special cases of the curl-curvature formula694

mentioned below (2.8). The formula implies generally that, correct to O(ε), the group695

velocity vector rotates with angular velocity ω0 = ∇×u0.696

For weak refraction the ray undergoing the greatest deflection is that crossing the697

widest part of the core, at y = 0. The rays from −r0 < y < 0 therefore splay out slightly,698

while those from 0 < y < r0 cross one another and form a caustic, extending slightly699

outside the tangent line y = +r0, as shown in figure 5 with the deflections exaggerated. A700

full analysis is beyond our scope here; to evaluate (7.1) we will simply add up the leading-701

order pseudomomentum fluxes ŷ · Bw · x̂ = c0p2 as if carried by each ray independently.702

This assumes that the refraction term in the O(a2ε1) pseudomomentum law (3.4) works703

in the same way, to leading order at least, whether or not the rays go through a caustic.704

The treatment of the ray deflections as small of order ε, and the neglect of diffractive705

effects, becomes delicate and very restrictive when combined with the formal limit706

L→∞. It will nevertheless yield the correct result, in agreement with (5.2), as will707

now be shown. The agreement will also lend support to our assumption about (3.4) and708

caustics.709

The following is a shortcut to the results from the ray-tracing equations shown in710

figure 5, using the rotation-rate of k already mentioned. A ray point entering the core711

at y = −r0 sin θ, say, for some fixed θ with |θ| < π/2, already has a wavenumber with712

nonvanishing y component k·ŷ = −αr−10 θ̂·ŷ = +αr−10 cos θ, from (1.2) or (2.4) giving, at713

that location, ŷ · Bw · x̂ = c0p2 = c0p1k
−1
0 αr−10 cos θ = p1Γ (2πr0)−1cos θ = p1Ωr0 cos θ.714

As the ray point crosses the core, over a distance 2r0 cos θ and taking a time 2c−10 r0 cos θ,715

the vectors k and p rotate with angular velocity Ω, so that c0p2 increases by a further716

small amount 2p1Ωr0 cos θ (equal to c0p1 times the net rotation angle 2c−10 Ωr0 cos θ),717

and again by a further small amount p1Ωr0 cos θ after exiting the core and reaching718

sufficiently large x > 0. This last increment is the same increment as in (1.2) between719

the far edge of the core and x→∞. However, it is to be added to the new far-core-edge720

value 3p1Ωr0 cos θ rather than to the original value −p1Ωr0 cos θ implied by (1.2) and721

(2.4). With our ray still nearly parallel to the x axis after exiting the core, we are using722

the fact that the O(ε) rates of change of k · ŷ outside the core are the same as those723

implied by (1.2), (2.4) and (2.8).724

So, adding all the contributions just noted, we have that the ray has a total end-to-end725

change p1Ωr0 cos θ + 2p1Ωr0 cos θ + p1Ωr0 cos θ = 4p1Ωr0 cos θ, in c0p2, corresponding726

to an end-to-end deflection angle β, say, = p2/p1|x→∞ = 4c−10 Ωr0 cos θ = 4ε cos θ, with727

maximum value 4ε , in an anticlockwise sense. Integrating the change in c0p2 over all728
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the rays that cross the core, from y = −r0 to y = r0, noting that dy = −r0 cos θdθ729

and that
∫ π/2
−π/2 cos2θdθ = π/2, we find from (7.1) with due care over signs that Rw =730

−2πp1Ωr
2
0 = −Γp1, agreeing with (5.2) as expected.731

To summarize, (6.1) gives us, both for k0r0 � 1 and for k0r0 � 1,732

R = Rw + Ro = −
{

1− 2

π
lim arctan

(
W

L

)}
Γ p1 (7.3)

for arbitrary limiting values of W/L, agreeing with the independent derivations in §§3–5.733

Furthermore, recalling that those independent derivations are valid for arbitrary k0r0,734

we see also that (7.3) must be a result far more robust than is suggested by the delicacy735

of the flux computations for k0r0 � 1 and k0r0 � 1. On the other hand, everything still736

depends on the smallness of ε. Numerical solutions for cases of stronger refraction show737

wakes oriented at substantial angles away from the x axis; see for instance figures 2–3738

of Coste et al. (1999). And it is still an open question as to what might or might not739

replace the impulse–pseudomomentum theorem for arbitrary ε.740

8. Problem (iii)741

The main reason for being interested in this rapidly-rotating version of problem (i), in742

which the waves are deep-water gravity waves, is the existence of the Ursell anti-Stokes743

flow. This is an Eulerian-mean flow u that largely cancels the strongly z-dependent Stokes744

drift uS of the waves. Indeed the cancellation is exact, for finite-amplitude waves, when745

the wave field is exactly steady and exactly homogeneous across an infinite xy domain746

(Ursell 1950; Pollard 1970). (In a thought-experiment starting with irrotational waves, in747

such a domain, the mean flow undergoes a free inertial oscillation about the anti-Stokes748

state. It is sometimes forgotten that this thought-experiment was clearly analysed and749

understood in Ursell’s pioneering work.) In problem (iii), however, contrary to what750

might at first be thought, the anti-Stokes flow fails to suppress remote recoil.751

We consider an unstratified rapidly-rotating system of finite depth H under gravity752

−gẑ, so that the z direction is vertically upward. The vector Coriolis parameter f is753

parallel to ẑ. The waves have a wavenumber k = |k| that is large enough to make754

exp(−kH) negligible. The intrinsic wave frequency kc = (gk)1/2 � f = |f |, so that755

rotation affects the wave dynamics only weakly.756

In addition to a and ε we now have another small parameter, the mean-flow Rossby757

number758

Ro = U/fr0 � 1 , (8.1)

whose smallness will bring in the Taylor–Proudman effect and give us quasigeostrophic759

mean-flow dynamics. As before, the velocity scale U will be taken as the velocity of the760

vortex flow at the edge of the core, r = r0. The core will be defined by nonvanishing761

quasigeostrophic potential vorticity, (∇2
H − L

−2
D )ψ̃0 in the notation of §2.762

The anti-Stokes flow can be regarded as a consequence of the Taylor–Proudman effect763

together with the exact advection property expressed by the mean vorticity equations764

(2.10) and (2.11). This is no more than a rephrasing of Ursell’s original argument, putting765

it within the GLM framework. Focusing on the present case Ro� 1, we can regard inertia766

waves as fast waves with a strong Coriolis restoring force. The Taylor–Proudman effect767

arises from the corresponding stiffness of the lines of absolute vorticity f + ω̃, which768

must tend to stay vertical, on average at least. In particular, they cannot be continually769

sheared over by the mean flow; and for this purpose the mean flow is the Lagrangian-770

mean flow uL, as equations (2.10) and (2.11) make clear. A Lagrangian-mean flow without771

vertical shear is a Stokes drift plus an Eulerian-mean anti-Stokes flow, plus an additional772
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contribution that is independent of z – in this case the vortex flow plus the Bretherton773

flow that mediates remote recoil.774

To tackle problem (iii) we must first derive (2.18). The starting point is the vertical775

component of (2.11). Writing f + ω̃ for the vertical component of f + ω̃, and wL for the776

vertical component of uL, we have777

D
L
ω̃

Dt
+ (f + ω̃)∇· uL = (f + ω̃) ·∇wL (8.2)

exactly. Upon cancelling a pair of terms in ∂wL/∂z, this reduces to778

D
L
ω̃

Dt
+ (f + ω̃)∇H · uL

H = ω̃H ·∇Hw
L. (8.3)

As before, suffix H denotes horizontal projection. Writing ω̃ = ω0+ ω̃B and uL = u0+uL
B779

where the vortex-only contributions ω0 and u0 are z-independent, with u0 horizontal,780

and the wave-induced contributions ω̃B and uL
B are O(a2), we note that in the first term781

on the left the contribution uL
B ·∇ ω̃B = uL

B ·∇H ω̃B + wL∂ ω̃B/∂z = O(a4) and is782

therefore negligible. (We need not restrict ε at this stage.) There are two further such783

O(a4) contributions, namely the right-hand side, and on the left ω̃B∇H ·uL
H = ω̃B∇H ·uL

B784

since ∇H · u0 = 0. The O(a2) contribution ω0∇H · uL
H = ω0∇H · uL

B is also negligible,785

against f∇H·uL
H, because of the smallness of Ro. After neglecting all these contributions786

we can take the vertical average of (8.3), using the z-independence of u0 and ω0. Denoting787

vertical averages by angle brackets as before and noting that u0 ·∇H ω0 = 0 we get788 (
∂

∂t
+ u0 ·∇H

)
〈ω̃B〉 + 〈uL

B〉 ·∇H ω0 + f∇H · 〈uL
H〉 = 0 (8.4)

or, written more compactly, again with negligible error O(a4),789

D
L

H〈ω̃〉
Dt

+ f∇H · 〈uL
H〉 = 0 , (8.5)

where we have defined D
L

H/Dt = ∂/∂t+ 〈uL
H〉·∇H . In a closely similar way, the vertical790

average of the three-dimensional mass-conservation equation, B14 equation (10.47),791

simplifies to a vertically-averaged version of (2.13),792

D
L

Hh̃

Dt
+ h̃∇H · 〈uL

H〉 = 0 , (8.6)

again with negligible error O(a4). As before, the mean layer depth h̃ = h̃(x, y, t) is793

defined such that ρh̃dxdy is the areal mass element, where ρ is the constant mass density.794

Elimination of ∇H·〈uL
H〉 between (8.5) and (8.6) gives us that 〈ω̃〉−f ln h̃, plus an arbitrary795

additive constant, is a material invariant under advection by 〈uL
H〉. Fractional changes in796

h̃ are small, (h̃−H)/H = O(Ro), and so taking the additive constant to be f lnH and797

using ln h̃− lnH = ln(h̃/H) = ln{(h̃−H +H)/H} = (h̃−H)/H +O(Ro2), we get798

D
L

Hq̃

Dt
= 0 (8.7)

where799

q̃ = q̃(x, y, t) = 〈ω̃〉 − f

H
(h̃−H) , (8.8)

which is the appropriate form of the quasigeostrophic potential vorticity of the mean800

flow. In any thought-experiment in which the waves are switched on after the vortex is801

established, (8.7) implies that the q̃ field is unchanged by the presence of the waves, apart802

from the advection of the vortex core by the Bretherton flow. See also Appendix B. So803

in problem (iii) we have q̃ = q0 where q0 is the potential vorticity of the vortex alone.804
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The final step in deriving (2.18) is to make explicit use of hydrostatic and geostrophic805

balance. Some delicate scale analysis is involved at this stage. The full details are given806

in Appendix C, in which the key points are as follows. Hydrostatic balance, meaning the807

overall balance for a complete fluid column, implies that horizontal pressure gradients808

on the bottom, underneath the wavetrain, are given by ρg∇H h̃, again because ρh̃dxdy809

is the areal mass element. Geostrophic balance then gives (2.15) with ψ̃ = g(h̃ −H)/f .810

Then q̃ = q0 together with (2.9) and (2.16) gives (2.18). The Taylor–Proudman effect811

extends the geostrophic relation upward into the wavetrain; 〈uL
H〉 = uL

H. Radiation812

stresses within the wavetrain cannot break the overall hydrostatic balance because such813

stresses have no foothold on the bottom boundary, in virtue of our assumption that814

exp(−kH) is negligibly small. That allows us to neglect the net vertical, radiation-stress-815

induced external force on the fluid column – in contrast, it should be noted, with the816

situation of figure 3. For further comments see Appendix C. In Appendix C we also note817

that the exact wave solution of Pollard (1970) provides some useful cross-checks.818

With (2.18) in place, we can now invoke the impulse-pseudomomentum theorem to819

assert that recoil forces can be computed either from Bretherton flows correct to O(a2ε0)820

or from net pseudomomentum fluxes correct to O(a2ε1). In the remainder of this section821

we carry out both computations, in the case of a small vortex core with r0 � LD,822

providing mechanistic insight as well as an end-to-end cross-check on our derivation of823

(2.18).824

First consider the Bretherton flow. Because it satisfies (2.18), it decays sideways like825

exp(−|y|/LD), on the fixed length-scale LD. Therefore there is no dilution effect like826

that in problem (i). With L → ∞, and with a narrow wavetrain for which W � LD827

and W � Y , in the notation of §4, we have, for |y − Y | > W , outside the unrefracted828

wavetrain, with Y the distance to the vortex core,829

uL
B(x, y) = (S/2LD) exp(−|y − Y |/LD)(−x̂) (8.9)

where S is still defined by (4.1) but with vertical averaging understood. So, for our small830

vortex core with r0 � LD, carried bodily by the z-independent Bretherton flow, we take831

y = 0 in (8.9) to get832

R = (ΓS/2LD) exp(−|Y |/LD)(+ŷ) , (8.10)

with Γ evaluated at the edge of the core. The signs are the same as those in problem (i).833

Second, we compute R from the O(a2ε1) pseudomomentum flux B21 = ŷ · B · x̂,834

using ray theory. As in §7.2, the rays start exactly parallel to the x axis, with p2 → 0835

as x → −∞, and finish after bending slightly, through an O(ε) end-to-end deflection836

angle β = p2/p1|x→∞. The vortex flow has velocity u0(r) = θ̂∂ψ0/∂r, say, where the837

quasigeostrophic streamfunction ψ0 satisfies (∇2−L−2D )ψ0 = 0 outside the core. Defining838

r′ = r/LD, we have839

ψ0 = − Γ

2π
K0(r′) outside the core, (8.11)

where K0(r′) is the modified Bessel function asymptoting to (π/2r′)1/2 exp(−r′) for840

r′ � 1 and to − ln(r′) for r′ � 1, near the core. The Kelvin circulation Γ is again841

defined to be the circulation at the core edge r = r0, namely ±2πr0 |u0(r0)| = ±2πr0U ,842

with positive sign when the vortex is cyclonic as in the figures. For r > r0 the circulation843

is not constant, but decays exponentially like r′1/2 exp(−r′).844

To verify agreement with (8.10) we need only calculate β. The curl-curvature formula845

tells us that β is nonzero at O(ε), because the relative vorticity ∇2ψ0 = L−2D ψ0 is nonzero846

outside the core. A cyclonic vortex core is surrounded by anticyclonic vorticity and the847

rays therefore bend to the right, rather than to the left as in §7, so that sgnβ = −sgnΓ .848

Notice incidentally that there will no longer be any far-field subtleties, or issues with849
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noninterchangeable limits, thanks to the exponential decay of ψ0. Another effect of that850

decay is that the right-bending rays must splay out slightly when they pass to the left of851

the vortex, but cross one another and form a caustic when to the right. The presence or852

absence of a caustic makes no difference to the results.853

The deep water waves in problem (iii) have intrinsic frequency kc = (gk)1/2 and854

intrinsic group velocity C = Ck/k where C = 1
2c = 1

2 (g/k)1/2. The absolute group855

velocity Cabs = 1
2c0 x̂+ O(ε), with O(ε) contributions coming both from u0 and from856

refractive changes in wavenumber k. Following a ray point moving at speed 1
2c0+ O(ε),857

the curl-curvature formula says that the direction ofCabs rotates clockwise away from the858

x direction at an angular velocity equal to the (negative) relative vorticity∇2ψ0 = L−2D ψ0.859

So for weak refraction we have860

β = ( 1
2c0)−1

∫ ∞
−∞

L−2D ψ0(x, Y )dx = − Γ

πc0L2
D

∫ ∞
−∞

K0{(x2 + Y 2)1/2/LD}dx . (8.12)

The integral on the right is exactly equal to LDπ exp(−|Y |/LD), as will be shown shortly.861

Hence β = −(Γ/c0LD) exp(−|Y |/LD). Remembering that C = 1
2c0, we see that there862

is an end-to-end difference in pseudomomentum fluxes representing a rate of import863

− 1
2c0p2

∣∣
x→∞ = − 1

2c0βp1 = +(Γp1/2LD) exp(−|Y |/LD) of y-pseudomomentum per864

unit y-distance, correct to O(a2ε1). Recalling the definition of S in (4.1), with vertical865

averaging understood, we sum over all the rays to find the total recoil force in the866

y direction as867
R = (ΓS/2LD) exp(−|Y |/LD)(+ŷ) , (8.13)

in agreement with (8.10).868

The integral on the right of (8.12) is equal to LD times the value at y′ = Y/LD of the869

function I(y′) defined by I(y′) =
∫∞
−∞K0(r′)dx′ where x′ = x/LD and y′ = y/LD so870

that r′2 = x′2 +y′2. Now K0(r′) is equal to its Laplacian in the x′, y′ plane, except at the871

origin where the Laplacian has a delta function −2πδ(x′)δ(y′) in place of the integrable872

logarithmic singularity in K0 itself. For any y′ 6= 0 we therefore have873

I(y′) =

∫ ∞
−∞

(
∂2

∂x′2
+

∂2

∂y′2

)
K0(r′)dx′ =

d2

dy′2

∫ ∞
−∞

K0(r′)dx′ =
d2

dy′2
I(y′) (8.14)

and, taking the delta function into account, we have for all y′ from −∞ to +∞874

d2

dy′2
I(y′)− I(y′) = −2πδ(y′) , (8.15)

whose solution evanescent at infinity is I(y′) = π exp(−|y′|), corresponding to the result875

asserted.876

9. Concluding remarks877

Despite their restricted parameter range, the problems studied here are enough to878

remind us that remote recoil, as such, is generic and ubiquitous. Remote recoil will879

occur whenever wave-induced mean flows extend outside wavetrains or wave packets and880

advect coherent vortices. Remote recoil is excluded, or made subdominant, by asymptotic881

theories of wave–current interactions that assume slowly-varying mean currents with a882

single large length-scale and correspondingly weak vorticity or PV anomalies.883

The main question left open by this work concerns the scope of the pseudomomentum884

rule. As remarked at the end of §3, the rule is known to be valid in a wider range of885

cases than those considered here, even though in a still wider context there are known886

exceptions including the case of one-dimensional sound waves in a rigid tube, as noted887

long ago in Brillouin’s classic works on radiation stress. Further exceptions include the888
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internal-gravity-wave problem studied in McIntyre (1973) and the rotating problems889

studied in Thomas et al. (2018, & refs.), in some ways similar to our problem (iii).890

The failure of the rule in these latter cases, and in Brillouin’s, is related to O(a2) mean891

pressure reactions from confining boundaries (more detail in Appendix C below). We may892

similarly expect failure of the rule in laboratory experiments such as those of Humbert893

et al. (2017), conducted in tanks or channels with confining walls that can support894

O(a2) mean pressures. Section 3 reminds us that the impulse–pseudomomentum theorem895

depends on having a sufficiently large fluid domain enclosing the regions occupied by896

waves and vortices.897

For the reasons indicated at the end of section 3, even in a large domain the scope of898

the pseudomomentum rule in wave–vortex interactions is very much a nontrivial question899

calling for further research, probably involving numerical experimentation along the lines900

of the strong-refraction experiments of Coste et al. (1999). Even though the Kelvin901

impulse concept depends on banishing large-scale pressure-field adjustments to infinity,902

the basic thought-experiment associated with the Magnus relation (3.2), that of applying903

a force to move a vortex core, works, by contrast, in a relatively local way. This poses904

not only a technical but also a nontrivial conceptual challenge.905

Regarding quantum vortices, it would be interesting to see how the present analysis of906

problem (ii) extends to the Gross–Pitaevskii superfluid model, a context in which prob-907

lem (i) was studied in Guo & Bühler (2014). In the corresponding version of problem (ii)908

we can expect to find the same noninterchangeability of limits and the same caveats909

regarding the Aharonov–Bohm effect, pointing to a remote-recoil contribution in addition910

to the Iordanskii force. The Gross–Pitaevskii model provides a simple representation911

of quantum vortex cores (Berloff 2004), whose supersonic flow velocities might vitiate912

any attempt at a weak-refraction theory, even though the small core size might, on the913

other hand, imply that bodily advection of the core – back and forth by a larger-scale914

wavemotion as well as persistently by the mean flow – could still be a useful simplifying915

feature.916
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Appendix A. The Schrödinger equation and the phase function (1.2)923

In the quantum problem originally studied by Aharonov & Bohm (1959), the wave field924

φ = exp(iΦ) with Φ defined by (1.2) is not only a far field but also an exact solution. For925

reasons that are obvious from figure 2, the quantum literature often calls it a “dislocated”926

wave field. In the quantum problem there is no restriction to small α. That is easily927

verified; the relevant Schrödinger equation can be written in suitable units as928

i
∂φ

∂t
+

c0
k0

(
∇ + iαr−1θ̂

)
2φ = 0 , (A 1)

where the square denotes a scalar product. When φ = exp(iΦ), with the error term deleted929

from (1.2), we have ∂φ/∂t = −ic0k0φ and ∇φ = (ik0x̂ − iαr−1θ̂)φ, satisfying (A 1)930

exactly. This wavefunction φ is part of a solution to (A 1) that describes nonrelativistic931

electrons going past an infinitely long, thin magnetic solenoid, whose total magnetic flux932

and magnetic vector potential ∝ r−1θ̂ play the roles of Γ and u0 in the vortex problem.933

In the complete solution, originally derived by Aharonov & Bohm and generalized to934
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Figure 6. Numerical solution of the original Aharonov–Bohm problem (A 1), from Stone
(2000a). The real part of φ is plotted. Here α = 0.25, just large enough to make the phase
change across the Fresnel wake easily visible. Also visible, very faintly, is a Born-scattered
contribution recognizable by its approximately circular wavecrests. Reprinted, with permission,
from figure 1 of Stone (2000a); copyright 2000 by the American Physical Society..

a solenoid of arbitrary diameter by Berry et al. (1980), there is in addition a Fresnel935

diffractive wake and a smaller, O(r−1/2) contribution outside the wake region. The936

Fresnel wake is exactly centred on the positive x axis, for arbitrary α, and smooths937

out the discontinuity in Φ. In the thin-solenoid case the smaller, O(r−1/2) contribution is938

describable as Born scattering off the solenoid, whose approximately circular wavecrests939

are faintly visible in figure 6, from a paper by Stone (2000a). The figure shows a numerical940

calculation of the thin-solenoid solution of (A 1) with α = 0.25, large enough to make941

visible the phase change across the Fresnel wake.942

All these features are qualitatively the same as those found by FLS in their analysis943

for k0r0 � 1 of the linear wave field in the vortex problem. However, in stark contrast944

with the Schrödinger problem, the wave field becomes qualitatively different (e.g. Coste945

et al. 1999) as soon as α goes outside the very restricted range of values permitted by946

(1.3), when ε� 1 as well as k0r0 � 1.947

Appendix B. Secular changes in problem (iii)948

In deriving (2.18) in §8 we ignored a subtlety worth remarking on. The argument949

for taking q̃ = q0, even though correct within the quasigeostrophic framework, does950

not by itself exclude secular changes in q̃ over very long times in the exact dynamics951

of problem (iii). However, such changes can be excluded by appealing to the exact952

conservation of the Kelvin circulation around material loops of all sizes, shapes and953

orientations as fluid particles travel around the vortex, and in and out of the wavetrain.954

The O(a4) terms neglected in going from (8.3) to (8.5) describe only slight, reversible955

distortions, within the wave layer, of such material loops and of the absolute vortex lines956

threading them – the inertially-stiff lines of f+ω̃. Equation (8.7) is only an approximate957

expression of the exact statement that the Kelvin circulation is constant for all material958

loops, including those whose parts outside the wavetrain lie in horizontal planes, at all959

altitudes z. The circulation of such loops cannot change secularly unless the qualitative960

geometry of the picture changes, such that the loops and the absolute vortex lines deform961

irreversibly. Physically, this would correspond to the presence of large-amplitude breaking962

waves, in this case breaking surface gravity waves, or breaking inertia waves, or both. As963

shown by GLM theory, the irreversible deformation of otherwise wavy material contours964

can usefully be taken as the defining property of wave breaking (McIntyre & Palmer965

1985). Our thought-experiments assume that no such wave breaking occurs.966
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Appendix C. Asymptotic validity of equation (2.18)967

As well as using Ro � 1 in going from (8.3) to (8.4), the derivation of (2.18) used968

overall hydrostatic balance to determine horizontal pressure gradients on the bottom as969

ρg∇H h̃, together with geostrophic balance to give (2.15) with ψ̃ = g(h̃−H)/f beneath970

the wavetrain and elsewhere. The Taylor–Proudman effect extends this picture upward971

into the wavetrain via the stiffness of the vortex lines of ω̃ + f , which bend away from972

the vertical only slightly, through small angles O(Ro).973

Before proceeding to the asymptotic justification of (2.15) and (2.18), we note that974

overall hydrostatic balance does actually fail, along with the impulse–pseudomomentum975

theorem and the pseudomomentum rule, in the somewhat similar problems studied in976

Thomas et al. (2018, & refs.). Those problems assume rotating shallow water dynamics977

for the wavemotion as well as for the mean flow. The failure is due to the confinement of978

the wavetrain by the lower boundary. Other cases of confinement by boundaries and979

consequent pseudomomentum-rule failure include the classic case of one-dimensional980

sound waves in a rigid tube, with a wavemaker at one end and an absorber at the other981

(e.g. Brillouin 1936; McIntyre 1981, B14 §12.2.2). In problems like that of Thomas et al.,982

the lower boundary gives the radiation-stress field a foothold – a bottom boundary to983

react against – allowing the stress divergence to push or pull vertically on the complete984

fluid column and to disrupt overall hydrostatic balance so as to change the O(a2)985

pressure gradients on the bottom. This in turn produces additional terms on the right986

of equations like (2.18) governing potential-vorticity inversion, breaking the impulse–987

pseudomomentum theorem by breaking the connection between ψ̃ and g(h̃ − H)/f .988

Remote recoil is still generic, however. Here we are using the term “radiation stress” in the989

slightly loose sense of any wave-induced momentum flux that arises from averaging the990

equations of motion in some way, rather than in the stricter sense adopted in Brillouin’s991

writings and for instance in Longuet-Higgins & Stewart (1964), in B14 §10.5, and in992

Andrews & McIntyre (1978, hereafter AM78, §8.4), to mean the sole effect of the waves993

on the mean flow – which is definable in some but not all wave–mean interaction problems.994

In problem (iii), the impulse–pseudomomentum theorem does hold and with it the995

pseudomomentum rule – as was independently confirmed in §8 – essentially because the996

foothold effect is too small to disrupt overall hydrostatic balance, thanks to sufficient997

separation between the lower boundary and the wavetrain such that exp(−kH) can be998

neglected. To verify this in detail and to check for other possible errors it is simplest,999

again, to work within the GLM framework, thereby avoiding the complications that come1000

from the intersection of the free surface with the horizontal Eulerian coordinate surface1001

z = 0, which we take as the undisturbed free surface. We would like to demonstrate1002

asymptotic validity not only for problem (iii), but also for the wider variety of wave–1003

vortex configurations covered by the impulse–pseudomomentum theorem in §3. For scale-1004

analytic purposes we use k and kc to denote a typical wavenumber and frequency, whose1005

orders of magnitude are unaffected by weak refraction.1006

Clearly a, ε, Ro, f/kc and exp(−kH) must all be treated as small parameters, the1007

last two in order to use deep-water wave dynamics with Coriolis effects neglected and1008

to guarantee negligibility of the foothold effect. We would like to let all five parameters1009

tend toward zero, keeping a � ε, for a given geometry of the vortex core, or cores, and1010

the incident wave field.1011

For simplicity’s sake we restrict attention to cases in which1012

a � Ro ∼ f/kc ∼ ε � 1 (C 1)

in the limit. It will prove expedient, however, to allow exp(−kH) . ε. As in (8.1) we1013

take1014 Ro = U/fr0 . (C 2)



Remote recoil and the Aharonov–Bohm effect 27

Given geometry means that horizontal scales such as W and r0 will be held fixed in the1015

limit. We therefore need not distinguish among those scales, and will take r0 as their1016

representative. It is convenient also to fix f and c, and to take U toward zero like ε. Then1017

(C 1) implies that we must take k toward infinity like ε−1. The meaning of “given incident1018

wave field” will therefore have to be relaxed to mean a given amplitude distribution while1019

k →∞, consistent with ray theory. We must also take gravity g toward infinity like ε−1,1020

because c2 = g/k. Restated in a dimensionally consistent way, these conditions can be1021

summarized as1022

U ∼ cε ∼ fr0 ε, k ∼ r−10 ε−1, g ∼ c2k ∼ c2r−10 ε−1 (C 3)

as ε → 0. The assumption exp(−kH) . ε implies that kH & | ln ε| and hence that1023

H & r0 ε| ln ε| and LD = (gH)1/2/f & r0 | ln ε|1/2, which allows enough flexibility to1024

accommodate our illustrative results (8.9)–(8.13) alongside the more general wave–vortex1025

configurations considered in §3. It is convenient also to assume that H . r0, though this1026

is hardly a significant restriction since H ∼ r0 would correspond to LD ∼ r0ε−1/2, greatly1027

exceeding any other horizontal scale.1028

We assume that the pressure on the free surface is constant, with or without distur-1029

bances, and take the constant to be zero without loss of generality. Within the wavetrain1030

there is a three-dimensional O(a2ε0) radiation stress or wave-induced momentum flux1031

Πij , say, which dies off exponentially with depth like exp(2kz), for deep-water waves1032

with vertical structure exp(kz), as well as vanishing at the free surface z = 0. The1033

Cartesian-tensor indices i, j now take values (1, 2, 3), corresponding to (x, y, z). The sign1034

convention will be such that the force per unit volume felt by the mean flow is −Πij,j .1035

The most convenient formula for Πij , which is an O(a2) wave property, is1036

Πij = − pL
{

1
2 (ξlξm), lmδij − (ξl,iξj), l

}
− p`ξj,i (C 4)

where pL is the Lagrangian-mean pressure and p` the O(a) Lagrangian disturbance1037

pressure, while ξ is the O(a) disturbance particle-displacement field, with Cartesian1038

components ξ = (ξ1, ξ2, ξ3) and zero divergence ξl,l = 0 correct to O(a). The formula1039

(C 4) can be read off from AM78 (8.6), (8.10) and (9.3), or from B14 (10.43), (10.57),1040

(10.73), (10.77) and (10.84).†1041

We use a ray-theoretic description of the waves, relative to suitably-oriented horizontal1042

axes. The x or x1 axis is chosen parallel to the local wavenumber, whose magnitude is1043

asymptotically large like ε−1 according to (C 3). Zooming in to the local plane-wave1044

structure, we have1045

(ξ1, ξ2, ξ3) = b exp(kz){cosΦ+O(ε), O(ε), sinΦ+O(ε)} (C 5)

where Φ = k(x − ct) + const., with k, c and the displacement amplitude b all locally1046

constant. We take a = bk, so that a � ε is the dimensionless wave slope. The relative1047

errors O(ε) include weak-refractive effects as well as a small transverse displacement1048

ξ2 = O(ε) whose magnitude arises from our assumption in (C 1) that f/kc ∼ ε, in1049

agreement with Pollard’s exact solution, which incidentally has p` exactly zero. However,1050

† In AM78, Πij is denoted by −Rij , and in B14 by Π̃ij − pLδij . When using AM78 (8.10)
we can neglect the divergence of ξ as well as an O(a2) term kij , before substituting into (8.6)
and discarding terms ∝ a3 or higher. In B14, (10.73) is rewritten as Kkm = Jδkm − ξi,kKim

before substituting it into (10.84) in the same way. Then use is made of (10.43), (10.57),
and (10.77). The equation numbers in B14 correspond to (10.43), (10.57), (10.71), (10.75) and
(10.82) in the original, 2009 edition. Though not needed here, it may be of interest to note
that substitution of the leading order deep-water plane wave structure (which has p` = 0)
into the horizontal components of (C 4) leads to the standard O(a2) result

∫
pCdz for the

depth-integrated horizontal momentum flux (e.g. (24), (33) of Longuet-Higgins & Stewart 1964).
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to allow for weak refraction we will use a more conservative estimate p` . ερgb exp(kz),1051

which is O(ε) times the Eulerian disturbance pressure.1052

The overbars in (C 4) are to be read as Eulerian phase averages over the local wave1053

structure, in the standard way. Notice that if pL were constant and p` zero then the1054

divergence Πij,j would vanish. Therefore an additive constant in the pressure has no1055

effect on the dynamics, confirming that, without loss of generality, we may take Πij = 01056

at the free surface. Neglecting O(a2) contributions to pL, we can replace it by −ρgz so1057

that correct to O(a2)1058

Πij = ρgz
{

1
2 (ξlξm), lmδij − (ξl,iξj), l

}
− p`ξj,i . (C 6)

The resultant vertical force on a complete fluid column per unit horizontal area is1059 ∫ 0

−H
Π3j,j dz =

∫ 0

−H

{
[ 12ρgz(ξlξm), lm], 3 − [ρgz(ξl,3ξj), l], j − [p`ξj,3], j

}
dz

=
{

1
2ρgH(ξlξm), lm − ρgH(ξl,3ξ3), l − p`ξ3,3

}∣∣
z=−H

−
∫ 0

−H

{
ρgz(ξl,3ξγ), lγ + [p`ξγ,3], γ

}
dz (C 7)

where the greek index γ runs from 1 to 2, but j, l and m still from 1 to 3. This expression1060

is more convenient than the alternative expression obtainable by applying derivatives to1061

the factor ρgz only, in the first line, giving a result that looks simpler but obscures the1062

foothold effect, the expression in the second line.1063

Vertical derivatives ∂/∂z = ∂/∂x3 have order of magnitude ∼ k ∼ ε−1, and horizontal1064

derivatives order unity or less, . ε0, as ε→ 0, because horizontal scales such as r0 and W1065

are being held fixed, while LD & r0 | ln ε|1/2. In the last term of the foothold contribution1066

on the second line of (C 7) we use our conservative estimate p` . ερgb exp(kz), and1067

the assumptions k ∼ r−10 ε−1 and exp(−kH) . ε made in (C 1)–(C 3), to show that the1068

term in question has magnitude . ερgb2k exp(−2kH) . ε2ρgb2/r0. The first two terms1069

combine to give a larger estimated magnitude . ερgb2/r0, as shown next.1070

In the first two terms we note that the largest, vertical-derivative contributions1071

1
2ρgH(ξ3ξ3), 33 and −ρgH(ξ3,3ξ3), 3 cancel each other to leading order. This is because1072

of the special structure of deep-water waves and would not be the case in, for instance,1073

the problems studied by Thomas et al. For the local plane-wave structure we have1074

sin2 Φ = cos2 Φ = 1
2 , hence 1

2 (ξ3ξ3) = 1
4b

2 exp(2kz), with relative error O(ε). The1075

vertical second derivative 1
2 (ξ3ξ3), 33 = 1

4b
24k2 exp(2kz) = b2k2 exp(2kz) = (ξ3,3ξ3), 3 .1076

Therefore the sum of the first two terms has its order of magnitude reduced by a factor1077

ε or less, and can be estimated as . ερgb2k2H exp(−2kH). Using our assumptions1078

k ∼ r−10 ε−1, exp(−kH) . ε, and H . r0, we have ερgb2k2H exp(−2kH) . ερgb2/r01079

as asserted. Thus the entire foothold contribution, the second line of (C 7), can be1080

estimated as ∼ ερgb2/r0 at most.1081

In the vertically integrated, non-foothold contribution in the third line of (C 7), each1082

term has magnitude . ερgb2/r0 also. To check this for the term in p`, we may take1083 ∫
... dz ∼ k−1, and as before use p` . ερgb exp(kz) ∼ ερgb in the integrand, so that1084

[p`ξγ,3], γ . ερgb2k/r0, the factors k and r−10 coming from the vertical and horizontal1085

derivatives respectively. Integration removes the factor k, leaving a contribution .1086

ερgb2/r0.1087

In the other term, the first term on the third line, we have (ξl,3ξγ), lγ . εb2k2/r0 , with1088

a factor k2 since among the three derivatives at most two are vertical, as happens in the1089

contribution with l = 3. The factor ε comes from the O(ε) relative magnitude of ξγ when1090

γ = 2 or, when γ = 1, from the phase difference between ξ3,3 and ξ1, which is π/2+O(ε).1091
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So averaging their product produces a factor ε. With
∫
... dz ∼ k−1, and ρgz ∼ ρgk−1,1092

this term and therefore the whole third line . ερgb2/r0 as asserted.1093

In summary, then, the resultant vertical force (C 7) per unit horizontal area . ερgb2/r0.1094

This is the greatest amount by which the pressure on the bottom boundary can depart1095

from its hydrostatic value ρgh̃. Let δψ̃ be the corresponding error in ψ̃ = g(h̃ −H)/f ;1096

then δψ̃ . εgb2/(fr0). In the operator (∇2
H − L

−2
D ) on the left-hand side of (2.18) the1097

relevant horizontal scales are either fixed ∼ r0, in the limit ε → 0, or expand slightly1098

because LD & r0| ln ε|1/2. So the error on the left-hand side of (2.18) is no greater than1099

δψ̃ divided by r20 as ε → 0; so the error . εgb2/(fr30). To neglect this error, we need1100

to show that it is small in comparison with ẑ ·∇× 〈p〉 on the right-hand side of (2.18).1101

Estimating ẑ ·∇×〈p〉 as ∼ 〈p〉typ/W ∼ 〈p〉typ/r0, where 〈p〉typ is a typical magnitude of1102

〈p〉, we therefore need to show that1103

εgb2/(fr30) � 〈p〉typ/r0 (C 8)

as ε→ 0. Now 〈p〉typ ∼ gb2/(cH) since in ray theory 〈p〉 is c−1 times the wave-energy per1104

unit horizontal area, ∼ ρgb2, divided by ρH. So in (C 8) the ratio of the left-hand side to1105

the right-hand side is εcH/(fr20); and, recalling that εc ∼ U and that Ro ∼ U/(fr0), we1106

see that εcH/(fr20) ∼ RoH/r0 . Ro ∼ ε. This estimate is sufficient for our purposes,1107

but is very conservative because it relies again on the assumption H . r0. If we restrict1108

H more tightly, to its marginal order of magnitude H ∼ r0 ε| ln ε|, then (C 8) is satisfied1109

more strongly, with ratio ε2 | ln ε| instead of ε. Either way, (2.15) and (2.18) have now been1110

validated, as required, as leading-order approximations on the basis of which Bretherton1111

flows can be computed correct to O(a2ε0) and thence recoil forces correct to O(a2ε1).1112

Although the foregoing is sufficient for our purposes, the results can of course be1113

checked directly from the vertical component of the GLM momentum equation, AM781114

(8.7a) or B14 (10.82). In carrying out that check it needs to be remembered that the1115

GLM divergence effect raises the Lagrangian-mean altitudes of the free surface and other1116

isobaric material surfaces. To leading order, in the local plane wave, the surfaces are raised1117

by O(a2) amounts 1
2 (ξ23), 3, as is also necessary to account for the waves’ potential energy1118

1
2ρg ξ

2
3 |z=0 per unit area (McIntyre 1988). The raising of the free surface is accompanied1119

by a compensating O(a2) reduction, 1
2ρ(ξ23), 33, in the mean density ρ̃ defined such that1120

ρ̃ dxdydz is the volumetric mass element, consistent with a negligible change in the total1121

mass overlying a horizontal area element of the bottom boundary.1122

Appendix D. The O(a2ε1) pseudomomentum law1123

The two-dimensional pseudomomentum law (3.4) holds to the order of accuracy1124

required in §3, namely correct to O(a2ε1) – the order of magnitude of the refraction1125

term on the right-hand side – as a and ε tend toward zero with a � ε for a given1126

geometry of the vortices and incident wave field, whose horizontal scales are held fixed1127

in the limit as in Appendix C.1128

The most secure route to (3.4) is to start with its exact GLM counterparts, in all1129

three problems, so that we can see precisely what is neglected. To save space we refer1130

directly to B14’s exact GLM equations (10.123)–(10.126), which are (10.122)–(10.125) in1131

the original, 2009 edition. The second of these equations defines the exact nonadvective1132

flux of pseudomomentum, the exact counterpart of Bij − piu
L
j in (3.4)–(3.5) above. We1133

recall that the nonadvective flux can be rewritten exactly, within the GLM framework,1134

as an isotropic term ∝ δij plus the wave-induced flux of momentum. This will be useful1135

when considering problem (iii), in which the anisotropic part of the expression on the1136

right of (C 4) will be made use of.1137



30 Michael Edgeworth McIntyre

In the gas dynamical version of problems (i) and (ii) the motion is strictly two-1138

dimensional. Equation (3.4) can be read off straightforwardly from its exact counterpart,1139

ρ̃ times B14 (10.126) (see also (10.47)), with indices i, j etc. running from 1 to 2. The two-1140

dimensional mean density ρ̃ is the same as our h̃ and can be approximated as a constant,1141

in its product with the refraction term, the third term on the right. The fractional error1142

involved is small, O(a2ε0) + O(a0ε2), corresponding to absolute error O(a4ε1) + O(a2ε3),1143

the first term coming from the hard-spring contribution to the Brillouin radiation stress1144

noted at the end of §2, and the second from the Bernoulli pressure drop surrounding1145

a vortex core. In the last term on the right of B14 (10.126), the gradient ρ̃,i = h̃,i is1146

similarly small, O(a2ε0) + O(a0ε2), but is multiplied by the expression in large curly1147

brackets, which is O(a2ε0) rather than O(a2ε1). The product O(a4ε0) + O(a2ε2) is,1148

however, still negligible against a2ε1, the magnitude of the refraction term. The first1149

term on the right corresponds to FFF in (3.4), with the irrotational forcing potential φ1150

corresponding to −χ′ in (2.1). The second term on the right is zero, there being no1151

rotational forcing or dissipation. The flux tensor Bij in our (3.4)–(3.5) is given by B14’s1152

(10.125) plus the O(a2ε1) advective flux ρ̃piu
L
j , in which ρ̃ can again be approximated1153

as a constant, with the same relative and absolute errors as in the refraction term. Thus1154

(3.4) is established correct to O(a2ε1).1155

In the shallow water version of problems (i) and (ii), the governing equations are the1156

same as in the gas dynamical version with the ratio of specific heats set to 2, and no1157

more need be said.1158

For problem (iii), we need the vertical average of ρ̃ times the horizontal projection of1159

B14 (10.126) or, more conveniently, of (10.123), with zero right-hand side because there1160

is no rotational forcing or dissipation. In the horizontal projection, the free suffix i takes1161

values i = 1, 2, while the dummy suffixes j, k and m run from 1 to 3. The last term on1162

the left of (10.123) corresponds to FFF , while the second-last term, an elastic-energy term,1163

is zero because the flow is three-dimensionally incompressible.1164

In the third-last term on the left, the density ρ is constant and the factor (p/ρ)
L

can1165

be taken as −gz with error O(a2ε0), while the factor ρ̃,i/ρ̃ = O(a2ε0), with ρ̃ now the1166

three-dimensional GLM mean density, which contains an O(a2ε0) contribution from the1167

GLM divergence effect recalled at the end of Appendix C. This contribution is significant1168

in the third-last term only. Everywhere else it represents a negligible fractional error in1169

ρ̃ . The third-last term can be simplified to ρ−1 times −gzρ̃,i + O(a4ε0), whose vertical1170

average is the horizontal gradient of −〈gz(ρ̃ − ρ)〉, with error O(a4ε0). This gradient1171

can be incorporated without further error into the flux divergence ∇H · B of our (3.4)1172

(in which vertical averaging is understood), via a horizontally isotropic contribution1173

−〈gz(ρ̃ − ρ)〉δij to the averaged flux itself, Bij .1174

The second term on the left of B14 (10.123), a wave kinetic energy term, can be treated1175

in the same way, giving another isotropic contribution to the vertically-averaged flux Bij1176

in (3.4). In the advection term uL·∇pi = ∇·(u0pi) + O(a4ε0), the z-independent factor1177

u0 can be taken outside the vertical average, as can also be done in the refraction term1178

uLk,ipk = u0k, ipk + O(a4ε0). Finally, we note that the ∂/∂z contribution to the three-1179

dimensional flux divergence, ρ̃ times the fourth term on the left of (10.123), has vertical1180

average zero because of our assumptions, spelt out in Appendix C, that exp(−2kH)1181

is negligible and that the pressure vanishes or is constant at the free surface, so that1182

the nonadvective 13 and 23 components of the three-dimensional pseudomomentum flux1183

defined in BM (10.124) vanish there. As already mentioned, these anisotropic components1184

are equal to the corresponding components of the wave-induced flux of momentum, which1185

correct to O(a2) are given by the anisotropic terms in (C 4) or (C 6).1186
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The foregoing is enough to establish for problem (iii) that our (3.4), with vertical1187

averaging understood, holds to the order of accuracy required in §3. However, it may be1188

of interest to note that, to leading order under the scaling assumptions of Appendix C, the1189

quantity 〈gz(ρ̃ − ρ)〉 is H−1 times the potential energy of the deep-water waves per unit1190

area, replacing the elastic energy in the gas dynamical system and, in the isotropic part1191

of Bij , cancelling the wave kinetic energy to leading order as expected from averaged-1192

Lagrangian considerations. Using ρ̃ = ρ (1 − 1
2 (ξ23), 33), following on from the end of1193

Appendix C, and continuing to neglect exp(−2kH) we have, using integration by parts,1194

H〈gz(ρ̃ − ρ)〉 = − 1
2

∫ 0

−H
ρgz(ξ23), 33 dz = 1

2

∫ 0

−H
ρg(ξ23), 3 dz = 1

2 ρg(ξ23)
∣∣
z=0

, (D 1)

which is the standard formula for the surface-wave potential energy per unit area.1195
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