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Abstract

From research on stratospheric dynamics there has emerged what might prove to be
some useful fresh ideas about the problem of water-wave generation by wind. As pointed
out in an earlier contribution (1993), water waves can be systematically amplified by two
irreversible, ratchet-like mechanisms that depend on spatio-temporal inhomogeneities,
such as wind gustiness and wave groupiness. Neither mechanism is represented in the
models used for wind-wave forecasting. The first mechanism is simply the drag from what
might be called Rossby or vorticity lee waves in the airflow downstream of water-wave
groups. The second is intermittent Rossby-wave breaking or vertical mixing of spanwise
horizontal vorticity in the airflow, a highly nonlinear, non-Fourier-superposable mecha-
nism. Both mechanisms can amplify non-breaking water waves, as well as contributing
to the amplification of breaking water waves.

1. Introduction

I want to suggest that the mechanisms by which wind generates water waves can be
illuminated by today’s understanding of the large-scale fluid dynamics of the Earth’s
stratosphere. Persistent, irreversible momentum transport, involving a phase-coherent
interaction between waves and turbulence, enters both the wind-wave problem and the
stratospheric problem in an essential and fundamentally similar way. The ideas — which
both subsume, and also go beyond, recent extensions of the Miles theory, including that
of Belcher et al. (1999) presented in the predecessor to this wind-wave conference pro-
ceedings — can be traced back to G.I. Taylor’s classic paper on eddy motion in the
atmosphere (Taylor 1915) and its nonlinear extension by Killworth & McIntyre (1985),
hereafter KM. The relevance of these ideas to the wind-wave problem were first pointed
out in a Sectional Lecture (McIntyre 1993) to the Minisymposium Sea Surface Mechanics

and Air–Sea Interaction at the 18th International Congress of Theoretical and Applied
Mechanics.

In the case of the stratosphere we have a secure and well-developed understanding of
the highly inhomogeneous ‘wave–turbulence jigsaw puzzle’ with which the stratosphere
confronts us when viewed on a global scale. For the history of ideas leading to that
understanding the reader may consult, for instance, the review by Hoskins et al. (1985)
and two recent reviews of mine (2000, 2002). The history takes on a new interest when

† The Centre for Atmospheric Science is a joint initiative of the Department
of Chemistry and the Department of Applied Mathematics and Theoretical Physics
(http://www.atm.damtp.cam.ac.uk/).
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Figure 1. Nitrous oxide (N2O) mixing ratios observed at two stratospheric altitudes on 11 Au-
gust 1997 by the CRISTA instrument, from Riese et al. (2002). White regions are data gaps. On
Rossby-wave timescales of days and weeks N2O is an accurate passive tracer, though destroyed
photochemically on Brewer–Dobson timescales of years (see end of §2 below). In the right half
of each picture the N2O mixing ratios increase equatorward nearly monotonically or stepwise
monotonically (being nearly constant over the large blue regions on the right). The mixing
ratios increase equatorward from polar-vortex values close to zero (purple) to large tropical val-
ues imported from the troposphere by the Brewer–Dobson upwelling (red). At left and right
respectively, pressure-altitudes are 4.64 hPa and 10 hPa, roughly 37 km and 31 km; ranges of
mixing ratios in parts per billion by volume are 0–90+ and 0–150+ with contour intervals 10
and 16.67, where ‘+’ signifies that maximum values may slightly overshoot the plotted range.
The light band at the subtropical edge of the surf zone (yellow) highlights the ranges 60–70
and 100–116.67 ppbv. CRISTA (Cryogenic Infrared Spectrometers and Telescopes for the At-
mosphere) detects a number of chemical species through their infrared spectral signatures and
is a large (1350 kg) helium-cooled instrument flown from the Space Shuttle.

compared to the history of ideas in wind-wave generation, especially if one takes as a
conceptual starting point the linear-theoretic wave ideas embodied in the Miles theory —
as further developed by, for instance, Lighthill (1962), Janssen (1982, 1991) and Belcher
et al. (1999) — and then goes on to recognize various forms of strong nonlinearity that
operate in reality (e.g. Banner 1990, McIntyre 1993 & refs., Belcher & Hunt 1998 &
refs.), especially those nonlinearities associated with the critical layer or matched layer
in the airflow above the water waves, with the implication that Fourier superposition must
generally fail in descriptions of water-wave generation. Over the years, our understanding
of stratospheric dynamics has undergone a closely analogous transition from linear to
nonlinear thinking.

2. A glimpse of the real stratosphere

Concerns about stratospheric ozone have produced highly sophisticated observing sys-
tems that allow us to see the real stratosphere in considerable detail. Figure 1, of which an
animated version can be seen on my website,† is reproduced here by courtesy of Dirk Of-
fermann and Martin Riese of the CRISTA space-based remote-sensing project; see Riese
et al. (2002). It shows the distributions at about 31 and 37 km altitude of a chemical

† at www.atm.damtp.cam.ac.uk/people/mem/papers/LIM/index.html#crista-movie
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tracer, nitrous oxide, which for present purposes is accurately an inert material tracer
— the pictures are like laboratory dye pictures — because photochemical timescales
for nitrous oxide are of the order of years, far longer than the relevant fluid-dynamical
timescales. White regions are data gaps.

Aside from the overall pole-to-equator gradient, with high equatorial tracer values
(red) and low polar values (purple), the pattern seen in both pictures is shaped by
nearly-horizontal, layerwise-two-dimensional air motion on timescales of days to weeks.
It reveals distinct airmasses such as the well-mixed region (blue) on the right, with almost
perfectly uniform tracer values, sandwiched between relatively isolated polar and tropical
airmasses with very different tracer values, and with steep gradients in transition zones
between. It is clear, especially from the animated version of figure 1 and from many
other data studies and from numerical model simulations of the air motion, all of which
tend to produce generically similar tracer pictures (e.g. Norton 1994, Lahoz et al. 1996),
that horizontal fluid motion is causing strong mixing in an extensive midlatitude region
between the polar and tropical airmasses.

The early stages of a typical mixing event can be seen on the left. A long tongue
of subtropical air (light orange–yellow) is being drawn around the edge of the vortex,
crossing the tip of South America, and the animation clearly shows that air is circulating
within the part of the midlatitude region overlying the Atlantic and South America. Air is
also circulating and mixing over the right-hand part overlying the Indian and Southern
Oceans and Australia but, because that part has already been fairly well mixed, the
circulating motion there does not show up clearly in the animation.

We shall see that the midlatitude mixing region, which for reasons to be explained is
called the stratospheric surf zone, is the stratospheric counterpart of the critical layer in
the airflow above water waves, turned on its side. It is only the dimensionless parameters
that matter and not, of course, the absolute spatial scale, nor the superficial geometrical
differences. But one point to note is that the stratospheric surf zone is anything but
narrow. Critical layers have often been thought of as narrow or thin, a mental picture
that tended to feature prominently in the early history of thinking about stratospheric
fluid dynamics (e.g. Dickinson 1969), just as has tended to be the case in other parts of
the research literature on theoretical fluid dynamics.

In the real stratosphere the situation shown in figure 1, with its broad and extensive
surf zone, is very typical. The whole picture is not only well simulated by numerical mod-
els, but is also well understood dynamically, using ideas like that of ‘potential-vorticity
inversion’ (§4 below; also, e.g., Hoskins et al. 1985, Ford et al. 2000, 2002). There is an
intimate interplay of wavelike and quasi-turbulent dynamics leading, as we shall see, to
a persistent momentum transport, outside the scope of classical turbulence theory. It
gives rise to a westward force on the stratosphere and an eastward reaction on the denser
tropospheric air below. It is this momentum transport that is fundamentally similar to
the momentum transport involved in the wind-wave problem.

3. Breaking Rossby waves

The animated version of figure 1 makes the wavelike aspect conspicuous. It shows the
long axis of the central purple region rotating clockwise through an angle of about 70◦

longitude in 5 days, 10–15 August 1997. The purple region is the so-called ‘polar vortex’,
more precisely, the core of the polar vortex, characterized by large negative values of the
relevant measure of vorticity — in this case the so-called Rossby–Ertel ‘potential vorticity’
(e.g. Hoskins et al. 1985) — which behaves approximately like an advected tracer and
has a distribution like that of the nitrous oxide, up to an additive constant. The rate at
which the long axis of the purple region rotates is determined by a competition between



Two overlooked mechanisms? 4

the mean winds on the one hand — which blow clockwise, in high latitudes such as 60◦S,
at speeds of the order of 80 m s−1, about nine times faster than 70◦ longitude in 5 days
— and a powerful wave propagation mechanism on the other, which rotates the long axis
anticlockwise relative to the mean winds. Today this is usually called the ‘Rossby-wave’
mechanism, even though (by the usual etiquette honoured more in the breach than in
the observance) it ‘should’, probably, be called the Kelvin–Kirchhoff–Rayleigh–Rossby
mechanism.†

The wave mechanism operates, as is well known, whenever the relevant measure of
vorticity, Q say, has a cross-stream mean gradient Q̄y, such as the atmosphere’s strong
pole-to-equator gradient caused by the Earth’s rotation. The counterpart in the airflow
above water waves is the vertical gradient of ordinary vorticity, associated with the
curvature ūyy of the mean velocity profile. Material displacements across that gradient
Q̄y, whatever its cause, give rise to a pattern of fluctuating Q anomalies, Q′ say, that
alternate in sign downstream. They do so every 90◦ of longitude in the case of figure 1.
Inversion of those Q anomalies to obtain the fluctuating velocity field produces north–
south velocities a quarter wavelength out of phase with the displacements, hence phase
propagation. This is one-way phase propagation, and the signs make it anticlockwise in
figure 1, and upstream in the airflow above water waves. For recent work on the concept
of potential-vorticity inversion and its ultimate limitations see Ford et al. (2000, 2002).

The resulting wavelike, quasi-elastic resilience of the edge of the vortex core shows up
in figure 1 in another way, through the lack of mixing across the edge, as evidenced by the
steep tracer gradients at the edge and the very different tracer values inside and outside
the vortex, now routinely observed by stratospheric researchers and much studied because
of the significance for ozone-layer chemistry. ‘Shear sheltering’ is also involved (Juckes
& McIntyre 1987; Hunt & Durbin 1999). The vortex core is largely isolated chemically
from its surroundings, as evidenced by its purple colour in figure 1 (as with the smoke in
traditional smoke rings familiar to Kelvin, Kirchhoff and Rayleigh). Yet just next to the
edge, in the midlatitude surf-zone region, horizontal mixing is strong, as already noted. It
is strong for well-understood reasons associated with flow unsteadiness, hyperbolic points,
and so on (e.g. Polvani & Plumb 1992). We may say that the surf zone is chaotically
advective. It is often described as two-dimensionally or ‘geostrophically’ turbulent, more
aptly ‘layerwise-two-dimensionally turbulent’, under the constraint of the strong stable
stratification. The stratification is strong in the sense that its timescale, i.e. the timescale
of internal gravity waves or buoyancy oscillations, minutes to hours, is far shorter than
the days, weeks and years already mentioned.

The evidence for horizontal mixing shows that the Rossby waves must be considered to
be breaking. The flow unsteadiness, hyperbolic points, etc., hence the turbulence itself, are
due to the Rossby-wave motion, just as the turbulence in ocean-beach surf can be said to
be due to the water-wave motion. That is the reason for the term ‘stratospheric surf zone’.
The Rossby-wave breaking is part of what makes the momentum transport persistent and
irreversible, in the same sense as the momentum transport generating longshore currents
on ocean beaches is rendered persistent and irreversible, by the breaking of incoming
water waves. The next section will analyse the Rossby-wave case in more detail, in the
simplest possible way, showing the essential role of nonlinearity.

† Of course we can’t call these vorticity waves ‘Kelvin waves’, because that means something
else in today’s terminology, namely Coriolis-trapped gravity waves. ‘Kirchhoff waves’ would
suggest a restriction to the wave-2, quasi-elliptical case. Carl-Gustaf Rossby was a great pioneer
in atmospheric dynamics, discovering among other things one of its most crucial concepts, that
of potential vorticity (Rossby 1936, 1940), which in stratified systems plays a role like that of
ordinary vorticity in aerodynamics through the concept of ‘potential-vorticity inversion’.
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As for the stratosphere’s reponse to the momentum transport under discussion, that
is a separate question, and irrelevant to the wind-wave problem; but the essence of what
happens is noted briefly because it explains the pole-to-equator gradient that makes
nitrous oxide such an effective material tracer in figure 1. The response depends on
Coriolis forces, which are immensely strong on the timescales of interest; the reader
interested in the mathematical details may consult the review by Holton et al. (1995).
Because stratospheric air is persistently pushed westward, Coriolis forces persistently
deflect it poleward, giving rise to a pumping action. This may be called ‘gyroscopic
pumping’, the familiar ‘Ekman pumping’ being just the special case of it where the
persistent force happens to be frictional rather than wave-induced.

The gyroscopic pumping in the stratosphere, due chiefly to momentum transport by
breaking Rossby waves like those seen in figure 1, drives a slow but very persistent global-
scale circulation, known as the Brewer–Dobson circulation, in which tropospheric air is
drawn up into the tropical stratosphere and is then pumped poleward and eventually
downward while undergoing photochemical transformation, on timescales of years. That
is part of why northern pollution causes a southern ozone hole, and is also the reason
for the strong pole-to-equator gradient of nitrous oxide seen in figure 1. Nitrous oxide
is produced by biological processes and is well mixed throughout the troposphere. It
is drawn up into the tropical stratosphere by the Brewer–Dobson circulation and then
destroyed photochemically as it drifts poleward.

4. The dynamics of the wave–turbulence jigsaw

How does the wave–turbulence jigsaw suggested by figure 1 actually work to produce
the persistent momentum transport? Part of the answer is that there are highly specific
phase relations and phase shifts among the wavelike and quasi-turbulent elements, and
that the spatial inhomogeneity conspicuous in figure 1, the juxtaposition of wavelike and
turbulent regions, is an essential feature. The spatial inhomogeneity takes the problem
well outside the scope of classical turbulence theories, as does the wave propagation
itself. A thorough discussion of this last point, from a wider historical and theoretical-
physics perspective, can be found in the first of my recent pair of reviews (2000). Here we
sketch only what is most basic and essential for the Rossby-wave case and the wind-wave
problem. The essentials include the advective nonlinearity.

All the essentials are contained in a simple and elegant model whose workings are fully
understood, and which illuminates both the stratospheric problem and the wind-wave
problem. This is the Rossby-wave critical layer problem first solved in the complemen-
tary papers of Stewartson (1978) and Warn & Warn (1978), hereafter ‘SWW problem’.
Fundamentally relevant, too, are the relations concerning momentum transport found by
G. I. Taylor (1915), displayed in (4.6) below, and extended by KM, who also carefully
reviewed and extended the SWW work. Our understanding of the SWW problem was
brought to completion in the definitive work of Haynes (1989).

The starting point is the simplest relevant dynamical system, two-dimensional fric-
tionless, incompressible motion. Here Q is the ordinary vorticity, so that inverting Q
to obtain the velocity field demands nothing more than solving a Poisson equation of
the form ∇2ψ = Q under suitable boundary conditions, such as evanescence of |∇ψ| at
infinity. Coriolis effects are being ignored for the moment. Symbolically,

ψ = ∇−2Q , (4.1)

where the stream function ψ(x, y, t) is defined such that

u = (u, v) , u = − ∂ψ/∂y , v = ∂ψ/∂x , (4.2)

(x, y) being Cartesian coordinates and (u, v) the corresponding components of the veloc-
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ity u(x, y, t). The two-dimensional Laplacian ∇2 = ∂2/∂x2 + ∂2/∂y2, and the Green’s
function to invert it has a logarithmic kernel. In this dynamical system there is just one
evolution equation,

DQ/Dt = 0 , (4.3)

where D/Dt is the two-dimensional material derivative,

D/Dt = ∂/∂t + u · ∇ = ∂/∂t + u∂/∂x + v∂/∂y . (4.4)

The single time derivative in (4.3) is the essential reason for the one-way character of
Rossby phase propagation. Equation (4.3) with its single time derivative is common to
this simple system and its more realistic generalizations, including realistic models of the
stratosphere, with suitable redefinitions of Q and the associated inversion operator.

A step toward such generalizations is to introduce the Coriolis parameter f(y). This is
the vertical component of the Earth’s absolute vorticity picked out by the atmosphere’s
stable stratification, and is a strong function of latitudinal distance y. Then (4.1) is
replaced by

ψ = ∇−2(Q− f) . (4.5)

When f is made to depend linearly on y, with, say, df/dy = β = constant, (4.2)–(4.5)
becomes the Rossby ‘beta plane’ or ‘flat earth’ model. With its constant background vor-
ticity gradient Q̄y = β, this well known model provides the simplest textbook examples
of Rossby-wave propagation, and in addition the framework for the SWW problem.

If we assume that averaging in the x-direction is well defined, with vanishing mean
pressure gradient ∂p̄/∂x, then it is straightforward to derive from (4.2)–(4.5) and the
associated x-momentum equation the following relations for the airflow:

∂ū

∂t
= −

∂

∂y

(

u′v′
)

= v′Q′ = −
∂

∂t

(

1

2
Q̄yη′2

)

, (4.6)

where the overbars denote the (Eulerian) x-average and the primes fluctuations about it,
and where η′(x, y, t) is the fluctuating material displacement in the y-direction, satisfying
Q′ = −Q̄yη

′. The middle and last equalities are Taylor’s relations. The middle equality
is an exact consequence of (4.2) and ∇2(4.5) alone, and is often referred to as Taylor’s

identity.† The last equality holds in general for small disturbances only.
Taylor’s expression 1

2
Q̄yη′2 has an exact, finite-amplitude counterpart, which KM

discovered and exploited in their work on the SWW problem. Not surprisingly, the exact
expression, omitted here for brevity, implies that the approximate expression 1

2
Q̄yη′2

remains qualitatively correct when a disturbance grows from small to finite amplitude,
as long as the mean vorticity profile Q̄(y) is monotonic, i.e. Q̄y(y) is one-signed, and
is not too much changed from the profile in the initial state. The exact expression has
been shown to be related to a Hamiltonian ‘Casimir invariant’ involved in the stability
theorems of V. I. Arnol’d, and is often referred to today as the Rossby-wave ‘activity’ or
minus the ‘pseudomomentum’ per unit mass (e.g. McIntyre 1981, Shepherd 1990).

Notice, now, the special case of a small disturbance growing exponentially, with all
fluctuating quantities proportional to exp(σt), say, with constant growth rate σ. This is
precisely the case analysed in Belcher et al. (1999), in which the above equations rep-
resent two-dimensional frictionless airflow over two-dimensional frictionless water waves,
with y vertical and with β = 0 and Q̄y = −ūyy > 0. The last equality in (4.6) holds

† Taylor’s identity generalizes to more realistic models of the stratosphere, with −∂
`

u′v′

´

/∂y
replaced by the divergence of the so-called Eliassen–Palm flux (e.g. Andrews et al. 1987), which
has an extra term representing vertical momentum transport.
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quantitatively, because of the small-disturbances assumption, and ∂/∂t is replaced simply
by 2σ. We see immediately that if Q̄y > 0 then there is a momentum-transport diver-
gence, ∂

(

u′v′
)

/∂y > 0, and, with the assumption of vanishing mean pressure gradient
∂p̄/∂x, an associated mean rate of change of momentum ∂ū/∂t < 0 in the airflow. This
momentum change has to be accompanied by an equal and opposite reaction on, and
momentum change in, the water, manifesting itself (in this frictionless model) entirely
as an amplification of the water waves driven by a nonvanishing correlation between
surface-pressure fluctuations and surface displacement gradients ∂η′/∂x.

As Belcher et al. point out, the original Miles theory is merely one case of this, in which
σ is the growth rate of the Miles instability. The relations (4.6) generalize the result still
further: it is now plain that the growth does not need to be exponential either. The result
is far more robust than that. Any growth will do. As long as we stay in the realm of
small-amplitude disturbances, the expression on the right of (4.6) tells us that the result
is not at all dependent on the analytical devices associated with Cauchy’s theorem and
the calculus of residues, nor on any other analytical device applicable only to disturbances
that grow precisely exponentially. The airflow suffers a momentum deficit, and the water
waves are amplified — in this frictionless, two-dimensional model — whenever Taylor’s
wave-activity expression 1

2
Q̄yη′2 increases for any reason at all, such as the arrival of a

wave group.
However, as figure 1 reminds us, it is essential to take into account the finite-amplitude

effects of the advective nonlinearity if one wants to describe what happens beyond early
growth. Then it is not enough to restrict attention to infinitesimal amplitude. This point
is well illustrated by the SWW and related solutions, and by numerical simulations of
situations like that of figure 1 (e.g. Haynes 1989, Norton 1994), in which the constant-
Q contours in the critical-layer or surf-zone region wrap round in complicated ways,
grossly violating the condition of small sideways slope necessary for the validity of small-
disturbance theory. This again is Rossby-wave breaking. Taylor’s wave-activity expression
1

2
Q̄yη′2 applies during the early stages of the process, when the sideways slopes of the

constant-Q contours are still small. Then the expression becomes increasingly inaccurate
as the slopes steepen and the contours begin to wrap round, leading to the irreversible
mixing of the Q distribution. The Miles theory predicts its own breakdown in a funda-
mentally similar way.

The defining property of wave breaking — if one wants a concept general enough to
apply to wave-induced momentum transport for a wide variety of transverse waves, in-
cluding Rossby waves as well as gravity waves — is the rapid and irreversible deformation
of those material contours that would be described by linear wave theory as sloping gen-
tly and undulating reversibly, if the linear theory is self-consistently applied. A careful
justification of this definition was given in McIntyre and Palmer (1984, 1985). A central
consideration is the role of Kelvin’s circulation theorem in wave–mean interaction theory,
as further discussed in the abovementioned review (2000). Examples of the relevant ma-
terial contours include the constant-Q contours for Rossby waves, and, for water waves,
material contours lying in the free surface.

A side benefit of the definition is that it avoids using “zoological” ideas of wave break-
ing, based on features of special cases such as whether or not there is air entrainment,
whether or not instabilities are involved, and to what extent and in what sense the
resulting flow should be considered turbulent.

Solutions to the SWW and related problems provide not only examples of Rossby-
wave breaking as a phenomenon but also, in exquisite detail, descriptions of precisely
how wave breaking mediates momentum transport. The SWW solution precisely repre-
sents, through the technique of matched asymptotic expansions, the interplay between a



Two overlooked mechanisms? 8

Figure 2. The relation between nonlinear Q-rearrangement and momentum transport in the
simplest relevant model system, the dynamical system (4.2)–(4.5), when used to describe a break-
ing Rossby wave. Courtesy P. H. Haynes; for mathematical details see KM and Haynes (1989).
Plot (a) shows idealized Q distributions before and after perfect mixing in some y-interval or
latitude band − 1

2
b < y < 1

2
b. Plot (b) shows the x-averaged Q distribution, Q̄(y), in an actual

model simulation using equations (4.2)–(4.5) within the SWW matched-asymptotics framework.
Plot (c) shows the resulting mean momentum deficit, equation (4.7), whose profile would assume
the simple parabolic shape (4.8) in the idealized case corresponding to (a).

nonlinear critical layer or surf zone and its wavelike surroundings in a background shear
flow ū(y), including a mathematical description of all the phase shifts involved and their
impact on quantities like u′v′ and v′Q′ in the first two, exact, equalities in (4.6). Part of
the interplay involves the fact that the wavefield, through the PV inversion operator, can
remotely sense the nonlinear rearrangement of the Q distribution within the surf zone.

For a first analysis of what happens, it is possible to leave the phase-shift details
implicit if one is prepared to assume what is plain from cases like that of figure 1, and
from the SWW analysis as well, namely that the result of the Q contours deforming
irreversibly in some surf zone − 1

2
b < y < 1

2
b, say, is an irreversible rearrangement of

the Q distribution that weakens the mean gradient Q̄y in that zone, as suggested in
figures 2(a) and 2(b).

Figure 2(a) depicts an idealized strongly-nonlinear scenario in which the surf zone is
perfectly mixed; figure 2(b) shows an actual Q̄(y) profile from a complete, dynamically
consistent solution due to Haynes (1989 and personal communication), within the SWW
matched-asymptotics framework but for a case less simple than the original SWW so-
lution, and in some ways more typical. The detailed flow is more chaotic, because of
the onset of secondary instabilities. Yet figure 2(b) is qualitatively similar to figure 2(a),
even though the effects of peripheral weak Rossby-wave breaking, in the form of Kelvin
‘sheared disturbances’, involved in shear sheltering, are also noticeable. To get the corre-
sponding zonally averaged momentum changes, we need the inversion implied by (4.5).
In the x-averaged view, this inversion is trivial: one merely has to integrate the change
δQ̄ in Q̄ once with respect to y, since δQ̄ = −δūy:

δū(y) =

∫

∞

y

δQ̄(ỹ) dỹ , (4.7)

which is well defined because
∫

∞

−∞
δQ̄(y)dy = 0.

The result is shown in the right-hand graph, figure 2(c). The momentum change corre-
sponding to the more idealized, left-hand Q(y) profile in figure 2(a) is a simple parabolic
shape (not shown) qualitatively similar to the right-hand graph, as is evident from a



Concluding remarks 9

moment’s consideration of (4.7):

δū(y) =

{

1

2
Q̄y(y2 − 1

4
b2) (|y| < 1

2
b) ,

0 (|y| > 1

2
b) .

(4.8)

In this idealized case the total momentum change is precisely

δM ∝

∫

∞

−∞

δū(y) dy = − 1

12
Q̄yb

3 . (4.9)

It is plain from (4.7) that any Q rearrangement that creates a surf-zone-like feature
with weakened Q̄y will robustly, and irreversibly, give rise to a net momentum deficit.
Integrating by parts, we have δM =

∫

∞

−∞
yδQ̄(y)dy; that is, δM is equal to the first

moment of δQ̄(y). This is negative for any N-shaped δQ̄(y) profile representing a weak-
ening of the gradient Q̄y by mixing. Since a momentum deficit in the air corresponds
to amplification of the water waves beneath, we may expect a very robust, ratchet-like,
irreversible driving of the water waves whenever spanwise vorticity is mixed vertically in
the airflow for whatever reason, perfectly or imperfectly. Such mixing is likely to result
from, for instance, the arrival of a water-wave group, or the arrival of a wind gust over
pre-existing water waves. It would be interesting to have more observational information
about vorticity profiles in real gusts.

Notice, finally, how misleading it would be to suppose that small-amplitude theory
holds good, with Taylor’s wave-activity expression 1

2
Q̄yη′2 remaining valid on the right

of (4.6), throughout the formation of a surf zone in the airflow caused by, for instance, the
arrival and departure of a long water-wave group. Integrating (4.6) with respect to t, one
would find zero net momentum change in the air and zero net driving of the water waves.
The resolution of this paradox is, of course, the fact that the advective nonlinearity,
responsible for producing the irreversible rearrangement of the Q distribution in the
airflow, vitiates the small-amplitude expression 1

2
Q̄yη′2 as KM showed in detail.

5. Concluding remarks

Of course the real airflow over real water waves is three-dimensional, and three-dimen-
sionally turbulent. KM §7 discusses some of what is involved in adapting the above theory,
and argues that a spanwise-averaged two-dimensional representation will still capture the
essence of what happens, which is intrinsically robust.

One of the peculiar features of the wind–wave problem is that the quasi-linear theory
presently used in wave forecasting models (Janssen 1982, 1991) gives, in a sense, the right
answer for the wrong reasons. The quasi-linear theory assumes that real critical layers
are infinitesimally thin and behave as in the Miles theory, and that an ensemble of them
is distributed over a finite depth because there is a broad spectrum of water-wave phase
speeds. The analysis summarized in figure 2, which applies equally well to a narrow,
monochromatic spectrum — to say nothing of the stratospheric example with its single,
monochromatic Rossby wave having exactly 2 full wavelengths around a latitude circle,
and a nearly constant phase speed — underlines the point that real critical layers or surf
zones may well be thick, even in a monochromatic case.

The right answer is obtained by the quasi-linear theory because it diffuses vorticity
in the y-direction through a truly Fickian or Brownian process, in small steps via the
ensemble of infinitesimally thin, linearized critical layers. The real process of mixing, in
more or less one large step rather than in many small ones, is far more powerful, as
Figure 1 reminds us, unless of course the diffusion coefficient D in the diffusion model is
‘tuned’ to be artificially big.

It is, of course, vorticity that is diffused or mixed, not mean velocity or momentum.
An equation like ūt = D(y)ūyy is not a diffusion equation; rather, it is the integral with
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respect to y of a diffusion equation. The difference is crucial for any case of nonuni-
form diffusion or mixing, and indeed crucial for the entire scenario summarized by equa-
tions (4.7)–(4.9) and figure 2 with its implication that net momentum is exported from
the air to the water. Readers may recall the old argument, overlooking the role of wave
propagation mechanisms (e.g. Stewart & Thomson 1977), that scenarios like that in fig-
ure 2 are ‘impossible because they would violate momentum conservation’. For another
telling example, see the footnote on page 482 of KM §7.

The wave breaking featuring in the above discussion is that of the Rossby or vorticity
waves in the airflow only. If the water waves are also breaking, then flow separation
will deepen the layer over which vorticity is mixed in the airflow, further enhancing the
irreversible momentum transport and consistent with the discussion of Banner (1990).

As pointed out in my original (1993) discussion, the Rossby-wave-breaking mechanism
is only one of two mechanisms suggested by the analogy with the global-scale strato-
sphere. Space precludes more than a brief mention of the second mechanism here [sorry,
first in the abstract]. The ratcheting-up of the water waves by irreversible momentum
transport can take place not only through local changes in airflow Rossby-wave activ-
ity — the increase in Taylor’s wave-activity expression 1

2
Q̄yη′2 in the early stages,

made irreversible by Rossby-wave breaking — but also by any other process that causes
Rossby-wave activity in the airflow to increase irreversibly. Another such process is the
formation of Rossby lee waves in the airflow downstream of a water-wave group. Then the
volume integral of 1

2
Q̄yη′2 increases simply through the rate of increase of the length

of the lee-wave train. This may be relevant to explaining the ‘energy front’ of Chu et al.

(1992). Further progress, which Stephen Belcher and I hope to pursue, will depend on
the analysis of unpublished data for the actual ū and ūyy profiles measured in the Chu
et al. experiments.
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