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Synopsis

A balanced flow is one in which the three-dimensional velocity field is functionally related to the mass field, presumed
hydrostatically related to the pressure field. Such a functional relation between the velocity and mass fields is called a balance
relation, or filtering condition. The simplest but least accurate such relation is geostrophic balance. There are more accurate
balance relations, of which the most accurate are fully nonlocal. That is, the velocity at a point depends on the mass field
throughout the domain. There are ultimate limitations to accuracy, governed by the fuzziness of the slow quasimanifold.

Introduction

The concept of balanced flow is the counterpart, in atmosphere–
ocean dynamics, to the well-known concept of nearly incom-
pressible flow in classical aerodynamics. In aerodynamics, a key
aspect of such flow – long recognized as central to under-
standing the behavior of subsonic aircraft – is that all the
significant dynamical information is contained in the vorticity
field. To that extent the flow has, in effect, fewer degrees of
freedom than a fully general flow. We may think of it as being
elastostatically balanced, in the sense that freely propagating
sound waves can be neglected in the dynamics.

In atmosphere–ocean dynamics there is a corresponding
statement with vorticity replaced by potential vorticity (PV),
understood in a suitably generalized sense; see generalized PV
field in the article Dynamical Meteorology: Potential Vorticity.
For many cases of rotating, stably stratified fluid flow, with
parameter values typical of the atmosphere and oceans, all the
significant dynamical information is contained in the general-
ized PV field. One may invert this field at each instant to obtain
the mass and velocity fields. The article on Potential Vorticity
gives a more precise statement. All such flows may be charac-
terized as balanced.

Again this means that the flow has, in effect, fewer degrees of
freedom than a fully general flow. More precisely, balance and
invertibility mean that not only sound waves but also freely
propagating inertia–gravity waves can be neglected in, or filtered
from, the dynamics. Thus balanced flows can be much simpler
to understand than fully general flows, thanks to the relatively
simple way in which the advective nonlinearity acts on the PV.

Cases of fluid flow describable as balanced come under
headings such as Rossby waves, Rossby-wave breaking, vortex
dynamics, vortical modes, vortical flow, vortex coherence,
vortex resilience, eddy-transport barriers, blocking, cyclogen-
esis, baroclinic instability and barotropic instability (meaning
the wavy shear instabilities), all of which are related to the
fundamental Rossby-wave restoring mechanism or quasi-
elasticity that exists whenever there are isentropic gradients of
PV in the interior of the flow domain, or gradients of potential
temperature on an upper or lower boundary. The concept of
balanced flow is fundamental, also, to theories of wave–mean
interaction and wave–vortex interaction, needed in order to
understand, for instance, the gyroscopic pumping that drives
global-scale stratospheric circulations and chemical transports

(x6 of Dynamical Meteorology: Potential Vorticity). In these
theories the mean or vortical flow is usually considered to be
balanced, regardless of the wave types involved. Indeed, the
concept of balance enters, implicitly or explicitly, into almost
any discussion of meteorologically interesting fluid
phenomena; and balance versus imbalance is part of the
conceptual foundation that underpins data analysis, data
assimilation, and weather prediction.

The Elastic Pendulum

Balance has counterparts not only in aerodynamics but also in
simple mechanical systems such as the elastic pendulum. This is
a massive bob suspended from a pivot by a stiff elastic spring of
negligible mass. Such a pendulum has slow, swinging modes of
oscillation in which the relatively fast, compressional modes of
the bob and spring are hardly excited: they can be neglected in
the dynamics if the spring is stiff enough. The slow, swinging
modes correspond to balanced flow, and the fast, compres-
sional modes to sound and inertia–gravity waves. One may
describe the swinging modes to a crude first approximation by
making the spring strictly incompressible, i.e., by making its
length strictly constant. There is a hierarchy of more accurate
approximations that allow the spring to change its length in
a quasi-static or elastostatic way, the spring being longest when
the bob moves fastest and shortest when the bob is stationary.

In such a quasi-static description the length of the spring is
functionally related to the speed of the bob. The functional
relation holds at each instant t, i.e., it holds diagnostically. No
derivatives or integrals with respect to t are involved, and values
of t do not explicitly enter into the definition of the functional
relation. The property of being diagnostic, in this sense,
provides us with a useful mathematical and conceptual
simplification.

Such approximations and their ultimate limitations can be
studied mathematically via techniques ranging all the way
from two-timing formalisms (method of multiple scales) and
bounded-derivative theory to KAM (Kolmogorov–Arnol’d–
Moser) theory and other dynamical-systems techniques;
there is an enormous literature.

The error incurred in using the most accurate quasi-static
descriptions becomes exponentially small as the fast–slow
timescale separation increases. It may even be zero, or in some
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circumstances small but inherently nonzero (corresponding to
KAM tori breaking into thin chaotic layers, also called fractal
layers or stochastic layers).

Balance Relations

In atmosphere–ocean dynamics the defining property of balance
is that an analogous functional relation holds – diagnostic in
precisely the same sense. The functional relation between bob
speed and spring length is replaced by a functional relation
between the fluid’s velocity and mass fields. More precisely,
a flow is said to be balanced if the three-dimensional velocity
field u(x,t) satisfies a functional relation of the form u(x,t) ¼ uB

where uB depends only on the mass field or mass configuration,
i.e., on the spatial distribution of mass throughout the fluid
system, presumed to be hydrostatically related to the pressure
field. (Knowledge of the mass field then implies knowledge of
the pressure, temperature andpotential temperaturefields, given
zero pressure at the top of the atmosphere.)

Such a functional relation u(x,t) ¼ uB between the velocity
and mass fields is called a filtering or balance condition, or
balance relation. It supplies just enough information to make
the PV field invertible. The property of being diagnostic means
that if one knows the mass field at some instant t, but knows
nothing about its time dependence, nor the value of t itself,
then the balance relation must nevertheless allow one to
deduce the complete three-dimensional velocity field u. It must
allow the velocity field to be deduced from the mass field and
from the mass field alone. (Such a diagnostic relation should
not, however, be mistaken for a causal relation. To think that
the mass or pressure field causes the velocity field is like
thinking that the spring length causes the pendulum’s motion.)

To the extent that a balance relation holds it excludes, or
filters, freely propagating sound waves and inertia–gravity
waves from the repertoire of possible fluid motions. The system
then has too few degrees of freedom to describe such waves.
The reduction in degrees of freedom is sometimes expressed by
saying that some degrees of freedom are slaved to others, or
that the possible states of the dynamical system have been
confined to a so-called slow manifold within phase space,
having lower dimensionality than the full phase space in which
it is embedded. In this language we say that, in particular, the
velocity field is slaved to the mass field. A more careful state-
ment would be that in the actual flow the velocity field evolves
as if it were slaved to the mass field, to some useful approxi-
mation at least. This is like saying that the swinging motion of
the pendulum evolves as if the bob speed were slaved to the
spring length, to some useful approximation, even though
there is no actual mechanical linkage between the two
variables.

A standard example of a balance relation is the so-called
geostrophic relation, which is simple to write and, for typical
extratropical parameter values, qualitatively useful though
quantitatively not very accurate:

uðx; tÞ ¼ 1
f

�
� vFðx; tÞ

vy
;
vFðx; tÞ

vx
;0
�

[1]

Here f is the Coriolis parameter, F(x,t) is the geopotential
height (approximately geometric altitude times gravitational

acceleration), and position x is specified using pressure altitude
along with horizontal position x, y. Thus the horizontal spatial
derivatives v/vx and v/vy are taken at constant pressure altitude
rather than at constant geometric altitude. This qualifies as
a balance relation because of the presumption that the
hydrostatic relation also holds, as normally assumed when
using pressure as the vertical coordinate. Knowing F on each
constant-pressure (isobaric) surface is then equivalent to
knowing the mass field. So eqn [1] is, as required, a diagnostic
functional relation between the velocity field and the mass
field. The vertical derivative of eqn [1] is the so-called thermal
wind equation.

The horizontal coordinates x, y are orthogonal coordinates,
and can be taken either as local curvilinear following the Earth’s
geometry, or as local Cartesian in a tangent-plane approxima-
tion. If we also take f ¼ constant, giving us the so-called f-plane
approximation, then eqn [1] asserts not only that u is slaved to
the mass field but also that it is two-dimensionally incom-
pressible or nondivergent, with streamfunctionJ¼ F/f, so that

uðx; tÞ ¼
�
� vJ

vy
;
vJ

vx
; 0
�

[2]

The geostrophic relation [1] – or relations, plural, if one
prefers to think in components rather than vectors – can be
motivated as an approximation to the horizontal momentum
equation. The accuracy of that approximation depends on
smallness of the Rossby number, or, more precisely, on being
able to neglect relative particle (Lagrangian) accelerations
against Coriolis accelerations, i.e., against f times either side of
eqn [1]. The Rossby number Ro, measuring the advective
contribution to the relative particle acceleration against the
Coriolis acceleration, is usually of the same order as f�1 times
a typicalmagnitude of the relative vertical vorticity vv/vx� vu/vy,
the latter being equal to V2

HJ if eqn [2] holds. Here u and v are
the horizontal velocity components corresponding to x and y,
and V2

H is the horizontal Laplacian. Extratropical Rossby
numbers have orders of magnitude typically w10�1 for
synoptic-scale weather systems.

The geostrophic relation [1] was recognized long ago by
weather observers as helpful in making sense of synoptic-scale
surface pressure patterns, important for instance to ships
threatened by cyclonic storms. The history is sometimes dis-
cussed under headings such as Buys Ballot’s law and cyclonic
development theory. Buys Ballot’s law is a qualitative coun-
terpart of eqn [1] with surface pressure in place of F, ‘wind in
your back means low on your left’ – low surface pressure, that
is, at sea level in the Northern Hemisphere.

Today’s concept of balance recognizes that, like the rigid-
pendulum approximation, eqn [1] is merely the first in a hier-
archy of more accurate balance relations. Next in the hierarchy
is the relation first studied by Bert Bolin and Jule G. Charney in
the 1950s, in connection with efforts to develop practical
numerical weather prediction. The Bolin–Charney balance
relation retains eqn [2] even if f varies with latitude, but rede-
fines J to satisfy

VH$ðfVHJÞ ¼ V2
HFþ VH$ðu$VHuÞ [3]

where, as before, VH is horizontally two-dimensional. Equa-
tion [3] is an approximation to the divergence equation, the
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latter being the result of taking the horizontal divergence of the
horizontal momentum equation. The relative particle acceler-
ation is now retained. Its advective part gives rise to the last
term of eqn [3] while the remaining, v/vt part is annihilated
when the horizontal divergence is taken, because of eqn [2]. It
is only because there are no v/vt terms that the relation [3], with
[2], qualifies as a balance relation. In the special case of an
isolated circular vortex on an f-plane, eqn [3] reduces to so-
called gradient-wind balance, namely eqn [1] corrected to
include the centrifugal force of the relative motion.

Again because of eqn [2], the right-hand side of eqn [3]
can be rewritten using a Jacobian in u and v, as
V2
HF� 2vðu; vÞ=vðx; yÞ, or equivalently using a Hessian inJ so

that eqn [3] becomes

VH$ðfVHJÞ ¼ V2
HF� 2

(
v2J

vx2
v2J

vy2
�
�
v2J

vxvy

�2
)

[4]

Regarded as an equation for J when the mass field F is
given, eqn [4] is of Monge–Ampère type, with an extensive
mathematical theory. Iterative methods are needed to solve
it numerically because of the nonlinear terms on the right.
The problem of finding J becomes ill-posed for certain
mass fields F, adumbrating, for one thing, that there exist
mass fields not even approximately balanceable by any
velocity field.

A simple thought experiment to make this last point clear
would be to pile up the whole of the Earth’s atmosphere into
a narrow column above the North Pole, leaving a vacuum
elsewhere. It is obvious that no velocity field u can be in
balance with such a mass field. The free evolution at subse-
quent times, in any such thought experiment, would start with
the column collapsing downward and outward and would
involve sound and inertia–gravity waves of enormous ampli-
tude. That is, it would involve gross imbalance as well as,
almost certainly, violent wave-breaking and turbulence.

Balance relations are useful in practice only because natu-
rally occurring mass fields, or at least smoothed versions of
them are, by contrast, often balanceable to good approxima-
tion. In most such cases, eqn [4] with suitable boundary
conditions is a well-posed nonlinear elliptic boundary-value
problem in the flow domain, the primary exception being
flows near the equator, where Rossby numbers are not small
and eqn [4] may fail to be elliptic, as can be verified from the
theory of Monge–Ampère equations. Again the failure of
ellipticity adumbrates a physical reality (though not in a way
that is quantitatively precise), namely the fact that balance is
liable to break down spontaneously through ‘inertial’ and
‘symmetric’ instabilities near the equator, where f changes sign.
There are other varieties of spontaneous imbalance, some only
recently clarified. Again these are usually unimportant when
Rossby numbers are small.

Balance relations still more accurate than eqn [4] can be
defined if one is prepared to deal with more complicated sets of
equations. The next relation in the hierarchy – to be referred to
here as the generalized Bolin–Charney balance relation – is the
first in the hierarchy to yield a nonvanishing vertical compo-
nent of u. It was implicit in the pioneering work of Charney
published in 1962, in a famous paper entitled ‘Integration of
the primitive and balance equations’. It starts with eqns [2] and

[4] but then adds to the resulting u field a horizontally irrota-
tional, divergent correction field governed by another elliptic
boundary-value problem in the flow domain, a generalization
of the omega equation previously developed by Norman A.
Phillips and others. The corrected u field is an asymptotically
consistent improvement on eqn [1], for small Rossby number
Ro, in the sense that it is one order more accurate in powers of
Ro. The elliptic boundary-value problem is derived by taking
v/vt of eqn [4], then eliminating all the resulting time deriva-
tives using the exact mass conservation and vorticity equations
and the inverse Laplacian of the vorticity equation. The vorticity
equation expresses V2

HðvJ=vtÞ in terms of diagnostically
known, or knowable, quantities such as the corrected u field; so
the inverse Laplacian is needed in order to eliminate vJ/vt
from v/vt of eqn [4].

This process of eliminating all the time derivatives including
others such as vF/vt has to be possible, in principle at least, if
the end result is to be a balance relation. By definition,
a balance relation may not contain any time derivatives. When
the elimination is carried out explicitly, a rather complicated set
of integro-differential equations results, containing Green’s
function integrals whose details depend on the geometry of the
flow domain. It may therefore be notationally and computa-
tionally more convenient to work with a set of equations from
which vJ/vt, vF/vt, etc., have not been eliminated, but have
been allowed to remain as unknowns that can, in principle, be
eliminated.

Then ‘vJ/vt’, in scare-quotes, so to speak, must be regarded
not as the rate of change of J but, rather, as an auxiliary
variable – better described as a diagnostic estimate of, as
distinct from the actual, rate of change. Such a diagnostic
estimate must be expected to differ, in general, from the actual
rate of change of J, for the reasons explained under ultimate
limitations below. To avoid confusion over this point a special
notation is sometimes used, such as J1 for a diagnostic esti-
mate of vJ/vt and J2 for v

2J/vt2, and so on.
The general form of the functional dependence defining

a balance relation, assuming a balanceable mass field repre-
sented by F(x,t), can be written symbolically as

uðx; tÞ ¼ uBðx;Fð,; tÞÞ [5]

where it is again emphasized that no derivatives or integrals
with respect to tmay appear. It must be possible, in principle at
least, to eliminate them all. Time t enters solely via the second
argument F(,,t) of uB. The notation F(,,t) follows mathe-
matical convention and signifies nonlocal spatial dependence.
In other words, the second argument of uB is the whole function,
F of x, over the whole flow domain at the given instant t – not
merely the value of F at the single value of x to which the left-
hand side of eqn [5] refers. Such nonlocal functions are
sometimes called functionals.

Even the geostrophic relation [1] is enough to illustrate the
point, though it involves nothing more than the behavior of F
in the immediate neighborhood of x – more precisely, it
involves enough about that behavior to permit the evaluation
of the two horizontal derivatives. The Bolin–Charney balance
relations, generalized or not, are fully nonlocal, as is plain from
the occurrence of elliptic partial differential operators like V2

H
and, implicitly or explicitly, the associated Green’s function
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integrals. To find u from F one has to solve elliptic partial
differential equations in the flow domain, as already empha-
sized, implying for instance that the value of u at some position
x will depend on values F(x0,t) at other positions x0 well
outside the neighborhood of x.

The generalized Bolin–Charney balance relation is often
accurate enough for practical purposes, such as observational
data analysis and assimilation, and the initialization of the full
dynamics for numerical weather prediction. Of fundamental
interest, however, from a theoretical viewpoint, is the fact that
the pattern of elimination of time derivatives can be extended
systematically to higher derivatives, often resulting in balance
relations that are still more accurate.

The ideas involved seem to have been first explored by Karl
Hinkelmann in the 1960s, in connection with the initialization
problem in numerical weather prediction. They were later
approached from another direction via the normal modes of
the Laplace tidal equations, by Bennert Machenhauer, Ferdi-
nand Baer, Joseph Tribbia and others. The history then went
full circle, successively under headings such as nonlinear
normal-mode initialization, bounded-derivative method,
implicit normal-mode initialization, non-normal-mode
initialization, and non-normal-mode filtering, of which the
last four represent a rediscovery or further development of
Hinkelmann’s ideas. The ideas were first applied to accurate PV
inversion by Warwick A. Norton in the late 1980s. An inge-
nious numerical approach bypassing the explicit consideration
of diagnostic estimates like J1, J2, . or their normal-mode
counterparts was developed by Álvaro Viúdez and David G.
Dritschel in 2004.

The Ultimate Limitations

The most accurate balance relations can, in some circum-
stances, be far more accurate than values of parameters like the
Rossby number Ro might ever suggest; and this accuracy
extends over a far wider range of parameter values than could
reasonably have been expected a priori – with Ro values of
order unity, and even greater, in some cases. This astonishing
fact – first discovered by Norton through numerical experi-
ments on hemispherical shallow-water flows, for which
Ro ¼ N at the equator – cannot be deduced by inspection or
scaling analysis of the momentum equation or other forms of
the equations of motion. It involves great mathematical
subtlety, and full understanding has yet to be achieved. Nor-
ton’s most accurate results used the nonlinear normal-mode
technique.

Some insight into the ultimate limitations on accuracy has
come from classical aerodynamics. There have been many
theoretical, experimental and numerical studies of the weak
aerodynamic sound generation or Lighthill radiation named
after M. James Lighthill’s celebrated pioneering work of 1952.
This is a simple form of spontaneous imbalance. It is now
known that in continuously stratified flows there are further
forms of spontaneous imbalance, neither instability-related
nor Lighthill-like. Recent work at the cutting edge of this
problem can be found in papers by D. Muraki, R. Plougonven,
C. Snyder, A. Viúdez, and F. Zhang, appearing in the literature
from about 2007.

The spontaneous-imbalance literature gives us a clear
answer, in the negative, to a classic question posed in 1980 by
Edward N. Lorenz. Could there be an exact balance relation?
Could there be unsteady stratified, rotating flows that evolve in
such a way that freely propagating sound and inertia–gravity
waves are completely absent? More precisely, is there a slow
manifold within the full phase space that is an invariant
manifold of the full dynamics? Evolution on such a manifold
would be such that spontaneous imbalance vanishes exactly.

Lighthill’s arguments are enough to show that such a situa-
tion is overwhelmingly improbable. Though falling short of
rigorous proof, they amount to a very strong heuristic. They
show that, whatever else is going on, unsteady vortical flows are
practically certain to emit sound and inertia–gravity waves,
albeit sometimes very weakly; and practically all the flows of
interest are unsteady. This means that spontaneous imbalance
is generically nonzero, even though it may often be very close
to zero, implying in turn that the so-called ‘slow manifold’
within the full phase space must be an infinite-dimensional
chaotic layer. Though astonishingly thin in places – over a far
wider range of parameter values than could reasonably have
been expected a priori, as shown by Norton’s work, in some
cases at least – it is not a manifold, which by definition is
infinitesimally thin. Though sometimes astonishingly accurate,
the concept of balance is inherently and fundamentally
approximate. The layer is sometimes referred to, therefore, as
the slow quasimanifold.

(Arguably, a self-contradictory term like ‘fuzzy manifold’ is
best avoided. By its mathematical definition a manifold is
a perfectly sharp, smooth hypersurface and not at all fuzzy.
Thus ‘fuzzy manifold’ would add yet another item to the list of
self-contradictory terms like ‘variable solar constant’ and
‘asymmetric symmetric baroclinic instability’ – which of
course we inevitably have to live with but, perhaps, need not
add to.)

The fact that spontaneous imbalance can take a variety
forms beyond those described by Lighthill’s arguments does
not change the conclusion that the slow quasimanifold is
generically a chaotic layer. Adding to the repertoire of possible
imbalance mechanisms can only reinforce that conclusion.

Balanced Models

As already indicated, the swinging modes of the elastic
pendulum can be described in a simplified yet in some cases
accurate manner by imposing a functional relation between
bob speed and spring length, suitably chosen. This reduces the
dimensionality of the dynamical system’s phase space. Simi-
larly, vortical flows can be described by simplified balanced
models or balance models, so called. These are constructed by
imposing a balance relation from the start, thereby forcing
a true slow manifold into existence. The phase space of the
original equations – usually taken as the hydrostatic ‘primitive
equations’, so called – is collapsed into a smaller phase space,
though still infinite-dimensional.

The initialization of a balanced model requires only
a single scalar field to be specified, such as the mass field, or the
PV field in the generalized sense. This scalar field is sometimes
called the master field or master variable of the balanced
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model, to which all other dependent variables are slaved
diagnostically. The model has only one prognostic equation,
involving only one true time derivative, the rate of change of
the master variable. This rate of change is to be sharply
distinguished from the diagnostic estimates of time derivatives
that may be hidden inside the definition of the balance rela-
tion [5], such as the diagnostic estimates J1, J2,. already
mentioned.

Among those qualifying as balanced models in this stan-
dard sense are the models labeled quasigeostrophic theory,
semigeostrophic theory, and the Bolin–Charney model, also
called ‘the’ balance equations, in isentropic coordinates or in
shallow water. In the Bolin–Charney model the master variable
can equally well be taken as the mass or as the PV. Both are
advected by the same velocity field, a velocity field that satisfies
the generalized Bolin–Charney balance relation. Here, as
implicitly above, the PV is the exact (Rossby–Ertel) PV and is to
be evaluated with the same velocity field.

This property of having a single velocity field is unusual in
balanced models. Unlike the Bolin–Charney model, most
balanced models have different velocity fields to do different
jobs. Semigeostrophic theory is a well-studied example. It has
three separate velocity fields. The first advects PV and mass, the
second evaluates energy and momentum, and the third eval-
uates the PV taken as the exact, Rossby–Ertel PV. This last fact is
hidden from view in most expositions of the theory. Tradi-
tionally the model’s PV is written in terms of the second
velocity field, complicating the appearance of the formula for
PV and disguising its origin. The three velocity fields differ from
each other by fractional amounts O(Ro) where Ro is again the
Rossby number.

Semigeostrophic theory has remarkable mathematical
properties but is comparable to quasigeostrophic theory in
having O(Ro) errors relative to the primitive equations.
(Semigeostrophic theory is, however, superior in some respects,
such as describing frontogenesis, albeit inferior in others such
as describing mesoscale vortices.) The property of having more
than one velocity field – for want of a better term we may call it
‘velocity splitting’ – was thought until recently to be a property
of all balanced models with the sole exception of the Bolin–
Charney model. In all other cases, refining the accuracy was
thought to reduce greatly, but not to eliminate, disparities
between the velocity fields of a model.

All this was indeed known to be true not only of Norton’s
and similar highly accurate balanced models, but true also of
another important subclass of balanced models, namely all the
Hamiltonian models that can be constructed by Salmon’s
method. Semigeostrophic theory is one of these. In the 1980s
Rick Salmon showed how to construct balanced from unbal-
anced models in a systematic way within the Hamiltonian
framework. Within that framework one imposes a balance
relation as a constraint on the full dynamics, preserving the
symplectic geometry of phase space. The constraint is imposed
not only on dynamical trajectories but also on functional
variations about those trajectories. The resulting balanced
models are thus guaranteed to inherit Hamiltonian structure, as
well as being accurate to the same formal order in Ro as the
imposed balance relation.

A reason for using the Hamiltonian framework is the
control it provides over conservation principles. The

framework, properly applied, guarantees that the balanced
model will exactly conserve mass, momentum, and energy as
well as PV materially. However, there is a fundamental tension
between balance relations and conservation principles. A
balanced model tries to mimic vortical flows that in reality
produce Lighthill radiation or other forms of spontaneous
imbalance. The spontaneous imbalance must give rise to wave-
induced fluxes of energy and momentum, none of which can
be exactly described by the balanced model.

So if one forces a true slow manifold into existence by
imposing a balance relation, while insisting that all
conservation relations still hold, something has to give way.
What gives way, as it turns out, is the concept of a unique
velocity field. All balanced models constructed by Salmon’s
method exhibit velocity splitting, usually into two separate
velocity fields but sometimes, as with semigeostrophic
theory, into three. For more detail see the Further
Reading list.

Even if we abandon energy and momentum conserva-
tion, there remains a possible tension between balance and
local mass conservation. This is because spontaneous
imbalance involves local adjustments in the mass field. Until
recently, it was thought that this explained why the most
accurate non-Hamiltonian balanced models then known
still exhibit velocity splitting in one form or another, albeit
by tiny amounts. So it was a further surprise when, thanks to
recent work by A.R. Mohebalhojeh, a class of highly accurate
balanced models was discovered that are entirely free of
velocity splitting, yet as far as we know pay no systematic
price in terms of accuracy, within shallow-water dynamics at
least. Each such model has a unique velocity field, just as
does the far-less-accurate Bolin–Charney model. The unique
velocity field advects and evaluates the exact PV, advects
mass, and evaluates energy and momentum which latter,
however, are not conserved. One consequence, though, is
that the models possess exact Casimir invariants (see
Dynamical Meteorology: Potential Vorticity).

These new balanced models have been collectively
designated hyperbalance equations. In order to write these
equations one has to use functional derivatives, which are
nonlocal, as well as ordinary partial derivatives. This may
perhaps explain why the hyperbalance equations were not
discovered long ago.

It is still an open question whether there will prove to be
a tradeoff between accuracy and local mass conservation if we
go beyond shallow-water dynamics, toward multi-layer models
and continuously stratified reality.

Note on Terminology

The reader is warned that the terms geostrophic balance and
its shorthand form, geostrophy, are sometimes used in the
literature to mean balance more accurate than geostrophic,
i.e., more accurate than eqn [1]. A common example is the
self-contradictory phrase ‘geostrophic adjustment’, which
refers to the mutual adjustment of the mass and velocity fields
to approach balance or to stay close to balance – and balance,
of course, in real fluid flow, nearly always means not geos-
trophy, eqn [1], but a more accurate balance within the
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generic class [5]. The example of a circular vortex adjusting
toward ageostrophic, gradient-wind balance while radiating
inertia–gravity waves is enough to illustrate the point. As
already mentioned, gradient-wind balance is the particular
case of Bolin–Charney balance that applies to a steady circular
vortex, equivalent to eqn [1] plus a correction term repre-
senting relative centrifugal force. Thus by implication we have
another piece of self-contradictory terminology, ‘ageostrophic
geostrophic adjustment’, unfortunately well established.

It may also be noted that the term adjustment is itself used
in two distinct senses that are sometimes confused with each
other. The first is Rossby or initial-condition adjustment, the
mutual adjustment of the mass and velocity fields toward
balance that occurs primarily because a system is started in an
unbalanced state. The second is spontaneous adjustment, the
continual mutual adjustment of the mass and velocity fields
to stay close to balance in unsteady vortical flow, even after
initial conditions are forgotten. This second process is far
more subtle and sets the ultimate limitations of the balance
concept itself, the degree of fuzziness of the slow
quasimanifold.

For all the foregoing reasons, some authors are beginning to
avoid the term geostrophic adjustment, instead using the terms
Rossby adjustment or initial-condition adjustment in the first
case, and spontaneous adjustment or spontaneous imbalance
in the second.

The term semigeostrophic theory is used here in its standard
sense, referring to the balanced model originally introduced by
Brian J. Hoskins in 1975. The reader is warned that in Salmon’s
papers the same term, semigeostrophic theory, is used in
a different, more generic sense.

See also: Data Assimilation and Predictability: Data
Assimilation. Dynamical Meteorology: Coriolis Force;
Hamiltonian Dynamics; Inertial Instability; Kelvin Waves;
Kelvin–Helmholtz Instability; Lagrangian Dynamics; Potential
Vorticity; Primitive Equations; Quasigeostrophic Theory;
Symmetric Stability; Wave Mean-Flow Interaction. Gravity
Waves: Buoyancy and Buoyancy Waves: Theory. Mountain
Meteorology: Lee Waves and Mountain Waves.
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