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Synopsis

The significance of the potential vorticity (PV) for atmosphere–ocean dynamics was first explored by Carl-Gustaf Rossby in
the 1930s. Reviewed here are its key properties including invertibility, material invariance, and the impermeability theorem –

the last two suggesting mixability along stratification surfaces. These properties easily explain the once-mysterious antifriction
or ‘negative viscosity’ of strongly nonlinear atmosphere–ocean eddy fields, outside the scope of linear theory and homo-
geneous turbulence theory. Invertibility implies that eddy fluxes of momentum are intimately related to isentropic eddy
fluxes of PV, including those due to strongly nonlinear disturbances, as summarized by the quasigeostrophic Taylor identity.

The Fundamental Definition

The idea of the potential vorticity (PV) as a material invariant
central to stratified, rotating fluid dynamics was first introduced
and explored by Carl-Gustaf Rossby in the 1930s. Material
invariance means constancy on a fluid particle. The PV, a scalar
field, will be denoted here by P and can be defined in several
ways, as shown shortly. We have

DP=Dt ¼ 0 [1]

for dissipationless flow, where D/Dt is the material derivative.
For such flow we also have material invariance of the potential
temperature q,

Dq=Dt ¼ 0: [2]

Rossby’s idea, as it originally emerged from his papers of
1936, 1938, and 1940, was to introduce a vorticity-like quantity
that is related to the vertical component of vorticity in the same
way that potential temperature is related to temperature. In his
1938 and 1940papers he recognized,moreover, that ‘vertical’ can
more accurately be replaced by ‘normal to stratification surfaces,’
i.e., in theatmosphere, normal to isentropicor constant-q surfaces.

Equivalent to this is the idea, clearly emerging onpage 252 of
the 1938 paper, that P is exactly proportional to the absolute
Kelvin circulation CG, eqn [7] below, around an infinitesimally
small closed material contour G lying on an isentropic surface.
The exact material-invariance property [1] is then obvious from
Kelvin’s circulation theorem, as generalized by V. Bjerknes, since
[2] ensures that thematerial contourG remains on the isentropic
surface.

Rossby’s idea is today recognized as having central and far-
reaching importance for understanding the dynamical
behavior not only of planetary atmospheres and oceans but also
of the radiative interiors of solar-type stars. It is especially
important for understanding balanced flow and thence a vast
range of basic dynamical processes, such as Rossby-wave prop-
agation and breaking and its many consequences including, in
the Earth’s atmosphere, global-scale teleconnections, antifric-
tional phenomena such as jet stream self-sharpening, and the
genesis of cyclones, anticyclones and storm tracks, answering the
child’s age-old question of where the wind comes from.

The relation PfCG provides the simplest and most funda-
mental way to define P exactly, not only for continuously

stratified systems but also for single-layer shallow-water or
‘equivalent barotropic’models and their multilayer extensions.
For continuous stratification, today’s standard definition of P
chooses the constant of proportionality to be dq, the potential-
temperature increment between a pair of neighboring isen-
tropic surfaces (see Figure 1), divided by the mass of the small
material fluid element lying between those surfaces and having
perimeter G. Mass conservation is assumed throughout this
article.

For the single-layer and multilayer models, one needs only
to replace the pair of isentropic surfaces by layer boundaries.
Then for finite layer thickness the proportionality constant can
be chosen as simply the reciprocal of the mass of the material
element, or of its volume when the usual incompressible-flow
assumption is made. Then from Stokes’ theorem P becomes
absolute vorticity divided by layer thickness, the formula first
presented in Rossby’s 1936 paper.

For continuous stratification, Rossby derived an approxi-
mate formula adequate for use with synoptic-scale observa-
tional data. With the foregoing choice of proportionality
constant, Rossby’s formula is

Pzg
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� vu
vy

�
q

þ f
�����vqvp

���� [3]

where g is the gravitational acceleration, p is pressure, and f is
the Coriolis parameter, a function of latitude. To obtain [3]
from the exact relation PfCG one must assume that the mass
and pressure fields are related hydrostatically and that the
slopes of isentropic surfaces are small in comparison with
unity. In practice these conditions usually hold to more than

Figure 1 Sketch showing the material mass element defined by a small
isentropic contour G and a pair of neighboring isentropic (stratification)
surfaces with potential temperatures q and q þ dq. The exact PV is the
mass-normalized Kelvin circulation around G, in the limit of an infinites-
imally small element (see text). In a layer model, the two surfaces are
taken instead as the layer boundaries.
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sufficient accuracy. The horizontal coordinates x, y in [3] are
local Cartesian coordinates in a tangent-plane representation,
with corresponding horizontal velocity components u, v rela-
tive to the Earth. The formula converts to spherical or other
coordinates in the same way as the ordinary vertical vorticity.

However, as Rossby pointed out, the quantity within braces
is not the ordinary vertical vorticity. The subscript q is crucial. It
signifies that the horizontal differentiations of the horizontal
velocity components are to be carried out with q held constant.
That is, one stays on a single isentropic surface, just as one does
when calculating CG. Rossby explains this point very clearly on,
for instance, page 253 of his 1938 paper. The resulting quan-
tity, bearing a superficial resemblance to the ordinary vertical
vorticity, can more aptly be called Rossby’s isentropic vorticity.
Within the approximations involved in [3], this isentropic
vorticity is the same as the component of the vorticity vector
normal to the isentropic surface. It can differ substantially from
the vertical vorticity.

Such differences are commonplace in balanced flows with
strong vertical shear (vu/vz, vv/vz), where z is geometric altitude
or pressure altitude. That is, they are commonplace in balanced
flows with high baroclinicity. Examples include tropopause jet
streams. Baroclinicitymeans tiltingof isentropic surfaces relative
to isobaric surfaces, usually the cross-stream tilting that balances
the vertical shear as indicated by the so-called thermal wind
equation. A natural measure of baroclinicity is 1/Ri, where
Ri ¼ N2=ðvjuj=vzÞ2, the gradient Richardson number, where
N2¼ gq�1vq/vz, the square of the buoyancy frequency. The shear
and cross-stream tilting effects were shown to make substantial
contributions to the right-hand side of [3] in, for instance, the
1950s work of R. J. Reed, F. Sanders, and E. F. Danielsen on
observational data describing tropopause fronts and jet streams,
in which air of stratospheric origin was recognized by its rela-
tively high values of P. Slopes are geometrically small but Ri
values low enough for the subscript q to be important in [3].

Equations [1]–[3] provide a remarkably succinct description
of how dissipationless processes affect the component of
absolute vorticity normal to an isentropic surface. There are two
distinct effects. The first is that the normal component of
absolute vorticity increases through vortex stretching if the
isentropic surfaces move apart. This is a generalization of
angular momentum conservation, i.e., a generalization of the
ballerina effect or ice-skater’s spin. The second is that the normal
component of absolute vorticity is preserved if the isentropic
surfaces do nothing but tilt away from the horizontal.

The generalized ballerina effect often contributes to the
spin-up of cyclonic vortices, such as the small vortex over the
Balkans in Figure 2. The colors mark air with different esti-
mated values of P, on the q ¼ 320 K isentropic surface at
geometric altitudes around 10 km, with the warmest colors
marking the highest P values. The vortex over the Balkans has a
core of high-P air that has undergone stretching, while moving
equatorward out of the stratosphere. The cyclonic, i.e., coun-
terclockwise, rotation of the core relative to the surrounding air
shows up as a tendency of the surrounding colored filaments to
be wound up into spirals.

The estimated isentropic distribution of P shown in Figure 2
was derived from an initial coarse-grain estimate from opera-
tional weather-forecasting analyses together with an assump-
tion that material invariance, [1] with [2], holds to sufficient
accuracy over 4 days. A highly accurate tracer advection tech-
nique, contour advection, was used. It was first introduced into
the atmospheric-science literature by W. A Norton, R. A. Plumb
and D. W. Waugh following work of N. J. Zabusky and D. G.
Dritschel. The pattern thus revealed, reminiscent of cream on
coffee, illustrates the typical advective effects of the layerwise-
two-dimensional flow characteristic of mesoscale and larger-
scale flow regimes heavily constrained by stable stratification.
Such regimes can often be considered to be balanced flows,
whose isentropic distributions of P contain nearly all the

Figure 2 Estimated isentropic distribution of the (Rossby–Ertel) PV on the 320 K isentropic surface on 14 May 1992 at 1200 UT (Greenwich mean time),
derived from observations as explained in the text. Over Europe the 320 K surface lies near jetliner cruising altitudes zw10 km. The estimate used data
from the operational weather-prediction analyses of the European Centre for Medium Range Weather Forecasts (ECMWF). Values from 1 PVU upwards are
colored rainbow-wise from dark blue to red, with contour interval 1 PVU, where 1 PVU ¼ 10�6 m2 s�1 K kg�1. Courtesy W. A. Norton (personal
communication); further details in Appenzeller et al. (1996). Figure 15(b) on p. 1450 of that paper checks that the wind field does, as expected from PV
inversion, exhibit the usual tropopause jet structure around the periphery of the large high-PV region on the left. See PV Mixability and Strong Jets below.
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information about the dynamics. This will be made precise in
the section on PV Inversion.

Ertel’s Formula

For continuous stratification it is a simple exercise in vector
calculus to show, via Stokes’ theorem, that Rossby’s funda-
mental relation PfCG is exactly equivalent to

P ¼ r�1za$Vq [4]

when the constant of proportionality is chosen as before. Here
r is the mass density, V is the three-dimensional gradient
operator, and za is the absolute vorticity vector, the curl of the
three-dimensional velocity field viewed in an inertial frame. In
the Earth’s rotating frame, za is the three-dimensional relative
vorticity added vectorially to twice the Earth’s angular velocity
vector U. The formula [4] was first published in 1942 by Hans
Ertel, who had visited Rossby at MIT in 1937. The formula has
attracted much attention in the mathematical fluid-dynamics
community and has been generalized in various ways.

In strongly stratified flows like that of Figure 2 we have
N2 [4jUj2. Also, the small-slope approximation is valid,
making Vq nearly vertical. In [4], the scalar multiplication by
Vq picks out f, the latitude-dependent vertical component of
2U, to good approximation. This is the fundamental reason
why f and its latitudinal variation often suffice to capture the
main effects of the Earth’s rotation U, including the so-called
beta effect.

Under the small-slope and hydrostatic approximations,
r�1

��Vqj is approximately equal to gjvq=vpj in [3]. The con-
tributions to [3] and [4] from 2U therefore agree. It is
straightforward to show that the remaining contributions also
agree in these circumstances provided that, for consistency with
the hydrostatic approximation, the vertical component of
velocity is neglected when taking the curl of the relative velocity
field to form the relative vorticity.

The small-slope and hydrostatic approximations are usually
so good that [3] and [4] give practically indistinguishable results
when evaluated from typical meteorological datasets, and from
the output of numerical weather-forecasting models. So [3] and
[4] are often treated as equivalent for practical purposes, both
being called ‘exact’ when distinguishing them from the much
less accurate formulae for the material invariants possessed by
certain approximate balancedmodels, such as quasigeostrophic
theory and semigeostrophic theory. Theirmaterial invariants are
also called potential vorticities but are defined by formulae that
differ substantially from [3] and [4], for instance [15]. Unlike [3]
and [4] these formulae cannot be considered quantitatively
accurate. The PV in its quantitatively accurate sense will be
referred to as the Rossby–Ertel potential vorticity or simply, for
brevity, the PV, whether defined by [3] or [4] or by any other
formula accurately equivalent to PfCG.

To check that [4] is accurately, indeed exactly, equivalent to
PfCG and materially invariant for dissipationless flow, we
note first that [4] can be rewritten exactly as

P ¼ s�1za$n [5]

where s ¼ r=jVqj, and n ¼ Vq=jVqj, the upward-directed unit
normal to the isentropic surface S , say, on which P is being

evaluated. The scalarfields, a stratification-relatedmass density,
is a strictly positive quantity. Under the small-slope approxi-
mation it is the mass density in isentropic coordinates. With the
definition just given, sdq is exactly the mass per unit area
between neighboring isentropic surfaces, such as those sketched
in Figure 1, whose q values differ by dq. Thus if dA is the area
element of integration on the surface S , then sdAdq is exactly
the mass element of integration.

For dissipationless flow we have [2] as well as mass
conservation, hence Z Z

S ðGÞ
sdA ¼ constant [6]

where S ðGÞ denotes any simply connected portion of S
enclosed by a material contour G. Here G can, but need not, be
small. By definition its Kelvin circulation is

CG ¼
I
G

ua$dx ¼ constant [7]

for dissipationless flow, where ua is the three-dimensional
velocity field in the inertial frame. From Stokes’ theorem and
[5] we have exactly

CG ¼
Z Z
S ðGÞ

za$ndA ¼
Z Z
S ðGÞ

PsdA [8]

and if, as before, we now take G to be small –more precisely, if
we take the greatest diameter of G to be arbitrarily small in
comparison with all lengthscales of the flow – then P is simply
[8] divided by [6]. This verifies not only the material invariance
of P but also the equivalence of [4] and [5] to PfCG for small
G, with the choice of proportionality constant made earlier.

For completeness we sketch the alternative derivation given
by Ertel, written using the three-dimensional velocity field u
relative to the rotating frame. One takes the scalar product ofVq
with the frictionless three-dimensional vorticity equation, the
curl of the nonhydrostatic equation for Du/Dt, and then makes
use of VðDq=DtÞ ¼ 0 from [2]. Note that D=Dt ¼ v=vt þ u$V
and that the three-dimensional gradient operator V acts on u as
well as on q. The baroclinic term in the vorticity equation,
proportional toVp� Vr, is annihilated when the scalar product
with Vq is taken, because the thermodynamics says that q is
a function of p and r alone (the standard approximation to
this function implying that qfT=pk; kz2=7z0:286, with
temperature Tfp=r). The result is a conservation relation in the
general sense of the term, in ‘flux form,’

v

vt
ðrPÞ þ V$ðruPÞ ¼ 0 [9]

with P defined by [4] or [5]. Putting this together with the
corresponding equation

vr

vt
þ V$ðruÞ ¼ 0 [10]

expressing mass conservation, we immediately obtain eqn [1]
for dissipationless flow.

A corollary of material invariance and mass conservation is
the existence of so-called Casimir invariants. They are important
in theories that make explicit the Hamiltonian mathematical
structure of the dissipationless dynamics, and in associated
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theorems on instability and on wave–mean interaction. Note
first that we have not only constancy of [8] but alsoZ Z

S ðGÞ
41ðPÞ sdA ¼ constant [11]

where 41(P) is an arbitrary function and G is again arbitrary.
This is because each mass element has a single value of P and
therefore a single value of 41(P). Extending S ðGÞ to span the
whole fluid domain and integrating over all surfaces S , with
arbitrary q-weighting, we obtainZZZ

42ðP; qÞsdAdq ¼ constant [12]

with 42(P,q) another arbitrary function, where the integral is
taken over the whole fluid domain. These domain integrals
[12] are the Casimir invariants. They are exactly constant for
any dissipationless flow whatever.

PV Units and the Extratropical Tropopause

Rossby’s original choice of proportionality constant differed
from today’s standard choice. As noted in his 1940 paper,
Rossby chose the physical dimensions of P to be the same as
those of ordinary vorticity, namely (time)�1 drawing on the
analogy with potential temperature. (See text between his eqns
[11] and [13].) However, the usual practice today is to tolerate
the slightly looser analogy and different physical units implied
by [3]–[5], for the sake of having simpler formulae. The standard
PV unit used today is 10�6 m2 s�1 K kg�1, abbreviated PVU.

By a strange accident, cross-sections of the atmosphere show
P values typically around 2 PVU at the extratropical tropopause,
and this has proved extremely useful as a way of defining the
tropopause outside a tropical band of latitudes, say outside
�20� or so. More precisely, the extratropical tropopause is often
marked by steep isentropic gradients of P with values ranging
from about 1 to 4 PVU. The shape of the 2-PVU contour in
Figure 2, dividing dark blue from light blue, gives nomore than
a slight hint of the complicated three-dimensional shape of the
tropopause, where it intersects the 320 K isentropic surface at
the instant shown. The instantaneous tropopause is a highly
convoluted surface with an overall poleward–downward slope,
so that the white areas in Figure 2 are in the troposphere and the
main colored areas are in the stratosphere.

Airborne measuring instruments flown along the 320 K
surface and crossing from white through dark blue into light
blue and warmer-colored areas would see changes in chemical
composition characteristic of the transition from tropospheric
to stratospheric air. Indeed, such changes have often been
observed in association with finer-scale, filamentary structures
of the kind seen in the figure, beginning with the pioneering
work of D. W. Waugh and R. A. Plumb in the early 1990s using
chemical data from NASA’s ER-2 aircraft.

The usefulness of the PV as an extratropical tropopause
marker is an accident because, for one thing, it depends on the
choice of q as the thermodynamical material invariant that
satisfies [2] and appears in the definitions [3]–[5]. There is no
fundamental reason for that choice. Everything in the dynamical
theory works just as well with other thermodynamical material

invariants such as the specific entropy, or indeed any other
smooth, monotonic function of q. The PV thus redefined is
sometimes called amodified PV. Isentropic distributions of P like
that in Figure 2 remain the same after such modification, apart
from changes to the units and to the numerical values assigned
to each color. Notice, however, that the normalizing factors for
those changes depend on q and are therefore different on each
isentropic surface.

PV Inversion and Generalized PV

Any flow that can be considered balanced whether geostroph-
ically or at higher accuracy (see Dynamical Meteorology:
Balanced Flow) satisfies what is now called the invertibility
principle for PV. The principle says that, to an accuracy limited
only by the accuracy of the balance relation, one can capture all
the dynamical information about the flow by specifying only
the following:

1. the mass under each isentropic surface S ,
2. the isentropic distributions of P, on all the surfaces S , and
3. the distributions of q on the lower boundary and on the

upper boundary if present.

By implication there exists, then, a nonlocal diagnostic
operator, the PV inversion operator associated with the given
balance relation. Its input is the foregoing information at some
instant. Its output is the remaining dynamical information at
the same instant including the p, r, T, and u fields. Very often u
is dominated by its horizontal component, the weaker vertical
component nevertheless being dynamically significant thanks
to its role in the generalized ballerina effect, and in moving and
tilting isentropic surfaces.

The idea of PV inversion is implicit in textbook descriptions
of, for instance, the Rossby-wave mechanism. The idea is used at
the point in the argument where the horizontal component of u
is deduced diagnostically from the disturbance PV field associ-
ated with PV-contour undulations. Sometimes the term induced
velocity, borrowed from aerodynamics, is used. In this context it
means the velocity field deduced from the PV field by inversion.

What are PV inversion operators like, qualitatively? A partial
answer is that calculating the horizontal component of u is like
calculating the electric field E induced by a certain electric-
charge distribution, and then taking the horizontal component
of E and rotating it counterclockwise through a right angle, for
instance from northward to westward. The electric charges
correspond to isentropic anomalies in P and boundary
anomalies in q. Thus, for instance, the positive isentropic
anomaly in P over the Balkans in Figure 2 corresponds to
a positive electric charge, inducing an outward-pointing E field
and hence a cyclonic or counterclockwise velocity field around
it. This provides us with a way of saying what the terms vortex,
cyclone, and anticyclone really mean. For instance the vortex
over the Balkans, an upper-air cyclone, is nothing but a positive
isentropic anomaly in P together with its induced velocity field.

Because of the balance relation, these velocity fields are
accompanied by p, r, and T fields that to a first approximation
satisfy the thermal wind equation; for instance the upper-air
cyclone has a warm T anomaly above it and a cold T anomaly
beneath. Conversely, an upper-air anticyclone has a cold T

378 Dynamical Meteorology j Potential Vorticity

Encyclopedia of Atmospheric Sciences, Second Edition, 2015, 375–383

Author's personal copy



anomaly above, a fact crucial to lower-stratospheric polar ozone
chemistry. Flow through such a cold anomaly cannot advect the
negative PV anomaly beneath, but can give rise to fast cloud
formation and accelerated chemical processing.

Similar statements about vortices apply to the distributions
of q at, say, the lower boundary surface. (In practical terms,
taking friction into account, this translates to ‘just above the
planetary boundary layer.’) A surface cyclone or heat low is
nothing but a positive, i.e., warm, lower boundary anomaly in
q together with its induced velocity field, and conversely for
a surface anticyclone.

Severe cyclonic storms in the extratropical atmosphere often
arise from the vertical alignment of warm lower boundary
anomalies in q and positive upper-air isentropic anomalies in P
like the large cyclonic anomaly seen on the left of Figure 2.
Helped by such vertical alignment, the induced velocities can
add up to give storm-force winds. Furthermore, the develop-
ment of such a situation by upper-air positive-P advection
along with near-surface warm advection, and poleward
upgliding along sloping isentropes, induces large-scale upward
motion. Such upward motion is described by any sufficiently
accurate PV inversion operator. Alternatively, it can be
computed via the so-called omega equation. The large-scale
upward motion may trigger latent heat release, creating or
intensifying isentropic anomalies in P. Especially in moist air
over the extratropical oceans, the upshot can be the sudden
explosive marine cyclogenesis feared and respected by sailors:
“Three days from land a great tempest arose.”

It hardly needs saying that, whenever the invertibility
principle holds to sufficient accuracy, it gives us a vastly
simplified conceptual view of the dynamical evolution. The
dynamical system is completely specified by a PV inversion
operator together with the remarkably simple prognostic
equations [1] and [2] or their diabatic, frictional generaliza-
tions. Those equations provide us with the simplest way to
cope with the bedrock mathematical difficulty of fluid
dynamics, the advective nonlinearity.

Since P and q are scalar fields, keeping track of them using
pictures like Figure 2, actual or mental, is a far simpler task than
keeping track of the evolving p, r, T, and u fields in three
dimensions, including the nonlocal effects mediated by the p
field under the constraints imposed by the balance relation.
The nonlocal effects are all encapsulated in the PV inversion
operator. The foregoing points, implicit in Rossby’s work, were
articulated with increasing clarity by Jule G. Charney and
Aleksandr M. Obukhov in the late 1940s and by Ernst
Kleinschmidt in the early 1950s. They allow us to make sense
not only of Rossby-wave propagation, cyclogenesis, and anti-
cyclogenesis but also, for instance, of aerodynamical ideas like
vortex rollup – the idea that a strong isentropic anomaly in PV
can roll ‘itself’ up into a nearly circular vortex, as in the Balkans
example of Figure 2.

In 1966 Francis P. Bretherton pointed out that an even
greater conceptual simplification is possible. The single prog-
nostic equation [1] is enough to determine the dissipationless
evolution by itself, provided that we consider the PV field
P(x, t) to contain delta-function contributions at the upper and
lower boundaries, with strengths determined by the q distri-
butions at the boundaries. Ignoring frictional boundary-layer
phenomena, we may relate this to the idea that isentropic

surfaces S intersecting the lower boundary, say, can be imag-
ined to continue along the boundary in an infinitesimally thin
layer of infinite jVqj hence infinite P. In the electrostatic
analogy, surface q distributions correspond to surface charge
distributions – electric charge per unit area rather than per unit
volume. The PV field with surface q distributions included may
be called the generalized PV field, containing all the information
in the second and third numbered items above.

Some Illustrations

The idea of PV inversion can be illustrated in a simple way by
considering the theoretical limiting case of infinite sound speed
and infinite stable stratification. The buoyancy frequencyN and
gradient Richardson number both tend to infinity. The isen-
tropic surfaces S become rigid and horizontal – horizontal in
the billiard-table sense, with the sum of the gravitational and
centrifugal potentials constant. The balance relation degener-
ates to a statement that the flow on each S is strictly horizontal
and strictly incompressible. Then, in the rotating frame, we
have u ¼ bz � VHj for some streamfunction j, where bz is
a unit vertical vector, and, from [5],

P ¼ s�1�f þ V2
Hj

�
[13]

with s now strictly constant. Here VH is the two-dimensional
horizontal gradient operator and V2

H the corresponding Lap-
lacian, so that V2

Hj is the relative vorticity. We may regard [13]
as a Poisson equation to be solved for j when P is given.
Solving it is a well-defined, and well-behaved, operation, given
suitable boundary conditions such that the P field on each S
satisfies [8] with G taken as the horizontal domain boundary;
see also [16]. Symbolically, in the rotating frame,

u ¼ bz � VHj with j ¼ V�2
H ðsP � f Þ [14]

expressing PV invertibility in the limiting case. The PV inversion
problem now resembles an electrostatics problem in two,
rather than three, dimensions. The charge distribution corre-
sponds to s times the PV anomaly (P � s�1f), with �j in the
role of the electric potential. In this limiting case, as in general,
PV inversion is a diagnostic, nonlocal operation.

Notice that our limiting case is degenerate in another sense
as well. The altitude z now enters the problem only as
a parameter. There is no derivative v/vz anywhere in the
problem, either in the horizontal Laplacian or in the material
derivativeD=Dt ¼ v=vt þ u$V in [1], with u strictly horizontal.
Not only is the flow layerwise-two-dimensional, but the layers
are completely decoupled from each other. For the validity of
this picture there is, therefore, an implicit restriction on
magnitudes of v/vz, i.e., an implicit restriction on the smallness
of vertical scales in the limit, with the further implication that
the picture cannot be uniformly valid for all time.

More realistically, when N and Ri are large but finite, and
when f is finite, v/vz reappears in the problem and brings back
vertical coupling. The flow remains layerwise-two-dimensional
in the sense that notional ‘PV particles’ move along each
isentropic surface S – see Impermeability Theorem below – but
the surfaces S themselves are no longer quite horizontal, nor
quite rigid. Aside from the vertical advection that moves and
tilts the surfaces S , all the vertical coupling comes from the PV
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inversion operator. The two-dimensional inverse Laplacian
in [14] is replaced by an inverse elliptic operator that qualita-
tively resembles a three-dimensional inverse Laplacian when
a stretched vertical coordinate Nz/f is used; thus the vertical
coupling for flows of horizontal scale L is effective over a height
scale of the order of the corresponding Rossby deformation
height fL/N.

For finite N and Ri there are tradeoffs between accuracy and
simplicity. The mathematically simplest though least accurate
three-dimensional PV inversion operator is that arising in
the standard Charney–Obukhov quasigeostrophic theory, an
asymptotic theory whose approximations are valid away from
the equator, for large Ri and small Rossby number RowRi�1=2,
where Ro can be defined as f�1

0 times a typical relative-vorticity
value with f0 a constant representative value of the Coriolis
parameter f. The price paid for the mathematical simplicity
includes resorting to a strange double subterfuge in which, first,
we retain only the purely horizontal velocity field u ¼ bz � VHj

even though vertical motion is now significant and, second,
abandon P, the exact, Rossby–Ertel PV, which is advected by
vertical as well as by horizontal velocities, in favor of a so-called
quasigeostrophic potential vorticity, q, advected by the horizontal
velocity only. For background r ¼ r0(z) and N¼ N0(z) we may
define

q ¼ f þ V2
Hjþ 1

r0

v

vz

�
r0f

2
0

N2
0

vj

vz

�
[15]

noting the agreement with [13] in the limit N0 / N, apart
from the factor s�1. Omission of that factor is part of the
subterfuge, making vertical advection implicit. The generalized
ballerina effect is now hidden inside the last term of [15].
The isobaric anomalies in T and q, measuring small displace-
ments and tilting of the isentropic surfaces S , are proportional
to vj/vz. For instance if q0(z) denotes the background potential
temperature, so that N2

0ðzÞ ¼ gd ln q0=dz, then we have
q� q0ðzÞ ¼ g�1q0f0vj=vz within the approximations of the
theory.

The most efficient way of describing the relation between
q and P is to say that VHq, the local horizontal or isobaric
(constant-z) gradient of q, is proportional to ðVHPÞq, i.e.,
proportional to the corresponding isentropic gradient of
P. Isobaric eddy fluxes of q are correspondingly related to
isentropic eddy fluxes of P.

From [15] we see that the electrostatic analogy holds,
qualitatively, in three dimensions, with stretched vertical
coordinate N0z/f0. The electric-charge distribution is q � f. This
can include Bretherton delta functions. If we impose vj/vz ¼ 0
at the lower boundary, for instance, when inverting [15] to get
j from q, then a delta-function contribution to the last term of
[15] can accommodate finite vj/vz just above the boundary,
hence a nonvanishing q anomaly there.

Three-dimensional inversions far more accurate than qua-
sigeostrophic are now being used in weather forecasting as
well as in research and development. The most accurate
possible PV inversion operators are mathematically compli-
cated because accurate balance relations u ¼ uB are mathe-
matically complicated, as discussed in the article on balanced
flow. This difficulty can, however, be sidestepped using the
forecast-initialization components of today’s numerical data-
assimilation technology.

The Quasi-westward Ratchet

The single time derivative acting on the generalized PV field
in [1] and [2] exposes another fundamental point about
the balanced dynamics. This point is well hidden within the
equations expressing Newton’s laws of motion in terms of the
p, r, T, and u fields. The single time derivative shows for
instance why all the different types of Rossby waves, including
internal and topographic (surface q) Rossby waves, exhibit one-
way phase propagation. The Earth’s rotation imposes a hand-
edness or chirality upon the wave dynamics as seen in the
rotating frame. In this regard the Rossby-wave mechanism is
quite unlike classical wave mechanisms, where the governing
equations always contain even numbers of time derivatives,
making the propagation time-reversible.

On the global or planetary scale, P has an isentropic
gradient whose sign, in a coarse-grain view, is usually set by the
sign of the planetary-scale gradient in f. From the Antarctic to
the Arctic, f and P go from large negative to large positive
values. Planetary-scale Rossby waves feel this gradient. As
a result, they exhibit westward, never eastward, phase propa-
gation relative to the mean flow. And in all cases of Rossby
waves, planetary-scale or smaller, the sense of the relative
phase propagation is quasi-westward – meaning as if westward –

defined to be such that high or predominantly high generalized
PV values are on the right. Thus, for instance, topographic
Rossby waves, dependent on a surface gradient in the Breth-
erton delta function, propagate with warm surface air on the
right where ‘warm’ is measured by q.

The same chirality accounts for the ratchet-like, one-way
character of related processes such as the self-sharpening of jet
streams and the irreversible transport of angular momentum
due to the dissipation of Rossby waves in the stratosphere,
producing a persistent westward or retrograde mean force there,
hence the gyroscopic pumping – always poleward and never equa-
torward – that drives the global-scale stratospheric circulations
and chemical transports usually discussed under the headings
Brewer–Dobson circulation and wave-driven circulation.

(If a zonally symmetric mean force keeps pushing air
westward, then Coriolis effects keep turning it poleward –

a persistent mechanical pumping action. The best-known
example is Ekman pumping, the special case in which the
zonal force happens to be frictional, as in classic spindown.)

PV Mixability and Strong Jets

One of the mechanisms involved in the dissipation of Rossby
waves is wave breaking, the irreversible deformation of
otherwise-wavy PV contours. This definition of breaking is
motivated by fundamental results in wave–mean interaction
theory, namely the so-called nonacceleration theorems, which
are corollaries of Kelvin’s circulation theorem applied to
initially zonal material contours.

Rossby wave breaking gives rise to the irreversible mixing of
PV along the isentropic surfaces S . This can happen on
a spectacularly large scale in some cases, as in the wintertime
stratospheric surf zone commonly observed. Such mixing is
a strongly nonlinear phenomenon and, because it tends to be
highly inhomogeneous spatially, with surf zones adjacent to

380 Dynamical Meteorology j Potential Vorticity

Encyclopedia of Atmospheric Sciences, Second Edition, 2015, 375–383

Author's personal copy



wavy PV contours, it often lies outside the scope of homoge-
neous turbulence (spectral cascade) theory. The idea of PV
mixing does, however, explain the ubiquity of such quintes-
sentially inhomogeneous phenomena as the strong jet streams
observed in the atmosphere and oceans. The jet that flows
along the poleward border of the stratospheric surf zone is just
one example among many.

A strong jet, in the sense at hand, is nothing but a narrow
core of concentrated isentropic gradients of P together with its
induced velocity fields. The properties of PV inversion opera-
tors ensure that these induced velocity fields are always jet-like,
flowing quasi-eastward, i.e., flowing with high PV on the left.
For instance, in the westernmost part of Figure 2 a strong jet
flows southward over the Atlantic, with its core at the edge of
the large colored region corresponding to high-PV stratospheric
air. The jet continues around the periphery of that region past
Spain toward the British Isles. Maximum wind speeds reach
values of the order of 50 m s�1 in this case.

Once such a jet structure has formed it has a tendency to be
self-sustaining or self-sharpening. The concentrated core
gradients form a waveguide or duct for Rossby waves whose
dispersion properties make them liable to breaking on one or
both flanks of the jet, while leaving the core intact. PV mixing
adjacent to the core weakens the surrounding PV gradients and
strengthens the core’s PV gradients, automatically sharpening
or resharpening the core and the jet velocity profile. Mixing
across the core is strongly inhibited, thanks to the combined
effects of the shear and the core’s Rossby-wave quasi-elasticity.

The inhibition applies to chemical tracers as well as to PV.
Countless observations of chemical tracers verify this, going
back to Edwin F. Danielsen’s classic 1968 aircraft observations
of nuclear bomb-test debris showing distinct isotopic signa-
tures to either side of a strong tropopause jet core. So a strong
jet core can be identified with what is sometimes called a PV
barrier but more aptly an eddy-transport barrier, recognizing
the complementary role of the shear in the jet flanks first noted
in the doctoral thesis work of M. N. Juckes. These phenomena
clearly have a role in keeping the stratosphere and troposphere
chemically distinct and the tropopause sharp.

The idea that the PV is mixable along the isentropic surfaces
S merits closer examination. In using it we are setting up an
analogy with chemical mixing. How far can we push that
analogy? Despite its evident power to handle some kinds of
strongly nonlinear phenomena, including strong-jet formation,
the analogy is not always apt because the PV is not a passive
tracer. Self-organizing, dynamically active phenomena like
vortex rollup, and vortex merging, illustrate that isentropic
anomalies in P can, in some situations, transport themselves
against mean isentropic gradients of P, contrary to the mixing
idea. Furthermore, there are rotational force fields that can
systematically widen the range of P values on a surface S . If we
think of isentropic anomalies in P as electric-charge anomalies,
this is like pair production. Such rotational force fields include
those due to dissipating gravity waves.

Nevertheless, the mixing idea seems to work well in situa-
tions such as Rossby wave breaking in which a large-scale flow
advects smaller-scale PV anomalies, in a manner that becomes
increasingly passive-tracer-like as the large-scale strain or
deformation fields shrink the advected scales. Once this
advective scale-shrinkage takes hold, it goes exponentially fast

on the timescale of the large-scale straining. The passive-tracer-
like behavior is possible because PV inversion is relatively
insensitive to small-scale PV anomalies.

Scenarios of PV transport along, rather than across, the
moving surfaces S can remain valid even when eqns [1] and
[2] are replaced by their diabatic and frictional generalizations.
More precisely, P can be regarded as the amount per unit mass
of a notional chemical substance consisting of charged particles
that are permanently trapped on the moving surfaces S . Net
charge is conserved: one can have pair production and mutual
annihilation, but no net creation or destruction except where
a surface S intersects a boundary. In this picture the surfaces S
are impermeable to the PV particles even when they are
permeable to air undergoing diabatic heating or cooling –

a behavior very different from that of a real chemical. The
corresponding mathematical statement is sometimes called the
impermeability theorem for PV.

The theorem is simple to prove, along with the conservation
of net charge, by repeating the derivation that led to the flux-
form conservation eqn [9] but with arbitrary diabatic heating
and external forces included. This reveals first that the resulting
equation is still of the form vðrPÞ=vt þ V$ðÞ ¼ 0, i.e., that it is
still a conservation equation in flux form – there are no source
and sink terms – and second that the flux itself, the vector field
acted on by the three-dimensional divergence operator, natu-
rally takes a form such that it always represents zero transport
acrossmoving surfaces S . Thus the surfacesS behave as if they
were impermeable to the charged particles of PV substance.

Of course one can always make the surfaces S look
permeable by adding an identically nondivergent vector field to
the flux. But that is arguably a needless complication, for the
reasons discussed in the paper by C. S. Bretherton and C. Schär
in the Further Reading list.

It is important to remember when using the analogy with
chemicals that P is the amount of PV substance or PV charge
per unit mass. It is the chemical mixing ratio, so called, to
which P is analogous, not the amount per unit volume.
Clearly, an inert chemical lacking sources or sinks can be
diluted or concentrated. An extreme example is the formation
of tropical cyclones, in which, in terms of the foregoing
picture, PV charge is advected inwards along the surfaces S
and greatly concentrated near the center of the cyclone.
Although such processes cannot create net PV charge, they can
and do create strong isentropic anomalies in P, whose inver-
sion may yield hurricane-force winds.

The Inhomogeneity of PV Mixing

Why does PV mixing have such a strong propensity to be
inhomogeneous? Part of the answer has already been indicated,
namely the self-organizing properties of strong jets as eddy-
transport barriers. One can add that the inhomogeneity
reflects not only the dispersion properties of jet-guided Rossby
waves, but also, arguably, a generic positive-feedback mecha-
nism sometimes called the ‘PV Phillips effect.’ It can operate at
the earlier stages of self-organization. Wherever large-scale
isentropic gradients of P are weakened by PV mixing, Rossby-
wave quasi-elasticity is weakened, facilitating further mixing.
On the borders of such a region, the gradients are strengthened
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andmixing is inhibited. If shear and Rossby-waveguide ducting
become important at the borders, then mixing is inhibited still
further as eddy-transport barriers form.

There is yet another reason to expect PV mixing to be
inhomogeneous. It is especially clear in the case of surfaces S
that span the globe and are therefore topologically spherical, as
in the stratosphere and upper troposphere (and also in the
solar interior). If we extend the surface integrals in eqn [8] to
the entire sphere, there is no enclosing contour G and we haveZ Z

S

PsdA ¼ 0 [16]

stating that on each topologically spherical S there are equal
numbers of positively and negatively charged PV particles,
regardless of whether the flow is forced, dissipating, or dis-
sipationless. This is consistent with the charge-conservation
and impermeability theorems. The integral relation [16]
imposes a severe constraint on the possible evolution of the
isentropic distributions of PV on each such S , hence on the
possible evolution of the flow. That constraint is enough in
itself to make uniform or homogeneous mixing highly
improbable, as the following argument shows.

Consider a hypothetical situation in which the mixing is
uniform, as if the distribution of P on a surface S were subject
to a uniform horizontal diffusivity. Under the constraint [16], in
whichs is strictly positive, theperfectlymixed state towardwhich
the distribution of P would then relax can only be a state in
which P ¼ 0 everywhere on S . But invertibility says that the
entire surfaceS would thenhave to be at rest relative to the stars,
apart from oscillations representing imbalance such as sound
waves and inertia–gravity waves. In a rapidly rotating system like
the Earth’s atmosphere, with strong Coriolis effects and Rossby
numbers typically small, such a state of rest would be over-
whelmingly improbable. It would require a redistribution of
angular momentum that would not only have an implausibly
largemagnitude but would also need to take a very special form.

The Taylor Identity

The hypothetical situation just sketched is an implausible
extreme case, but it illustrates another fundamental fact.
Almost any isentropic redistribution of PV, or other modifica-
tion to the PV field, will be accompanied by changes in the
distribution of angular momentum.

The PVmixing associated with breaking Rossby waves is just
one piece of what might be called a wave–turbulence jigsaw in
which wave propagation has just as crucial a role as wave
breaking, through wave-induced transport of angular momen-
tum such as that giving rise, as already mentioned, to the
gyroscopic pumping of the Brewer–Dobson and other global-
scale mean circulations. A by-product is that eddy fluxes of
momentum often look antifrictional, exhibiting the so-called
‘negative viscosity’ that was once regarded as a great enigma
of atmospheric science, but is now recognized as a natural
consequence of the interplay between wave generation, wave
propagation, and wave breaking.

The way in which the jigsaw fits together is reflected
in a central result from quasigeostrophic theory, which for

historical reasons might be called the Taylor–Charney–Stern–
Bretherton–Eady–Green identity. It is traceable back to
a seminal 1915 paper by G. I. Taylor that applies to the limiting
case [14]. For brevity it will here be called the Taylor identity. It
interrelates the eddy fluxes of momentum and PV. The stan-
dard form of the identity is for disturbances to a zonal-mean
state. Using overbars and primes to denote the zonal mean
and fluctuations about it, which can have arbitrary amplitude,
we readily find from [15] that

v0q0 ¼ 1
r0

�
vF
vy

þ vG
vz

�
[17]

where

ðF;GÞ ¼ r0

�
� u0v0;

f0g
N2

0q0
v0q0

�
[18]

the so-called Eliassen–Palm (EP) flux or effective stress
(minus the effective eddy momentum flux). This quantifies
the Rossby-wave-induced momentum transport. Here
ðu0; v0Þ ¼ ð�vj0=vy; vj0=vxÞ, the eastward and northward
components of bz � VHj

0, and gq0 ¼ q0f0vj0=vz. The vertical
component of the EP flux is the same as the pressure-
fluctuation-induced form stress defined in oceanography
(sometimes less aptly called ‘form drag’), the mean zonal force
per unit area across an undulating stratification surface, whose
vertical displacement is �gq0=N2

0q0. The Taylor identity has
special importance not least because of its validity for strongly
nonlinear flows, such as breaking Rossby waves. No small-
amplitude assumption is needed.

For instance, in order to create the wintertime stratospheric
surf zone, through PV mixing producing downgradient, i.e.,
negative, v 0q0, there needs to be a convergence of Rossby-wave
activity from outside the surf zone, making the right-hand side
of [17] negative as well, and reducing the angular momentum
of the surf zone. An exquisitely precise illustration of how
everything fits together is provided by the Stewartson–Warn–
Warn theory of nonlinear Rossby-wave critical layers. These
are narrow surf zones and well illustrate the strong inhomo-
geneity of the wave–turbulence jigsaw and the typical way in
which [17] is satisfied.

Further Reading

Appenzeller, C., Davies, H.C., Norton, W.A., 1996. Fragmentation of stratospheric
intrusions. Journal of Geophysical Research 101, 1435–1456. (This paper, the
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satellite water-vapor imagery.)

Arbogast, P., Maynard, K., Crepin, F., 2008. Ertel potential vorticity inversion using
a digital filter initialization method. Quarterly Journal of the Royal Meteorological
Society 134, 1287–1296. (This work, to which Dr P. Berrisford kindly drew
my attention, uses the weather-forecasting technology at Météo France.
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