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ABSTRACT

This paper considers stratified and shallow water non-Hamiltonian potential-vorticity-based balanced
models (PBMs). These are constructed using the exact (Rossby or Rossby–Ertel) potential vorticity (PV).
The most accurate known PBMs are those studied by McIntyre and Norton and by Mohebalhojeh and
Dritschel. It is proved that, despite their astonishing accuracy, these PBMs all fail to conserve mass locally.
Specifically, they exhibit velocity splitting in the sense of having two velocity fields, v and vm, the first to
advect PV and the second to advect mass. The difference v � vm is nonzero in general, even if tiny. Unlike
the different velocity splitting found in all Hamiltonian balanced models, the present splitting can be healed.
The result is a previously unknown class of balanced models, here called “hyperbalance equations,” whose
formal orders of accuracy can be made as high as those of any other PBM. The hyperbalance equations use
a single velocity field v to advect mass as well as to advect and evaluate the exact PV.

1. Introduction

A longstanding question in the theory of non-
Hamiltonian balanced models based on potential vor-
ticity (PV) inversion has been whether they can be ex-
pected to conserve mass locally, that is, pointwise, at
the highest possible accuracies, where accuracy is
judged by comparison with primitive equation evolu-
tion. McIntyre and Norton (2000, hereafter MN00) con-
jectured that the answer might be no, for reasons con-
nected with the subtleties of spontaneous imbalance
and adjustment. Here we establish that the answer is
definitely no for all of the most accurate known models,

but definitely yes for a new class of accurate models, the
hyperbalance equations, to be introduced here, when
accuracy means formal order of accuracy. The question
of whether the answer is yes for the actual numerical
accuracy is addressed in Mohebalhojeh and McIntyre
(2007, hereafter Part II). Formal order of accuracy is
related to the number of diagnostic estimates of time
derivatives retained in the system of equations defining
the model’s balance relation. It is also related to, but
not the same as, the asymptotic order of accuracy when
the Rossby and Froude numbers go to zero, or Rich-
ardson number to infinity; see the discussion in Mohe-
balhojeh and Dritschel (2001), hereafter MD01.

The term balanced model is used here in its standard
generic sense, that is, to mean a model from which
inertia–gravity waves have been completely eliminated,
whether by asymptotic procedures or by other means.
The most accurate known models use other means
(high-order formal truncation, sections 4 and 5 below).
In all cases, the initial conditions for such a model re-
quire specification of just one scalar field or “master
variable,” for instance the PV, to which all the other
fields are “slaved” by the model’s balance relation and
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from which they can therefore be deduced at any in-
stant by the diagnostic process called inversion.1 This
definition of balanced model excludes, for instance, the
model denoted BEM by Allen et al. (1990) and Allen
(1991), the initial conditions for which require specifi-
cation of two scalar fields, and for which PV inversion
is therefore not possible. It similarly excludes the so-
called modified balance equation derived by Charney
(Charney 1962; Moura 1976), which Gent and McWil-
liams (1983a) call the global balance equation.

A variety of balanced models have been described in
the literature to date, some more accurate than others.
We may distinguish two particular approaches to their
formulation. The two approaches lead to models that
will be labeled “locally mass conserving” and “PV-
based,” respectively. The formulation of locally mass-
conserving balanced models (MBMs) begins, quite
naturally, with the idea that exact local mass conserva-
tion is so fundamental that it is to be incorporated from
the start (e.g., Allen et al. 1990). The formulation of
PV-based balanced models (PBMs) begins by contrast
with the idea that, because primitive equation evolution
has an exact material invariant, the PV, for frictionless,
adiabatic flow—accurately invertible in a surprising
range of circumstances—it might be useful to make the
balanced model represent PV evolution as accurately as
possible. This leads to the idea of trying to incorporate
exact material PV conservation from the start, by for-
mulating the model in such a way that its velocity field
v, obtained by PV inversion, both advects and evaluates
the PV (e.g., Bleck 1974; Norton 1988; Lynch 1989;
Warn et al. 1995; Mundt et al. 1997; MN00).

Despite certain difficulties with the PBM concept
[Mohebalhojeh 2002; Eq. (5.6) below], it is PBMs
rather than MBMs that have so far proved the most
accurate. This was demonstrated by the work of Norton

(1988) and MN00, in which astonishingly accurate PV
inversion and balanced-model evolution was discov-
ered in the case of a complicated, chaotic shallow-water
flow with Froude numbers exceeding 0.7 and Rossby
numbers ranging up to �, in a hemispheric model. This
was a major surprise, contradicting the expectation that
balance should be an asymptotic property dependent
on the smallness of such parameters. For further dis-
cussion and examples, see MN00 and MD01, also McIn-
tyre (2001).

This paper systematically explores the extent to
which the two approaches can be reconciled and made
exactly consistent without losing accuracy. The plan of
the paper is as follows. Sections 2 and 3 characterize the
complete subset of all PBMs for which the reconcilia-
tion is possible. The defining property is Eq. (3.2). A
known example is the Bolin–Charney model or so-
called balance equations, in their shallow water or isen-
tropic-coordinate versions. Another is the linear bal-
ance model discussed for instance by Whitaker (1993).
Sections 4 and 5 analyze the generic structure of the
most accurate known PBMs, those of MN00 and MD01.
Section 4 proves that this structure—which can produce
the astonishing accuracy already referred to—precludes
the reconciliation. In other words, each such PBM,
however accurate it may be, exhibits velocity splitting
in the sense that it has two distinct velocity fields, one
to advect PV and one to advect mass. That splitting is
the source of the difficulties noted in Mohebalhojeh
(2002) and in Eq. (5.6) below.

Section 6 shows how to heal the splitting and over-
come the difficulties by constructing locally mass con-
serving PBMs that have arbitrarily high formal orders
of accuracy. The governing equations of such models
can be regarded as generalizations of the linear-balance
and Bolin–Charney balance equations; we therefore re-
fer to them as hyperbalance equations. Section 7 pre-
sents some brief concluding remarks, discussing
MN00’s conjecture and preparing for the numerical ac-
curacy tests in Part II.

2. ϒ-models: The simplest example

We need to analyze the general question of whether
there exist accurate PBMs that are also locally mass
conserving. We continue to restrict attention to fric-
tionless, adiabatic flow. What would such a balanced
model be like? It would have to be equivalent to a
modified primitive equation system in which the spon-
taneous-adjustment emission of inertia–gravity waves
(e.g., Lighthill 1952; Errico 1982; Warn and Ménard
1986; Ford 1994a,b,c; Warn 1997; Ford et al. 2000, 2002;
Saujani and Shepherd 2002; Vanneste and Yavneh

1 To say more carefully what “one scalar field” means, one must
distinguish between shallow water models and continuously strati-
fied models. For a shallow water model (with a given total mass or
mean depth), a balanced model in the standard sense can take as
initial conditions the PV field alone, a single function of horizon-
tal position, as compared with the three such functions required as
initial conditions by the shallow water primitive equations. For a
continuously stratified model (with a given mass under each isen-
tropic surface), a balanced model in the standard sense can take as
initial conditions a single infinity of functions of horizontal posi-
tion, namely, all the isentropic distributions of PV in the interior
together with the potential temperature � or “PV delta function”
at the lower and/or upper boundary (Bretherton 1966; Hoskins et
al. 1985; Schneider et al. 2003). This can be compared with, for
instance, the three interior fields, e.g., vorticity, divergence, and
temperature, required together with the surface pressure as initial
conditions for the primitive equations, in the sigma-coordinate
form used in numerical weather prediction.
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2004) is totally suppressed by applying some artificial,
layerwise-irrotational horizontal force per unit mass,
�V say, where V(x, t) is a scalar field to be specified, x
is position in the fluid domain, and t is time. Layerwise
refers either to the isentropic surfaces � � const in a
stratified system, where � is potential temperature, or
to the single horizontal layer of a shallow water system.
The � operator contains horizontal derivatives only,
taken at constant � in the stratified case. The model
must take this form because a layerwise-irrotational,
but otherwise arbitrary, force field is the most general
way of forcing the primitive equations that conserves
the PV of a fluid element and involves no mass or heat
sources.

The simplest case is that of the f-plane shallow-water
equations, which we take in their standard vorticity-
divergence form. Then only the horizontal Laplacian
ϒ � �2V of the field V(x, t) enters the analysis, via the
divergence equation. The extra term ϒ can, though
need not, be regarded as a given forcing. The equations
are

��

�t
� f� � �2� � � · �v · �v� � ϒ, �2.1a�

��

�t
� �f� � � · �v��, �2.1b�

��

�t
� �gH� � � · �v��, �2.1c�

where v is the velocity, 	 the horizontal divergence, 

the vertical vorticity, � the shallow water surface geo-
potential anomaly, � the horizontal nabla operator, f
the constant Coriolis parameter, g the acceleration due
to gravity, and H the area-mean layer depth; � is de-
fined for convenience to have zero mean. Thus g�1� is
the free surface deviation from the mean (domain-
averaged) height or layer depth H, and the PV is given
by the exact formula of Rossby (1936),

Q �
f � �

H � g�1�
. �2.2�

This is a material invariant of (2.1); that is, with D/Dt �
�/�t � v · � it satisfies

DQ�Dt � 0 �2.3�

for any ϒ(x, t).
We use the term Upsilon model or ϒ model to denote

(2.1) and its stratified counterparts. There is an infinity
of such models because of the infinity of ways of choos-
ing ϒ(x, t). Most such models will not be balanced. That
is, solutions will generically occupy a phase space as big
as the phase space of the primitive equations and will

generically exhibit spontaneous-adjustment emission.
The question of whether there are exceptional choices
of ϒ that can totally suppress spontaneous-adjustment
emission is nontrivial, at least from the standpoint of
physical intuition. Such suppression might be expected
to require nondiagnostic information, as illustrated by
the history integral appearing in the analysis of Ford et
al. (2000) expressing the arrow of time inherent in the
spontaneous wave-emission process. Nevertheless, and
perhaps counterintuitively, the suppression is possible
for a significantly wide range of choices of ϒ. Indeed,
one such choice is that leading to the well-known Bo-
lin–Charney balance equations,

ϒ�x, t� �
��

�t
� � · �v · �v� � � · �v� · �v��, �2.4�

reducing the divergence equation (2.1a) to the familiar
approximation (Bolin 1955; Charney 1955, 1962),

�2� � f� � �� · �v� · �v�� �2.5a�

� 2J�u� , ���, �2.5b�

where J is the horizontal Jacobian and v � (u, �)
with v � z � �, the nondivergent part of the hori-
zontal velocity field v in the standard Helmholtz de-
composition

v � v� � v	 �2.6a�

where v� � z � ���2� and v	 � ���2�, �2.6b�

and where z is a unit vertical vector. The notation ��2

signifies as usual that the streamfunction  and velocity
potential � satisfy �2 � 
 and �2� � 	 with suitable
boundary conditions. The purpose in approaching a
standard set of equations via the nonstandard route
(2.4) is to suggest that other exceptional choices of ϒ(x,
t) are possible, pointing toward our generalization to
the new hyperbalance equations.

To prepare for the generalization we need to recall,
in addition, why replacing (2.1a) by (2.5) gives a bal-
anced model in the standard generic sense, despite the
two time derivatives remaining in (2.1b) and (2.1c). The
reason is that (2.1b) and (2.1c) can be replaced by (2.3)
together with an elliptic partial differential equation of
the form

L� � G , �2.7�

where L denotes the modified Helmholtz operator

L � gH�2 � f 2, �2.8�

and where G is a known function of �, 
, and 	. Cru-
cially, G contains no time derivatives. That is, the Bo-
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lin–Charney model is a balanced model because it can
be described by the single prognostic equation (2.3)
together with the definition (2.2) of the PV, the Helm-
holtz decomposition (2.6), and the two diagnostic equa-
tions (2.5) and (2.7).

The diagnostic equation (2.7), a refinement of the
standard omega equation for vertical motion, can be
derived through the following procedure (e.g., Charney
1962; Whitaker 1993). Again we state it in a way that
will generalize. Indeed the following applies word-for-
word to the shallow water and continuously stratified
cases alike:

• Take �/�t of the divergence equation after substitut-
ing for ϒ. (2.9a)

• Eliminate �
/�t and �v/�t using (2.6) and the exact
vorticity equation. (2.9b)

• Eliminate ��/�t using the remaining primitive equa-
tions, that is, using those other than the vorticity and
divergence equations. (2.9c)

For the shallow water case, “the remaining primitive
equations” means only (2.1c), the exact equation of lo-
cal mass conservation. If we use (2.5a) in the first step
(2.9a), then we find for the rhs of (2.7)

G � f � · �v�� � �2� · �v��

� � · �v� · ��z � ���2��f� � � · �v����

� �z � ���2��f� � � · �v���� · �v��. �2.10�

In virtue of (2.6), this expression (2.10) is a known func-
tion of �, 
, and 	, as required. There are no time
derivatives. Observe that the functional dependence is
nonlocal because of the inverse Laplacians.

The functional form of (2.10) means that (2.5)–(2.8)
define a balance condition, or balance relation, in the
general sense of the term. That is, (2.5)–(2.8) together
define a diagnostic functional relation between the
mass field and the full velocity field; that is, between �
and v. Symbolically,

v�x, t� � vB�x; ��·��, �2.11�

where the notation �(·) denotes nonlocal functional
dependence, in x though not in t ; that is, (·) should be
read as shorthand for (·, t). As before, v � v � v� from
(2.6).

The balance relation (2.11) defined by (2.5)–(2.8)
forms a closed system of equations when combined
with just one scalar prognostic equation. This is a bal-
anced model in the standard sense. The prognostic
equation can, for instance, be the exact mass-
conservation equation, or the exact vorticity equation,
or the exact PV equation together with the definition of

PV. With any of these choices of prognostic equation
the entire system of equations is closed, and can be
time-marched starting with just one scalar field as initial
condition. If we choose the prognostic equation to be
the PV equation, including boundary delta functions
where necessary, then by construction the system is a
PBM because the exact PV is advected by the full ve-
locity field v � v � v� .

3. ϒ models in general

What other choices of ϒ give balanced models in the
standard sense? The answer can be given in a com-
pletely general way, applicable to the continuously
stratified and variable-f cases. Note first that in all cases
the modified divergence equation takes the form

��

�t
� f� � �2� � � · �v · �v� � �z � v� · �f � ϒ.

�3.1�

In a stratified system � is the Montgomery potential,
and 
 is Rossby’s isentropic vorticity z · � � v, with
derivatives taken at constant �; the PV is given by Ross-
by’s formula Q � ( f � 
)(���/�p) where p is pressure
altitude. In all cases the function � completely specifies
the mass field when use is made of the hydrostatic
equation, the equation of state, and other thermody-
namic relations as necessary (e.g., Hoskins et al. 1985,
p. 900). By considering the procedure (2.9) we may
straightforwardly show that, in order for the ϒ model to
be a balanced model, it is necessary and sufficient that
ϒ be chosen to have the functional form

ϒ�x, t� �
��

�t
� � · �v · �v�

� �z � v� · �f � R �x, t; ��·�, ��·��, �3.2�

or a form in which R has equivalent or reduced infor-
mation content regarding the instantaneous state of the
system. Here R is an arbitrary, but prescribed, function
of its arguments. Equivalent information content
means for instance that 
(·) can be replaced by v(·)
since the first of (2.6b) allows us to regard the fields v

and 
 as containing the same information about the
instantaneous state of the system. Any choice of the
form (3.2) leads to a balanced model because, apart
from the prognostic equation, the remaining equations
are all diagnostic and are collectively equivalent to a
balance relation (2.11). This is straightforward to verify
by following the procedure (2.9). For continuously
stratified systems the operator L in (2.7) becomes a
3-dimensional elliptic operator.
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Conversely, a form of R with greater information
content prevents (3.2) from defining a balanced model.
Greater information content means that R depends on
	 or v� as well as on some or all of �, 
, and v. The
procedure (2.9) then produces a version of (2.7) con-
taining time derivatives of 	, or equivalently of v� ,
again straightforward to verify from (2.9). That is, (2.7)
is no longer diagnostic.

Apart from the restriction on information content,
we may choose R {x, t ; �(·), 
(·)} in any way consistent
with reasonable boundary conditions on the force po-
tential V � ��2ϒ, for example, with zero domain area
average for periodic boundary conditions. Of course
many of the choices of R {x, t ; �(·), 
(·)} are absurd in
the sense that they cannot correspond to a usefully ac-
curate balanced model, or absurd in the sense that they
imply an explicitly time-dependent balance relation.
The latter absurdity can be eliminated by further re-
stricting R {x, t ; �(·), 
(·)} to have no explicit time de-
pendence; that is, R � R {x; �(·), 
(·)}, or forms with
equivalent information content. With ϒ chosen as in
(3.2) and with the further restriction just mentioned,
the divergence equation (3.1) takes the generic form

�2� � f� � R �x; ��·�, ��·��, �3.3�

and (2.7) the generic form

L� � G �x; ��·�, ��·�, ��·��. �3.4�

We note for later convenience that in (3.3) another
form of R with equivalent or reduced information con-
tent is2

R � R �x; Q�·�, ��·��. �3.5�

Now, if �/�t of this R is taken, we obtain terms involving
�Q/�t. So the adaptation of the procedure (2.9) then
required is to replace its third step, (2.9c), by the elimi-
nation of �Q/�t using the exact equation (2.3) along with
the elimination of ��/�t using the remaining primitive
equations. Then G in (3.4) acquires an additional argu-

ment Q(·). This will be an important stepping stone
toward the new hyperbalance equations.

We note in passing why the so-called modified bal-
ance equations of Charney (1962) and Moura (1976)
cannot define a balanced model, in the standard sense
used here. Their equations correspond to taking

R � �� · �v� · �v� � � �z � v� · �f. �3.6�

The �f term introduces into R a dependence on v� and
thus on 	, which represents greater information content
than in (3.3) or (3.5) and causes time derivatives to
appear in (3.4). As with the BEM of Allen et al. (1990)
and Allen (1991), initialization requires more than one
scalar field, and the model exhibits spurious high-
frequency solutions (Moura 1976; Gent and McWil-
liams 1983b).

Finally, in the shallow-water f-plane case we note the
explicit expressions for G arising from (3.3) and its vari-
ant (3.5). With (3.3), the procedure (2.9) delivers (3.4)
with

G � f � · �v�� � �2� · �v�� � �R ��t �3.7a�

� f � · �v�� � �2� · �v�� �
DR

D�
�

��

�t

�
DR

D�
�

��

�t
�3.7b�

� f � · �v�� � �2� · �v�� �
DR

D�
� �gH� � � · �v���

�
DR

D�
� � f� � � · �v���, �3.7c�

where D signifies variational differentiation and � the
corresponding inner product, involving integration over
the physical domain �. For instance,

DR

D�
�

��

�t
� �

�

DR �x; ��·�, ��·��
D��x
�

���x
�

�t
d2x
. �3.8�

Observe from (3.7c) that G does, indeed, have the re-
quired form, free of time derivatives.

If we start instead from (3.5) on the right of (3.3),
then the DR /D� term in (3.7c) is replaced by DR /DQ �

(v · �Q) so that (3.7c) is replaced by

G � G �x; Q�·�, ��·�, ��·�, ��·��

� f � · �v�� � �2� · �v�� �
DR

DQ
� �v · �Q�

�
DR

D�
� � f� � � · �v���. �3.9�

Once again the functional form is free of time deriva-
tives, and so once again we have a balanced model.

2 More precisely, the information content of (3.5) is equivalent
to that on the right of (3.3) in all hydrostatic models for which the
pressure p is zero at the top of the model. Otherwise, the infor-
mation content is reduced. This follows from Rossby’s PV formu-
lae together with the hydrostatic equation, the equation of state,
and other thermodynamic relations as necessary. For the shallow-
water equations, Rossby’s formula (2.2) with given Q and 
 im-
mediately gives �. For continuous stratification, Rossby’s formula
Q � ( f � 
)(���/�p) gives only the �p/�� field, which contains less
information than the � field unless p is zero at the top of the
model. In the latter case, it is a simple exercise to deduce p and �
along with the other thermodynamic fields by vertical integration
at fixed horizontal position (again see Hoskins et al. 1985, p. 900).
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4. None of the known accurate PBMs are ϒ models

We now consider the most accurate known PBMs,
those delivering the astonishing accuracies already re-
ferred to even when Froude and Rossby numbers are
not numerically small. They are all constructed by what
we will call “high-order formal truncation,” or high-
order truncation for brevity, extending the pattern of
eliminations beyond those in the procedure (2.9).

In the extended procedure one takes the divergence
equation (3.1) with ϒ � 0, together with a finite number
of time derivatives �/�t, �2/�t2, . . . , �M/�tM of that equa-
tion. For normal-mode formulations like that of MN00
one takes the fast-normal-mode equations and time de-
rivatives thereof. One then truncates the system either
by neglecting, or by otherwise getting rid of, the highest
two time derivatives of 	, or the highest fast-normal-
mode time derivatives. For M � 2 or its normal-mode
equivalent (which is to take at least one time derivative
of the fast normal-mode equations), it will prove con-
venient to call the procedure a high-order truncation.

A count of equations and variables shows that all
remaining time derivatives can then, in principle, be
eliminated without further truncation to give a closed
diagnostic system defining a balance relation, in the
sense of (2.11). That is, the system is closed in the sense
that, given a balanceable mass field �, one can solve for
everything else, including v. Symbolically, v � vB{x;
�(·)} as before. This, in turn, gives us a balanced model
whose single prognostic equation can again be taken as
(2.3), making it into a PBM. As remarked in MN00 and
MD01, the technique of high-order truncation was first
proposed by K. H. Hinkelmann in the context of fore-
cast initialization; the normal-mode counterpart was
later introduced by B. Machenhauer, F. Baer, J. Trib-
bia, and others.

In practice, one does not carry out the eliminations,
but leaves the truncated equations as a closed system of
simultaneous partial differential equations in which, by
implication, the remaining time derivatives have been
replaced by auxiliary variables internal to the system.
MN00 called these auxiliary variables “diagnostic esti-
mates” of the time derivatives that they replace. To
keep clear the distinction between, for instance, a true
time derivative �	/�t and a diagnostic estimate of it we
use the special notation 	(1)

A for the diagnostic estimate.
The suffix A reminds us that 	(1)

A is an auxiliary variable
within the system. Similarly, 	(n)

A will denote a diagnos-
tic estimate of �n	/�t n.

Since the notional eliminations must make use of the
mass and vorticity equations and their time derivatives,
the system also contains auxiliary variables in the form
of diagnostic estimates �(n)

A and 
(n)
A of �n�/�t n and

�n
/�t n. In the case of the f-plane shallow-water equa-
tions, for instance, the complete system before trunca-
tion is

�A
�n� � f�A

�n�1� � �2�A
�n�1� � � · �v · �v�A

�n�1�

�n � 1, . . . , M � 1� �4.1a�

�A
�n� � �f�A

�n�1� � � · �v��A
�n�1�

�n � 1, . . . , M� �4.1b�

�A
�n� � �gH�A

�n�1� � � · �v��A
�n�1�

�n � 1, . . . , M� �4.1c�

vA
�n� � vA�

�n� � vA	
�n� � z � ���2�A

�n� � ���2�A
�n�

�n � 0, . . . , M�, �4.1d�

where for convenience we have renotated v as v(0)
A and

similarly 
, 	, v, v�, and � as 
(0)
A , 	(0)

A , v(0)
A , v(0)

A� , and
�(0)

A . The notation ( )(n)
A outside a product stands for the

Leibniz formula for the nth derivative of the product,
with diagnostic estimates substituted. Thus, (v · �v)(1)

A �
v(1)

A · �vA � vA · �v(1)
A and (v · �v)(2)

A � v(2)
A · �vA �

2v(1)
A · �v(1)

A � vA · �v(2)
A , and so on; v(n)

A is defined con-
sistently with (2.6) and (4.1d) via

vA
�n� � vA�

�n� � vA	
�n� �4.2a�

with

vA�
�n� � z � ���2�A

�n� and vA	
�n� � ���2�A

�n�.

�4.2b�

For variable f we must add, respectively, �(z �
v(n�1)

A ) · �f and �v(n�1)
A · �f to the rhs of (4.1a), (4.1b).

The simplest choice of truncation is that already men-
tioned,

� �A
�M� � 0,

�A
�M�1� � 0,

�4.3a�

�4.3b�

equivalent to neglecting the highest two time deriva-
tives altogether. The complete system of equations,
(4.1)–(4.3), forms a closed set when the mass field � is
given. Other truncations are possible in place of (4.3).
Two of them were thoroughly studied in MD01 and will
be specified in the next section.

Closedness implies that all the diagnostic estimates
are implicitly defined, by the system of equations, as
nonlocal functions of the mass field �. We may there-
fore write

�A
�n� � �A

�n��x; ��·�� �4.4�

and similarly for the other diagnostic estimates includ-
ing v � v(0)

A , which we can now identify, as before, with
the function vB{x; �(·)} of (2.11).
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The question now arises: do high-order truncations
exist, in the foregoing sense, that can be represented by
a choice of ϒ of the form (3.2) or equivalent? That is,
could any of the accurate PBMs in question be ϒ mod-
els? We now prove that the answer is no, for all such
high-order truncations including (4.3). That in turn im-
plies that every PBM based on such a truncation exhib-
its velocity splitting, in the non-Hamiltonian sense al-
ready explained.

The proof is as follows. In every such PBM—recall
that high-order means M � 2—the truncation causes
the divergence equation to be replaced by

�A
�1� � f� � �2� � � · �v · �v� � �z � v� · �f,

�4.5�

where v denotes the full velocity field v � v � v� as
before. In place of the time derivative �	/�t we have the
diagnostic estimate 	(1)

A . In an ϒ model, by contrast, the
corresponding equation is (3.1); that is,

��

�t
� f� � �2� � � · �v · �v� � �z � v� · �f � ϒ.

�4.6�

Suppose that a high-order truncation, in the foregoing
sense, can be found such that the resulting PBM is also
an ϒ model. This leads to a contradiction. For, if the
supposition were correct, then (4.5) for that PBM
would have to agree with (4.6). In other words, we
would have to choose

ϒ � ����t � �A
�1�. �4.7�

But then (3.2) and (4.7) imply that

R � ��A
�1� � � · �v · �v� � �z � v� · �f

� R �x; ��·�, ��·�, ��·��, �4.8�

since 	(1)
A � 	(1)

A {x; �(·)} as already noted, and v � v �
v� as always. The dependence on 	 violates the restric-
tion on the information content of R . Therefore, as
with (3.6), the ϒ model defined by (4.7) cannot be a
balanced model. This contradicts the original supposi-
tion.

It follows that all PBMs defined by high-order trun-
cations in the foregoing sense, including (4.3) and (5.1)–
(5.2) below, do indeed exhibit non-Hamiltonian veloc-
ity splitting.

5. The ��, ��, and �� truncations

Besides (4.3), two other types of truncation will be of
special interest. They are

� �A
�M� � �� · �v · �v�A

�M�1� � �z � vA
�M�1�� · �f,

�A
�M�1� � �� · �v · �v�A

�M� � �z � vA
�M�� · �f

�5.1a�

�5.1b�

and

� �A
�M� � 0,

�A
�M�1� � �� · �v · �v�A

�M� � �z � vA
�M�� · �f.

�5.2a�

�5.2b�

The truncations (5.2) were shown in MD01 to be pre-
cisely equivalent, in the f-plane case, to normal-mode
truncations of various orders. The expressions on the
right of (5.1) and (5.2b) were motivated by the idea of
neglecting high time derivatives not of the divergence
but of the ageostrophic vorticity f �1� where � � f
 �
�2�, the first two terms on the right of (3.1) (with ϒ �
0). We therefore refer to (5.1) as �� truncations of vari-
ous orders and, similarly, (5.2) as 	� truncations and
(4.3) as 		 truncations. Of course, “order” has no ab-
solute meaning since we are dealing with formal rather
than asymptotic truncations. For consistency with
MN00 and MD01, we define the orders respectively as
M � 1 for the ��, M for the 	�, and M � 1 for the 		
truncations. Notice that exactly the right number of
diagnostic estimates is left free, in each case, to give
closedness, as has been checked by the well-behaved
numerical computations reported in MN00 and MD01.

Special cases of note include the case M � 1 of (5.1)
(zeroth-order ��), which is the linear balance model
discussed, for example, by Whitaker (1993). This is the
same as the Bolin–Charney model except that R � 0 in
(3.3) and (3.7c). The case M � 0 of (5.2) (zeroth-order
	�) corresponds to the model introduced by Bleck
(1974) and sometimes called the geostrophic PV (GPV)
model (e.g., Mundt et al. 1997). The case M � 1 of (5.2)
(first-order 	�) corresponds to the “slow equations” of
Lynch (1989).

To prepare for the hyperbalance equations, let us
slightly extend the notational conventions below (4.1)
so that

v � vA � vA
�0�, �5.3�

and similarly for vA and vA� and the other variables.
As already pointed out for the 		 truncations, solving
systems of the kind in question for a given mass field �
determines all other variables, diagnostically, as nonlocal
functions of �. In particular, we have v � vA�x; �(·)� �
vB�x; �(·)�—defining a balance relation—as well as

v� � vA��x; ��·��, v	 � vA	�x; ��·��, and

�A
�1� � �A

�1��x; ��·��, �5.4�

which will be referred to in the next section. For want
of a better name, the balance relations v � vA � vB

resulting from the 		, ��, and 	� truncations will be
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called “plain” 		, ��, and 	� balance relations of vari-
ous orders.

To convert any plain balance relation into a PBM we
need to append to (4.1) not only the prognostic equa-
tion (2.3) and a pair of truncation equations but also an
approximation to (2.2), the definition of Q, in a sense to
be explained shortly. Now the diagnostic part of such a
system defines a PV inversion operator. That is, given
the Q field, the extended system can be solved for all
the other variables, thus defining them as nonlocal
functions of Q. We make this explicit by writing in place
of (5.4)

v� � vAI��x; Q�·��, v	 � vAI	�x; Q�·��, and

�AI
�1� � �AI

�1��x; Q�·��, �5.5�

and similarly for 	(n)
AI , 
(n)

AI , and all the other diagnostic
estimates, including, now, �(n)

AI {x; Q(·)}. The suffix AI
means that these are auxiliary variables, for the pur-
poses of the next section, all computed by PV inversion.
PV inversion operators of this kind will be called plain
		, ��, and 	� inversion operators, and the correspond-
ing PBMs will be called plain-		, -��, and -	� PBMs.
The sense in which (2.2) is approximated is to replace
it by

f � �AI � �Q � qAI��H � g�1�AI�, �5.6�

where qAI is another auxiliary quantity in the form of a
constant to be solved for as part of the inversion pro-
cedure. It is numerically small, the more so the higher
the accuracy. However, for the plain PV inversion op-
erators and PBMs under consideration, qAI � 0 generi-
cally if we exclude unphysical model behavior such as H
changing with time (violating global as well as local
mass conservation) or the Kelvin circulation changing
in the far field or around the boundary of a finite do-
main. This follows from the arguments given in Mohe-
balhojeh (2002)—noting that for given mass and circu-
lation we are free to specify Q(x) only up to an additive
constant—together with the fact that the plain PBMs
are not locally mass conserving, as was proved at the
end of section 4. The small quantity qAI represents a
slight inconsistency that section 4 has shown to be un-
avoidable in the plain PBM dynamics, since under the
model evolution qAI is free to vary in time, even though
it is constant in space, implying that DQ/Dt and D(Q �
qAI)/Dt cannot both be exactly zero. These difficulties
are, however, overcome by the hyperbalance equations,
as will now be shown.

6. The hyperbalance equations

Most of the following applies quite generally; that is,
it applies to the shallow-water and stratified and to the
constant-f and variable-f cases. Suppose we have aux-

iliary diagnostic estimates in the sense just established
for the plain balance relations and plain PV inversion
operators. In particular, the diagnostic estimates of
�	/�t and of v and v� are available as nonlocal functions
either of � or of Q. The idea leading to the hyperbal-
ance equations is to use these diagnostic estimates, ei-
ther (5.4) or the plain PV inversions (5.5), to improve
the accuracy of the divergence equation without violat-
ing the rules about information content established in
section 3. The plain PV inversions are preferable for
reasons of numerical well-conditionedness. We there-
fore use (5.5) in

R � ��AI
�1� � � · ��vAI� � vAI	� · ��vAI� � vAI	��

� �z � �vAI� � vAI	�� · �f. �6.1�

The accuracy of the divergence equation �2� � f
 � R
will now be comparable to the accuracy of whichever
plain PV inversion is used to generate (5.5). The func-
tional form of R is now

R � R �x; Q�·�� �6.2�

instead of (3.5). Dropping the dependence on 
(·) has
reduced the information content of R relative to that in
(3.5). Therefore, the form (6.2) is permissible as a spe-
cial case of (3.5), within the procedure (2.9) after modi-
fication as described below (3.5). The reduced informa-
tion content implies in turn that (3.9) holds with its last
term deleted. The deletion represents an immediate
gain in computational economy.

Moreover, this is not the only such gain arising from
the choice (6.1). The point will become clear after stat-
ing the resulting hyperbalance equations, which from
here on will be referred to as the hyperbalance equa-
tions based on (5.5). They consist of the prognostic
equation (2.3), that is, �Q/�t � �v · �Q, together with
the following set of diagnostic equations:

(i) (6.1) defining R {x; Q(·)};
(ii) (4.1) with subscripts A replaced by subscripts AI;

thus, e.g., v(n)
AI� � ���2	(n)

AI ;
(iii) either: one of the three pairs of equations defining

the truncations that close the system, (4.3) for 		,
(5.1) for ��, or (5.2) for 	�, with suffixes A re-
placed by suffixes AI, or: a pair of equations de-
fining some other truncation;

(iv) L	 � G where G is defined by (3.9), or its stratified
counterpart, with the term in DR /D
 deleted and
with 
 � 
AI and � � �AI;

(v) v � vAI � ���2	 where 	 satisfies (iv); this de-
fines the velocity field v that enters into (3.9) and
advects the PV and mass fields;

(vi) the exact definition of PV in the relevant form, for
example, Q � ( f � 
AI)/(H � g�1�AI) for the shal-
low water equations.
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This completes the definition of the hyperbalance
equations or, rather, the simplest possible class of such
equations. They will be solved numerically in Part II.
The reader might wonder what has happened to the
divergence equation �2� � f
 � R ; the answer is that
it is already hidden within (ii) above, as the first (n � 1)
equation of (4.1a) with suffix A replaced by suffix
AI and with the �f term restored if necessary, as
noted below (4.2). The fact that we do not have to take
v � vAI and append a separate divergence equation
represents a further gain in computational economy.

For brevity, when using one of the three truncations
(4.3), (5.1), (5.2) we will refer to the corresponding lo-
cally mass conserving PBMs defined by the hyperbal-
ance equations as the hyper-		, hyper-��, or hyper-	�
PBMs of various orders, as the case may be, as distinct
from the corresponding plain PBMs defined in sections
4 and 5.

The definition (v) of the advecting velocity is crucial
to the local-mass-conserving property of the hyperbal-
ance equations. It may be contrasted with the advecting
velocity of a plain PBM:

v � vAI� � ���2�AI �plain�, �6.3�

as distinct from

v � vAI� � ���2� �hyperbalance�. �6.4�

As already implied, the plain PBM is the dynamical
system defined by (6.3) together with �Q/�t � �v · �Q,
(ii) and (iii) above, and (5.6) in place of (vi) above. In
the hyperbalance case the velocity field (6.4) advects
the mass field as well as the PV. That is, the local mass-
conservation equation, (2.1c) in the shallow water case,
is satisfied exactly when v is given by (6.4). To verify
this, one reverses the procedure (2.9) and uses exact PV
conservation �Q/�t � �v · �Q to derive from (i)–(vi) an
equation equivalent to operating on (2.1c) with an el-
liptic operator L̃ , which, in the shallow water case, is
given by L̃ � gH�2 � fHQ. With reasonable boundary
conditions this implies that (2.1c) is itself satisfied.
From (ii), only (4.1a) with n � 1 is needed.3

In the plain case the mass is advected by a slightly
different velocity field vm, which is defined only implic-
itly but which can be calculated at any time by inverting
a Poisson equation. This is the non-Hamiltonian veloc-
ity splitting phenomenon, which is also the reason why

(vi) above must be replaced by (5.6) for a plain PBM.
The fact that v � vm is nonzero, even if tiny, like qAI in
(5.6)—recall the astonishing accuracies attainable—
follows from the result proved at the end of section 4
for all plain PBMs.

Within the diagnostic part of the hyperbalance equa-
tions, (i)–(vi) above, the fact that ���2	 � ���2	AI can
be regarded as a kind of internal velocity splitting. It is
a necessary price to pay for the three desirables: exact
PV advection, exact local mass conservation, and high
accuracy.

In Part II, intercomparisons are made across all six
types of PBM explicitly defined above. These are the
hyper-		, hyper-��, hyper-	�, plain-		, plain-��, and
plain-	� PBMs of various orders. The numerical codes
for the plain PBMs, already well checked from the work
leading to MD01, are used as building blocks within the
new codes for the hyperbalance PBMs. Because of this,
we once again need to use (5.6) in place of (vi) above
then let qAI → 0, to within rounding and truncation
error, as iterations converge. The new codes have in
turn been subjected to various careful checks. One of
those checks came from the fact, easily verified from
the above, that the first-order hyper-		 PBM is the
same as the Bolin–Charney model,4 for which a sepa-
rate code was available and could be run. Another
check, perhaps the most stringent of all, came from the
direct testing of local mass conservation itself. Through
careful error control and choice of numerical algorithm,
we have been able to distinguish numerically between
the satisfaction or violation of the local mass-
conservation equation, that is, to make evident numeri-
cally the distinction between the plain and hyperbal-
ance PBMs as regards local mass conservation. That
would hardly have been possible without codes that are
not only correct but also unusually accurate.

7. Concluding remarks

Historically, the question “can PV-conserving bal-
anced models be locally mass conserving?” seems to
have been first raised by Bleck (1974), who noted that
inverting the Rossby–Ertel PV using geostrophic bal-

3 Specifically, one operates on this last equation with �/�t then
adds the result to (iv), recognizing that the terms in R cancel
because (DR /DQ) � (v · �Q) � �(DR /DQ) � (�Q/�t) in virtue of
(2.3). Finally one uses (vi) to eliminate 
AI in favor of �AI, re-
membering that �AI � � by (iv).

4 First-order hyper-		, by definition, means based on first-order
plain-		 PV inversion. With our conventions this in turn means
M � 0. The first truncation equation (4.3a) is to be read in ac-
cordance with the conventions (5.3)ff. and with suffixes A re-
placed by suffixes AI. Thus (4.3a) means that 	(0)

AI � 	AI � 0, and
(4.3b) that 	(1)

AI � 0. Since {�/�t, �2/�t2, . . . , ��/�t�} is an empty set
when M � 0, (4.1a)–(4.1c) collapse to the divergence equation
alone. It follows that the first-order hyper-		 PBM is the same as
the Bolin–Charney model.
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ance in isentropic coordinates, then advecting PV by
the resulting geostrophic velocity, leads to violation of
local mass conservation. Bleck’s model is the same as
the geostrophic PV (GPV) model of Mundt et al.
(1997). Another precedent can be found in the work of
Allen et al. (1990), especially their investigation of local
and global conservation in the slow equations of Lynch
(1989). Allen et al. showed that the velocity field that
advects PV in that model also violates local mass con-
servation.

MN00 presumed that the plain-		 and plain-normal-
mode PBMs they studied also violate local mass con-
servation, albeit by a tiny margin in the most accurate
cases, when they wrote:

It turns out to be simple to modify the second-order
direct [i.e., plain] inversion operator to conserve mass
locally [to give the Bolin–Charney model, see Corri-
gendum to MN00] but impossible, as far as we can see,
to achieve any such modification at higher order.

But MN00 saw this as a virtue:

Whether local mass conservation is desirable as a
property of balanced models is another question
again. It is strongly arguable that enforcement of ex-
act local mass conservation, and indeed energy and
momentum conservation, would be likely to degrade
the accuracy of a PV-conserving balanced model. In
primitive-equation evolution, the spontaneous-
adjustment emission of inertia–gravity waves—
involving the spontaneous mutual adjustment of the
mass and velocity fields within an unsteady, freely-
evolving vortical flow (Ford et al. 2000, and references
therein)—must modify the local mass, energy, and
momentum budgets in ways that cannot be perfectly
captured by a balanced model. Mass adjustments or
rearrangements on the timescales of fast gravity-wave
motion, in primitive-equation evolution, might be par-
tially mimicked in an accurate balanced model as in-
stantaneous mass rearrangements. By definition, such
rearrangements require infinite velocities, and so can-
not be exactly compatible with local mass conserva-
tion described by a velocity field that remains finite.
Something has to give way.

On the strength of that argument, one of us went on
to claim (McIntyre 2003), in an encyclopedia article
discussing Hamiltonian and non-Hamiltonian balanced
models [see also McIntyre (2001); Ford et al. (2002)],
that “what gives way is the concept of a unique velocity
field.” But it is now necessary to retract that claim in
the non-Hamiltonian case. The discovery of the hyper-
balance equations has shown the claim to be wrong, as
regards formal order of accuracy at least. The ability to
convert a plain PBM into the corresponding hyperbal-

ance PBM provides a way to enforce local mass con-
servation at any formal order of accuracy, while retain-
ing a unique velocity field.

However, MN00’s argument still suggests that the
plain-to-hyper conversion might degrade numerical ac-
curacy. The question of numerical accuracy is ad-
dressed in Part II. It demands exceedingly careful and
delicate numerical tests. An extensive set of such tests
is described in Part II. They were carried out for com-
plicated, chaotic vortex flows like those studied in
Dritschel et al. (1999). The results strongly indicate that
the claim, properly speaking conjecture, arising from
MN00’s argument is wrong numerically also, for the
shallow water equations at least. It appears that the
highest accuracy attainable by plain PBMs is not sig-
nificantly or systematically greater than that attainable
by hyperbalance PBMs. Why this is so remains myste-
rious. Of course numerical tests can never cover all
possible flows. Cases might yet be discovered in which
the conjecture is supported. However, the results of
Part II would appear to make this unlikely, for the
shallow-water equations, since the flows studied evolve
through a great variety of vortex configurations. It is
possible, on the other hand, that a different result will
be found when we go from shallow water to more than
one layer. That has yet to be tested and remains an
open question.

In any case, the hyperbalance equations have advan-
tages from a purely theoretical standpoint. As well as
removing the difficulties pointed out by Mohebalhojeh
(2002), related to qAI in (5.6) above, the ability to en-
force local mass conservation without significant loss of
accuracy means that we have in our possession what
had long seemed an unattainable prize—a class of
PBMs competitive with all known PBMs in terms of
accuracy, yet having an exactly conserved potential en-
strophy, as well as all the other non-Hamiltonian Ca-
simir invariants. The Casimir invariants are defined in
the same way as in the Hamiltonian case since their
conservation depends only on exact local mass conser-
vation and exact material PV conservation. For the
stratified and shallow-water equations the general Ca-
simirs take, respectively, the form of domain integrals

�
�

F �Q, �� dm and �
�

F �Q� dm �7.1�

where F(·) is an arbitrary function, � is the potential
temperature as before, and dm is the mass element. For
the shallow-water equations we have dm � (H � g�1�)
d2x and for the continuously stratified equations dm �
g�1(��p/��)d2x d�. The potential enstrophy is given by
F � Q2. These integrals are exact constants of the mo-
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tion defined by the hyperbalance equations as well as of
the motion defined by the primitive equations, as is
easily verified.

We end with a reminder that Hamiltonian velocity
splitting is a very different thing. For a thorough dis-
cussion the reader may consult McIntyre and Roul-
stone (2002, and references therein). In particular, such
velocity splitting cannot be healed but is, inescapably,
part of what “has to give way” in consequence of the
relatively severe constraints imposed by the Hamilto-
nian structure, including the property of conserving en-
ergy and absolute momentum as well as mass.

A reviewer has raised the question of what might be
called accuracy in the climate sense—of long-time be-
havior and statistics with and without local mass con-
servation. That must remain a question for future work,
indeed a very difficult question. By comparison, the
numerical experiments reported in Part II were less
ambitious, having been primarily designed to test
MN00’s conjecture on the effect of constraining local
mass adjustment upon the accuracy of plain and hyper-
balance PBMs. To this end, we paid attention only to
measuring cumulative accuracy by pointwise compari-
son of the solutions of the PBMs and primitive equa-
tions over less extensive time scales, albeit of the order
of many vortex rotations. A further question for the
future is that of the existence and uniqueness of solu-
tions of the hyperbalance equations. Here, nothing is
known beyond the numerical evidence to be presented
in Part II, which, however, does suggest that well-
behaved solutions exist and are unique for the domain
and the initial conditions considered.
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