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Abstract

Practically our entire understanding of large-scale atmosphere–ocean dynam-
ics depends on the notions of balance and potential-vorticity inversion. These
are essential, for instance, for a clear understanding of the basic Rossby-wave
propagation mechanism, or quasi-elasticity, that underlies almost every large-scale
fluid-dynamical phenomenon of meteorological and oceanographical interest, from
the global-scale transport of terrestrial greenhouse gases (and similar problems in
the solar interior) to Rossby-wave-mediated global teleconnection, baroclinic and
barotropic shear instability, vortex coherence, and vortex-core isolation. The ideas
involved in understanding balance and inversion continue to hold special fascina-
tion because of their central importance both for theory and for applications, such
as data assimilation, and the fact that complete mathematical understanding is
still elusive. The importance for applications was adumbrated by Richardson in his
pioneering study of numerical weather prediction. The importance for theory —
and the exquisite subtlety involved — was adumbrated by Poincaré in his discov-
ery of the homoclinic tangle, and by Lighthill in his discovery of the quadrupole
nature of acoustic radiation by unsteady vortical motion.

1. Introduction

I’ll begin by quoting Lewis Fry Richardson’s classic vignette — which isn’t a lim-
erick — following Jonathan Swift and Augustus De Morgan and summarizing the
nature of three-dimensional turbulence:
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Big whirls have little whirls
That feed on their velocity;
Little whirls have lesser whirls,
And so on to viscosity.

This is what buffets us, and brings us Atlantic clear air, on a walk in the beautiful
Irish hills; and Richardson was well aware of what can be learnt by casual obser-
vation of one’s surroundings together with acute thinking. I think many of us who
find fluid dynamics fascinating share a delight in such learning by observation, of
anything from the power of a great storm seen from space or felt on the ground, to
the progression of waves on an otherwise calm pond to the wavelike and vortical
phenomena hints of which we see in stirred tea or coffee. Something that thrills
me personally is that one can learn about fluid phenomena on a grand scale, up to
global scales on our home planet and even vaster scales in the Sun’s interior, from
theory together with simple kitchen-sink experiments that even a theoretician like
me can easily perform. It’s all about what J. E. Littlewood called the “impudence”
of creative thinking, or Erasmus Darwin the “damn fool experiment”, which often
fails but sometimes comes off brilliantly.

Jonathan Swift added, to the original well-known lines that inspired De Morgan
and Richardson (about fleas, as you’ll recall) the aphorism “Thus every poet, in
his kind, is bit by him that comes behind.” One might say that the same thing
happens to scientists, even though for the sake of the scientific ethic we try to
be more polite about it. I don’t think Richardson’s vignette of turbulence would
be disputed as far as it goes, despite all the sophistication of fractal modelling
and data analysis that refines the picture today. But the nature of large-scale
atmosphere–ocean turbulence is in some ways at an opposite extreme:

Big whirls meet bigger whirls,
And so it tends to go on:
By merging they grow bigger yet,
And bigger yet, and so on.

And that’s not all because, co-existing and competing with the tendencies toward
vortex merging and upscale energy cascade, there are yet more, very different
processes. One of these, as Rhines (1975) may have been the first to point out
in a turbulence-related context, is Rossby-wave propagation. The eddying flows
conspicuous in today’s satellite images of the atmosphere and ocean do indeed, very
often, look turbulent in a perfectly real sense. The flow is manifestly chaotic, and it
stirs and mixes tracers, properties often quite reasonably taken to be characteristic
of turbulence. But as soon as you have an important wave propagation mechanism
— and there are several such mechanisms in stratified rotating fluid systems —
you have a very profound difference by comparison with any classical turbulence
picture, even if lots of tracer mixing is going on at the same time and in the same
locations.

That difference is central to understanding global-scale atmospheric circula-
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tions, and hence to understanding, for instance, the whole business of chloroflu-
orocarbon (CFC) lifetimes and other problems concerning the ozone layer, the
distribution of greenhouse gases, and their role in the entire Earth System.

Why should the presence of wave propagation mechanisms make such a “pro-
found difference”, and what’s wrong with classical pictures of turbulence? The
answer is fundamental: wave propagation changes everything qualitatively. (This
is changing our ideas about the Sun’s differential rotation as well; see Gough and
McIntyre (1997).) As soon as you have a wave propagation mechanism you are li-
able to have, by that very fact, systematic correlations between fluctuating fields,
of a kind that are completely neglected in classical turbulence theories, and in most
modern turbulence theories as well. Such correlations profoundly alter the nature
of the fluctuation-induced momentum transport, and with it the global circulation
dynamics. Instead of momentum transport over the relatively short ranges char-
acterizing eddy-induced material displacements, of the order of classical “mixing
lengths”, you suddenly have a long-range momentum-transport mechanism, lim-
ited only by the distances over which waves can propagate.

You can then have phenomena like anti-frictional behaviour. This means fluctu-
ations that on average drive the system not toward, but away from, solid rotation:
upgradient momentum transport, if you will. The most conspicuous illustrations
are the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial strat-
osphere, and the celebrated laboratory experiment of Plumb and McEwan (1978),
which produces a similar phenomenon in a very simple way.

The Plumb–McEwan experiment illustrates anti-frictional behaviour in the
most clearcut and unequivocal way imaginable: stratified flow in an annulus with
symmetry axis vertical is driven away from solid — in this case zero — rotation,
entirely by fluctuations of relatively high frequency, though still low enough to
feel the internal gravity wave propagation mechanism. The fluctuations are ex-
cited simply by standing oscillations of the top or bottom boundary. The imposed
conditions are mirror-symmetric (to reflection in a vertical mirror), but that sym-
metry is spontaneously broken and a strongly sheared differential rotation arises,
first one way and then the other, reversing again and again on a much longer
timescale and displaying a characteristic spacetime signature in which shear zones
move systematically upward or downward, toward the fluctuating boundary that
is the sole means of driving the system.1

Such anti-frictional behaviour is impossible in a classical turbulence scenario.
But it is perfectly easy to understand in terms of the long-range momentum-
transport — reaching far beyond mixing-length range — associated with the gen-
eration of waves in one place and their dissipation in another. Further discussion
would be too much of a digression here; let me just say that the tendency toward
anti-frictional behaviour, and the relevance to it of wave breaking, wave dissipa-
tion, critical layers and so on, have been discussed systematically in a recent review

1The experiment has recently been repeated at Kyoto University, with results available in the
form of a movie at http://www.gfd-dennou.org/library/gfd exp/ where, in addition, “technical
tips” are given on how to run the experiment successfully.
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Figure 1. Contour-advective plot of polar-vortex air in the real lower stratosphere on 28 January
1992, from the work of Plumb et al. (1994) and D. W. Waugh (personal communication). Sim-
ilar plots emphasizing midlatitude instead of polar air show strong mixing along the isentropic
(stratification) surfaces, very like that seen in Figure 2.

(McIntyre 2000) in which special care is taken to distinguish, among other things,
critical-layer myths from critical-layer realities.

And, as already hinted, there is more to the whole story than just the QBO
and similar phenomena. Wave-induced momentum transport is now recognized as
central to the fluid dynamics of greenhouse-gas-transporting atmospheric circu-
lations, a crucial part of the Earth system, or climate system if you will. On a
rapidly rotating planet such as the Earth you can, and do, have an almost ubiq-
uitous, global-scale “gyroscopic pumping” remotely driven by wave-induced mo-
mentum transport. This is a persistent mechanical pumping action that drives, for
instance, the stratospheric Brewer–Dobson circulation. Wave-induced mean forces
push stratospheric air persistently westward, and Coriolis effects persistently turn
the air poleward. Air is pulled up in the tropics and pushed back down in higher
latitudes, against thermal radiative relaxation.

The Brewer–Dobson circulation is basic to understanding the behaviour of
the ozone layer, and its part in the Earth system and in shaping the detectable
and attributable patterns of climate change. The strength and persistence of the
circulation accounts for many aspects of greenhouse-gas behaviour, for instance
explaining why CFC lifetimes are of the order of 102 years. CFCs, which would
otherwise take millennia or more to be removed from the atmosphere, are trans-
ported by the Brewer–Dobson circulation to altitudes above about 25 km, where
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they are destroyed relatively rapidly by hard solar ultraviolet.
And in the case of the stratospheric Brewer–Dobson circulation, where our

understanding and its observational underpinning are now very secure, it is clear
that the wave propagation mechanism chiefly responsible is the Rossby-wave mech-
anism.

2. The Rossby-wave jigsaw

In view of the above, I was astonished to hear someone say earlier this week, at this
Symposium, that some proposal or paper had been rejected on the grounds that
“Rossby waves do not exist in the real atmosphere or ocean”. We actually know
quite a lot about the real Rossby waves that propagate or diffract up from the real
troposphere into the real stratosphere, where they dissipate through breaking and
infrared radiative damping and drive the real Brewer–Dobson circulation — whose
reality is itself consistent with many lines of chemical tracer evidence, all the way
from Brewer’s historic water-vapour measurements of 1949 (Norton et al. 2000) to
today’s beautiful visualizations of the tropical upwelling branch through the “tape
recorder effect”, in which the annual water-vapour cycle is imprinted on the air as
it rises at about 0.2 mm s−1 (Mote et al. 1996, 1998). The Rossby mechanism is
also central to our understanding of such phenomena as vortex coherence, baro-
tropic and baroclinic shear instabilities and their nonlinear saturation, dynamical
teleconnections, and indeed nearly all large-scale fluid motions of oceanographic
and meteorological interest (e.g. Hoskins et al. 1985).

Much of today’s knowledge of real, finite-amplitude Rossby waves began with
the theoretical work of Rossby (1936), Ertel (1942), Charney (1948) and Klein-
schmidt (1950–1) on the concept of potential vorticity (PV) and its inversion, to-
gether with observational studies of isentropic distributions of PV in the real strat-
osphere, beginning with a “damn fool experiment”, in Erasmus Darwin’s sense,
that was done in the early 1980s at the UK Meteorological Office.

Having been working on some relevant theory at the time (McIntyre 1982,
Killworth and McIntyre 1985), I became closely involved in interpreting that ex-
periment together with one of the Met Office’s young luminaries, Dr Tim Palmer
(McIntyre and Palmer 1983–5). The experiment was foolish in Erasmus’ sense
because it attempted to use satellite data to visualize isentropic distributions of
Rossby–Ertel PV in the middle stratosphere. In those days atmospheric researchers
were already well aware of the problems with satellite data retrieval, and there was
one version of the folklore saying that anyone with the temerity — the impudence
— to try to compute, from satellite data, such a highly differentiated quantity as
the Rossby–Ertel PV was, not to put too fine a point on it, a fool.

Nevertheless, the experiment defied the folklore and worked. It gave us our first
glimpses of the PV distributions at altitudes around 30 km, in the midwinter ex-
tratropical stratosphere. We likened what we saw to “a blurred view of reality seen
through... knobbly glass.” Idealized theoretical models, especially the Stewartson–
Warn–Warn (SWW) model of a Rossby-wave critical layer, helped us to make sense
of that blurred view; and we were able to do enough cross-checks, for instance from
Lagrangian trajectory computations — I remember the labour of doing some of
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Figure 2. Shallow-water model flow on the sphere, an animation of which was shown at the
Symposium, closely resembling flow in the real wintertime stratosphere at altitudes around
25 or 30 km. The map projection is conformal (polar stereographic), with the equator and
the 30◦N and 60◦N latitude circles shown dashed. The flow is visualized by passive tracer re-
leased as a compact blob into the midlatitude stratospheric surf zone, clearly showing the fast
two-dimensional turbulent mixing in that region, despite which the stratospheric polar vortex
remains almost completely isolated from its surroundings, and likewise, to a lesser extent, the
tropics (cf. Mote et al. 1998). The isolation of the (core of the) polar vortex recalls classic smoke
rings and is of great importance to stratospheric polar chemistry, including the Antarctic ozone
hole and its (so far less severe) Arctic counterpart. The isolation is due to the combined effects
of the Rossby-wave restoring mechanism and the strong shear just outside the edge. Courtesy of
Dr W. A. Norton, from whom an animated video of the model run is available (Dept of Atmo-
spheric, Oceanic, and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU,
UK). Details of the model and the model run are given in Norton (1994). The mean depth is
h0 = 4 km, giving behaviour qualitatively like that implied by Equations (20) and (25) below,
with the Rossby length L0 ∼ 2000 km in middle latitudes, and quantitatively very close to that
implied by Equations (10)–(19) below.
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them by hand — to add up to a convincing picture. The rest is history. The original
experiment was enough to to make conspicuous the highly inhomogeneous “wave–
turbulence jigsaw puzzle” that is typical of real, finite-amplitude Rossby-wave
fields. The midlatitude stratosphere at altitudes around 30 km revealed itself as a
gigantic “surf zone” driven by the “world’s largest breaking waves.” The surf zone
corresponds to the theoretician’s critical layer, whose supposed narrowness was
thus revealed as one example of a critical-layer myth.

The same gigantic surf zone and spatial inhomogeneity is now seen routinely,
and much more clearly, through clever combinations of data analysis and adaptive
Lagrangian computational techniques such as “contour advection” (Norton 1994,
Waugh and Plumb 1994), or “domain-filling trajectories” (Manney et al. 1994,
Lahoz et al. 1996), applied to state-of-the-art meteorological wind analyses, them-
selves the result of operational data assimilation into large numerical models. In
addition, the picture has been confirmed again and again by global-scale images
of chemical tracer distributions remotely sensed from space, an outstanding recent
example being some remarkably detailed CFC-11, methane, and nitrous oxide im-
ages from the helium-cooled CRISTA spectrometer flown on the Space Shuttle
(Riese et al. 2001).

Figure 1 shows a contour-advection example from the work of Plumb et al.
(1994), for the lower stratosphere at around 18 km altitude. This is a passive-
tracer picture emphasizing polar-vortex air, constructed by contour advection over
4 days (see figure caption) on the 450 K isentropic surface. Some of the fine detail
in pictures like these has been directly verified by in situ airborne chemical mea-
surements (Waugh et al. 1994). Figure 2 shows another example, this time from
a shallow-water model (Norton 1994), a full animation of which was shown as a
video at the Symposium. This model behaves in a manner astonishingly like the
real wintertime stratosphere at altitudes anywhere between about 20 and 40 km,
as revealed for instance by the CRISTA images, which cover a similar range and
an example of which is shown in Figure 3; note the different map projection em-
phasizing polar regions.

In the model example of Figure 2, whose bottom-right panel may be quali-
tatively compared to Figure 3, a small blob of passive tracer released in middle
latitudes quickly fills the well developed surf zone, a layerwise-two-dimensional
turbulent region sandwiched between relatively isolated polar-vortex and tropical
regions. The video animation of Figure 2 makes especially vivid the wavelike, quasi-
elastic behaviour of the polar-vortex edge under the Rossby-wave mechanism.2 It
is a clear example of what is now called an “eddy transport barrier”, almost com-
pletely preventing surf-zone air from penetrating into the polar vortex region, a
matter of some chemical importance.

From a dynamical perspective the wavelike and turbulent regions — the quasi-
elastic vortex edge and the adjacent surf zone — are closely interdependent, as
the term “jigsaw” is meant to suggest. That interdependence, a manifestation of
nonlinear dynamics, is illustrated most plainly and explicitly by the SWW critical-

2Copies of the video are obtainable from Dr W. A. Norton at the Department of Atmospheric
Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK; see also Norton (1994).
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layer model, of which our understanding is comprehensive (Killworth and McIntyre
1985, Haynes 1989). The model applies in a different parameter regime — in which
the surf zone or critical layer is, in fact, narrow — but has the virtue that one can
precisely quantify the dynamical interdependence of the surf zone and its more
wavelike surroundings through matched asymptotic expansions.

The upshot of all these observational and theoretical studies, then, is that
we may think of the main mass of polar-vortex air as being held together quasi-
elastically by the Rossby mechanism,3 with help from differential advection by the
shear just outside — a good example of what is also called “vortex coherence”
— even though some of the polar airmass is being eroded and mixed into the
surrounding surf zone. The erosion and mixing involve the irreversible deformation
of “otherwise-wavy” material contours, i.e. those contours, also PV contours in this
case, that would undulate reversibly under the conditions implicitly assumed by
linearized wave theory.

Irreversible deformation of such otherwise-wavy contours violates the nonac-
celeration theorem of wave–mean interaction theory, a consequence of Kelvin’s
circulation theorem applied to such contours. This makes the contour-deformation
process fundamental to understanding the circumstances under which irreversible
wave-induced momentum transport occurs. When the contour deformation is irre-
versible the process may therefore, very reasonably in this context, be designated as
“Rossby-wave breaking”, and a comparison drawn with the more familiar breaking
of ocean-beach waves, which leads to the convergence of wave-induced momentum
transport and its well-known consequence near ocean beaches, the generation of
longshore currents. The big long tongue of polar air in Figure 1, curving away from
the main polar airmass toward Mediterranean Europe, is quite like what Palmer
and I originally saw “through knobbly glass” and is one of the typical large-scale
Rossby wave-breaking patterns seen in practice. By contrast, the quasi-elastic re-
gion near the edge of the vortex core — showing up especially clearly in the case
of Figure 2 — is marked by a set of material and PV contours that to good ap-
proximation undulate reversibly, as Norton (1994) showed in detail through high
precision contour-advection calculations. Such reversible undulations are in stark
contrast with the irreversible behaviour of the contours just outside.4

It will have been noticed that the extreme spatial inhomogeneity that shows
up so vividly in all these cases, including the SWW model, represents another big
departure from classical turbulence-theoretic scenarios. Those scenarios assume
statistical homogeneity or near-homogeneity. The real spatial inhomogeneity is a
very robust feature, showing up not only again and again in observations such

3See Figure 4. I am aware that “Rossby waves” might more aptly be called “Kelvin waves”,
especially in the context of vortex coherence. Though no historian of science, I have the impression
that if you see someone’s name on something there is a more than even chance that someone
else thought of it first. There are always good reasons. “Kelvin waves” are usually understood
to refer to Coriolis-trapped gravity waves, a different animal entirely. So in speaking of “Rossby
waves” I am only using what has become the standard terminology, tending to displace the more
logical alternatives “vorticity waves” and “potential-vorticity waves”.

4McIntyre and Palmer (1984) discuss the time-reversal “paradox” involved here in the use of
the term “irreversible”.
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Figure 3. N2O (nitrous oxide) mixing ratios observed at two stratospheric altitudes on 11 Au-
gust 1997 by the CRISTA instrument, from Riese et al. (2001), for the southern hemisphere but
mirror-flipped, in this display, for qualitative comparison to Figure 2 bottom right, which has
positive Coriolis parameter f > 0 as appropriate to the northern hemisphere. Notice the different
map projections, with polar regions emphasized here but tropical regions in Figure 2. Irregular
white areas are data gaps. On Rossby-wave timescales of days and weeks N2O is an accurate
passive tracer, though destroyed photochemically on Brewer–Dobson timescales of years. In the
right half of each picture the N2O mixing ratios increase nearly monotonically or stepwise mono-
tonically outward (being nearly constant over large areas in the surf zone). They increase from
polar-vortex values close to zero to large tropical values imported from the troposphere by the
Brewer–Dobson upwelling. At left and right respectively, pressure-altitudes are 4.64 hPa and
10 hPa, roughly 37 km and 31 km; ranges of mixing ratios in parts per billion by volume are 0–90+
and 0–150+ with contour intervals 10 and 16.67, where “+” signifies that values may slightly
overshoot the plotted range. The lightest band at the subtropical edge of the surf zone highlights
the ranges 60–70 and 100–116.67 ppbv. CRISTA (Cryogenic Infrared Spectrometers and Tele-
scopes for the Atmosphere) detects a number of chemical species through their infrared spectral
signatures and is a large (1350 kg) helium-cooled instrument flown from the Space Shuttle.

as Figure 3 but also in model simulations, all the way from idealized shallow-
water models to the big three-dimensional models now widely used in studies of
stratospheric chemistry and ozone depletion.

3. PV inversion

V. I. Arnol’d once stated that “Hamiltonian mechanics cannot be understood with-
out differential forms” (Arnol’d 1978). In the same spirit I would say that Rossby
waves cannot be understood without PV inversion. An understanding worth hav-
ing will include, of course, an understanding of the nonlinear effects, such as the
“jigsaw dynamics”, the dynamical interdependence of vortex-edge undulation and
surf-zone turbulence.

Rossby waves are often discussed without mentioning the idea of PV inversion
at all — and if you are content with an idealized background state and infinitesi-
mal wave amplitude then it’s easy enough to calculate wavelike solutions and say
that’s all there is to it — but the idea of PV inversion is always there implicitly,
right from the moment one tries to go further and understand even the linearized
wave dynamics intuitively. I think it clarifies one’s thinking to make the inversion
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Figure 4. Visualization of the Rossby-wave propagation mechanism, redrawn from Hoskins et

al. (1985) and McIntyre (2000).

idea explicit. Moreover, the resulting insight does help to bridge the gulf between
idealized models and complex, nonlinear reality. I feel it’s part of one’s job as a
theoretician to try to discern what is robust about an idealized model, and hence
what aspects are likely to carry over to the real world and what aspects are not.

Thus when, for instance, the edge of the polar vortex is distorted, as illustrated
in the video corresponding to Figure 2, this means that the PV, which has steep
gradients across the vortex edge and is approximately a materially conserved, or
advected, quantity, develops a pattern of anomalies relative to the undistorted
circular shape of the edge. This pattern of PV anomalies is qualitatively as shown
by the curved arrows and ± signs in Figure 4, if we read the coordinate x as
azimuthal distance around the edge, periodically repeating as appropriate. The
figure assumes that the background PV gradient is positive in the positive y-
direction. The sideways displacement of material and PV contours on an isentropic
surface — the edge distortion itself — is like the displacement of the wavy contours
marked ΓQθ, in the central part of Figure 4.

PV invertibility says that PV inversion is possible. This means that, under
reasonable assumptions about boundary conditions, you can deduce the velocity
field from the PV field. Equations (1)–(2) below provide the simplest illustration
of this. In particular, any x-periodic pattern of PV anomalies like that in Figure 4
implies an x-periodic pattern of velocity anomalies a quarter wavelength out of
phase with the displacement pattern, as suggested by the straight arrows. But if
you have velocities a quarter wavelength out of phase with displacements, then
you can directly see, by making a mental movie of the way in which the ΓQθ

contours are advected, that the velocity field makes the undulations propagate,
in this case in the −x direction, and in all cases to the left of the background
isentropic gradient of PV.

In summary, displacements produce PV anomalies, which (via PV inversion)
imply velocities a quarter wavelength out of phase with displacements, which pro-
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duce propagation in whichever direction has high PV values on the right. This is
the basic Rossby-wave mechanism. It is basic to any stratified fluid motion that
has gradients of PV on stratification surfaces (or buoyancy-acceleration gradients
acting as concentrated PV gradients at upper or lower boundaries), and for which
invertibility holds (Hoskins et al. 1985, & refs.). It is therefore basic to most large-
scale fluid motions of oceanographic and meteorological interest; for instance, if
you put opposite-signed PV gradients next to each other you will often get baro-
tropic or baroclinic shear instabilities, in which counterpropagating Rossby waves
phase-lock and make each other grow.

I think everyone is familar with the world’s simplest example of the Rossby-
wave mechanism, in the context of two-dimensional, nondivergent barotropic vor-
tex dynamics in the original Rossby beta-plane or “approximately flat Earth”
model. In this model, invertibility reduces simply to solvability of a Poisson equa-
tion ∇2ψ = (Q − f), under boundary conditions such as evanescence at infinity.
Symbolically,

ψ = ∇−2(Q− f) . (1)

Here f is the Coriolis parameter, and Q(x, y, t) is the PV, which in this example is
the same as the two-dimensional absolute vorticity. The stream function ψ(x, y, t)
describes a strictly nondivergent velocity field u(x, y, t),

u = (u, v) , u = − ∂ψ/∂y , v = ∂ψ/∂x , (2)

where (x, y) are eastward and northward Cartesian coordinates and (u, v) the
corresponding components of the velocity vector u(x, y, t). The inversion is a di-
agnostic process; no time derivatives appear in (1)–(2), and so one can talk about
inversion at a single instant t, independently of neighbouring t values.

In this dynamical system there is just one evolution equation,

DQ/Dt = 0 , (3)

where D/Dt is the two-dimensional material derivative,

D/Dt := ∂/∂t + u · ∇ = ∂/∂t + u∂/∂x + v∂/∂y . (4)

We can think of the dynamical system as a limiting case of real stratified flow in
which friction goes to zero and the stratification becomes infinitely strong, con-
straining the motion to be exactly horizontal. This picks out the Coriolis parameter
f as precisely the vertical component of twice the Earth’s angular velocity, imply-
ing that f increases monotonically with northward distance y like the sine of the
latitude. In taking such a limit, one must assume that vertical scales of motion stay
finite. Then the dependence on the vertical coordinate z becomes a mere paramet-
ric dependence, with no vertical derivatives ∂/∂z appearing in the problem. The
equations at each altitude z then reduce to Equations (1)–(4) above.

The standard Rossby-wave theory for this system — linearize equation (3)

about rest, set β = df/dy = constant, look for solutions ψ = <ψ̂ exp(ikx+ily−iωt)
(ψ̂ and ω constant, k and l real, constant) so that ∇−2 = −(k2 + l2)−1 and
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Figure 5. The relation between mean wave-induced force and Q-rearrangement by a breaking
Rossby wave, in the simplest relevant model system, the dynamical system (1)–(4). Courtesy P.
H. Haynes; for mathematical details see Killworth and McIntyre (1985) and Haynes (1989). Plot
(a) shows idealized Q distributions before and after mixing Q in some y-interval or latitude band;
(b) shows the x-averaged Q distribution in an actual model simulation using equations (1)–(4);
(c) shows the resulting mean momentum deficit, equation (5), whose profile would take on a
simple parabolic shape in the idealized case corresponding to (a).

ω = −βk/(k2+l2) (real) — confirms the qualitative picture suggested by Figure 4.

The y-velocity ∂ψ/∂x, with complex amplitude ikψ̂, is a quarter wavelength out of

phase with the displacement, with complex amplitude (−iω)−1ikψ̂. The chirality
— the one-way character of the propagation, tied to the sense of the Earth’s
rotation — is expressed by the single power of ω in the dispersion relation ω =
−βk/(k2 + l2).

The association between Rossby-wave breaking and irreversible wave-induced
angular momentum transport, and the dynamical interdependence of vortex-edge
undulation and surf-zone turbulence in general, are likewise well illustrated by
the dynamical system (1)–(4). The PV inversion operator (1) is non-local, so it’s
obvious from the outset that there has to be some such dynamical interdependence.
And for angular momentum transport we may consider, for instance, an idealized
thought experiment in which Rossby waves arrive and form a surf zone by perfectly
mixing the PV in some band of y-values, as shown on the left of Figure 5. The
mean change δQ̄(y) in Q̄ is a linear function within that band, integrating to zero
across the band. Inversion according to (1) with reasonable boundary conditions
gives an x-averaged mean flow change

δū(y) =

∫ ∞

y

δQ̄(ỹ) dỹ 6 0 . (5)

This is a parabolic profile qualitatively like the δū(y) profile shown on the right of
Figure 5, which is from a less idealized, fully detailed chaotic critical-layer calcu-
lation due to Haynes (1989), with the δQ̄(y) profile shown in the middle. In both
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cases there is a robustly negative net momentum change. This is a phenomenon
in which wavelike and turbulent motion are both inextricably involved.5

It is also an example of anti-frictional behaviour, because δū(y) has to be added
to a background flow ū(y) ∝ y with positive shear ∂ū(y)/∂y > 0 (not shown in
the figure), and the wave source is located at positive y, outside the domain of the
figure. Thus the momentum has been transported against its own mean gradient.

The point of all this is that more realistic models have just the same generic
structure, and qualitative properties, provided only that we have PV invertibility.
In particular, if we go back to realistic finite stratification, then the dynamical
system still has the single evolution equation (3) with its single time derivative,
expressing chirality, together with an inversion operator that behaves qualitatively
like that in (1). It implies the same qualitative description of Rossby-wave propa-
gation as before, including the one-way character associated with the single time
derivative and the single power of ω in the dispersion relation. It implies the same
qualitative association between surf-zone formation and irreversible wave-induced
momentum transport, robustly one-signed. This has been verified explicitly by the
work of Robinson (1988), on stratified flow in spherical geometry.

PV invertibility is helpful, moreover, in coping with the central difficulty in fluid
dynamics. This is the advective nonlinearity, as expressed by the u ·∇ terms in the
Euler equations. If the main effects of u · ∇ are captured by the D/Dt in a single
evolution equation of the simple form (3), then we have the simplest conceivable
way of visualizing and understanding the effects of the advective nonlinearity. It
is in all these ways that the qualitative insight from the world’s simplest model
does, indeed, carry over to more sophisticated models of reality.

The discussion up to this point is one way of showing why the ideas of PV in-
version and PV invertibility are important, and therefore, by implication, why
the ideas of balance and “slow manifold” are important. As is well known, the
same ideas are crucial to an understanding of how to initialize weather-prediction
models (e.g. Lynch and McGrath, this Proceedings), a matter whose importance
was first revealed by Richardson’s pioneering attempt to integrate the equations
numerically.

4. Accurate balance and PV inversion

As is well known, PV invertibility, and weather-prediction initialization, both de-
pend on imposing some balance condition. Imposing such a condition amounts to
artificially constraining the dynamical system to some prescribed “slow manifold”
within its full phase space. In the system (1)–(4), the balance condition is simply
the incompressibility condition (2). It implies an absence of sound waves. In more

5Results like (5) have sometimes been thought to show that the PV mixing illustrated at left
and middle of Figure 5 is impossible (e.g. Stewart and Thomson 1977) since, the argument goes,
momentum conservation would be violated. This underlines the danger of neglecting the wavelike
aspects of the jigsaw puzzle, i.e. of thinking solely in terms of classical turbulence paradigms and
hence missing the possibility of momentum being imported from elswhere via wave-induced
momentum transport. It is just this possibility, or rather actuality, that is so cogently illustrated
by the SWW and related critical-layer solutions such as those of Haynes (1989).
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realistic systems, from shallow-water to fully-stratified, condition (2) is replaced
by a functional relation of the form

u(x) = uB (x;h(·)) , (6)

where explicit reference to time t is suppressed for the moment, and where h(·)
symbolically represents the mass configuration of the fluid system at a given in-
stant t. In a shallow-water system, for instance, h(·) is shorthand for the height
h(x) = h(x, y) of the free surface above some horizontal reference level. The bal-
ance condition (6) says that the velocity field is completely determined, at each
instant t, by a knowledge of the mass configuration — the spatial distribution of
fluid mass throughout the physical domain at that instant. It says that the veloc-
ity field no longer represents independent degrees of freedom in phase space. The
condition (6) confines the system to a submanifold within phase space. A simple
albeit crude illustration is provided by the familiar geostrophic relation, defined
for the shallow-water case by

u(x) = uB (x;h(·)) = uG (x;h(·)) :=
g

f

(

− ∂h(x)

∂y
,
∂h(x)

∂x

)

, (7)

where g is the gravitational acceleration. The associated PV inversion operator
is defined by (7) together with a definition of the PV and suitable boundary
conditions, such as evanescence at infinity. Once again, no time derivatives appear:
we have a diagnostic process, defined at each instant t. For the definition of PV
we may use for instance the shallow-water PV discovered by Rossby (1936), who
showed it to be an exact material invariant for frictionless flow (op. cit., Eq. (75)).
In the simplest case of a flat bottom identified with the horizontal reference level,
the Q of §3 is then replaced by the exact Q defined by Rossby’s formula6

Q =
1

h

(

f +
∂v

∂x
− ∂u

∂y

)

=
1

h

(

f + ζ
)

, say. (8)

The resulting boundary-value problem has variable coefficients but is elliptic and
robustly invertible, like (1) above, at least when Froude and Rossby numbers are
sufficiently small:

F = sup(|u|/c) ¿ 1 ; R = sup(|ζ|/f) ¿ 1 . (9)

Here c =
√

(gh), the shallow-water gravity-wave speed. Replacing Q by a linearized
counterpart based on writing h′ = h − h0 and neglecting squares (h′/h0)

2 and
products (h′/h0)(ζ/f), with h0 constant, gives the standard “quasi-geostrophic”
version of the theory in which the PV inversion problem has constant coefficients.

Now balance conditions far more accurate than (7) are known. For instance
we may replace (7) by the following set of diagnostic equations, to be solved (at

6Rossby’s formula is still valid for a sloping bottom, of course, provided that h is temporarily
redefined as layer depth instead of surface elevation, in which case (7) is modified appropriately.
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each instant t) for uB when a suitable h′(x) field is given. It is convenient to
introduce the Helmholtz decomposition of uB into its solenoidal and irrotational
contributions, under suitable boundary conditions,

uB = curl−1ζB + div−1δB (10)

where ζB and δB are the corresponding vorticity and divergence defined respec-
tively as ∂vB/∂x − ∂uB/∂y and ∂uB/∂x + ∂vB/∂y. In the remaining equations,
c0 :=

√
(gh0); the quantities with subscripts 1 and 2 are auxiliary fields to be

explained shortly:

fζB = g∇2h′ + ∇ · (uB · ∇uB) + δB1 , (11)

δB = L−1∇ ·
{

fζBuB + uB
1
· ∇uB + uB · ∇uB

1
− g∇2(h′uB)

}

, (12)

δB1 = L−1∇ ·
{

fζB
1 uB + fζBuB

1
+ uB

2
· ∇uB + 2uB

1
· ∇uB

1

+uB · ∇uB
2
− g∇2(hB

1 uB + h′uB
1
)
}

, (13)

uB
1

= curl−1ζB
1 + div−1δB1 , (14)

uB
2

= curl−1ζB
2 , (15)

ζB
1 + fδB = −∇ · (uBζB) , (16)

ζB
2 + fδB1 = −∇ · (uB

1
ζB + uBζB

1 ) , (17)

hB
1 + h0δ

B = −∇ · (uBh′) . (18)

Here
L := c20

(

∇2 − L0
−2
)

, (19)

a modified Helmholtz operator depending on the natural length scale

L0 := c0/f , (20)

the Rossby length or “radius” based on c0. No time derivatives appear anywhere
in (10)–(18). When h′(x) is given, these are nine equations (six scalar and three
vector) to determine, diagnostically, the nine unknown functions ζB

2 (x), ζB
1 (x),

ζB(x), δB1 (x), δB(x), hB
1 (x), uB

2
(x), uB

1
(x), and uB(x). The quantities with sub-

scripts 1 and 2 are diagnostic estimates of first and second partial time derivatives.
Being diagnostic quantities, they must be sharply distinguished from actual rates
of change in a model integration. The point is disussed more fully in my paper
with Norton (2000, hereafter MN00), along with related issues concerning local
mass conservation and Galilean invariance. If δB

1 (x) were to be replaced by ∂δ/∂t
and the superscripts B deleted from the other variables, then (11) would become
the divergence equation of the exact shallow-water equations; (16) similarly cor-
responds to the exact vorticity equation and (18) to the exact mass-conservation
equation. Note also that if every term on the right of (11) were to be deleted ex-
cept the first, then (11) would reduce to the curl of the geostrophic relation (7).
Equations (12) and (13) are derived from the first and second time derivatives of
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the divergence equation with the leading time derivatives deleted. Standard scale-
analytic considerations would argue that these deleted terms are relatively small
if F and R are small.

When (8) is appended to (10)–(19), one obtains the PV inversion operator that
MN00 called a “third order direct” inversion operator. It is exquisitely accurate,
over an astonishingly wide range of values of F and R, as MN00 demonstrate
for complicated shallow-water vortical flows on a hemisphere. (See Appendix A of
MN00 for notes on the numerical procedures and for the counterpart of (10)–(19) in
spherical coordinates, taking account of variable f .) Not only the vorticity but also
the divergence field are reconstructed in considerable detail from a knowledge of
the PV alone. Almost incredibly, this accuracy is obtained despite R being infinite
at the equator, and F reaching values in excess of 0.7 in some cases. One can
hardly say that ∞ and 0.7 are small. Trying to carry out a PV inversion for such
parameter values certainly counts as another “damn fool experiment” — and most
of the credit for it is due to Dr Warwick Norton, who was my research student at
the time, and who showed marvellous intellectual courage as well as considerable
computational ingenuity. The exquisite accuracy comes at a price, of course: it
depends on subtle, weakly nonlinear corrections that vitiate the superposition
principle and demand elaborate iterative numerical methods.

Even more accurate inversion operators can be defined, based on normal mode
expansions. For further discussion see MN00 and Mohebalhojeh and Dritschel
(2001). Figure 6 shows an example taken from MN00 — which still astonishes me
even though it was first obtained a decade ago — again in a hemispherical domain
and with F again exceeding 0.7 . This is a cumulative accuracy test, using the PV-
conserving balanced model defined by a normal-mode-based PV inversion operator
together with the single prognostic equation DQ/Dt = 0, for shallow-water flow
on the hemisphere, slightly modified with a ∇6 hyperdiffusion to control numerical
noise at discretization scales. The top half of Figure 6 shows two PV fields from
a 10-day run of the balanced model, and the bottom half the corresponding fields
from a carefully initialized run of the exact shallow-water equations, serving as
the benchmark of accuracy. This is a complicated, highly unsteady vortical flow
exhibiting hyperbolicity or phase-space sensitivity. See MN00 for evidence of that
sensitivity and for the precise specification of the inversion operator. Even after
10 days or several eddy times, and some nontrivial vortex interactions including
merging, the two PV distributions track each other almost perfectly.

Now there is indeed something truly mysterious about such accuracy. Standard
order-of-magnitude arguments say that we have no right to expect the concepts
of balance and inversion, and the resulting balanced models, to be accurate un-
less F and R are small. Accurate balance and inversion involve nonlocal func-
tional relations, through operators such as curl−1, div−1, and L−1, as the notation
uB (x;h(·)) in (6) was meant to suggest. Just as with (1), such relations imply, so
to speak, action-at-a-distance. A change in the Q value here influences the veloc-
ity over there; and it does so instantaneously. In the simple system (1)–(4) this is
reasonable, because the balance condition (2) makes the speed of sound infinite.
But F > 0.7 means that even the fastest inertia–gravity waves are barely faster,
in terms of group velocity, than relative fluid velocities. PV inversion is indeed
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Figure 6. PV fields showing cumulative accuracy over 10 days (several eddy times) of a sophisti-
cated “nonlinear normal mode” PV inverter for shallow-water flow on a hemisphere. The top pair
are from a 10-day run of a PV-conserving balanced model based on this PV inverter; the bottom
pair are from the corresponding run of the full shallow-water equations. Parameter regime is
realistic for upper-tropospheric flow, with velocities in the tens of m s−1 and gravity-wave speed
c0 =

√
(gh0) = 100 m s−1, with h0 defined as area-averaged layer depth. The PV is defined as in

(8). The contour interval is 3×10−8 m−1 s−1; the shading marks values lying between 4 and 6 of
these units. The two sets of PV fields are astonishingly close to each other, almost down to the
discretization scales that feel the model ∇6 hyperdiffusion, despite the infinite Rossby number R

at the equator and the value, just over 0.7, reached by the Froude number F as defined by (9).
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“foolish” under such conditions; and the experiment of Figure 6, daring to test
cumulative accuracy, is more “foolish” still.

5. Poincaré’s homoclinic tangle and the slow quasimanifold

So let us draw a deep breath and stand back a moment. As has often been pointed
out, balanced motion has its counterparts in simpler dynamical systems. One of
these is the “springy pendulum” consisting of a mass suspended from a pivot by a
stiff elastic spring. Such a pendulum has slow, rotating or swinging, modes of mo-
tion in which the relatively fast, compressional, modes of the mass and spring are
hardly excited. A first approximation in describing such slow motions is simply to
set the length of the spring to be constant. This might be compared to the incom-
pressibility condition (2). More accurate approximations would allow the spring
to change its length in a quasi-static way. The fast modes are then, so to speak,
“slaved” to the slow modes. In the fluid system this is another way of viewing the
effect of a balance condition u(x) = uB (x;h(·)), be it the geostrophic relation (7)
or any of its more accurate counterparts such as (10)–(19). Such approximations
and their ultimate limitations can be studied mathematically via techniques rang-
ing all the way from formal two-timing (multiple scales) to bounded-derivative
theory and, in the pendulum case at least, KAM (Kolmogorov–Arnol’d–Moser)
theory and other dynamical-systems techniques for finite phase spaces. There is
an enormous literature (e.g. Bokhove and Shepherd 1996 & refs.).

Basic to understanding what is involved is Henri Poincaré’s picture of the
“homoclinic tangle”. This is a dynamical-systems classic that is now textbook
material; it applies unequivocally, for instance, to the pendulum started slowly
from its upside-down equilibrium position. In the phase space of a simple, idealized
rigid pendulum, there is a homoclinic orbit representing one complete circuit of
the pendulum, taking a logarithmically infinite time. Poincaré’s homoclinic tangle
(between perturbed stable and unstable manifolds, whose formidable fine-grain
complexity Poincaré himself did not even attempt to draw, and which there is no
room to discuss adequately here) tells us, in effect, that if we nonlinearly couple the
simple rigid pendulum to practically any other oscillator — such as that associated
with the springiness — or even just persistently jiggle the suspension point in
a prescribed, deterministic way, then the single homoclinic orbit will break up
into a “stochastic layer” or “chaotic layer” having finite though possibly small
thickness. In KAM language, this homoclinic orbit is a torus that always breaks up
under perturbation. This is intuitively reasonable. A logarithmically infinite time is
available, which is plenty of time for practically any slight disturbance to nudge the
pendulum into neighbouring parts of phase space, and enormously large numbers
of ways for it to do so — depending on initial conditions on the fast modes, such
as the states of the spring, or on the imposed jiggling. So if one replaces the exact
springy-pendulum motion by a balanced model of it (in which information about
the fast initial conditions or the jiggling is lost) then one is replacing the stochastic
layer — which we might call a slow quasimanifold to emphasize that it is not a
single invariant manifold of the system — by an artificially imposed, infinitesimally
thin slow manifold. In effect, this artifice suppresses all the uncertainty due to the
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lost information.
By analogy, we expect that the accuracy seen in Figure 6 cannot mean that

the exact shallow-water equations naturally have a true “slow manifold”, a pre-
cisely invariant manifold within the full phase space whose existence implies the
possibility of exact “superbalance”, exact PV inversion, and therefore (incredi-
bly) exact action-at-a-distance despite finite inertia–gravity wave speeds. Rather,
even though strict mathematical proof in this infinite-dimensional problem seems
well beyond anyone’s capability, the pendulum analogy leads us to expect that
exact shallow-water motion close to balance — such as the motion corresponding
to the bottom half of Figure 6 — must have a trajectory within a thin, though
not infinitesimally thin, slow quasimanifold or infinite-dimensional stochastic layer
within the infinite-dimensional phase space of the exact shallow-water equations.

6. Lighthill radiation — geostrophic it’s not!

It is here that James Lighthill’s work enters the picture. Lighthill’s pioneering
thinking about aerodynamic sound generation, the emission of sound waves by, in
his case, three-dimensional vortical motion such as turbulent jets, can be adapted
to our problem even though there are some nontrivial technicalities (Ford et al.
2000). Lighthill’s thinking beautifully complements Poincaré’s homoclinic-tangle
argument. It gives us a profound physical insight (a) showing, quite independently
of Poincaré’s argument, why one expects a slow quasimanifold rather than a true
slow manifold (in the infinite-dimensional phase space of the exact fluid equations),
and (b) some idea of why the slow quasimanifold should be so remarkably thin in
the fluid case, as Figure 6 emphasizes, certainly thinner than any simple order-of-
magnitude consideration could possibly predict.

Lighthill’s essential insight is contained in the phrases “quadrupole radiation”
and “destructive interference”. It tells us (a) that unsteady vortical motions, like
those illustrated in Figures 1–3 and 6 of this paper, will, in continually adjusting
toward balance, emit inertia–gravity waves spontaneously but (b) that such “spon-
taneous-adjustment emission” is weak because of destructive interference. This
begins to explain why PV inversion can work better than it has a right to, and
why any approach via simple order-of-magnitude analysis, or any other approach
neglecting the full subtlety of the problem, will tend to overestimate the strength
of spontaneous-adjustment emission.

The adjective spontaneous, incidentally, is essential for clarity here. Spontan-
eous-adjustment emission is not to be confused, as sometimes occurs in the lit-
erature, with inertia–gravity wave emission due to what is today called “Rossby
adjustment”. Rossby or initial-condition adjustment is the process famously en-
countered by Richardson, in his first attempt at numerical weather prediction. It
is simply and straighforwardly the emission of inertia–gravity waves due to imbal-
anced initial conditions, artificially imposed. There is nothing subtle here. If you
kick the system, you will excite inertia–gravity waves. I am also avoiding the term
“geostrophic adjustment” because — when the adjustment is spontaneous — it
is more likely, if anything, to be adjustment away from geostrophic balance (7),
u = uG (x;h(·)), as adjustment toward it. It is likely to be toward a more accurate
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balance u = uB (x;h(·)). Part of the trouble may be that the term “geostrophic”
is often used not in its precise technical sense, u = uG (x;h(·)), but rather as a
word to mean anything vaguely to do with the general concept of balance. The
next thing that happens, of course, is that the word gets used in both senses at
once!

For our rotating systems, the appropriate generalization of Lighthill’s original
argument is as follows. Again we use the shallow-water equations with constant f .
The momentum and mass-conservation equations are taken in flux form:

∂

∂t

(

hui

)

+
∂

∂xj

(

huiuj

)

− εijfhuj +
g

2

∂

∂xi

(

h2
)

= 0 , (21)

∂h

∂t
+

∂

∂xi

(

hui

)

= 0 , (22)

where ui is the ith Cartesian component of u (i = 1, 2), and εij is the two-
dimensional alternating tensor, defined by ε12 = −ε21 = 1 and ε11 = ε22 = 0. A
little manipulation (Ford et al. 2000) produces

(

L − ∂2

∂t2

)

∂h

∂t
= − ∂2

∂xi∂xj

Tij , (23)

where L is the modified Helmholtz operator (19) and where

Tij =
∂

∂t

(

huiuj

)

+
f

2

(

εikhujuk + εjkhuiuk

)

+
g

2

∂

∂t

(

h′2
)

δij . (24)

Equation (23) has the form of the linear inertia–gravity wave operator L− ∂2/∂t2

acting on ∂h/∂t, on the left-hand side, and an apparent wave source consisting of
the nonlinear terms on the right-hand side.

The essential point noted in Lighthill (1952) is that, in the case F ¿ 1, the
right-hand side is known to good approximation from the vortical flow alone, and
can therefore be regarded as a given source of inertia–gravity waves.

The only essential assumption is that correctionsO(F ) or weaker cannot change
the qualitative character of the right-hand side. It is crucial, however — and this
was Lighthill’s most important point — that any approximate representation of
the vortical flow be first substituted into Tij before the differentiations ∂2/∂xi∂xj

are carried out. This is because the weakness of the radiation depends on the can-
cellation, or destructive interference, already mentioned. It is the second-derivative
form of the right-hand side of (23), rather than the precise form of Tij itself, that
is crucial to the cancellation and corresponds to the celebrated “quadrupole ra-
diation”. It is the weakness of quadrupole radiation, in other words, that begins
to account for the possible accuracy of PV inversion. It can be added that the
introduction of Coriolis effects should weaken the radiation still further, because
of the cutoff at the inertia frequency ω = f . Further discussion may be found in
Ford et al. (2000) and in Saujani and Shepherd (2001).

Of course Lighthill’s argument leaves unanswered the question “How does the
wave emission remain weak even when the Froude number F is not small?” It is not
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obvious from Lighthill’s argument why such a thing should come about. Here there
is still considerable mystery. Part of the answer seems to be that the PV inversion
operator takes on more and more of a short-range character as the Froude number
F increases. Quasi-geostrophic theory, though quantitatively inaccurate, is enough
to give a qualitative feel for this point. Within that theory — based, as mentioned
earlier, not only on approximating uB (x;h(·)) by (7) but also on neglecting squares
(h′/h0)

2 and products (h′/h0)(ζ/f) in Q, replacing it by a linearized counterpart
Qqg say — it is well-known that the PV inversion operator becomes essentially
L−1, where L is again the modified Helmholtz operator defined in (19), relevant to
cases in which the Coriolis parameter f is exactly or approximately constant. The
resulting PV inversion sets the divergence to zero and can be written explicitly, in
an unbounded xy-domain, in terms of the stream function

ψ = − 1

2π

∫ ∫

K0

( |x − x′|
L0

)

Qqg(x
′) d2x′ ; (25)

K0(·) is the modified Bessel function with exponential decay at large argument.
This represents a short-range interaction, because of the exponential tail of the
Bessel function, and is such that the range decreases in proportion to L0 and in
inverse proportion to F , for given typical velocities |u|, as F increases.

So even though the inertia–gravity waves cannot travel infinitely fast in order
to mediate the action-at-a-distance implied by balance and PV inversion, the influ-
ence has a shorter and shorter distance to travel, as F increases and L0 decreases.

Another consequence of this shortening interaction distance is that the vortex
dynamics becomes distinctly more sluggish or slow moving. Thus the spontan-
eous-adjustment emission, which depends on unsteadiness of the vortex dynamics,
is in this problem weaker, in most circumstances, than Lighthill’s scaling laws
would suggest. This must be another part of the explanation of the near-miracle
of Figure 6, in which it should be noted that the Rossby length L0 ∼ 1000 km
in middle latitudes. For further insight the reader is referred to a paper by Ford
(1994), presenting some very careful numerical experiments on Lighthill radiation.

7. Concluding remarks

It has sometimes been argued that spontaneous-adjustment emission is not prop-
erly described as “Lighthill emission” or “Lighthill radiation” because, for instance,
a domain such as that of Figure 6 isn’t really infinite, as in Lighthill’s original prob-
lem or its rotating counterpart studied by Ford (1994) and Ford et al. — or, again,
because in a rotating system the emission is a lot weaker than Lighthill’s original
(non-rotating) scaling laws would say. I would argue that that misses Lighthill’s
main point. It comes down to saying that in any situation where the spontan-
eous-adjustment emission of inertia–gravity waves is in fact weak, for any reason,
one can regard the right-hand side of (23) as known to leading order and thus
make a conceptual separation between vortical motion and wave emission. This
point seems to me to be quite independent of whether the domain is bounded or
unbounded or whether the Coriolis parameter f is zero or nonzero. It is important



66

because of the help it gives in beginning to understand the ubiquity yet weakness of
spontaneous-adjustment emission, hence the physical cause of slow-quasimanifold
fuzziness and the remarkable thinness of the slow quasimanifold in at least some
cases of interest such as that of Figure 6.

I want to end by mentioning briefly some recent developments in the Hamilto-
nian theory of balanced motion that I have been involved in. The unapproximated
shallow water system, and analogous stratified, rotating fluid systems, are Hamil-
tonian in the classical sense. Ways of making this explicit mathematically are now
very well known. In three pioneering papers, Salmon (1983, 1985, 1988) took the
first steps toward developing systematic procedures to construct balanced models
from their exact “parents” that inherit the parent Hamiltonian structure, includ-
ing all the associated conservation relations such as that for PV. Recently, Ian
Roulstone of the U.K. Meteorological Office and I have succeeded in simplifying
and clarifying these procedures in such a way as to make plain a number of generic
or universal properties of such Hamiltonian balanced models (McIntyre and Roul-
stone 1996, 2001). One of these is a property we call “velocity splitting”, which
can be viewed as an immediate consequence of imposing the balance condition
u = uB (x;h(·)).

We find it mnemonically useful to say that the imposition of the balance con-
dition — for any choice of the functional uB (x;h(·)), accurate or inaccurate —
splits the parent velocity field into two distinct velocity fields, whose difference
provides a natural intrinsic measure of the inaccuracy of the model. Because of
Lighthill radiation, this inaccuracy can never be zero, no matter how delicately
one tries to refine the balance condition, save in a tiny set of exceptional special
cases where the vortex dynamics is steady and the Lighthill radiation vanishes.

Recently, Mohebalhojeh and I have shown that velocity splitting is not peculiar
to Hamiltonian balanced models (paper in preparation). It is a generic property
of all accurate non-Hamiltonian balanced models as well, with just one class of
exceptions. The most important member of that class — an exception that has
long diverted attention from what is generic — is the balanced model called the
Bolin–Charney “balance equations” in the form described by Gent and McWilliams
(1984) and Whitaker (1993). Our result is essentially that all PV-conserving bal-
anced models significantly more accurate than the Bolin–Charney model, including
for instance the balanced model defined by (10)–(19) above, must suffer velocity
splitting as a direct price for their accuracy.

And now I am out of time and out of space! How can I capture something of all
this in a limerick, as seems to be de rigueur at this Symposium? Well, here goes:

On balance, consider the angle
Of the pendulum’s upside-down dangle:

Geostrophic it’s not,
But I don’t care a lot,

’Cause it’s all in a bit of a tangle.
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