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We present a theoretical study of a fundamentally new wave–mean or wave–vortex
interaction effect able to force persistent, cumulative change in mean flows in the
absence of wave breaking or other kinds of wave dissipation. It is associated with
the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows.
The effect is studied in detail in the simplest relevant model, the two-dimensional
compressible flow equations with a generic polytropic equation of state. This includes
the usual shallow-water equations as a special case. The refraction of a narrow, slowly
varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a
single weak (low Froude or Mach number) vortex is studied in detail. It is shown that,
concomitant with the changes in the waves’ pseudomomentum due to the refraction,
there is an equal and opposite recoil force that is felt, in effect, by the vortex core.
This effective force is called a ‘remote recoil’ to stress that there is no need for the
vortex core and wavetrain to overlap in physical space. There is an accompanying
‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The
remote-recoil effects are studied perturbatively using the wave amplitude and vortex
weakness as small parameters. The nature of the remote recoil is demonstrated in
various set-ups with wavetrains of finite or infinite length. The effective recoil force
RV on the vortex core is given by an expression resembling the classical Magnus
force felt by moving cylinders with circulation. In the case of wavetrains of infinite
length, an explicit formula for the scattering angle θ∗ of waves passing a vortex
at a distance is derived correct to second order in Froude or Mach number. To
this order RV ∝ θ∗. The formula is cross-checked against numerical integrations of
the ray-tracing equations. This work is part of an ongoing study of internal-gravity-
wave dynamics in the atmosphere and may be important for the development of future
gravity-wave parametrization schemes in numerical models of the global atmospheric
circulation. At present, all such schemes neglect remote-recoil effects caused by hori-
zontally inhomogeneous mean flows. Taking these effects into account should make
the parametrization schemes significantly more accurate.

1. Introduction
Wave-induced mean forces and the consequent ‘gyroscopic pumping’ drive global-

scale, greenhouse-gas-transporting circulations in the Earth’s middle atmosphere,
between about 15 and 100 km altitude. In the middle latitudes of the summer
hemisphere, for instance, persistent eastward forces mediated by internal gravity
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waves pump air equatorwards, through the Coriolis effect, at mesospheric altitudes
around 90 km (recent reviews include those of Fritts & Alexander 2003, Kim,
Eckermann & Chun 2003, and McIntyre 2003). The resulting polar upwelling supplies
water vapour from below and acts as a gigantic natural refrigerator. Despite intense
solar radiation, which is maximal at the pole because of the Earth’s tilt, temperatures
as low as 105 K have been observed in the summer polar cap (Lübken 1999 and
references therein). These are by far the lowest of naturally occurring terrestrial
temperatures. One of the observable consequences is the formation of ‘noctilucent
clouds’ between 80 and 90 km, a phenomenon first noticed in the late nineteenth
century and sometimes argued to be the ‘miner’s canary’ forewarning us of global
water-vapour trends associated with climate change (e.g. Thomas et al. 1989).

The persistent mean forces producing the mesospheric gyroscopic pumping are
thought to be associated with the dissipation of internal gravity waves by breaking;
and there are strong arguments, dating back to the work of Palmer, Shutts &
Swinbank (1985), indicating that such forces may be significant at far lower altitudes
as well. Representation of such forces in global numerical models of the atmosphere,
through so-called “parametrization schemes”, is standard practice today. Thus, Fritts
& Alexander (2003) state that “accurate parameterization. . . remains a critical need”,
and Kim et al. (2003) state that the gravity-wave parametrizations ‘are now critical
components of virtually all large-scale atmospheric models’. This is because the models
have far less numerical resolution than would be needed to represent the gravity
waves directly. However, such parametrizations currently rely on a paradigm from
classical wave–mean interaction theories that assume a horizontally homogeneous
mean state. This paradigm can be summarized as a ‘pseudomomentum rule’ stating
that persistent mean forces arise only where the waves break or otherwise dissipate,
and that the mean forces arising from dissipation can be equated to the rate of
dissipation of the wave property known as pseudomomentum, defined as wave action
times wavenumber. We show here that the paradigm is incomplete, because it neglects
a new and fundamentally different class of wave-induced mean forces, which have no
dependence on wave dissipation yet are equally persistent, with cumulative effects.

This new class of wave-induced mean forces depends on horizontal inhomogeneity
and is therefore invisible to the classical wave–mean theories (e.g. Eliassen & Palm
1961; Booker & Bretherton 1967; Jones 1967) on which the current paradigm is based.
To our surprise, the new forces do not appear to have been studied before, even in
idealized cases. They are certainly neglected in all current parametrization schemes,
and indeed are beginning to be called the ‘missing forces’. This paper presents the
first detailed study of such forces, in the simplest possible cases only. The forces arise
whenever waves propagate on a mean state that varies in both horizontal dimensions,
latitude and longitude, as in the real atmosphere and oceans with their complicated
meandering currents and vortices. The simplest problem in which the new forces
arise is the scattering of a narrow wavetrain obliquely incident on a single circular
vortex (but without restricting attention to azimuthal force components, as in the
classical wave–mean theories). This is the problem considered here, for the simplest
possible fluid systems (non-rotating shallow-water dynamics and gas dynamics), but
emphasizing those features likely to be robust enough to carry over to more realistic
cases. The results show that the dynamical mechanisms in play involve what we call
‘remote recoil’, in two distinct senses simultaneously.

First, the mean state feels an effective force that satisfies an extension of the
pseudomomentum rule — that is, the force can be evaluated from the rate of change
of the waves’ pseudomomentum due to refraction by the vortex — but the force is
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felt not where the waves are refracted but, rather, at the vortex core. More precisely,
the effect on the vorticity field is the same as if the waves were absent but the mean
force were applied to the vortex core. That is what is relevant to the parametrization
problem. In the examples to be studied, conditions are such that the waves can be
described by ray theory, with the vortex core relatively far away from the refracted
ray paths. The effective wave-induced force on the core, thus conceived, will be called
the ‘vortex-core recoil’ and denoted by RV .

Second, the complete balance of forces — equivalently, the complete momentum
budget, as distinct from the pseudomomentum budget — involves a recoil that is still
more remote. This is transmitted by a mean pressure field, O(a2) in wave amplitude a

and of dipole form, that extends beyond the region containing the vortex core and the
refracted ray paths. It may be called the ‘far-field recoil’. The simplest versions of
the problem are those in which the O(a) wave field is considered to be steady. Then
the far-field recoil extends to infinity, in the same way as in classical vortex-impulse
problems. In more realistic versions that allow unsteady wave fields, the far-field recoil
extends out to the furthest O(a2) acoustic or gravity wavefront.

The free surface of a shallow-water system is the simplest way of idealizing the
stable stratification of the atmosphere and oceans, internal gravity waves being
replaced by surface gravity waves. Such models are well established as providing
useful idealizations of a range of dynamical processes in the atmosphere and oceans,
on the understanding that certain features such as nonlinear steepening, which have
no direct counterpart for three-dimensional internal gravity waves, are ignored or
artificially suppressed (Bühler 1998). One can note in passing that the present work
may also have applications in other areas of physics that involve interactions between
waves and vortices. An example would be the study of phonons and quantized vortex
lines in superfluids such as liquid helium (e.g. Donnelly 1991).

The plan of the paper is as follows. In § 2 the governing equations are introduced
and the standard ray theory is summarized. In § 3 a simple set-up consisting of a
wave source and sink but no vortex is introduced in order to describe recoil forces
in the absence of refraction. Then, in § 4, the vortex is added and the remote recoil
effect is discussed for the case of a finite wavetrain. Then § 5 treats the scattering of
an infinite wavetrain, a problem that demands a higher order of approximation. The
theory is cross-checked by numerical ray-tracing computations in § 6 and concluding
remarks are made in § 7.

2. Governing equations and linear waves
The governing equations are the continuity equation

Dh

Dt
+ h∇ · u = 0 (2.1)

and the momentum equation

Du
Dt

+
c2
0

γ − 1
∇(hγ −1) = F. (2.2)

As is well known, these equations can be interpreted either as representing two-
dimensional nonlinear gas dynamics with γ the ratio of specific heats or polytropic
exponent, or, when γ = 2, as representing the motion of thin fluid layer with a free
surface, whose depth h is viewed as the fluid density per unit area, in suitable units.
Because of the relevance to atmospheric gravity waves, we shall usually stress the
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latter interpretation. Therefore, h is the dimensionless fluid layer depth such that
h =1 corresponds to an undisturbed layer, u =(u, v) is the two-dimensional velocity
in the (x, y) directions, c0 is the linear gravity-wave or sound speed for an undisturbed
layer, and F is a body force per unit mass that remains to be specified in various
ways in order to model, for instance, wave emission and absorption. The role of the
polytropic exponent γ is made clearer by re-writing (2.2) in momentum-flux form as

∂(hu)

∂t
+ ∇ · (huu) + ∇p = hF, where p ≡ c2

0

γ
hγ , (2.3)

which is the ‘pressure’ function that describes the non-advective momentum flux.
Different choices for γ correspond only to changes in the nonlinear details of the
pressure function p =p(h), since we shall regard c0 as fixed. Thus, allowing different
values of γ in our calculations has the advantage of automatically flagging those
results that are sensitive to such nonlinear details of the pressure function, which we
find instructive. The case γ = −1 has special interest in that nonlinear steepening is
suppressed (Bühler 1998), which will be useful when thinking about wave sources
and sinks ‘at infinity’ as in § 5. Here we ignore an additive constant in p. Of course,
there is no simple physical interpretation of γ �= 2 for the shallow-water layer under
gravity.

The equations will be studied perturbatively correct to three orders in the usual
small-wave-amplitude parameter a � 1, i.e. there will be an O(1) background flow
(denoted throughout by U and H ), O(a) waves, and an O(a2) mean-flow response
to the waves. The method will be classical asymptotics to O(a2) (e.g. Rayleigh 1896;
Longuet-Higgins & Stewart 1964; Bretherton 1969), using Eulerian averaging. It will
be assumed throughout that the waves form a slowly varying wavetrain, which allows
averaging over the rapidly varying wave phase in the usual way, and permits the use
of ray theory. This averaging operation decomposes all flow fields φ into a mean part
φ̄ and a disturbance part φ′ such that

φ = φ + φ′ and (φ′) = 0 (2.4)

holds with negligible error. The use of ray theory will permit clearcut thought
experiments in which a narrow wavetrain is incident to one side or other of the vortex
core. Such thought experiments best isolate the remote-recoil effects.

2.1. Linear waves and ray tracing

The general O(a) equations of motion describing linear waves {u′, h′} on an O(1)
background flow {U, H} are

∂h′

∂t
+ ∇ · (H u′ + h′U) = 0, (2.5)

∂u′

∂t
+(U · ∇)u′ + (u′ · ∇)U + c2 ∇h′ = F′, (2.6)

where the local wave speed c = c0

√
Hγ −1. The linearized force F′ per unit mass

is specified as irrotational, as is appropriate for representing wave emission and
absorption. These equations will be solved using the standard ray-tracing
approximation, which is valid for a slowly varying wavetrain embedded in a slowly
varying background environment (e.g. Whitham 1974). Thus the wave fields are taken
as

{u′, h′} =

{
c

k
κ

, H

}
a cos(Θ), (2.7)



Remote recoil: a new wave–mean interaction effect 211

k = ∇Θ, ω = −∂Θ

∂t
, (2.8)

ω = ω̂ + U · k, ω̂ = cκ, (2.9)

where k = (k, l) is the local wavenumber vector, ω is the absolute wave frequency,
and the intrinsic frequency ω̂ is given in terms of κ = |k| by the dispersion relation in
(2.9). Only the phase Θ varies rapidly, whilst the wave amplitude a as well as k and
ω all vary slowly in space and time. The standard ray-tracing equations for x = (x, y)
and k = (k, l) as functions of time along group-velocity rays are given in terms of the
absolute frequency function

Ω(x, k, t) = cκ + U · k (2.10)

by Hamilton’s equations

dx
dt

=+
∂Ω

∂k
and

dk
dt

= −∂Ω

∂x
. (2.11)

For steady {U, H} the ray-tracing equations imply that dω/dt = 0, i.e. the absolute
frequency is constant along a ray. This will be the case throughout this paper. The
group velocity is

ug = (ug, vg) =
dx
dt

= c
k
κ

+ U . (2.12)

The time derivative along a ray is equivalent to the operator

d

dt
=

∂

∂t
+ (ug · ∇) (2.13)

acting on slowly varying functions of (x, t). The explicit evolution equations for
k = (k, l) are

dk

dt
= − ∂c

∂x
κ − ∂U

∂x
k − ∂V

∂x
l and

dl

dt
= − ∂c

∂y
κ − ∂U

∂y
k − ∂V

∂y
l, (2.14)

where U =(U, V ).
The evolution of wave amplitude a along a ray is governed by the standard

conservation law for the wave action A at O(a2) (e.g. Bretherton & Garrett 1968;
Whitham 1974),

∂(HA)

∂t
+ ∇ · (HAug) =

H

ω̂
u′ · F′ . (2.15)

Here

A=
E

ω̂
and E = |u′|2 = c2 h′2

H 2
= c2

0 Hγ −3 h′2 (2.16)

is the wave energy per unit mass, which satisfies equipartition in this case as indicated.
From 2E = a2c2 one can hence deduce the amplitude a from a knowledge of A and
vice versa.

The scalar wave action is conserved in regions where F′ = 0. Another important
wave activity measure is given by the pseudomomentum vector,

p= kA=
h′u′

H
(2.17)

per unit mass. It can be shown to satisfy

∂(Hp)

∂t
+ ∇ · (Hpug) = HA

dk
dt

+ h′ F′ , (2.18)
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RA RBk

Figure 1. A monochromatic wavetrain of length 2L is emitted by a wave source on the left
and absorbed by a wave sink on the right; k is the wavenumber vector. The source and sink
feel equal and opposite mean O(a2) recoil forces RA and RB , respectively. In place of the
mechanical wavemakers iconized here, the theoretical analysis uses artificial irrotational force
distributions FA and FB per unit mass; see (3.2).

where ∇ contracts with ug . This follows from multiplying (2.15) by k and using
(2.7), (2.13) as well as ∇ × F′ = 0 (cf. Andrews & McIntyre 1978 for a more general
definition of p, and the recent work of Bühler & Jacobson 2001 for details of a specific
computation in shallow water). Unlike wave action, pseudomomentum can be created
or destroyed without forcing or dissipation if the background flow is inhomogeneous
as measured by non-vanishing ∂Ω/∂x hence dk/dt . As is well known, components
of p in translational-symmetry directions of the background state are conserved.
However, all components of p, whether conserved or not, play an important generic
role in wave–mean interaction theory. This is important when carrying insights
from shallow-water theory over to more realistic stratified models (Bretherton 1969;
Bühler & McIntyre 1998). For reasons that emerge most plainly from a generalized
Lagrangian-mean framework, it is p that is relevant to such generalizations, not the
Stokes drift.

3. Recoil without vortex
To set the scene for what follows, we now consider the simple recoil scenario

depicted in figure 1. There is no background velocity (U = 0) and hence the
background layer depth H =1. Let x and y be Cartesian coordinates with x pointing
to the right in figure 1. A narrow beam of waves {u′, h′} with constant wavenumber
vector k = (k, 0) is emitted at x = −L by the wave source on the left, travels across
from left to right, and is then absorbed by a suitably tuned wave sink on the right,
at x = +L. As indicated, both the emitting and the absorbing device experience mean
O(a2) recoil forces in the x-direction denoted by RA and RB . In any reasonable
model we expect that

RA + RB =0, (3.1)

and this will now be shown on the assumption that the source and sink can be
modelled by irrotational body-force distributions FA and FB , respectively, defined so
as to have exactly zero mean. For instance, a suitable form for FA would be FA = ∇φA

with

φA = a env(x/lE, y/lE) cos(k(x − c0t)), (3.2)

where env( ) is an order-unity smooth envelope function with envelope scale lE such
that klE 	 1 (see e.g. Bühler & McIntyre 1998 for a numerical implementation).
Clearly, this FA has zero mean (i.e. FA = F′

A) and is precisely O(a). It generates
an essentially one-dimensional wavetrain travelling from left to right, i.e. the group
velocity is ug(x, y) = (c0, 0) with corresponding rays given by y = const. For a steady
wavetrain (2.15) means that

∇ ·
(
HA ug

)
= 0 (3.3)
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outside the wave source and sink areas. In the present case (3.3) further reduces to
∂A/∂x = 0, i.e.

A(x, y) = As(y) (3.4)

if one denotes by As(y) the profile of A just to the right of the wave source. As
ω̂ =const. and k = const., the same statement is also true for E and p.

Now, by momentum conservation (2.3) the mean recoil force RA is given by the
integral of

−hFA = −h FA − h′ F′
A = −h′ F′

A (3.5)

over the source area. Here the first term is zero by assumption because FA has
zero mean, by virtue of (3.2). To O(a2), the second term can be evaluated using the
solutions to the linear O(a) equations (2.5). This shows that RA is a wave property,
i.e. to leading order it can be computed on the basis of the linear solution alone.
Comparison with (2.18) shows that −RA is equal to the net flux of p away from the
source area:

RA = −
∫ ∫

source

h′ F′
A dx dy = −

∮
Hp (ug · n̂) ds, (3.6)

where n̂ is the outward-pointing unit normal vector. Thus one obtains the result
that the source recoil is equal to minus the net rate of creation of p by the source.
This kind of result is typical for zero-mean irrotational wave sources, as illustrated
for instance by idealized forms of toy boats propelled by a wavemaker at the rear
(Longuet-Higgins 1977).

The same argument can be made for the wave sink modelled by a suitably tuned
irrotational force FB = ∇φB . This then leads to the conclusion that the sink recoil RB

is equal to the net destruction rate of p per unit time; hence one arrives at (3.1).
One can note in passing that this argument relied crucially on FA = FB = 0 at O(a2).

For instance, one might be tempted to model the wave sink by Rayleigh friction such
that FB ∝ −u, which preserves the irrotationality of u. However, one would then
have FB ∝ −u, which need not be zero at O(a2). As u cannot be deduced from the
linear solution alone, this would leave RB undetermined at this stage. This illustrates
the care that has to be taken when implementing (say, in a numerical simulation)
zero-mean irrotational forces at O(a2) or higher.

3.1. Mean-flow response

The averaged continuity equation (2.1) is

∂h

∂t
+ ∇ · (h u + h′u′) = 0, (3.7)

which in the present case reduces to

∇ · u = −∇ · p= −k
∂A

∂x
(3.8)

at O(a2). Comparison with (3.4) shows that this right-hand side is non-zero only in
the wave source and sink regions. Specifically, the apparent mass source is negative
at the wave source and positive at the wave sink. Now, the flow is by assumption
irrotational throughout (having started from rest and being driven by irrotational
forces); hence

∇ × u =0 and ∇ × u = 0. (3.9)
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Figure 2. Streamlines of the O(a2) irrotational mean flow u described by (3.10) when the wave
source and sink are arranged as in figure 1. To save space, only half of the mirror-symmetric
source–sink flow is depicted. At large distances r 	 L, the velocity field takes dipole form,
decaying as 1/r2. In a Lagrangian-mean picture, the flow would be non-divergent and would
continue along the wavetrain. Because the wave field is steady there is no ‘divergence effect’.

Together with suitable boundary conditions, (3.8)–(3.9) determine u completely at
O(a2) in terms of the known O(a) wave fields feeding into the right-hand side of
(3.8). Specifically,

u(x, y) =
1

2π

∫ ∫
(x − x ′, y − y ′)

(x − x ′)2 + (y − y ′)2

[
−k

∂A

∂x
(x ′, y ′)

]
dx ′ dy ′. (3.10)

Figure 2 shows some streamlines of u. To save space, only half of the mirror-
symmetric source–sink flow is depicted. At distances r from the wavetrain that are
large in comparison with the source–sink distance 2L, the return flow is dipolar
and decays as 1/r2. The implied particle trajectories (i.e. the integral curves of the
leading-order Lagrangian-mean velocity u + h′u′) in this case resemble Feynman’s
‘children on a slide’ image of the flow in and around an acoustic wavepacket (§ 11.5
in Feynman 1998).

Finally, the depth disturbance at O(a2) can be easily calculated from Bernoulli’s
theorem for potential flows. As the wave source and sink are due to irrotational
forces with zero-mean potential, they make no contribution to the averaged Bernoulli
theorem

u · u
2

+
u′ · u′

2
+

c2
0

γ − 1
hγ −1 =

c2
0

γ − 1
, (3.11)

which after expansion in powers of wave amplitude and using (2.16) yields

h = 1 − d(ln c)

d(lnH )

E

c2
0

= 1 − γ − 1

2

E

c2
0

(3.12)

to O(a2). This is the well known hard-spring or mean density dilatation effect (for
γ > 1) inside a wavetrain (Brillouin 1925). It can be shown that (3.12) corresponds to
uniform mean pressure, ∇p = 0 in (2.3), throughout the domain.
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Figure 3. A background vortex with circulation Γ > 0 has been added a distance D to the
left of the wavetrain, where it is exposed to the large-scale return flow shown in figure 2 (solid
curves). The background velocity of the vortex (dashed curves) pushes the wave rays toward
decreasing y at the source and pulls them toward increasing y at the sink. To keep y =const.
along the rays (Landau & Lifshitz 1987), the phase lines have to tilt slightly as indicated; see
(4.11). This leads to tilted recoil forces and to a net vortex recoil RV ; see (4.1)ff. and (4.25).

4. Remote recoil with vortex
Consider now the situation depicted in figure 3. An O(1) background vortex has

been placed in the region of weak return flow far away from the wavetrain. This has
two effects. First, the wavetrain is modified, as the waves are now refracted by the
non-uniform background flow due to the vortex. Second, the vortex can be expected
to migrate slowly to the left because of advection by the O(a2) return flow — as
if the waves were absent but a transverse force RV in the y-direction were being
exerted on the vortex core. It will be shown that these two effects are intimately
linked.

To simplify matters we assume at first that an artificial O(a2) holding force FH (x)
per unit mass acts on the vortex to cancel its advection, allowing the mean flow to
remain steady. The vortex-core recoil RV can then be equated to minus the resultant
of FH :

RV = −
∫ ∫

hFH dx dy. (4.1)

In order for the flow to be steady, we must have from (2.3) that

hFH = ∇ · (huu + pI), (4.2)

where I is the unit tensor, and hence from (4.1) that

RV = −
∮

(huu · n̂ + p n̂) ds, (4.3)
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where the line integral encloses the vortex core, outside which FH is assumed to vanish,
and where ds and n̂ are the line element and outward normal. The distribution of FH

inside the vortex core is of course not unique. But we shall be concerned only with
the resultant as defined by (4.1) and (4.3), which depends only on conditions outside
the vortex core.

4.1. Background vortex flow

Let the origin of the coordinate system coincide with the centre of the vortex and
let D be the minimum distance from vortex to wavetrain. This means that the
wave source is centred at (−L, −D) and the wave sink at (+L, −D). The vortex
is axisymmetric with circumferential velocity Ũ (r) and depth field H (r), with
r2 = x2 + y2. The detailed structure of the vortex core is unimportant, provided that
the background vorticity is confined within a core of radius b so that for r > b the
velocity profile is Ũ (r) = Γ/(2πr), where Γ > 0 is the circulation. The radius b � D,
and the line integral in (4.3) can be taken around r = b. The O(1) velocity and depth
field in cyclostrophic balance are

U = (U, V ) =
Γ

2π

(
−y

r2
,

+x

r2

)
, Hγ −1 = 1 − γ − 1

2

Ũ
2

c2
0

(4.4)

for r > b.
We will from now on assume that the vortex is weak in the sense that Ũ/c0 is

a small number everywhere, i.e. the vortex Froude (or Mach) number is small. A
convenient dimensionless small parameter for this assumption (for fixed D) is

ε =
|Γ |

2πc0D
� 1. (4.5)

There are now two small parameters: a for the wave amplitude and ε for the vortex
amplitude. It is necessary that ε 	 a such that the O(ε) background vortex can still
be treated as a background flow that is large, O(1), in comparison with the O(a)
linear waves. This also allows us to treat terms O(anεm) (where n, m are non-negative
integers) as much bigger than O(an+1) terms, which will be useful below. Only terms
up to O(anε2) will be considered, for instance we will approximate (4.4) by

H = 1 − Ũ 2

2c2
0

. (4.6)

One can note in passing that, presumably, a distinguished limit such as a ∝ ε3 could
be used to make rigorous the formal asymptotics presented here.

4.2. Linear waves

For non-uniform H the local wave speed

c = c0

√
Hγ −1 = c0

(
1 − γ − 1

4

Ũ 2

c2
0

)
(4.7)

to O(ε2). To the same order the absolute frequency of the waves is given by

ω = ω̂ + U · k = c0κ + U · k − γ − 1

4

Ũ 2

c0

κ, (4.8)
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where terms have been ordered in powers of ε. The corresponding absolute group
velocity is

ug = c
k
κ

+ U = c0

k
κ

+ U − γ − 1

4

Ũ 2

c0

k
κ

. (4.9)

In addition to the previously noted ray-invariance of the absolute frequency ω (due
to the steadiness of the background flow) there is also a second invariant due to the
axisymmetry of this particular background flow:

ω = const. and lx − ky = const. (4.10)

This second invariant is equal to the angular pseudomomentum per unit wave action;
it will not be important here. Now, even truncated to O(ε2) the ray-tracing equations
are difficult to solve analytically. Also, at O(ε2) the value of γ matters in (4.9), which
means that at this order the wave field depends on the nonlinear details of the fluid
compressibility. On the other hand, it will turn out that knowing the wave field to
O(εn) is sufficient to determine the recoil force at O(εn+1). If the ray-tracing equations
can be integrated at O(ε) then this will allow us to compute the recoil force up to
O(ε2). This is pursued now. We assume that ω has the same value on all rays, which is
consistent with a normal-mode approach. That is, ω = c0k0 everywhere with a suitable
constant k0 > 0 such that k = (k0, 0) + O(ε).

We now make use of the classical result that non-dispersive wave rays through an
irrotational background flow are straight lines to O(ε), i.e. to first order in Froude
(or Mach) number (e.g. Landau & Lifshitz 1987, p. 261; the result readily generalizes
to isotropically dispersive waves with large intrinsic group velocities relative to the
background flow, see e.g. Dysthe 2001). This remarkable result (which can be derived
from Fermat’s principle of least time) says that whilst k and hence the intrinsic group
velocity are constantly changed by refraction due to U , the absolute group velocity
ug always points in the same direction. Referring to figure 3 this means that if, as
indicated, the wavemaker on the left is slightly tilted toward the vortex in order to
make vg = 0 at the source, then vg will continue to be zero along the ray, i.e. the ray
is simply y = const. From this argument and (4.9) it follows that, to O(ε),

vg = 0 , ⇒ l = −k0

V

c0

, (4.11)

with l taking opposite signs at the source and sink. This corresponds to the pushing
or pulling action of the background flow at these locations. Now, using the fact that
∇ × k = 0 by definition, we can obtain k from (4.11) by integration, recalling that
∇ × U =0 from (4.4), to get

k = k0 − k0

U

c0

, that is k = (k0, 0) − k0

U
c0

. (4.12)

It is straightforward to check that this solution satisfies all the ray-tracing equations
to O(ε); and one can note in passing that the angular-pseudomomentum invariant
(4.10) differs from ray to ray, i.e. it depends on y, unlike the globally constant ω.
Also, whilst ∇ × k = 0 by definition, ∇ · k = 0 also holds in this special case. Finally,
it can easily be verified that the rays connecting the source and sink remain straight
lines to O(ε) even in the limit as L → ∞ for fixed ε, a fact to be made use of in § 5.
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The wave-action profile A(x, y) inside the wavetrain is computed from (3.3) using
the group velocity ug = (c0 + U, 0). The result is

A(x, y) = As(y)
c0 + U (−L, y)

c0 + U (x, y)
= As(y)

(
1 +

Γ

2πc0

y(L2 − x2)

(x2 + y2)(L2 + y2)

)
(4.13)

to O(ε); recall that Γ/2πc0 = εD. As before, As(y) is the value of A just to the right
of the source. As y ≈ −D in the wavetrain, A has a minimum at closest approach
to the vortex. Physically this is because ug = c0 + U is greatest there, diluting the
wave action.

4.3. Mean-flow response

The O(a2) mean-flow response in the presence of a vortex is significantly more
complicated than before; see especially § 5 below, where the O(ε) term in (4.13) will
be essential. Furthermore, the need to distinguish clearly between contributions at
various powers of a and ε makes it convenient to introduce a special notation as
follows. A single subscript denotes the total contribution to a quantity at the cor-
responding power of a . A second subscript, if present, denotes the contribution at
the corresponding power of ε . Thus, for instance,

u2 = u20 + u21 + u22 + . . . , (4.14)

where the left-hand side is the total mean-flow response at O(a2) and the right-hand
side shows the contributions at O(a2ε0), O(a2ε1), etc. By assumption 1 	 ε 	 a such
that these terms are formally much larger than u3. In this notation the O(a2) mean-
flow response terms without a vortex, i.e. u in (3.10) and h − 1 in (3.12), become u20

and h20, respectively.
As noted before, the mean flow is held steady by the action of a suitable vortex

holding-force distribution FH (x), which is non-zero only inside the vortex core; thus
FH = 0 for r > b. Crucially, unlike the body forces at the wave source and sink, the
holding force FH must be allowed to have non-zero curl. Consider now the problem
of appropriately choosing this FH at leading order, which is O(a2ε). At this order
the steady mean-momentum equation near the vortex is

(U · ∇)u20 + (u20 · ∇)U + c2
0 ∇h21 = FH . (4.15)

There are no disturbance correlation terms, because there are no waves near the
vortex. With the help of a vector identity the first two terms can be rewritten as

∇(U · u20) + (∇ × U) × u20 + (∇ × u20) × U, (4.16)

which because of ∇ × u20 = 0 yields

∇
(
U · u20 + c2

0 h21

)
= FH − (∇ × U) × u20. (4.17)

We may use the latitude of choice permitted by (4.1)–(4.3) to make FH as simple as
possible. We choose

FH = (∇ × U) × u20. (4.18)

Then, to satisfy (4.17) and to match to the solution outside the vortex core we must
take

c2
0 h21 = −U · u20 (4.19)

inside the vortex core, as well as just outside. The solution just outside must conform
to (3.11) because Bernoulli’s theorem for potential flow holds there. Because there are
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no waves there, (3.11) at O(a2ε) leads again to (4.19). We may now evaluate (4.3) on
the circle r = b, correct to O(a2ε), and recalling (4.6) (permitting H = 1 here), as

RV = −
∫ 2π

0

(
c2
0 h21I + Uu20 + u20U

)∣∣
r=b

· n̂ bdθ, (4.20)

where θ is the polar angle and where the outward normal n̂ now has Cartesian
components (cos θ, sin θ). The last term in the integrand is zero, because U · n̂ = 0,
and h21 can be eliminated from the first term via (4.19) to give

RV = −
∫ 2π

0

(−U · u20 I + Uu20)|r=b · n̂ bdθ. (4.21)

This integral can be evaluated without ambiguity; indeed, since u20 is slowly varying
near the vortex one can approximate it in (4.21) by a constant equal to its value at
the vortex centre (x = 0, y =0). Then, noting that the Cartesian components of U at
r = b are (− sin θ, cos θ)Γ/(2bπ), we can easily evaluate the integral. Both terms make
equal contributions to the net result, which is

RV = −Γ ẑ × u20(0, 0) = Γ |u20| ŷ, (4.22)

where ŷ is the unit vector in the y-direction and |u20| is evaluated at the vortex
centre. This shows that the effective recoil force RV is given by a Magnus force
expression. As an aside one can note that the above computation can be repeated
with a solid cylinder replacing the vortex. The changed boundary condition at the
cylinder boundary modifies the flow such that the classical Magnus force computation
applies, with the recoil force now equal to the Magnus force.

Now, the value for u20(0, 0) is given by (3.10) at the origin, which by symmetry has
zero y-component and an x-component that is twice that due to the source alone.
The x-component can be simplified by approximating the slowly varying pre-factor
in the integrand of (3.10) by its value at the source, i.e. at (x ′, y ′) = (−L, −D). With
(x, y) = (0, 0) this yields

u20(0, 0)=− 2

2π

∫ ∫
source

(L, 0)

L2 + D2
k0

∂A

∂x
(x ′, y ′) dx ′ dy ′ =−k0

π

(L, 0)

L2 + D2

∫ +∞

−∞
As(y

′) dy ′. (4.23)

The vortex recoil force is then

RV = ŷ
k0Γ

π

L

L2 + D2

∫ +∞

−∞
As(y

′) dy ′. (4.24)

This expression can be cross-checked by evaluating the y-components of the source
and sink recoil forces in (3.6) to O(a2ε). Using H = 1 again, the wavenumber l from
(4.11), ug = c0 x̂ and the fact that source and sink have the same recoil y-component,
one readily verifies that

RA + RB + RV = 0. (4.25)

This confirms that the vortex holding force was indeed necessary, in order to keep
the net momentum budget balanced for steady-state conditions.

4.4. Vortex response without holding force

If the vortex holding force is removed then the mean flow is not steady any more.
The unsteady mean flow that ensues can be understood if one imagines the holding
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force to lapse just for a small time interval �t , after which the force is then switched
on again, at time t = 0, say, and the flow becomes steady again. Within the present
perturbation regime, this is equivalent to the linear response of a shallow-water vortex
without waves to the application of a transient force −FH per unit mass to the vortex
core, with net impulse �t RV .

Clearly, there will be a net input of y-momentum into the fluid equal to �t RV . At
the same time, in response to ∇ × (−FH ), the vortex will move a distance �x = u20�t ,
to the left in figure 3, i.e. in the −x-direction. Now, as the flow again settles down
to a steady state, this will change the amount of y-momentum contained in a large
fixed circle centred at the original vortex location, by an amount asymptotically equal
to just half of �t RV . (The specification of the control volume is crucial because
the total momentum integral for a single vortex is only conditionally convergent, as
is the total momentum integral for the dipolar difference field, defined as U for the
displaced vortex minus U for the undisplaced vortex.) The other half of the momentum
�t RV resides in the wavefront of an O(a2) mean dipolar gravity-wave pulse, propa-
gating radially outward with speed c0, and which adjusts the far-field vortex flow
to the changed vortex core location. This is the far-field recoil alluded to in the
introduction.

In other words, only half of the recoil momentum will be found in the balanced
vortical flow at large times; the other half will be found in the velocity field of the
O(a2) mean gravity-wave pulse. At any moment in time t , the corresponding wavefront
will be near r = c0t . This is analogous to classical results about the impulsive forcing
of incompressible flow, with the difference that there the recoil wave reaches spatial
infinity instantaneously.

Finally, one can check that the hydrodynamical impulse of the dipolar difference
field (e.g. Lamb 1932) is asymptotically −�xΓ ŷ = �t RV . This is just equal to the
recoil momentum, as is the case for incompressible flow.

5. Source and sink at infinity
As shown by (4.4) and (4.24), the magnitude of the vortex recoil force RV at O(a2ε)

is proportional to |U | at the wave source or sink, and goes to zero like 1/L when
L → ∞. This again can be cross-checked by re-evaluating (3.6) to O(a2ε). As L → ∞,
one obtains a classical scattering problem in which waves approach from and recede
to spatial infinity. Leaving aside questions of uniformity, related to the diffractive
Rayleigh length, etc., we see that there is an interesting evolution of k along the wave
ray. The y-component l is still governed by (4.11), implying that the phase tilts seen
in figure 3 still occur and also that l → 0 as x → ±∞. Thus k starts parallel to the
x-axis at x = −∞, swings toward the vortex as the waves approach then away as they
recede, before again becoming parallel to the x-axis at x = +∞. Most importantly,
this implies that RV → 0 as L → ∞.

To obtain a non-zero answer in this scattering limit L → ∞ one has to go to the
next order in ε, more precisely, to O(a2ε2). At this order, the outgoing and incoming
l values differ by a finite amount proportional to the scattering angle of the wave.
From the recoil force to O(a2ε2) this scattering angle could be computed directly
from (3.6) and (4.25). As the O(a2ε2) recoil force can be computed using only the
O(aε) wave field and O(a2ε) mean-flow response, this means that the scattering angle
can be explicitly found in this way, i.e. without ever solving the linear ray-tracing
equations at O(ε2).
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5.1. Recoil force

The main task is to compute u21. This is carried out for the steady state subject to
the holding force (4.18), with u21 in place of u20 since u20 is now zero. As before,
∇ × u21 = 0, because outside the vortex core the flow is strictly irrotational, and inside
the vortex core the holding force keeps the vorticity strictly steady and unchanged.
Furthermore, it is readily verified that the near-vortex momentum balance (4.15) and
the Magnus formula (4.22) also apply at the next order in ε, i.e. with u20 replaced
by u21 and h21 by h22. There is an additional term proportional to (H − 1)h20;
but h20 = 0 at the vortex. This extension to the next order in ε also applies to the
Bernoulli equation that provides the boundary condition for h22. Therefore, the only
new equation comes from the steady mean continuity equation (3.7), which at O(a2ε)
is

∇ · u21 = −∇ · p21 − ∇ · (h20U). (5.1)

Here p21 is the O(a2ε) part of p= kA, which can be read off from (4.12) and (4.13) in
the limit L → ∞; and h20 is equal to the last term in (3.12). Evaluating the right-hand
side of (5.1) is made easier by recalling that ∇ · U = 0 and ∇ · k = 0. The result is

∇ · u21 =
k0Γ

2πc0

{
2xy

r4
As(y) +

γ + 1

2

x

r2

dAs

dy
(y)

}
. (5.2)

Two contributions in dAs/dy have been combined into one term here.
Applying the inversion formula analogous to (3.10) to (5.2) with ∇ × u21 = 0 gives

u21(0, 0)

=− k0Γ

(2π)2c0

∫ ∫
(x ′, y ′)

x ′2 +y ′2

{
2x ′y ′

(x ′2 +y ′2)2
As(y

′)+
γ + 1

2

x ′

x ′2 +y ′2
dAs

dy
(y ′)

}
dx ′dy ′ (5.3)

for the velocity at the vortex core, where x ′ now ranges between ±∞ as well as y ′.
Again, the y-component of this integral vanishes by symmetry. For the x-component
the terms in As and dAs/dy are considered separately. The x ′-integral for the former
can be evaluated exactly, and in the remaining y ′-integral one can use y ′ ≈ −D in
the slowly varying pre-factor. The result is

k0Γ sgn(D)

16πc0D2

∫ +∞

−∞
As(y

′) dy ′, (5.4)

where sgn(D) is ±1 according to the sign of D, the upper sign corresponding to waves
passing to the right of the vortex as before. The term in dAs/dy is treated in just the
same way, after converting it to a term in As(y

′) using integration by parts in y ′. This
is straightforward because As is zero outside the wavetrain; there are no boundary
terms. The result, for the term in dAs/dy, is

k0Γ (γ + 1) sgn(D)

16πc0D2

∫ +∞

−∞
As(y

′) dy ′. (5.5)

Adding the two results, we have finally

u21(0, 0) = x̂
k0Γ (γ + 2) sgn(D)

16πc0D2

∫ +∞

−∞
As(y

′) dy ′. (5.6)

As noted before, (4.15) and the Magnus formula (4.22) are unchanged in appearance
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at the next order in ε, and hence the recoil force at O(a2ε2) for scattering waves is
given by

RV = −Γ ẑ × u21(0, 0) = − ŷ
k0Γ

2(γ + 2) sgn(D)

16πc0D2

∫ +∞

−∞
As(y

′) dy ′. (5.7)

Being quadratic in Γ , this force is the same regardless of the sign of the vortex
circulation. This is related to the approximate mirror symmetry of figure 4 below.
However, RV does change sign according to whether the waves pass to the right of
the vortex (D > 0) or to the left of it (D < 0).

Notice that, for γ > −2, (5.6) implies that u21(0, 0) at the vortex core is in the
positive x-direction. Because of the bending of the wavetrain and the retreat of
source and sink to x = ± ∞, u2(0, 0) and RV have both reversed their directions
relative to those in figure 3.

5.2. Global momentum budget and scattering angle

From the recoil force at O(a2ε2) one can now compute the scattering angle of the
waves. In fact, it appears that this can be done in general at O(a2), i.e. without
restriction to small ε. The result now to be obtained is based on a global momentum
budget argument, which, as will be shown, establishes an equality between −RV and
the total or global rate of change of pseudomomentum. The analysis is not completely
straightforward, and will therefore be demonstrated in some detail. The starting point
is again the flux form (4.2) of the exact momentum equation, but now integrated over
a large circular area of radius r , say. After averaging (with the wave source and sink
still at x = ±∞), this gives

RV = −
∫ ∫

hFH dx dy = −
∫ 2π

0

(huu + pI) · n̂ r dθ, (5.8)

with pressure p = c2
0 hγ /γ and vortex-holding force FH . At O(a2) the right-hand side

becomes

−
∫ 2π

0

(h2UU + H u2U + h′
1u′

1U + Uh′
1u′

1 + HUu2 + H u′
1u′

1 + p2I) · n̂ r dθ (5.9)

and this will be investigated in the limit r → ∞. Now, the first three terms are
trivially zero because U · n̂ = 0. The fourth term contains a factor equal to the
pseudomomentum density, which is non-zero over a fixed arclength rdθ as r → ∞. As
U ∝ 1/r , this means that this term integrates to something of order at most O(1/r),
which goes to zero as r → ∞. The narrow-wavetrain assumption is used here. The
fifth term requires more care. Writing u2 = ∇φ 2, since ∇ × u2 = 0, we see that the fifth
term becomes

−
∫ 2π

0

HU(∇φ 2 · n̂) rdθ = −H (r)
Γ

2π

∫ 2π

0

(− sin θ, cos θ)
∂φ 2

∂r
dθ. (5.10)

Because H → 1, (5.10) makes clear that this fifth term integrates to something
proportional to the first Fourier mode of ∂φ 2/∂r . In other words, if φ 2 is written as
a sum of Fourier modes an(r) exp(inθ) with integer n, then (5.10) is proportional to
|da1(r)/dr |.
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Now, the steady mean continuity equation (3.7) at O(a2) yields

∇ · (H u2 +Hp + Uh2) = 0, (5.11)

⇒ ∇2φ 2 +
1

H

dH

dr

∂φ 2

∂r
= − 1

H
∇ · (Hp) − U

H
· ∇h2, (5.12)

⇒ ∇2φ 2 ≈ −∇ · p − U · ∇h2, (5.13)

where the last line holds for large r with error O(a2r−2) because of cyclostrophic
balance, (4.4). The free-space Green’s function for the first Fourier mode of the
Poisson equation decays as 1/r , i.e. dipole behaviour, which means that difficulties
can come only from the behaviour of the source terms in (5.11)–(5.13) for large r .
Specifically, if the first-mode or dipolar part of the source terms on the right of the
Poisson equation decays as 1/rm at large distances then a1(r) satisfies

1

r

d

dr

(
r
da1

dr

)
− 1

r2
a1 =

1

rm
. (5.14)

The solution is a1 ∝ r2−m, which means that |da1(r)/dr | and therefore (5.10) will go
to zero as r → ∞ provided that m > 1. With this result in hand, it is possible to show
from (2.18) and (3.11) that the first-mode or dipolar part of the source terms in (5.13)
is bounded by O(a2r−2). Therefore we have at least m = 2, which satisfies the decay
condition m > 1 and finally proves that the contribution of the fifth term in (5.9) will
also be negligible as r → ∞.

For the sixth term it is straightforward to show that H u′
1u′

1 · n̂ is equal to
Hpug · n̂. Hence this term represents the pseudomomentum flux across the large
circle r =constant. Like the fourth term, this sixth term is non-zero over a fixed
arclength rdθ as r → ∞, However, it is now multiplied by the non-decaying H . This
term will therefore make a finite contribution as r → ∞, which will be considered in
detail below. Finally, the pressure term is

p2 =
c2
0

γ
hγ

∣∣∣∣
2

= c2
0 Hγ −1

(
h2 +

γ − 1

2

(h′
1)

2

H

)
. (5.15)

This can be linked to the mean Bernoulli theorem at O(a2), which is

U · u2 + 1
2
u′

1 · u′
1 = − c2

0

γ − 1
hγ −1

∣∣∣∣
2

= −c2
0 Hγ −2

(
h2 +

γ − 2

2

(h′
1)

2

H

)
. (5.16)

Combining (5.15) and (5.16) and rearranging leads to

U · u2 +
1

H
p2 + 1

2
u′

1 · u′
1 − c2

0

2
Hγ −3(h′

1)
2 = 0. (5.17)

However, the last two terms are equal by the equipartition of wave energy noted in
(2.16). This means that finally

p2 = −HU · u2, (5.18)

the integral over which can easily be shown to go to zero under the same
condition as that for the fifth term. This concludes the proof that the only non-
vanishing contribution to (5.9) in the limit r → ∞ is due to the sixth term, i.e. the
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pseudomomentum flux term. So, formally to all orders in ε, we have

RV = − lim
r→∞

∫ 2π

0

H u′
1u′

1 · n̂ r dθ = − lim
r→∞

∫ 2π

0

Hpug · n̂ r dθ. (5.19)

This shows that the recoil force is equal to minus the difference between outgoing
and incoming pseudomomentum fluxes. In other words, RV is equal to minus the
rate of change of pseudomomentum due to refraction by the vortex flow. Though
pseudomomentum is being changed, wave action is still conserved, and hence the
total rate of change of pseudomomentum is equal to the change in wavenumber
vector from one end of the wavetrain to the other, at x = ± ∞, times the total flux of
conserved wave action along the wavetrain:

RV = −(kB − kA) (total wave-action flux along wavetrain), (5.20)

where kA and kB denote the asymptotically incoming and outgoing wavenumber
vectors. As said before, this result is valid without restriction to a weak vortex, i.e.
without restriction to ε � 1.

We can now use (5.20) to compute the scattering angle at O(ε2). Because the
wavenumber change is O(ε2), the wave-action flux need only be computed at O(ε0),
hence as

total wave-action flux along wavetrain = c0

∫ +∞

−∞
As(y) dy. (5.21)

Because of the ray-invariance of absolute frequency we have that |kA| = |kB | asympto-
tically. Hence kB must be a rotation of kA such that

kB − kA = θ∗ ẑ × kA (5.22)

with small scattering angle θ∗. Now, using (5.7), (5.20), (5.22), and the fact that kA =
(k0, 0), we obtain

θ∗ =
Γ 2(γ + 2) sgn(D)

16πc2
0 D2

=
πε2(γ + 2) sgn(D)

4
(5.23)

for the scattering angle at O(ε2). The scattering is toward the vortex if γ > −2, as in
figure 4 below, otherwise it is away from the vortex. Notice that (5.7) can now be
rewritten

RV = − ŷ θ∗ |total pseudomomentum flux along wavetrain|. (5.24)

The direction of RV is not, of course, exactly parallel to − ŷ, but rather makes an
O(ε2) angle 1

2
θ∗ with the y-axis. As in (5.7) we have omitted the x component, ∝ 1

2
x̂θ∗,

since its magnitude is O(a2ε4).

6. Numerical ray tracing
Numerical ray-tracing results are presented now that illustrate and test the

theoretical O(ε2) predictions obtained above. It is straightforward to integrate the
full ray-tracing equations numerically, i.e. there is no need to restrict to small ε here.
Recalling the standard ray-tracing equations (2.11), the local wave speed is

c(r) = c0

√
Hγ −1 = c0

√
1 − γ − 1

2

Ũ 2

c2
0

, (6.1)
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Figure 4. Numerical ray-tracing results for γ = 1.4 illustrating symmetric focusing of wave
rays in the lee of the vortex. Rays are started from |y0| = {4, 2, 1} and the corresponding
values of ε were {0.0125, 0.025, 0.05}. The y-axis is greatly stretched to show the scattering.
Specifically, the individual plotted lines are y0 + (y(t) − y0)/θ∗ where θ∗ is the scattering angle
(5.23) for ε =0.05. With this scaling the ray nearest to the vortex should be turned into the
corners of the plot, as illustrated; the departure from this is due to the finite value of ε.

where as before U is given by (4.4), r = |x|, Ũ (r) = |U |, and κ = |k|. Now, in (2.14) the
term

∇c =
dc

dŨ

dŨ

dr
∇r =

γ − 1

2

Ũ 2

c

(x, y)

r2
(6.2)

by the chain rule. Using this result we obtain

dx
dt

= c
k
κ

+ U, (6.3)

dk

dt
= −γ − 1

2

Ũ 2

c

x

r2
κ − Γ

2π

(
2xy

r4
k +

y2 − x2

r4
l

)
, (6.4)

dl

dt
= −γ − 1

2

Ũ 2

c

y

r2
κ +

Γ

2π

(
2xy

r4
l − y2 − x2
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which can be readily integrated with a standard Runge–Kutta scheme.
A typical scattering run starts from initial conditions x(0) = −∞ (or rather a large

enough negative number), y(0) = −D, k(0) = k0 > 0, and l(0) = 0. Now, dimensional
analysis of the ray-tracing system shows that after suitable scaling a ray trajectory can
at most depend on three dimensionless parameters: γ, ε, and k0D. However, inspection
reveals that k0D is actually unimportant in these equations, and hence ε is the only
relevant parameter at fixed γ . This implies that two trajectories with different D and
Γ but equal ε are similar, e.g. they have the same scattering angle. Figure 4 shows
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D ε θ∗ θr (θ∗ − θr )/θr

0.2 0.25 0.17 0.14 0.21
0.5 0.10 0.027 0.024 0.12
1.0 0.05 0.0067 0.0063 0.065
5.0 0.01 0.00027 0.00026 0.014

Table 1. Scattering results for γ = 1.4. Only y0 = −D is varied between runs. The predicted
scattering angle θ∗ is taken from (5.23), the angle θr comes from the numerical integration.
The relative error in the last column scales with ε.

the results of a number of runs with varying y(0) = −D, all other parameters being
kept constant (in particular, γ =1.4). The figure grossly exaggerates the scattering
angles by rescaling the y-axis as described in the caption. The conspicuous symmetry
between waves passing to the left of or to the right of the vortex can be clearly
observed (cf. the far-field region in the analysis of Ford & Llewellyn Smith 1999): for
γ > −2 the vortex focuses wave rays in its lee in a symmetric fashion.

The scattering angle θr was computed numerically for various values of ε and
compared to the analytical predictions θ∗ from (5.23). The results are collected in
table 1. The relative error shown in the last column clearly scales as ε, which suggests
that the next term in the expansion of θ∗ would be ∝ ε3. Such a term would hence
break the symmetry between waves passing to the left or right of the vortex that
holds at O(ε2).

These scattering results were obtained by varying ε whilst keeping γ constant.
Conversely, the variation of γ at fixed ε can lead to some surprising results in the
appearance of the ray trajectory, especially for negative values of γ . Such negative
values are perfectly acceptable from a mathematical point of view (cf. the discussion
in Bühler 1998) because the pressure p(h) = c2

0 hγ /γ is an increasing function of
h > 0 for all γ . Surprisingly, it turns out that there is a range of γ < 0 for which
the curvature along the ray can change sign, causing the ray trajectory to wiggle.
Specifically, if −2 <γ < −1 then the waves are scattered toward the vortex — with
overall or global bending of ray paths still as in figure 4 — even though the ray
curves away from the vortex at the point of shortest distance of the wavetrain from
the vortex.

This can be demonstrated by computing the curvature of the ray trajectory at the
point of shortest distance to the vortex, taken to be x = (0, −D) for convenience and
without loss of generality. The ray is almost a horizontal line y =const. near this
point, hence dy/dx is small and the geometric ray curvature can be approximated by

d2y
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=

d

dx
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=
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)
. (6.6)

This expression can be simplified by using that vg = 0 and V = 0 at this point, which
together imply that l = 0 there as well. This means the last term in (6.6) is zero and
furthermore
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using k = κ > 0. Substituting in (6.6) and truncating at O(ε2) then produces a ray
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Figure 5. Zoom of trajectory details at the point nearest to the vortex. From top to bottom of
the picture, rays with five different values of γ are shown; ε is always the same. The γ =1 ray
has positive curvature at the point nearest to the vortex and is scattered toward the vortex. The
γ = −1 ray (non-steepening model) has zero curvature at this point (cf. (6.8)). The γ = −1.5
ray has negative curvature locally but is still scattered toward the vortex eventually; this ray
has a wiggle. At γ = −2 there is zero scattering (cf. (5.23)), and at γ = −3 the curvature and
scattering are both negative.
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2πDc0

)2

=
γ + 1

2D
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at the point nearest to the vortex. A positive sign (for D > 0) corresponds to curvature
toward the vortex here.

Now, this curvature changes sign at γ = −1, which is a different threshold than
the global scattering threshold γ = −2. In other words, in the range −2 <γ < −1
the global scattering is still toward the vortex whilst the local curvature at the point
closest to the vortex now points away from it. This is illustrated by a few trajectories
at various γ in figure 5; see caption for details. In particular, the middle trajectory has
γ = −1.5 and one can see that global scattering toward the vortex is achieved whilst
bending away from the vortex near x = (0, −D). Of course, only the global scattering
angle matters for the global momentum budget and hence for the net vortex recoil.

7. Concluding remarks
The idealized problems studied in this paper have clearly shown the nature of the

new wave–vortex effect: a pseudomomentum change due to wave refraction by a
horizontally inhomogeneous background flow goes hand-in-hand with a recoil felt
by the mean flow. In the present case this could be represented as an effective recoil
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force felt by the vortex core, evoking, in turn, far-field ‘pressure at infinity’ recoil
effects of the kind encountered in classical vortex-impulse studies. The effective
recoil force on the core is equal and opposite to the rate of change of the waves’
pseudomomentum due to refraction by the vortex, superficially in accordance with
a naive ‘photon analogy’ that conflates pseudomomentum with momentum. But the
photon analogy would say that the force is felt within the refracting wavetrain, rather
than in the vortex core, which latter is located well away from the wavetrain in the
parameter regime studied. We stress yet again that, for a steady wavetrain continually
propagating past the vortex, the effective recoil force is persistent, and cumulative in
time.

The formal asymptotics used here is sufficient to reveal all the essential features
of the problem, even though improved asymptotic schemes suggest themselves, for
instance based on transformed coordinates whose origin follows the persistently
translating vortex core, thus extending the range of validity in time.

As far as we are aware, this has been the first study of horizontally refracted waves
that computes the concomitant O(a2) mean-flow response at sufficient accuracy to
make definite statements about the momentum and pseudomomentum budgets and
hence about the recoil forces. Furthermore, the explicit formula (5.23) for the leading-
order scattering angle of a wavetrain passing a vortex at a distance emerged as
a by-product of this study. Whilst similar results might be well known to some
researchers, we are unaware of an explicit formula for this scattering angle elsewhere
in the literature. It is related to the effective recoil force RV by (5.24).

The highly idealized nature of the problem studied here, a single weak vortex with
potential flow outside it, allowed a fairly complete analysis of the flow with moderate
effort. Despite the idealizations, we suggest that the recoil effect described is robust
in its essential features. For instance, replacing the perfectly irrotational wave sink
with a local region of wave dissipation (e.g. Bühler 2000) would change only the
local details of the mean-flow computation at the wave sink. The remote recoil effects
would still be present, just as described here.

For the infinite wavetrain, the Magnus relation (4.15) reminds us that the remote
recoil effects come from advection of the vortex core by the O(a2) mean flow that
the refracting wavetrain induces in its surroundings. It is crucial, in the present case,
that only the vortex core is advected and not the periphery or far field of the vortex.
This is related to the fact that the fourth term in (5.9) can be neglected as r → ∞,
for the narrow wavetrain assumed. In other words the recoil effects, including the
unsteady far-field recoil discussed in § 4.4, arise precisely from the vortex core being
moved relative to the vortex periphery. Of course the effective force RV that must be
applied, persistently, to the vortex core, to produce the same cumulative effects in the
absence of the waves, does precisely the same thing. It moves the vortex core without
advecting the vortex periphery. Recall that the sense of the core advection, and with
it the sense of RV , is opposite to that in figure 3, owing to the bending of the infinite
wavetrain.

Generalizing the present study to more realistic cases of greater geophysical
relevance is an aim for future work. Within the shallow-water system the obvious next
step is to allow for non-zero Coriolis forces, i.e. non-zero Coriolis parameter f , using
the natural definition of the vortex core as an anomaly in potential vorticity instead
of vorticity. This will change the nature of the background vortex flow by modifying
its 1/r far-field velocity tail to a tail decaying exponentially like exp(−rf /c0). On
the one hand, this greatly reduces the background velocity available for refraction;
on the other hand the background velocity now has non-zero curl even in the far
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field, which increases the refraction because wave rays are then not straight lines
at leading order in Froude or Mach number. This could make for an interesting
competition of effects for non-zero f . Another direction for generalization is to allow
for several vortices, or even for a turbulent background flow, which presumably would
have be treated statistically. It seems clear, moreover, that for complex background
vortex structures the identification of the recoil force with minus the rate of change
of pseudomomentum can hold in a global, domain-integrated sense only. In other
words, the effective recoil felt by any particular vortex will depend not only on the
wavetrain but also on the presence of all the other vortices. As far as we can see, the
way in which the recoil is distributed between the vortex cores is not obvious without
detailed analysis. One might hope to find a simple statistical-mechanical rule, but so
far no such rule has been found.

Outside the shallow-water system the next target is the three-dimensional stratified
Boussinesq system, in which the longitudinal shallow-water waves are replaced
by transverse internal-gravity waves. We fully expect the main features of the present
theory to carry over to that case, when stated as above with the central role given
to the pseudomomentum p per unit mass rather than to the Stokes drift uS . Although
the two entities coincide in the shallow-water problem, as implied by (2.17), they
become distinct in the stratified problem, with p remaining significant but uS becoming
irrelevant. This primacy of p over uS was already implicit in the work of Bretherton
(1969), and has emerged very plainly from more recent work using a generalized
Lagrangian-mean framework (Bühler & McIntyre 1998). Progress on the stratified
remote-recoil problem is being made, and we hope to report on it in the meteorological
literature very soon.

Clearly, the remote recoil effects described here imply a major, qualitative change
in the paradigm for horizontally (latitudinally and longitudinally) homogeneous
background flows on which all present gravity-wave parametrization schemes are
built; again see the two recent reviews already cited (Fritts & Alexander 2003; Kim
et al. 2003). Indeed, the remote recoil effect undoes the conventional link between the
force felt at the wave source (e.g. the wave drag on a mountain range) and the force
felt at the dissipative wave sink (usually involving wave breaking in the stratosphere
or mesosphere, anywhere from 10 km upwards). These forces need not be equal and
opposite: Newton’s third law is realized in a much more complicated way.

We thank colleagues for helpful comments and correspondence, also the referees for
constructive comments that have prompted us to highlight certain issues more clearly
and to generalize significantly the results of § 5.2, and the UK Natural Environment
and Science and Engineering Research Councils for generous support including a
SERC/EPSRC Senior Research Fellowship.
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