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ABSTRACT

Several different kinds of accurate potential vorticity (PV) inversion operators, and the associated balanced
models, are tested for the shallow water equations on a hemisphere in an attempt to approach the ultimate
limitations of the balance, inversion, and slow-manifold concepts. The accuracies achieved are far higher than
for standard balanced models accurate to one or two orders in Rossby number R or Froude number F (where
F 5 |u|/c; |u| 5 flow speed; and c 5 gravity wave speed). Numerical inversions, and corresponding balanced-
model integrations testing cumulative accuracy, are carried out for cases that include substantial PV anomalies
in the Tropics. The balanced models in question are constructed so as to be exactly PV conserving and to have
unique velocity fields (implying, incidentally, that they cannot be Hamiltonian). Mean layer depths of 1 and 2
km are tested.

The results show that, in the cases studied, the dynamical information contained in PV distributions is re-
markably close to being complete even though R 5 ` at the equator and even though local maximum Froude
numbers, Fmax, approach unity in some cases. For example, in a 10-day integration of the balanced model
corresponding to one of the most accurate inversion operators, ‘‘third-order normal mode inversion,’’ the mean
depth was 1 km, the minimum depth less than 0.5 km, and Fmax . 0.7, hardly small in comparison with unity.
At the end of 10 days of integration, the cumulative rms error in the layer depth was less than 15 m, that is,
less than 5% of the typical rms spatial variation of 310 m. At the end of the first day of integration the rms
error was 5 m, that is, less than 2%. Here ‘‘error’’ refers to a comparison between the results of a balanced
integration and those of a corresponding primitive equation integration initialized to have low gravity wave
activity on day 0. Contour maps of the PV distributions remained almost indistinguishable by eye over the 10-
day period. This remarkable cumulative accuracy, far beyond anything that could have been expected from
standard scale analysis, is probably related to the weakness of the spontaneous-adjustment emission or ‘‘Lighthill
radiation’’ studied in the companion paper by Ford et al.

1. Introduction

This paper presents the earliest results from a program
begun in 1985 to investigate the concepts of balance,
slow manifold, and potential vorticity (PV) inversion
and to probe their accuracy and ultimate limitations. The
theoretical and practical reasons for being interested in
these concepts are now widely appreciated and need not
be rehearsed here (e.g., Charney 1948, 1955, 1963; Gent
and McWilliams 1984; McWilliams 1985; Hoskins et
al. 1985; Lynch 1989; Allen 1993; Whitaker 1993; Warn
et al. 1995; Vallis 1996; Ford et al. 2000; Shapiro and
Grønås 1999, and references therein; and many others).
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The dynamical system used is a hemispheric shallow
water model. Shallow water systems, being the simplest
continuum systems for which the concepts in question
are nontrivial, are widely recognized as an important
test bench for the associated theoretical ideas.

The results to be presented here were widely circu-
lated in a preprint first submitted to the Journal of At-
mospheric Science in 1990, based on the Ph.D. thesis
of Norton (1988, hereafter N88). A sample of the results,
reproduced in Fig. 1, has already been published in con-
nection with a discussion of zonally asymmetric wave–
mean interaction phenomena [McIntyre and Norton
(1990a,b); for the wave–mean aspects see also the up-
dates and corrections in Bühler and McIntyre (1998),
and in Mo et al. (1998)]. However, full publication in
the open literature has been delayed until now for a
number of reasons, among which was an unresolved
issue about local mass conservation arising from a dis-
cussion with J. S. Allen (1992, personal communica-
tion). That issue was resolved in the course of recent
work at the 1996 Isaac Newton Institute Programme on
the Mathematics of Atmosphere and Ocean Dynamics,
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and will be briefly discussed in the final sections of this
paper along with related insights into Hamiltonian bal-
anced models (section 8) and Galilean invariance (sec-
tion 7). Additional insights have become available,
moreover, from the work of Ford et al. (2000), the com-
panion paper mentioned in the abstract, on the ultimate
limitations of PV inversion imposed by the ‘‘Lighthill
radiation’’ or spontaneous-adjustment emission of in-
ertia–gravity waves by unsteady vortical flow (not to be
confused with Rossby adjustment, in which the waves
are generated by initial conditions). The work of Ford
et al. applies to a parameter regime in which smallness
of the Froude number F controls the error, as distinct
from smallness of the Rossby number R. It presents an
asymptotic analysis suggesting that, in the regime con-
sidered, the asymptotic order of accuracy reached here
using what will be called ‘‘third-order’’ PV inversion
is the furthest one can go before encountering the ul-
timate limitations set by spontaneous-adjustment emis-
sion.

In terms of numerical accuracy the results presented
here still provide, to our knowledge, the most accurate—
and astonishingly accurate—nontrivial examples of bal-
ance and PV inversion yet found. In this regard we
believe that we have pushed conditions closer to the
ultimate limitations than any work previously published,
and with surprising success. The best accuracy attained
is far greater, under the parameter conditions considered,
than it would be for any of the standard balanced models
such as quasigeostrophy, semigeostrophy, Bolin–Char-
ney balance, or any other model based on scale analysis
or asymptotic expansions correct to one or two orders
in F or R when F K 1, R K 1.

The numerical accuracy tests included purely diag-
nostic tests like that summarized in Fig. 1, showing an
example of what will be called ‘‘direct’’ third-order PV
inversion. The top pair of panels shows a set of surface-
elevation, velocity, and divergence fields produced by
primitive equation evolution; and the middle pair shows
the corresponding PV field in contours and in grayscale,
with darker shades more cyclonic. The mean layer depth
is 2 km. This is a complicated, unsteady, vortical flow
with a vigorously meandering jet stream reaching well
into the Tropics. In the jet stream, local Froude numbers
F, defined as the ratio of relative flow speed to local
gravity wave speed, reach values Fmax . 0.5. Rossby
numbers R → ` as we approach the equator. Such values
can hardly be considered small in comparison with uni-
ty. The bottom pair of panels shows the surface-ele-
vation, velocity, and divergence fields reconstructed by
PV inversion, that is, using only the information rep-
resented by the middle pair of panels. To see the dif-
ferences, even in the divergence fields contoured on the
right, one has to look carefully.

Going beyond purely diagnostic tests, we also present
prognostic tests of cumulative error over a few eddy
turnaround times, at even larger F. These still more
stringent tests are from 10-day runs of the PV-conserv-

ing balanced models associated with several different
inversion operators, for a similar meandering-jet flow
but with mean layer depth of 1 km. In the jet stream,
F reaches a maximum value Fmax . 0.7. When the most
accurate inversion operators were used, contour maps
of the PV distributions remained almost indistinguish-
able by eye over the 10-day period (e.g., Figs. 5b and
7f). It is this, above all, that justifies the phrase ‘‘as-
tonishingly accurate.’’ We are dealing with an unsteady
flow exhibiting nonlinear vortex interactions: it is sen-
sitive to initial conditions, that is, is of limited pre-
dictability, and presumably chaotic in the dynamical
systems sense.

The plan of the paper is as follows. Section 2 briefly
summarizes the approach to be taken. Sections 3 and 5
present and illustrate two hierarchies of practically re-
alizable PV inversion operators on the hemisphere, to
be referred to as ‘‘direct’’ and ‘‘normal mode’’ inversion
operators; sections 4, 6, and 7 present numerical results,
including the abovementioned cumulative accuracy tests
(section 6). Section 7 shows how the PV inversion op-
erators can be made Galilean invariant in an appropriate
sense, and section 8 presents concluding remarks on
conservation and related issues.

The present paper, in its most important respects, has
only minor changes from the original version circulated
in preprint form, except that most of the original back-
ground discussion, which now seems excessively
lengthy—though needing no substantial revision—has
been deleted along with details for less interesting cases
with a mean depth of 8 km. Also deleted is part of the
original section on Galilean invariance where the math-
ematical formulation was in error, as kindly pointed out
to us by M. J. P. Cullen (1996, personal communication).
Some of the original background discussion has, how-
ever, been incorporated into the companion paper by
Ford et al. (2000). One last but important point: while
this paper was being reviewed, an error was discovered
in the codes that implemented second- and third-order
direct inversion numerically. We are grateful to Dr. E.
Neven for his close scrutiny of the codes, leading to
discovery of the error, which is described in appendix
A. Tests with the corrected codes show clearly, however,
that this error produces no significant differences in the
results. For instance, in divergence difference maps (like
that in Fig. 3d) produced with and without the coding
error, the contours shifted by no more than about the
plotted contour thickness, even with the minimal mean
depth of 1 km and despite the sensitive nature of di-
vergence difference maps. More precisely, the changes
in such maps due to the coding error were of the order
of 0.06 of a single contour interval. Such changes are
inconsequential for the purposes of this paper.

2. Approach

Attention is restricted first of all to PV inversion op-
erators for which the associated ‘‘PV-conserving bal-
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FIG. 1. Diagnostic test of PV inversion, using a PV field produced by a primitive equation shallow water
integration on a hemisphere: (a)–(d) the fields produced by the primitive equation integration; (e), (f ) a
reconstruction of (a), (b) by inversion from the PV alone. The mean depth of the layer is 2 km; maximum
jet velocity .70 m s21; local Froude numbers, defined as F 5 |u|/( 1 f9)1/2, attain maximum values .0.5.f̂
Model resolution is spectral triangular truncation T106; i.e., the numerical models retain total spherical
harmonic wavenumbers up to 106. Solid contours show positive values, long-dashed contours negative values,
and dotted contours zero. The projection is polar stereographic. In detail: (a) arrows show the velocity u on
the scale indicated; contours show free-surface elevation, i.e., g21 times the departure f9 of the geopotential
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←

from its area mean value The contour interval is 100 m. (b) Divergence d contoured at intervals of 6 3 1027 s21. (c), (d) PV, Q, definedf̂.
as in Eq. (3.1d), absolute vorticity divided by layer depth: contours in (c) are at intervals of 1 3 1028 m21 s21. The shading in the contour
plot highlights Q values lying between 4 and 6 of these units. The grayscale representation (d) of the same information is monotonic from
light to dark, increasing from zero at the equator to a maximum value of 1 3 1027 m21 s21 near the pole. (e), (f ) As in (a), (b) but reconstructed
from the PV alone using the third-order direct inversion algorithm described in section 3 and appendix A.

anced models’’ are not only as accurate as we can
straightforwardly make them, but which also have the
conceptually simplest structure placing no a priori lim-
itations on closeness to primitive equation behavior. We
decided at the outset to avoid the problems of high-
order filtered equations based on across-the-board ex-
pansion methods,1 and in particular to retain the exact
definition and evolution equation for the PV.

The PV-conserving balanced model associated with
a given inversion operator is defined, then, simply to
mean the dynamical system that results from time-step-
ping the exact PV evolution equation, then inverting to
get the new velocity field, then time-stepping again, and
so on, the limit of small time steps being understood.
This is evidently a balanced or filtered model in the
usual sense that its prognostic equation is first order in
time (e.g., Lynch 1989, and references therein). Within
the complete set of equations, there is just one time
derivative acting on just one scalar field. Such a model
excludes, by definition, the possibility of any ‘‘slow-
quasimanifold fuzziness’’ related to motions resembling
gravity waves (Warn 1997; Ford et al. 2000, and ref-
erences therein). From here onward the term ‘‘gravity
wave’’ will be defined to include all freely propagating
inertia–gravity waves and tropical Kelvin waves. In the
case of exactly conservative dynamics,2 the prognostic
equation is taken to be simply

DQ/Dt 5 0, (2.1)

expressing exact material conservation of PV (Rossby
1936), with appropriate generalizations in the case of
nonconservative dynamics, where Q is Rossby’s exact
shallow water PV, Eq. (3.1d) below. The ‘‘nonconser-

1 The problems associated with (asymptotic) expansion methods,
as normally used to derive filtered equations for F K 1 or R K 1,
have been discussed very carefully by Warn et al. (1995). Their paper
points out that the most serious source of trouble is the use of ex-
pansions to approximate the PV evolution equation, or other prog-
nostic equation or equations governing or influencing the ‘‘slow’’ or
vortical evolution—as distinct from the use of expansions to construct
PV inversion operators while leaving the PV evolution equation unex-
panded. Thus, their approach is, as they acknowledge, similar to ours
in its most essential aspects. See also the related discussions in Allen
(1993), Vallis (1996), and in the present companion paper (Ford et
al. 2000).

2 ‘‘Conservative dynamics’’ here means motion under conservative
forces, that is, the pressure-gradient, gravitational-centrifugal, and
Coriolis forces, as distinct from ‘‘nonconservative forces’’ like
boundary layer friction, parameterized gravity wave drag, and any
other apparent force arising from the averaged effects of unresolved
small-scale processes (cf. footnote 3).

vative’’ generalizations will be left aside here, except
to note in passing that they also express the idea of PV
conservation in the general sense of that term.3

Throughout this paper, then, we exclude from con-
sideration any balanced or filtered model with a prog-
nostic equation whose form differs from that of the exact
PV equation, used with the exact PV formula. We re-
quire, furthermore, that a given PV-conserving balanced
model has a unique velocity field, say, u(x, t) (unlike,
for instance, quasigeostrophic or semigeostrophic the-
ory), so that each of the preceding requirements has an
unambiguous meaning. Here x is horizontal position and
t is time. It is thus possible to speak unambiguously of
the velocity field that results from applying a given in-
version operator, and the advection of Q; and there is
just one natural way of judging the accuracy of the
resulting balance and PV inversion concepts, namely,
in terms of comparisons between primitive equation be-
havior and the behavior of the PV-conserving balanced
model in question.4

3. Direct inversion

We begin with a hierarchy of PV inversion operators
to be referred to as direct inversion operators. For ex-
pository purposes we first describe them for the case of
an unbounded f plane; details for the hemispherical case
are set out in appendix A. To motivate the definitions
we shall need to refer to the primitive equations. For
our shallow water system, a single layer of fluid of depth
h(x, t) on an f plane, the primitive equations are con-
veniently taken as the vorticity, divergence, and mass-
conservation equations in the form

3 This is the sense involving nonadvective fluxes, used for instance
in connection with conservation of energy, momentum, and chemical
tracers. For the corresponding properties of PV—more precisely, of
‘‘PV substance’’ or ‘‘charge’’—whose amount per unit mass is the
PV, by definition, and which has no interior sources or sinks, the
interested reader may consult Haynes and McIntyre (1990, and ref-
erences therein). These properties justify, in particular, the unqualified
use of the term PV conserving, even though it is the case of material
conservation, as in Eq. (2.1), that we are specifically concerned with
in this paper. It should be added though that balance and PV inversion
can themselves be affected by, for instance, the mean effects of grav-
ity waves (Bühler and McIntyre 1998).

4 For this purpose it is understood, of course, that the primitive
equations are initialized to have sufficiently small gravity wave ac-
tivity, since we are not interested in gravity waves produced by Ross-
by adjustment, that is, waves whose generation is attributable to im-
balance in the initial conditions. We are grateful to a reviewer for
pointing out that this should be kept in mind.
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]z
1 fd 5 2= · (uz), (3.1a)

]t

]d
21 ¹ f9 2 fz 5 2= · (u · =u), (3.1b)

]t

]f9
1 f̂d 5 2= · (uf9), (3.1c)

]t

assuming no bottom topography. Here f9 is the depar-
ture of the geopotential f 5 gh from a constant ref-
erence value g is the gravity acceleration, u is thef̂,
horizontal velocity as before, z is the vertical component
of relative vorticity, d is the divergence, and f is the
Coriolis parameter, equal to 2V sinu, where u is latitude.
The shallow water PV,

f 1 z f 1 z
Q 5 5 g , (3.1d)

h f̂ 1 f9

is an exact material invariant of these equations, as first
shown by Rossby [1936, see eq. (75)].

It will prove convenient to introduce some special no-
tation. Let curl21z denote the rotational part of the ve-
locity field u and div21d the divergent part, defined in
the standard way through Helmholtz decomposition as

curl21z 5 k 3 =c and div21d 5 =x,

with k a unit vertical vector. The streamfunction c and
velocity potential x satisfy

¹2c 5 z and ¹2x 5 d,

together with suitable boundary conditions, here eva-
nescence at infinity or, in appendix A, suitable cross-
equatorial symmetry conditions on the hemisphere.

The first and least accurate member of the hierarchy
to be considered will be called ‘‘first-order direct in-
version.’’ It is obtained, following the ideas of Bolin
(1955), Charney (1955, 1962), and others, by deleting
the time derivative in the divergence equation (3.1b) to
give

¹2f9 2 fz 5 2= · (u · =u). (3.2a)

However, at this order we make u nondivergent by set-
ting

u 5 curl21z. (3.2b)

The motivation is that when gravity wave activity is
minimal, with one or both of the Froude and Rossby
numbers small, F K 1 and R K 1, the term ]d/]t in
(3.1b) tends to be small of order min(F 2, R2) relative
to typical magnitudes of the largest remaining terms,
and the relative error in (3.2b) small of order d/z .
min{max(F 2, F 2/R), R}. The ideas are standard; some
relevant scale analysis may be found, for instance, in
Haltiner and Williams (1980) and in McWilliams
(1985). The formula (3.1d) defining the PV can be re-
arranged without approximation as

ff9 Q9
z 2 5 (f̂ 1 f9), (3.2c)

f̂ g

where Q9 is the PV anomaly, defined as the departure
of Q from its reference value Q̂ 5 f/ĥ, and where ĥ 5

the area-averaged depth of the fluid layer.21 ˆg f,
Equations (3.2a)–(3.2c) define the first-order direct

inversion operator, and Eqs. (3.2a) and (3.2b) the cor-
responding balance condition. When the PV is given,
(3.2a)–(3.2c) make up a complete set of equations for
the unknowns f9, u, z. If we append to (3.2a)–(3.2c) a
single prognostic equation for DQ/Dt, such as DQ/Dt
5 0, then we have the corresponding PV-conserving
balanced model.

The second member of the hierarchy, to be called
second-order direct inversion, is the lowest member to
yield a velocity field that has nonvanishing divergence
d. It is convenient to introduce auxiliary fields u1 and
z1 to be solved for as part of the inversion operation.
They are diagnostic estimates of the corresponding time
derivatives ]u/]t and ]z/]t, in a sense to be made precise
shortly; for instance, u1 has the dimensions of accel-
eration. We define the second-order inversion operator
by the following closed set of equations for the un-
knowns f9, d, u, u1, z1, z:

2¹ f9 2 fz 5 2= · (u · =u), (3.3a)

Ld 5 = · [ fzu 1 u · =u 1 u · =u1 1

22 ¹ (f9u)], (3.3b)
21 21u 5 curl z 1 div d, (3.3c)
21u 5 curl z , (3.3d)1 1

z 1 fd 5 2= · (uz), (3.3e)1

ff9 Q9
z 2 5 (f̂ 1 f9), (3.3f)

f̂ g

where L is the linear omega equation or modified Helm-
holtz operator

L 5 ¹2 2 f 2,f̂ (3.4)

whose inverse is robustly well behaved under suitable
boundary conditions. The latter can be taken again as
evanescence at infinity, or cross-equatorial symmetry/
antisymmetry conditions on the hemisphere, as appro-
priate. Equation (3.3a) has the same appearance as
(3.2a), but u has a different meaning because (3.3c)
includes a divergent part, unlike (3.2b). To motivate the
remaining equations and the introduction of the auxil-
iary fields u1, z1, first compare (3.3b) with the gener-
alized wave equation

2] d ]
22 Ld 5 2= · fzu 1 (u · =u) 2 ¹ (f9u) . (3.5)

2 [ ]]t ]t

This is an exact consequence of the primitive equations
(3.1), obtained by substituting from (3.1a) and ¹2(3.1c)
into ](3.1b)/]t. We expect the first term of (3.5) to be
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relatively small when gravity wave activity is minimal;
formally it is of relative order min(F 2, R2) as before.
To get (3.3b) we delete this term and replace the time
derivative ]u/]t on the right by the auxilary field u1.

The latter field, which plays an important role in the
Tropics, can be thought of as an approximate diagnostic
estimate of ]u/]t that is to be sharply distinguished not
only from the exact ]u/]t of primitive equation evolu-
tion, but also from the approximate ]u/]t that would be
calculated if one were to time step the PV-conserving
balanced model consisting of a prognostic equation like
DQ/Dt 5 0 together with Eqs. (3.3).

Note also that Eq. (3.3e) has the same form as the
exact vorticity equation except that ]z/]t is replaced by
the auxiliary field z1, a diagnostic estimate of ]z/]t,
which corresponds to u1 through (3.3d).

We may summarize the foregoing by saying that
Eqs. (3.3) are obtained from (3.1a)–(3.1c) and
](3.1b)/]t by deleting the terms ]d/]t and ] 2 d/]t 2 and
then treating the remaining time derivatives ]u/]t and
]z/]t as independent diagnostic variables, the auxil-
iary fields u1 and z1 . This gives us a closed, purely
diagnostic problem, as required by the PV inversion
concept.

The foregoing is closely related to ideas put for-
ward by Hinkelmann (1969) in the context of forecast
initialization. Related ideas have been used in nu-
merical weather forecasting under the label ‘‘implicit
nonlinear normal mode initialization’’ (Temperton
1988, 1989, and references therein). Again, we may
interdistinguish (a) the second-order direct inversion
operator defined by Eqs. (3.3a)–(3.3f ), (b) the cor-
responding balance condition (3.3a)–(3.3e), and (c)
the corresponding PV-conserving balanced model
consisting of (3.3a)–(3.3f ) together with the prog-
nostic equation for DQ /Dt.

The third member of the hierarchy, to be called
third-order direct inversion, follows a similar pattern.
We take (3.1a)–(3.1c), ](3.1b)/]t, and ] 2(3.1b)/]t 2 ,
delete ] 2 d/]t 2 and ] 3 d/]t 3 , and treat the remaining
time derivatives as independent diagnostic variables.
These are distinguished by numerical suffixes as be-
fore; thus, for instance, u 2 is a diagnostic estimate of
] 2u/]t 2 :

2¹ f9 2 fz 5 2= · (u · =u) 2 d , (3.6a)1

Ld 5 = · { fzu 1 u · =u 1 u · =u1 1

22 ¹ (f9u)}, (3.6b)

Ld 5 = · { fz u 1 fzu 1 u ·=u 1 2u ·=u1 1 1 2 1 1

21 u · =u 2 ¹ (f9u 1 f9u )}, (3.6c)2 1 1

21 21u 5 curl z 1 div d, (3.6d)
21 21u 5 curl z 1 div d , (3.6e)1 1 1

21u 5 curl z , (3.6f)2 2

z 1 fd 5 2= · (uz), (3.6g)1

z 1 fd 5 2= · (u z 1 uz ), (3.6h)2 1 1 1

f9 1 f̂d 5 2= · (uf9), (3.6i)1

ff9 Q9
z 2 5 (f̂ 1 f9). (3.6j)

f̂ g

It is this inversion operator, or rather its counterpart on
the hemisphere (appendix A), that produced the bottom
pair of panels in Fig. 1. The corresponding balance con-
dition is defined by (3.6a)–(3.6i). Note that (3.6a) is the
same as the exact divergence equation (3.1b) except for
the replacement of ]d/]t by d1. Equation (3.6i) similarly
corresponds to the exact mass-conservation equation
(3.1c), and (3.6h) to the time derivative of the exact
vorticity equation (3.1a).

The sequence of direct inversion operators can be
extended to higher orders following precisely the same
pattern, deleting successive pairs of time derivatives.
All such operators have the usual ‘‘sign-reversal prop-
erty,’’ as discussed in Ford et al. (2000). This corre-
sponds to the sign-reversal property of the PV itself,
that is, to the fact that if we keep the mass distribution
unchanged while reversing the sign of the absolute ve-
locity field, then the PV field reverses sign everywhere.
Thus each inversion operator defined above is invariant
under the transformation

Q, f, u, d, z, f, f9 → 2Q, 2 f , 2u, 2d, 2z, f, f9,

u , d , z , f9 → u , d , z , 2f9,1 1 1 1 1 1 1 1

u , d , z , f9 → 2u , 2d , 2z , f9,2 2 2 2 2 2 2 2

and so on, with alternating signs for even and odd sub-
scripts. Under the sign changes, the diagnostic estimates
for the various time derivatives behave in the same way
as the actual time derivatives under PV-conserving bal-
anced evolution. This reflects the fact that, after sign
reversal, the new Q pattern is advected by the new u
field in exactly the same way as the original Q pattern
by the original u field, but with time running backward,
and that the same applies to the diagnostic estimates of
the advection.

The inversion equations are nonlinear and implicit,
and have to be solved iteratively. The numerical method
is described in appendix A.

4. A first example with mean depth of 1 km

It will be recalled that the example of Fig. 1 has mean
depth ĥ 5 5 2 km, and that its local Froude21 ˆg f
number, which in the present notation is

F 5 |u|/( 1 f9)1/2,f̂ (4.1)

reaches a maximum value Fmax ù 0.5 in the jet. This is
hardly small in comparison with unity, and so the case
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FIG. 2. Fields from a primitive equation shallow water model integration on a hemisphere with mean
depth of 1 km. Model resolution is spectral triangular T63 truncation, here and in subsequent figures. (a)
Arrows show the velocity u on the scale indicated; contours show free-surface elevation g21f9. The contour
interval is 100 m. (b) Divergence d contoured at intervals of 1 3 1026 s21. (c) PV, Q, contoured at intervals
of 3 3 1028 m21 s21; the shading in the contour plot highlights values lying between 4 and 6 of these units.
(d) Local Froude number defined as F 5 |u|/( 1 f9)1/2, contoured at intervals of 0.1; the shading highlightsf̂
values F . 0.5, and Fmax is just over 0.7.

of Fig. 1 is already a severe test of the PV inversion
concept. But one would like to test the accuracy of the
inversion operators in examples where the layer depth
is still smaller and Fmax still larger.

We now present some direct PV inversions in an ex-
ample with mean depth of 1 km. Figure 2 shows the free-
surface elevation g21f9 and velocity vectors u (Fig. 2a),
divergence field d (Fig. 2b), PV field Q (Fig. 2c), and
local Froude number F (Fig. 2d). These fields are taken
from a primitive equation integration like that of Figs.
1a–d, though at triangular truncation T63 rather than
T106. The way in which the flow was set up is described

in appendix C. The minimum layer depth is less than 0.5
km, occurring at 908W within the circumpolar vortex,
counting 08 at the bottom; see Fig. 2a. In Fig. 2d, values
F . 0.5 are shaded. We see that Fmax . 0.7.

Figure 3a shows the surface-elevation and velocity
fields from a first-order direct inversion of the PV dis-
tribution in Fig. 2c. The surface-elevation field differs
from that in Fig. 2a by at most one contour. The second-
order direct inversion of the same PV distribution re-
constructs the surface-elevation and velocity vectors
much more accurately, producing a map (not shown)
that is almost indistinguishable by eye from Fig. 2a.
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FIG. 3. (a) Contours of free-surface elevation g21f9 and velocity u reconstructed by first-order direct
inversion of the PV field shown in Fig. 2c; contour interval is 100 m, as in Fig. 2a. (b) Divergence d
reconstructed by second-order direct inversion of the PV field shown in Fig. 2c; contour interval is 1 3 1026

s21, as in Fig. 2b. (c) Divergence difference field defined as d from the primitive equation model (Fig. 2b)
minus d from the second-order direct inversion (Fig. 3b); contour interval is 1 3 1027 s21, i.e., one-tenth of
that in Figs. 2b and 3b. (d) Divergence difference field as in Fig. 3c except that the PV inversion is third-
order direct inversion. See section 6.

Figure 3b presents the divergence field from the second-
order direct inversion; it differs from that in Fig. 2b by
at most one contour. Figure 3c presents the correspond-
ing divergence difference field, defined as the diver-
gence field of the primitive equation integration (Fig.
2b) minus the divergence field produced by the second-
order inversion (Fig. 3b), plotted using one-tenth the
contour interval.

Figure 3d uses the same, finer, contour interval to
show the difference between the divergence field of Fig.
2b and that of the third-order direct inversion. Third
order does not appear to be a dramatic improvement on

second order, especially in the Tropics; but we shall find
in section 6 below that this is not due to the limitations
of inversion, but rather to imbalance in the initial con-
ditions for the primitive equation integration. Indeed, in
the second- and third-order divergence difference fields,
Figs. 3c and 3d, one can see what appears to be the
signature of a freely propagating tropical Kelvin wave.
Closer analysis (see N88) confirms this interpretation.
There are also, however, synoptic-scale features in Figs.
3c and 3d that, quite unlike the Kelvin wave, are phase-
locked to troughs and ridges in the jet. Further discus-
sion is deferred until section 6.
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We have tried pushing Fmax even higher by further
reducing ĥ, with apparently successful results up to Fmax

values .1.2 (N88, p. 98). But convergence was less
certain; therefore, we are not completely confident of
numerical integrity of these results and will leave them
aside here. We now turn to the normal mode approach.

5. Normal mode inversion

Nonlinear normal mode methods have been widely
and successfully used in the initialization of global fore-
cast models (e.g., Daley 1981; Errico 1982, and refer-
ences therein). It is next shown how the same methods
can be used to construct another hierarchy of PV in-
version operators, to be termed normal mode inversion
operators. When judged in terms of cumulative accuracy
(section 6), such inversion operators will prove to be
the most accurate that we have been able to construct.

The basic mathematical tool is the complete set of
normal modes of the primitive equations linearized
about rest, neglecting dissipation. For our hemispherical
model domain these modes are the Hough functions with
appropriate cross-equatorial symmetry or antisymmetry.
They are classified into Rossby or slow modes on the
one hand, and gravity or fast modes, including tropical
Kelvin waves, on the other. If, in a numerical model of
finite resolution, there are 2M degrees of freedom for
each scalar field (e.g., 2M grid points, or M complex
spectral coefficients), then there are 2M slow modes and
4M fast modes. Because of completeness, linear com-
binations of the normal modes can be used to represent
the model fields. Hence, the primitive equations (3.1)
or (A.1) and domain boundary conditions are equivalent
to a set of 3M ordinary differential equations of the
form

dA
1 iLA 5 N(A, a), (5.1a)

dt

da
1 ila 5 n(A, a), (5.1b)

dt

where A is a vector of length M consisting of the com-
plex coefficients multiplying the slow modes, a is a
vector of length 2M consisting of the complex coeffi-
cients multiplying the fast modes, L and l are diagonal
matrices of the (real) eigenfrequencies of the respective
normal modes, and N and n are vectors consisting of
the projections of the nonlinear terms onto the respective
normal modes. Vectors A and a are functions of time
only.

The first member of the new hierarchy, to be called
‘‘first-order normal mode inversion,’’ is defined as fol-
lows. Rather than deleting the time derivative in the
divergence equation, as in the balance condition (3.2a),
(3.2b), we delete the time derivative in (5.1b) to give

a 5 (il)21n(A, a), (5.2)

where the superscript 21 indicates the matrix inverse.

This is the approximate balance condition imposed in
the nonlinear normal mode initialization scheme of
Machenhauer (1977). It can be regarded as an implicit
set of equations for a in terms of A, expressing the idea
that the imposition of balance means slaving the fast
modes to the slow modes. The corresponding inversion
operator is defined by (5.2) together with (3.1d), or
equivalently (3.2c), after substitution of the relevant lin-
ear combinations of normal modes including that rep-
resenting the prescribed PV distribution.

The second member of the hierarchy, to be called
‘‘second-order normal mode inversion,’’ is defined by
equation (3.1d) and the equations

A 1 iLA 5 N(A, a), (5.3a)1

a 1 ila 5 n(A, a), (5.3b)1

ila 5 n (A, A , a, a ). (5.3c)1 1 1 1

As in section 3, the notation ( )n means a diagnostic
estimate of the nth time derivative, to be solved for as
part of the inversion operation, which is again, by def-
inition, a purely diagnostic computation. The notation
n1(A, A1, a, a1) means the diagnostic estimate of the
first time derivative of n(A, a) obtained by differenti-
ating n(A, a) with respect to time and then substituting
the diagnostic estimates A1 and a1 for the respective
time derivatives dA/dt and da/dt. Equations (5.3) define
the balance condition introduced by Tribbia (1984) to
improve on the accuracy of Machenhauer’s initialization
scheme; Eqs. (5.3) can again be regarded as an implicit
set of equations for a (and the auxiliary variables a1,
A1) in terms of A. The corresponding inversion operator
is defined by (5.3) together with (3.1d).

The kth member of the hierarchy, to be called ‘‘kth-
order normal mode inversion,’’ is defined for k $ 3 by
straightforwardly extending the same pattern (following
Tribbia (1984). The equations are

Eq. (5.1a) and its time derivatives up to the
(k 2 2)th, (5.4a)

(5.1b) and its time derivatives up to the
(k 2 1)th, with the term dka /dtk deleted, (5.4b)

and

Eq. (3.1d) after substitution of the relevant
linear combinations of normal modes. (5.4c)

Equations (5.4a) and (5.4b) define the balance condition
and (5.4a)–(5.4c) the inversion operator. It is understood
that dA/dt, d2A/dt2, . . . , dk21A/dtk21 and da/dt, d2a/dt2,
. . . , dk21a/dtk21 are everywhere replaced by correspond-
ing diagnostic estimates A1, A2, . . . , Ak21 and a1, a2,
. . . , ak21, to be treated as auxiliary variables and solved
for as part of the inversion operation, as before. Note
that the deletion of one time derivative is sufficient here,
as compared with two in a direct inversion scheme, be-
cause the vector a has twice the length of the vector A.

All these sets of inversion equations are nonlinear
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and implicit, as (3.1d), (5.2), and (5.3) illustrate, and
an iterative solution is again necessary. Further details
of the method used can be found in appendix B and in
N88.

Note that the kth-order normal mode inversion de-
fined here is not closely equivalent to the kth-order direct
inversion defined in section 3, because the use of normal
modes impresses a different structure on the inversion
process, especially as regards latitudinal dependence on
the hemisphere. At first order, for instance, the normal
mode inversion takes some account of divergence,
through the fast coefficients a(t), but direct inversion
(3.2) does not, because of (3.2b). First-order normal
mode inversion more closely resembles a cut-down ver-
sion of the second-order direct inversion operator (3.3),
in which (3.3d) and (3.3e) are omitted along with the
terms in u1 in (3.3b). The latter terms improve the per-
formance in the Tropics.

6. Cumulative accuracy of balanced model
integrations

We now turn to the most stringent accuracy tests,
namely, the results from 10-day integrations of PV-con-
serving balanced models in a case with mean depth ĥ
5 5 1 km, and Fmax . 0.7. This provides a severe,21 ˆg f
end-to-end test of cumulative accuracy over times that
are substantial in comparison with eddy turnaround
times. The test is all the more severe in that the case
considered exhibits noticeable initial-condition sensitiv-
ity, or phase-space hyperbolicity.

The definition of PV-conserving balanced model is
that given in section 2. The initial condition is the PV
distribution shown in Fig. 6c. The prognostic equation
is Eq. (2.1), that is,

]Q
5 2u · =Q, (6.1)

]t

plus a small ¹6 hyperdiffusion term to control numerical
noise at the truncation scale. A T63 truncation is again
used.

Since accuracy is to be judged by comparison with
primitive equation evolution, we first present, in Fig. 4,
a sequence of PV distributions from a 10-day integration
of the primitive equation model in which the initial con-
ditions are precisely those shown in Figs. 2a,b. Days
are now renumbered from zero. Note that, by day 2, the
tongue of high PV that was situated at 1008E at day 0,
that is, pointing to the right in Fig. 2c, has become
separated from the main vortex (by vortex rollup to-
gether with the action of the small model hyperdiffu-
sion) to form a second cutoff vortex at 708E. By day 6
the original cutoff vortex in the quadrant 08–908W has
remerged with the main vortex. Meanwhile, the second
cutoff vortex has approached the equator and become
somewhat elongated in shape. At day 8 this cutoff vortex
is beginning to remerge with the main vortex, a process
that is complete by day 10.

Such vortex interaction processes are generally sen-
sitive to initial conditions; and we shall see that in the
present case the sensitivity is increased by the use of a
hemispherical model domain. Figure 5 shows the PV
distribution at days 6 and 10 from another integration
of the primitive equations with almost the same initial
conditions as those for Fig. 4. The only difference is
that the initial fields are those produced by a third-order
direct inversion of the PV distribution shown in Fig. 2c.

Several differences are immediately noticeable. They
can largely be traced to the small, but important, ad-
vective influence of the tropical Kelvin wave that is
present (but hardly visible; cf. Figs. 3c,d) in the fields
shown in Fig. 2, but absent from the corresponding fields
derived from the third-order direct inversion. These dif-
ferences in the initial conditions are enough to give rise
to small, but important, differences in the positioning
of the cutoff vortex near the equator around day 6 (cf.
Figs. 4c and 5a).

Figure 6 presents the PV fields at day 6, on the left
of the figure, and at day 10, on the right, from integra-
tions using the PV-conserving balanced models corre-
sponding to first-, second-, and third-order direct in-
version, proceeding downward in the figure. The sen-
sitivity connected with the positioning of the second
cutoff vortex shows up immediately and more acutely.
The first-order balanced integration, shown in Fig. 6a,
has this vortex at 208N, 58W. The second- and third-
order balanced integrations, shown in Figs. 6c,e, have
it much closer to the equator and successively farther
east. The second-order balanced integration gives it a
more elongated shape, as in day 6 of the first primitive
equation integration (Fig. 4c). The varying positions and
shapes of this cutoff vortex at day 6 lead to considerable
differences in the subsequent remerging with the main
vortex. This is the main reason for the different PV
distributions at day 10 shown in Figs. 6b,d,f. Compar-
ison with Figs. 4 and 5 reveals the curious fact that it
is the second-order balanced integration that is closest
to the first primitive equation integration (Fig. 4); how-
ever, the third-order balanced integration does better by
comparison with the second, reinitialized, primitive
equation integration (Fig. 5), and this is the more mean-
ingful comparison.

Figure 7 is the same as Fig. 6 except that the balanced
models are those associated with the first-, second-, and
third-order normal mode inversion operators. The sec-
ond- and third-order balanced integrations are in aston-
ishingly close agreement with each other, and with the
second, reinitialized, primitive equation integration
(Fig. 5).

The essential findings, then, are (a) that the balanced-
model behavior approaches the behavior of the reini-
tialized primitive equation integration (Fig. 5) much
more closely than that of the first such integration shown
in Fig. 4, and (b) that when judged by comparison with
the reinitialized primitive equation integration, the nor-
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FIG. 4. Primitive equation model integration at resolution T63, starting from the fields shown in Fig. 2.
The PV fields, Q, are shown every 2 days, with days numbered from the time corresponding to Fig. 2. The
contour interval is the same as in Fig. 2c, i.e., 3 3 1028 m21 s21, with the shading in the contour plot
highlighting values lying between 4 and 6 of these units.
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FIG. 5. Primitive equation model integration at resolution T63, reinitialized by starting from the fields
produced by third-order direct inversion of the PV field shown in Fig. 2c. The PV fields, Q, are shown at
days 6 and 10. The contour interval is the same as in Figs. 2c and 4, i.e., 3 3 1028 m21 s21, with the shading
in the contour plot highlighting values lying between 4 and 6 of these units.

mal mode inversions are the most accurate of those
considered so far.

It is worth returning briefly to the origin of the sen-
sitivity associated with the position of the cutoff vortex
near the equator. Because of the hemispherical sym-
metry/antisymmetry (appendix A), equivalent to the ex-
istence of a solid, though slippery, wall at the equator,
there is an image vortex having opposite-signed PV on
the other side of the equator. If the vortex gets close
enough to the equator, it will feel the induced fields
from the image vortex sufficiently strongly that the pair
of vortices can propagate eastward along the equator,
as suggested by the wakes left behind the cutoff vortex
at day 6 in Figs. 4c, 5a, 6c,e, and 7c,e. However, if the
cutoff vortex does not reach this critical distance from
the equator, it is advected westward by the easterly
winds, the extreme example being Fig. 6a.

Figures 8a and 8b summarize and quantify the dif-
ferences between the model integrations. Figure 8a
shows graphs of the rms differences in the PV distri-
butions, as a function of time, between the reinitialized
primitive equation integration of Fig. 5 on the one hand,
and the various balanced integrations of Figs. 6 and 7
and the first primitive equation integration of Fig. 4 on
the other, the latter marked ‘‘PE.’’ Figure 8b shows the
corresponding graphs for the rms surface-elevation dif-
ferences. The two sets of graphs give similar impres-
sions as to the relative accuracies of the different bal-
anced models, as measured against reinitialized primi-
tive equation behavior. They confirm that the least ac-
curate balanced models are the first-order direct
inversion model followed by the first-order normal
mode model, and that the most accurate are the second-
and third-order normal mode models. The last of these
gives, at day 10, an rms surface-elevation difference

just under 15 m, which may be compared with the per-
sistence value of 206 m.

7. Galilean invariant PV inversion operators

Ideally, an operation like PV inversion ought to be
Galilean invariant in the appropriate generalized sense,
that is, independent of any admissible motion of the
coordinate frame. This is not true of any of the inversion
operators constructed so far, by us or, to our knowledge,
by other investigators. One way to make an inversion
operator Galilean invariant would be to formulate it en-
tirely in terms of material or Lagrangian time derivatives
D/Dt 5 ]/]t 1 u · =, as, for instance, in an initialization
problem discussed by Hinkelmann (1969), rather than
in terms of the contributions ]/]t and u · = separately.
However, accuracy is lost when we neglect the u · =u
contribution to Du/Dt, relegating gradient-wind-type
corrections to higher orders. An alternative approach is
to take an inversion operator like those already con-
structed, which are not intrinsically Galilean invariant
but which might well be more computationally efficient,
convenient, and accurate, and then to minimize some
appropriate error norm over Galilean transformations
compatible with the boundary conditions. For the hemi-
sphere the admissible transformations are simply chang-
es in the rotation rate V of the reference frame. Other
Galilean transformations are inadmissible in this case,
because of the inherently nonlocal nature of the inver-
sion operation and the presence of the equatorial bound-
ary of the hemispherical domain.

We test the feasibility of this idea by performing PV
inversions in reference frames whose angular velocities
V are both faster than and slower than the earth’s angular
velocity V 5 VE 5 7.3 3 1025 s21. In the comparison
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FIG. 6. Cumulative accuracy of direct PV inversion at different orders, tested using PV-conserving balanced
model integrations at resolution T63 starting from the PV field shown in Fig. 2c. The PV fields, Q, are shown
at days 6 and 10 and are to be compared with those in Fig. 5. The contour interval is the same as in Fig. 5,
i.e., 3 3 1028 m21 s21, with the shading in the contour plot highlighting values lying between 4 and 6 of
these units. (a), (b) Balanced model based on first-order direct inversion; (c), (d) balanced model based on
second-order direct inversion; (e), (f ) balanced model based on third-order direct inversion.
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FIG. 7. Cumulative accuracy of normal mode PV inversion at different orders, tested using PV-conserving
balanced model integrations at resolution T63 starting from the PV field shown in Fig. 2c. The PV fields,
Q, are shown at days 6 and 10 and are to be compared with those in Fig. 5. The contour interval is the same
as in Fig. 5, i.e., 3 3 1028 m21 s21, with the shading in the contour plot highlighting values lying between
4 and 6 of these units. (a), (b) Balanced model based on first-order normal mode inversion; (c), (d) balanced
model based on second-order normal mode inversion; (e), (f ) balanced model based on third-order normal
mode inversion.
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FIG. 8. (a) Departures from the behavior of the reinitialized primitive
equation integration corresponding to Fig. 5, measured by the rms dif-
ferences, as functions of time, between the PV fields of that integration
and the PV fields of the first-order direct balanced model (D1, continuous
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FIG. 9. (a) Divergence difference defined as d from the primitive equation model minus d from a third-
order direct inversion performed in a new reference frame, rotating with angular velocity V 5 7.8 3 1025

s21 . VE 5 7.3 3 1025 s21. The contour interval is 4 3 1029 s21. (b) Same as Fig. 9a except that the
inversion is performed in a reference frame rotating with V 5 6.8 3 1025 s21 , VE.

←

curve), of the second-order direct balanced model (D2, closely spaced dots), of the third-order direct balanced model (D3, widely spaced
dots), of the first-order normal mode balanced model (NM1, widely spaced dashes), of the second-order normal mode balanced model (NM2,
short paired dashes), of the third-order normal mode balanced model (NM3, dot–dashes), and primitive equation integration corresponding
to Fig. 4, not reinitialized (labeled PE, closely spaced dashes). (b) The same except as (a) that rms geopotential differences are used instead
of rms PV differences. The initial imbalance revealed by the PE curves explains the similarity between Figs. 3b and 3c.

it is necessary that all the calculations refer to the same
physical system with the same lower boundary, regard-
less of reference frame. When V 5 VE we use Eqs.
(3.1), (A.1), and the inversion equations as they stand.
This implies, by the usual conventions in deriving (3.1)
and (A.1), that the centrifugal potential appropriate to
V 5 VE has been absorbed into the gravitational po-
tential (with the spheroidal-coordinate metric then ap-
proximated as spherical; see Phillips 1973). Thus the
lower boundary is a level surface of the resulting total
potential with V 5 VE. In order to describe the same
physical system in a frame rotating with a different an-
gular velocity V ± VE, we can use the same equations
with the different V value provided that we add to the
right-hand side of the divergence equation (A.1b) an
extra term (V2 2 )(3 sin2u 2 1), where u is latitude,2VE

and make the corresponding modifications to the in-
version equations. The extra term is just the divergence
of the horizontal component of the change in the cen-
trifugal force per unit mass, sometimes called the ‘‘non-
Doppler effect.’’ For direct inversion, only the first
equation of each set is affected, for example, (A.3a),
because ]/]t{(V2 2 )(3 sin2u 2 1)} 5 0.2VE

Figure 9a presents the divergence difference field
from the third-order direct inversion of the PV in Fig.
2c in a frame rotating with V 5 7.8 3 1025 s21. In this
reference frame, which is rotating slightly faster than
the earth, by 0.5 3 1025 s21, the westerlies around the
circumpolar vortex appear weaker and the tropical east-

erlies stronger. The increase in V corresponds to an
equatorial velocity of 32 m s21. Figure 9b is for the
opposite case of a frame rotating slightly slower by 0.5
3 1025 s21, that is, rotating at V 5 6.8 3 1025 s21,
making the westerlies appear stronger and the easterlies
weaker. One would expect the inversion errors from
deleting partial time derivatives to increase where the
winds are stronger and decrease where they are weaker;
and this is just what is seen in Figs. 9a,b.

Figure 10 summarizes the effect of changing the ref-
erence frame upon the various inversion operators, mea-
sured as in Fig. 4 by the rms synoptic-scale divergence
error, counting all contributions whose total wave-
number $5. Results are plotted for the direct and normal
mode inversions of the PV in Fig. 2c, computed in five
reference frames whose angular velocities range from
V 5 6.3 3 1025 s21 to V 5 8.3 3 1025 s21. We see
that all the normal mode and higher-order direct inver-
sion operators have minimal error, by this criterion, in
reference frames whose V values are close to the earth’s
value V 5 VE 5 7.3 3 1025 s21. The second- and third-
order normal mode operators appear particularly sen-
sitive to the changes in V, giving a sharp minimum.

The foregoing does not in itself provide a complete
basis for constructing Galilean invariant inversion op-
erators, because comparison with a primitive equation
integration was used to estimate the errors. To be ac-
ceptable as a means of defining a PV inversion opera-
tion, which is a purely diagnostic operation, the process
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FIG. 10. The rms synoptic-scale divergence error in the inversion
of the PV shown in Fig. 2c as a function of reference-frame angular
velocity V. First-order normal mode inversion (open triangles); sec-
ond-order normal mode inversion (open circles); third-order normal
mode inversion (open squares); second-order direct inversion (solid
circles); third-order direct inversion (solid squares).

FIG. 11. Three different rms diagnostic error estimates (see text)
for the third-order direct inversion of the PV shown in Fig. 2c as a
function of reference-frame angular velocity V. Estimate of ]2d/]t2

obtained from the second time difference of d calculated by time-
stepping the balanced model forward and backward by one time step
(triangles); estimate of ]2d/]t2 similarly obtained from the first time
difference of d1 (circles); estimate of ]3d/]t3 similarly obtained from
the second time difference of d1, multiplied by 103 s (squares). Such
time differences are internal measures of inconsistency with primitive
equation evolution, requiring no reference to a parallel primitive equa-
tion integration as in Fig. 10.

of minimizing the error over V calls for the use of an
internal, likewise purely diagnostic, estimate of the er-
ror.

One way of obtaining such an estimate is by consid-
ering the behavior of the associated PV-conserving bal-
anced model in the neighborhood of the diagnostic time.
This can provide estimates of the time derivatives, such
as ]2d/]t2, ]3d/]t3, or d2a/dt2, d3a/dt3, that were deleted
in the process of constructing the inversion operator.
Their smallness can be regarded as measuring the degree
of self-consistency of balanced model evolution as an
approximation to near-balanced primitive equation evo-
lution, hence, as measuring the accuracy of the inver-
sion. Other choices are, of course, possible.

Figure 11 shows how three such quantities vary with
V. For illustrative purposes we take the case of third-
order direct inversion and its PV-conserving balanced
model. The triangles are the rms values of an estimate
of ]2d/]t2 from the second time difference of d, cal-
culated by time-stepping the balanced model forward
and backward by one time step. This is an internal error
estimate in the sense required, making no reference to
a primitive equation integration. The circles are for a
different such estimate, the same derivative ]2d/]t2 cal-
culated from the first centered time difference of d1.
Both the absolute values, and the differences between

the two, can be regarded as measures of inconsistency
with primitive equation evolution, hence, inaccuracy.
The squares are an estimate of ]3d/]t3 from the second
time difference of d1, multiplied by 103 s. All these
internal estimates follow the trends in Fig. 10 for the
third-order direct inversions (solid squares). It seems
clear that any of them could be used as the norm to be
minimized in order to make the third-order direct in-
version operator into a Galilean invariant inversion op-
erator.

Maps of the two diagnostic estimates of ]2d/]t2 in the
different rotating reference frames (not shown) display
much the same spatial patterns and V dependence as
the maps of synoptic-scale divergence differences ex-
emplified by Fig. 9.

In our example it appears that the optimal V value
is very close to that of the earth, VE. It is clear from
the foregoing, including Fig. 9, that this has no absolute
significance: it comes about merely because the example
happens to have regions both of easterlies and of west-
erlies. We may anticipate that in a hemispheric model
of the wintertime upper stratosphere, for instance, the
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predominance of strong westerlies would dictate an op-
timal V value somewhat greater than VE.

There are many more ways of constructing norms
whose minimization over V should lead to Galilean in-
variant inversion operators. A thorough exploration of
the possibilities is beyond the scope of this paper. For
example, instead of evolving the balanced model, one
could simply compare diagnostic estimates from suc-
cessive orders of an inversion-operator hierarchy. Thus,
for instance, one could take the rms difference between
the dk22 values from the kth and (k 1 1)th direct in-
version operators, or between the ak21 values from the
kth and (k 1 1)th normal mode inversion operators.
These can be expected to give much the same kind of
results as in Fig. 11. More sophisticated versions might
try, for instance, to use norms designed to be sensitive
to the disagreement between the diagnostic estimates of
u · =Q given by two successive orders of inversion op-
erator. These should give a measure of accuracy having
direct relevance to the accuracy with which the corre-
sponding PV-conserving balanced model advects the
PV, hence, relevance to the cumulative accuracy of that
balanced model.

8. Concluding remarks

The astonishing cumulative accuracies at F & 0.7
implied by Figs. 7 and 8 may have distracted attention
from the question of local mass conservation mentioned
in section 1. Primitive equation evolution conserves
mass locally, meaning that Eq. (3.1c) is satisfied exactly,
by definition, apart from numerical discretization errors.
The question is whether the velocity and surface ele-
vation fields produced by our PV-conserving balanced
models likewise satisfy Eq. (3.1c) exactly, rather than
merely to excellent approximation as the foregoing re-
sults suggest. This is an important question of principle.
Although the PV-conserving balanced models are by
construction globally mass conserving—constancy of
the mean depth ĥ 5 is imposed computationally—21 ˆg f
there is no reason to suppose that they conserve mass
locally, nor, for that matter, energy and momentum ei-
ther locally or globally. Recent work at the Newton
Institute in collaboration with Drs. E. Neven, S. Ren,
and I. Roulstone, as yet unpublished, has shown that
the balanced models associated with our direct inversion
operators do indeed violate local mass conservation; and
the same must presumably hold for our normal mode
inversion operators. It turns out to be simple to modify
the second-order direct inversion operator to conserve
mass locally,5 but impossible, as far as we can see, to
achieve any such modification at higher order. Yet the

5 First substitute (3.3c) into (3.3e), then delete div21d from (3.3c).
This makes (3.3) with DQ/Dt 5 0 into the local-mass-conserving
version of the Bolin–Charney balance equations, as discussed, for
example, by Gent and McWilliams (1984) and Whitaker (1993).

cumulative accuracy evidenced most strikingly in the
case of Fig. 7f not only provides a powerful check on
the concepts and numerical codes used in this study, but
also implies that departures from local mass conser-
vation must be tiny in such cases, even though nonzero.

Whether local mass conservation is desirable as a
property of balanced models is another question again.
It is strongly arguable that enforcement of exact local
mass conservation, and indeed energy and momentum
conservation, would be likely to degrade the accuracy
of a PV-conserving balanced model. In primitive equa-
tion evolution, the spontaneous-adjustment emission of
inertia–gravity waves—involving the spontaneous mu-
tual adjustment of the mass and velocity fields within
an unsteady, freely evolving vortical flow (Ford et al.
2000, and references therein)—must modify the local
mass, energy, and momentum budgets in ways that can-
not be perfectly captured by a balanced model. Mass
adjustments or rearrangements on the timescales of fast
gravity wave motion, in primitive equation evolution,
might be partially mimicked in an accurate balanced
model as instantaneous mass rearrangements. By defi-
nition, such rearrangements require infinite velocities,
and so cannot be exactly compatible with local mass
conservation described by a velocity field that remains
finite. Something has to give way.

In this connection, recent results on Hamiltonian bal-
anced models, discussed and further developed at the
Newton Institute Programme, seem to us to be very
interesting. There are three essential points. First, it is
now known how, in principle, to construct the Hamil-
tonian balanced model corresponding to any given bal-
ance condition, no matter how accurate—for instance,
the balance condition defined by Eqs. (3.6a)–(3.6i)
above, or by (5.3a)–(5.3c) or by (A.3a)–(A.3i). That
knowledge has emerged from the work of Salmon
(1983, 1985, 1988), Allen and Holm (1996), Roulstone
and Sewell (1996), and McIntyre and Roulstone (1996).
Second, any balanced model so constructed will auto-
matically respect mass, energy, and momentum conser-
vation, as well as PV conservation, in virtue of its Ham-
iltonian structure.

Third, however, such exact conservation comes at a
price: the model’s velocity field is always ‘‘split’’ into
two separate velocity fields, one of which advects ma-
terially conserved quantities like PV as well as the fluid
particles themselves (thus satisfying local mass conser-
vation exactly), and the other of which is the velocity
field from which the PV, and the energy and momentum,
are evaluated. The latter quantities, when so evaluated,
have exactly the same formulas for the primitive equa-
tions that the balanced model seeks to approximate.
[This explains, incidentally, the peculiar formula for the
semigeostrophic PV discovered by Hoskins (1975)].
Thus, for the Hamiltonian shallow water models in ques-
tion, the PV is always Rossby’s exact PV (Rossby 1936),
formula (3.1d) above, provided that it is evaluated from
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the second, not the first, of the model’s two velocity
fields.

It is still true, then, that something has to give way.
Whenever one insists on full and exact conservation
properties by imposing Hamiltonian structure, what
gives way is the uniqueness of the velocity field. A
corollary is that, because PV-conserving balanced mod-
els of the type studied here are defined to have unique
velocity fields, they cannot be Hamiltonian.
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APPENDIX A

Direct Inversion on a Hemisphere

In this appendix we define the direct inversion op-
erators on the hemisphere and describe the numerical
procedure used to solve the resulting equations. The
primitive equations for the shallow water system on a
hemisphere are

]z 2VV
1 2Vmd 1 5 N , (A.1a)z]t a

]d 2VU
21 ¹ f9 2 2Vmz 1 5 N , (A.1b)d]t a

]f9
1 f̂d 5 N , (A.1c)f]t

where V is the earth’s angular velocity, a is the earth’s
radius, m 5 sinu where u is latitude,

(U, V) 5 u cosu 5 (1 2 m2)1/2(k 3 =c 1 =x),

that is,

1 ]x ]c
2U 5 2 (1 2 m ) ,1 2a ]l ]m

1 ]c ]x
2V 5 1 (1 2 m ) ,1 2a ]l ]m

where l is longitude. The nonlinear terms on the right
of Eqs. (A.1) are

1 1 ] ]
N 5 2 (Uz) 1 (Vz) , (A.2a)z 2[ ]a 1 2 m ]l ]m

1 1 ] ]
N 5 (Vz) 2 (Uz)d 2[ ]a 1 2 m ]l ]m

2 21 U 1 V
22 ¹ , (A.2b)

21 22 1 2 m

1 1 ] ]
N 5 2 (Uf9) 1 (Vf9) , (A.2c)f 2[ ]a 1 2 m ]l ]m

and all other quantities are as defined in section 3; in
particular,

¹2c 5 z and ¹2x 5 d.

The expression (A.2b) may be compared to the right-
hand side of (3.1b) with 2= · (u · =u) rewritten as
2= · (zk 3 u) 2 =2(|u| 2).1

2

The direct inversion operators are constructed as in
section 3. For a pth-order operator, we take Eqs. (A.1)
supplemented, when p $ 2, by the (p 2 1) equations
](A.1b)/]t, . . . , ]p21(A.1b)/]tp21, then delete the two
time derivatives ]p21d/]tp21 and ]pd/]tp and replace all
the remaining time derivatives by diagnostic estimates.
The latter are denoted as before by subscripts 1, 2, . . . .
These equations define the balance condition; to get the
PV inversion operator we append the formula defining
the PV.

For instance, the equations defining the third-order
direct inversion operator on a hemisphere, in which
]2d/]t2 and ]3d/]t3 are deleted, may be compared to Eqs.
(3.6) on the f plane and are

2VU
2 2¹ f9 2 2Vm¹ c 1 5 N 2 d , (A.3a)d 1a

22V ]x 4V m ]c1L̃x 2 2 5 S, (A.3b)
2 2a ]l a ]l

L̃x 5 T, (A.3c)1

2 1/2(U, V ) 5 (1 2 m ) (k 3 =c 1 =x), (A.3d)
2 1/2(U , V ) 5 (1 2 m ) (k 3 =c 1 =x ), (A.3e)1 1 1 1

2 1/2(U , V ) 5 (1 2 m ) k 3 =c , (A.3f)2 2 2
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2VV
z 1 2Vmd 1 5 N , (A.3g)1 za

2VV1z 1 2Vmd 1 5 (N ) , (A.3h)2 1 z 1a

f9 1 f̂d 5 N , (A.3i)1 f

2Vm Q9
2¹ c 2 f9 5 (f̂ 1 f9), (A.3j)

f̂ g

where L̃ is the fourth-order linear operator

24V m ]
4 2 2 2 2L̃ 5 f̂¹ 2 4V m ¹ 2 (1 2 m ) (A.4)

2a ]m

(fourth order because it acts on x and x1 rather than on
d and d1), and where

2S 5 ¹ N 2 (N ) 2 2VmNf d 1 z

2V ]c122 (1 2 m ) , (A.5a)
2a ]m

2T 5 ¹ (N ) 2 (N ) 2 2Vm(N )f 1 d 2 z 1

22V ]c 4V m ]c2 122 (1 2 m ) 1 . (A.5b)
2 2a ]m a ]l

The differential operators on the left-hand sides of Eqs.
(A.3a), (A.3b), (A.3c), and (A.3j) are all elliptic and are
very well behaved numerically. Given the right-hand
sides, therefore, we can solve robustly for (f9, x, x1,
c) under the conditions that f9, x, and x1 are symmetric
about the equator (as are d, d1, U, U1, and U2) and that
c is antisymmetric (as are c1, c2, z1, z2, V, V1, V2, and
Q9). Global mass conservation requires that the area
integral of f9 over the hemisphere is zero.

The whole system is solved by iteration, with the
solution of the elliptic equations (A.3a), (A.3b), (A.3c),
and (A.3j) as an inner loop. Outside this, we need to
evaluate the diagnostic estimates (Nd)1, (Nf )1, (Nz)1, and
(Nd)2 at each stage. These nonlinear terms could have
been written out explicitly as in Eqs. (3.6), and the
corresponding code written from scratch. But in practice
it is simpler and safer, and equivalent within an easily
controllable truncation error, to take advantage of the
existing model code and evaluate these terms within the
outer iteration loop by a procedure that we call ‘‘quasi
time-stepping.’’ This is to emphasize that it is still part
of solving the inversion problem (A.3), which by def-
inition is a purely diagnostic process.

At each stage in the outer loop, the exact primitive
equations (A.1) are time-stepped forward and backward,
just once in each direction, using a second-order Runge–
Kutta scheme [local truncation error O(Dt3)] with the
current best-guess fields as initial conditions. This gives
estimates for all the fields at, say, times t and t 6 Dt,
with error O(Dt3). From these estimates, Nd, Nf , and
Nz are evaluated at t 6 Dt, allowing (Nd)1, (Nf )1, (Nz)1,
and (Nd)2 to be estimated as centered time differences,

the last with error O(Dt). With sufficiently small Dt, it
is straightforward to show by Taylor expansion that,
provided the whole iterative process converges, it is
equivalent, with error O(Dt), to solving the foregoing
equations with (Nd)1, (Nf )1, (Nz)1, and (Nd)2 written out
explicitly as in Eqs. (3.6). In particular, not only (A.3d),
(A.3e), and (A.3g)–(A.3i), but also (A.3f ), are satisfied,
with error O(Dt), as the following consideration shows.
Denote by the second time difference of d producedd̃2

by the quasi-time-stepping procedure just described.
Even though will be nonzero during the iterationd̃2

process, with the effect of adding a term 5}=x̃2

to the right-hand side of (A.3f ), convergence22=(¹ d̃ )2

of the iteration will force to zero by virtue of (A.3b),d̃2

(A.3g), and (A.3i), which must all be satisfied, with error
O(Dt) at worst, once the iteration has converged. For
with (A.3g) and (A.3i) satisfied, (A.3b) corresponds, by
construction, to 2](A.1b)/]t with ]2d/]t2 replaced by
zero.

In the numerical solution procedure, each field is ex-
pressed as the sum of spectral coefficients multiplied by
spherical harmonic functions. By using standard recur-
rence relations, the left-hand sides of Eqs. (A.3a),
(A.3b), (A.3c), and (A.3j) are written in the form of a
(robustly nonsingular) constant-element matrix times a
vector of spectral coefficients. This system of equations
is block diagonal and can be partitioned according to
values of the zonal wavenumber. A sparse matrix solver
is used to solve it with the current best guess for the
right-hand sides of (A.3a), (A.3b), (A.3c), and (A.3j).
The new fields are then used to update the nonlinear
terms and diagnostic time-derivative estimates. The it-
eration is continued until convergence is reached, the
criterion for convergence being that the rms value of
f9(q) 2 f9(q21) should be at most 1027 of the rms value
of f9(q) , the qth iterate of the surface geopotential fluc-
tuation. Typically, some 30–50 iterations were found to
be necessary in a third-order direct inversion. Improved
convergence was obtained by first performing a few
iterations of the first-order direct inversion equations.
For the small mean depths discussed here it was found
necessary, in addition, to use underrelaxation of the non-
linear terms in order to obtain convergence. An under-
relaxation parameter of 0.6 was used.

The coding error mentioned in the introduction pro-
duced incorrect values of one (fortunately small) spec-
tral coefficient when, and only when, it entered the qua-
si-time-stepping procedure for estimating (Nd)1, (Nf )1,
(Nz)1, and (Nd)2. The spectral coefficient affected was
that of the P1(m) contribution to c, that is, the first
zonally symmetric and meridionally antisymmetric con-
tribution to c, corresponding to solid rotation.

APPENDIX B

Normal Mode Inversion on a Hemisphere

In this appendix we describe the numerical procedure
used to carry out the kth-order normal mode PV inver-
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sion defined by (5.4). First, the left-hand side of the PV
equation in the form (3.2c) is split into the slow and
fast contributions from the normal mode superposition,
giving, symbolically,

ff9 Q9 ff9
z 2 5 (f̂ 1 f9) 2 z 2 . (B.1)1 2 1 2f̂ g f̂

slow fast

This is solved to find the slow-mode coefficients, given a
previous guess for the slow-mode and fast-mode coeffi-
cients. Solution for the slow-mode coefficients, A, is done
in spherical harmonic spectral space, by substituting the
slow-mode coefficients multiplied by the corresponding
slow-mode eigenfunctions (expressed in terms of spherical
harmonics) into the left-hand side of Eq. (B.1), and equat-
ing this to a spherical harmonic spectral representation of
the right-hand side evaluated from the previous guess. This
reduces the problem to a system of M equations for the
M new slow-mode coefficients (where there are 2M de-
grees of freedom for each scalar field). This system of
equations partitions with zonal wavenumber and can be
expressed as a series of constant element, nonsparse ma-
trices multiplied by the corresponding vector of slow-mode
coefficients. The inverses of these nonsparse matrices need
only be calculated once.

The wavenumber zero part of (B.1) is solved differ-
ently taking advantage of the fact that the slow-mode
eigenfunctions with wavenumber zero are degenerate
(all having eigenfrequency zero). These eigenfunctions
all have nondivergent wind fields in geostrophic balance
with their geopotential fields. Hence, the wavenumber
zero part of (B.1) is more simply solved by substituting
the condition for geostrophic balance into the spectral
form of (B.1); the new guess for the wavenumber zero
slow-mode coefficients can then be determined by a
sparse matrix inversion.

Next, the new slow-mode coefficients A are substi-
tuted into the f9 contribution on the right-hand side of
Eq. (B.1), keeping the old fast coefficients a, and the
above procedure iterated. This consists of an inner loop
within the whole iteration involving (5.4). At each inner-
loop iteration the right-hand side of (B.1) is calculated
with the latest A but fixed a. Here 4–10 iterations are
used. In inversions at small mean depths such as 1 km,
where f9 can be a large fraction of it has been foundf̂,
necessary to use underrelaxation of the right-hand side.

With the resulting estimate for the slow-mode coef-
ficients, A, the algorithm then proceeds to update the
fast-mode coefficients, a, by using the balance condi-
tion. For example, in Eq. (5.2), which is the case of
(5.4a), (5.4b) representing first-order normal mode bal-
ance, the nonlinear terms Nz, Nd, and Nf defined by
(A.2) are computed and their projection n onto the fast
modes is evaluated from

1 2p

2 2n 5 [F*N 2 f̂(C*¹ N 1 X*¹ N )] dl dm,i E E i f i z i d

0 0

(B.2)

where ni is the ith component of n; and F i, C i, Xi are
the f, c, x components of the ith fast-mode eigen-
function normalized such that

1 2p

2 2 2[|F*| 1 f̂(|=C | 1 |=X | )] dl dm 5 1;E E i i i

0 0

the asterisks denote the complex conjugate. Equation
(B.2) is evaluated in spherical harmonic spectral space,
which reduces it to evaluating a summation over total
wavenumber. Since the right-hand sides of (5.2) and its
higher-order counterparts depend on the fast-mode co-
efficients, it is necessary to iterate here as well. But first
the PV equation (B.1) is solved again, repeating the
inner loop iteration using the new fast coefficients a.
With the resulting updates of a and A, new values for
the right-hand side of (5.2) are then calculated. This
gives an improved estimate of a; the whole iteration is
then repeated.

For higher-order balances the numerical procedure is
the same as before, except that it is necessary to evaluate
diagnostic estimates for the time derivatives of the non-
linear terms, as for instance on the right-hand side of
(5.3). These are evaluated by quasi time-stepping in the
sense explained in appendix A. For third-order normal
mode inversion, in examples with small mean depth

such as 1 km, best convergence was achieved by21 ˆg f
ramping up through first then second order. The 1-km
examples of section 6 used 8 first-order, 8 second-order,
then 25 third-order iterations. Underrelaxation on the
fast-mode coefficients was also found to improve con-
vergence.

APPENDIX C

Topographic Forcing

The fields shown in Fig. 2 are for day 25 of a primitive
equation integration in which the motion was excited,
prior to day 25, from zonally symmetric initial condi-
tions, by a smoothly varying artificial topographic forc-
ing. The time-dependent bottom topography H is related
to the geopotential f and the layer depth h by f 5 g(h
1 H). Therefore, the only change needed in the prim-
itive equations (A.1) is to replace f9 by f9 2 gH in
the mass conservation equation (A.1c). In the integra-
tions shown, H depends on t, u, l according to

H 5 H A(t)B(u)C(l), (C.1)0

where


1 tp 1 2 cos t # 2T days,A(t) 5 1 22 T (C.2)


0 t $ 2T days,

2 2cot u cot u
B(u) 5 exp 1 2 , and (C.3)

2 21 2cot u cot u0 0

C(l) 5 2(cosl 1 c cosml). (C.4)m
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The origin of longitude, l 5 0, is plotted at ‘‘six
o’clock’’ in the figures. The growth or decay time for
the topography T 5 12 days. In the 1-km mean depth
integration of Fig. 2, H0 5 0.45 km, u0 5 358, cm 5
0.2, and m 5 5. Note that the smooth function B(u)
peaks at u 5 u0 with value B(u0) 5 1.
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