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Abstract

The discovery by Spruit of a new small-scale turbulent dynamo has sig-

nificantly changed the tachocline model proposed by Gough and McIntyre

(GM98). The small-scale dynamo is shear driven, is characteristic of stably

stratified flows, and is mediated by the kink or ‘tipping’ instability elu-

cidated for such flows by R. J. Tayler. The dynamo works best in high

latitudes and supports turbulent Maxwell stresses large enough to dominate

the angular momentum transport, taking over from the pure mean merid-

ional circulation (MMC) proposed in GM98. What survives from the GM98

tachocline scenario is the laminar thermomagnetic boundary layer at the

tachopause, essential for the confinement of the interior field Bi by high-

latitude downwelling. That downwelling is, however, itself confined within

a double boundary layer at the tachopause. The thermomagnetic boundary

layer sits just underneath a modified Ekman layer, in which the turbulent

Maxwell stress of the small-scale dynamo diverges.

The effects of compositional stratification in the helium settling layer un-

der the tachopause are considered. It is concluded that GM98’s “polar pits”

to burn lithium are dynamically impossible and that the tachopause is not

only sharp but globally horizontal. That is, the tachopause, as marked by

the top of the helium settling layer, follows a single heliopotential to within

a very tiny fraction of a megametre from equator to pole. Therefore the

stably-stratified tachocline, defined in high latitudes as the layer of dynam-

ically significant shear beneath the convection zone, must be thick enough

to burn lithium. This is consistent with the helioseismic evidence because

the high-latitude shear, even though crucial to the maintenance of the dy-

namo action, is held down in magnitude, by the dynamo’s turbulent Maxwell

stresses, to values too small to be visible.
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2 McIntyre

8.1 Introduction

Following Spiegel & Zahn (1992) and others, I start from the assumption that

the fluid dynamics of the tachocline is a multi-timescale problem. Specifi-

cally, in order to understand the structure of the present tachocline I assume,

and will argue in what follows, that one has to consider fluid-dynamical pro-

cesses over the full range of timescales from the gigayear or secular timescale

of solar evolution to the months and years of convection-zone overshoot and

upper-tachocline MHD instabilities and turbulence, all touched on in the

other chapters herein. That many timescales are important should hardly

need saying, but does, perhaps, need saying here if only to counter the false

dichotomy “slow versus fast” that seems to have taken hold in the literature.

Indeed it seems possible, now, that even so basic a quantity as the tachocline

thickness ∆ may depend on the gigayear-timescale history, as well as on a

variety of turbulent processes over a large range of timescales.

In what follows I assume it unnecessary to repeat my old arguments

(1994, 2003a) against the Spiegel–Zahn horizontal-eddy-viscosity hypoth-

esis — which arguments, in turn, point toward the inevitable existence of a

global-scale magnetic field Bi in the radiative interior, whether of fossil or

dynamo origin (Gough & McIntyre 1998, hereafter GM98), as the only way

to account not only for the interior’s solid rotation but also for the small-

ness of ∆, at most several tens of megametres according to helioseismology

(Chapter 3 & refs.). The argument for inevitability still seems significant in

itself, given the far greater uncertainties about the origin, and the viability,

of magnetic fields in the radiative interior. There, the gigayear-timescale

escapology of magnetic fields has Houdini-like possibilities (see Chapter 11)

involving the nonlinear effects of instabilities and Parker flux-tube buoyancy

in combination.

The argument for inevitability of a magnetic interior can be summarized

in two parts. First, a nonmagnetic interior cannot be held in solid rotation

by real stratified, layerwise-two-dimensional turbulence. Such turbulence, if

it were to be excited, would tend to be “anti-frictional” — to drive the sys-

tem away from solid rotation and not toward it (McIntyre 1994, 2003a,b &

refs.). The effect would be qualitatively unlike that of the hypothesized hor-

izontal eddy viscosity. Second, a nonmagnetic interior would be incapable of

withstanding another fluid-dyamical process that would also drive it away

from solid rotation and that would, furthermore, as originally pointed out

by Spiegel and Zahn (1992), make ∆ values significantly larger than permit-

ted by the helioseismic evidence. That process — the downward “radiative

spreading” or “Haynes–Spiegel–Zahn burrowing”, into a nonmagnetic inte-
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rior, of mean meridional circulations (MMCs) and differential rotation —

will be revisited here together with the concomitant notion of “gyroscopic

pumping”. As well as making ∆ values too large, the downward-burrowing

MMCs would prevent a helium settling layer from forming at the top of the

interior, as well as probably burning too much beryllium.

The arguments against nonmagnetic horizontal eddy viscosity will prove

robust, I believe, (a) because of their clearcut basis in the fundamental

principles of nonmagnetic, stratification-constrained eddy motion, especially

potential-vorticity conservation and invertibility (e.g. McIntyre 2003a,b &

refs.), and (b) because of the comprehensive testing and vindication of those

fundamental principles by high-resolution observations and modelling of,

especially, the Earth’s stratosphere.† So the main focus of this chapter will

not be on those arguments, but rather on how, if the existence of the global-

scale interior Bi is accepted as practically certain, the GM98 scenario now

needs to be modified in the light of advances in our knowledge of MHD

turbulence. The focus is not now on asking whether it is a global-scale Bi

that limits ∆, but on understanding more clearly how it does so. The MHD-

turbulent aspects will force a reexamination of how azimuthal stresses are

supported between the interior and the overlying turbulent layers, and how

they fit in with the contributions of MMCs to angular momentum exchange.

Despite radical changes, one important feature of the GM98 scenario

seems to have survived so far, with a little help from Occam’s razor. This

is the prediction of a ventilated (helium-poor) tachocline terminated by a

sharp tachopause, across which there is a strong jump in compositional or

heavy-element abundance gradients, from zero in the tachocline to a finite

value in the helium settling layer just beneath, corresponding to a contribu-

tion N2
µ to the buoyancy frequency squared that is a significant fraction of

the typical thermal value N 2 ∼ 10−6 s−2. This points toward the validity of

helioseismic calibrations of the kind attempted in Elliott & Gough (1999).

A feature that does not, on the other hand, survive from GM98 in any form

at all is the large-scale, laminar, field-free (B ≡ 0) downwelling throughout

high latitudes, occupying a substantial fraction of the thickness of the tacho-

cline. The original GM98 scenario relied entirely on Reynolds and Maxwell

stresses in the convection zone to produce (by gyroscopic pumping) the

downwelling MMC needed (a) to confine the interior field Bi in high lati-

† A striking observational example visible to any web browser, illustrating the detail in which
the stratosphere is now observed, can be quickly found by googling "gyroscopic pump in
action". This is an animated version of figure 8.1, p. 121, of McIntyre (2003a), cour-
tesy of the Wuppertal remote-sensing group. There is a vast literature of published papers
in leading journals; see for instance Manney et al. (1994), Riese et al. (2002). See also
www.atm.damtp.cam.ac.uk/people/mem/papers/ECMWF/ecmwf05.html
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tudes as well as (b) to transfer angular momentum as necessary and (c) to

ventilate the tachocline. But the hypothesis of large-scale field-free down-

welling in high latitudes, pumped entirely by convection-zone stresses, is now

untenable — whether or not we include overshoot-layer stresses — because

it has been convincingly shown by Spruit (1999, 2002, hereafter S99, S02),

building on the classic work of R. J. Tayler in the 1970s, that most if not all

of the high-latitude downwelling region, even if initially field-free, could not

remain so. Because of its vertical shear, the region would be MHD-unstable

in such a way as to evolve into a small-scale dynamo.

The dynamo action is mediated by what S99 and S02 conveniently call a

‘Tayler instability’ — a stratification-modified pinch or kink-type (‘tipping’)

instability — of the toroidal field wound up by the shear, on large horizontal

scales but on radial scales small enough for thermal diffusion to counteract

the stable stratification. The ability of the Tayler instability to close the

dynamo loop has been verified by numerical experiments (Braithwaite &

Spruit 2006). This small-scale dynamo seems likely to be most effective in

latitudes within the poleward half of the range, and possibly also in some

lower-latitude band or bands not too close to the equator.

The implication (§8.4) turns out to be that the MMC, or at least the

high-latitude downwelling branch most critically needed to confine Bi, is

gyroscopically pumped by turbulent Maxwell stresses that diverge not in

the convection zone or overshoot layer but, rather, near the base of an

MHD-turbulent tachocline. This region will be referred to as the lower-

most tachocline in high latitudes. The orders of magnitude dictate that the

stress divergence and consequent MMC are confined to within a fraction of

a megametre of the tachopause, where a double boundary-layer structure

must exist. The turbulence and gyroscopic pumping could be continuous or

intermittent, depending on |Bi| values.
Before developing these ideas it is necessary to deal with one fundamen-

tal question that was raised at the Workshop. GM98’s inevitability ar-

gument and its further developments just sketched rely, of course, on the

physical reality of the gyroscopic-pumping and burrowing mechanisms for

MMCs penetrating a nonmagnetic interior. Those mechanisms are well un-

derstood and have been carefully studied. They show up most plainly in

thought-experiments in which the Reynolds and Maxwell stress divergences

in the overlying turbulent layers are replaced by an artificially prescribed,

azimuthally symmetric, azimuthally directed force field F̄ (Haynes et al.

1991). If that force field pushes fluid retrogradely, for instance, then the

Coriolis effect tries to turn the fluid poleward. As detailed analysis con-

firms, this amounts to a systematic mechanical pumping action that drives



Magnetic confinement and the tachopause 5

MMCs. Ekman pumping is the special case in which the force happens

to be frictional. But any azimuthal force will do, hence the generic term

“gyroscopic pumping”. Persistent gyroscopic pumping in some layer of any

stratified, rotating, thermally relaxing and nonmagnetic system with a finite

pressure scale height generates MMCs that continually burrow downward.

This was first clearly shown in the detailed, and complementary, indepen-

dent investigations by Haynes et al. (1991) and Spiegel & Zahn (1992). The

burrowing mechanism is so fundamental — to any attempt to understand

the tachocline and to assess magnetic versus non-magnetic scenarios — that

I find it convenient to give the mechanism a distinctive name, “Haynes–

Spiegel–Zahn burrowing” or “HSZ burrowing” for brevity, whenever verbal

precision is necessary.†
The question raised at the Workshop was whether HSZ burrowing is a

real physical phenomenon. It was claimed, in effect, that the two studies

just cited are qualitatively in error and that there is no such thing as HSZ

burrowing, even in the absence of the interior magnetic field Bi. The claim

was based on a recent study of MMCs using nonmagnetic equations (Gilman

& Miesch 2004, hereafter GMi) whose results appear to imply that MMCs

driven from above cannot penetrate downward more than a negligible dis-

tance, probably less than the vertical resolution of helioseismic inversions.

If that were correct then most of the arguments in this chapter, and in

its predecessors including GM98, would fail utterly. Therefore §8.2 revis-

its the problem studied in GMi, using the same formulation and notation.

It turns out that through a quirk of formulation the solutions obtained in

GMi make up an incomplete set. They are a special subset of solutions, for

each of which the gyroscopic pumping exactly vanishes at each latitude. No

gyroscopic pumping implies no burrowing! There is, after all, no conflict.

Indeed the analysis in §8.2, based on an idealized slab model, provides the

simplest possible illustration of the pumping and burrowing mechanisms,

supplementing the original analytical and numerical work of Haynes et al.

(1991) and Spiegel & Zahn (1992).

§8.3 goes on to argue that turbulence in the interior, below the tacho-

pause, must be exceedingly sporadic. Thus, within the gigayear perspective

a random snapshot of the Sun is almost certain to show an interior that

is entirely laminar or very nearly so. Broadly speaking this is consistent

with the standard solar modelling assumption of a microscopically diffusive

helium settling layer, though it remains possible that the layer is somewhat

† As already mentioned it has also been called “spreading” but, with the Sun’s gravitational
field pulling hard on my imagination, I prefer “burrowing” because it unambiguously connotes
downwardness.
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thickened, and indeed its heavy-element contrast somewhat increased, by

the sporadic interior mixing.

§8.4 examines what S02’s arguments then imply about tachocline and

tachopause structure and high-latitude downwelling. As already mentioned,

such downwelling is critical to the confinement of Bi, a point underlined by

recent numerical studies (Garaud 2002; Braithwaite & Spruit 2004; Brun

& Zahn 2006) showing the tendency for the poloidal part of an internal

dipolar field to diffuse its lines upward and outward through a substantial

high-latitude region. That tendency is, however, easily held in check by the

downwelling within the double-boundary-layer structure of the lowermost

tachocline. Thus the double boundary layer appears well able to confine Bi

in high latitudes.

Intriguingly if frustratingly, the mean shears within the double boundary

layer turn out to be far too small to be helioseismically visible. Moreover, the

same appears true of shears throughout the bulk of the high-latitude, stab-

ly-stratified tachocline. Therefore the visible shear must, in high latitudes,

reside wholly in the lower convection zone and overshoot layer. As will

be seen shortly this is consistent with the helioseismic evidence. A similar

situation may be expected in any low-latitude band that goes turbulent via

the shear driven, Tayler-mediated small-scale dynamo action, though, even

if such a band exists, the properties of the Tayler instability — favoured by

a poleward decrease in the toroidal field wound up by the shear — suggest

that the band would have limited latitudinal extent. It might also exhibit

unsteady behaviour, such as a life cycle involving poleward migration on

timescales perhaps ∼ 106y or more.

§8.5 extends the idealized analysis of §8.2 to allow for compositional gra-

dients in the underlying helium settling layer, in order to reassess GM98’s

“lithium-burning polar pit” hypothesis. It appears that Nµ values, acting

in concert with the surrounding Bi, are more than enough to inhibit the

formation of such pits and, indeed, to constrain the tachopause — defined

as the bottom of the ventilated layer, equivalently the top of the helium

settling layer — to be very close to the horizontal.

Moreover, this constraint on tachopause slope holds tightly even on a

global scale. It appears that the tachocline, assuming it is sufficiently venti-

lated, must have not only an approximately constant chemical composition

but also constant depth over all latitudes. More precisely, the tachopause has

to follow an effective gravitational–centrifugal potential, globally, to within

a very tiny fraction of a megametre.

If this picture is anywhere near correct then the only way to burn lithium

is simply for ∆, defined in terms of tachopause depth, to be large enough.
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A careful lithium-burning modelling study by Christensen-Dalsgaard et al.

(1992) suggests a need for ∆ values close to 65Mm measured downwards

from the helioseismic bottom of the convection zone at 0.713R¯ . This puts

the tachopause at 0.62R¯ . If one superposes the 0.62R¯ circle on to Fig-

ure 3.7 of Chapter 3, then especially in high latitudes one sees what looks like

a substantial shear-free region beneath the overshoot layer, consistent with

the earlier statement that the visible shear must, in high latitudes, reside

wholly in the lower convection zone and overshoot layer. This of course is

very different from the GM98 scenario. §8.6 offers some concluding remarks,

mainly on some uncertainties regarding tachocline ventilation.

It might be thought that the terminology should be changed if, as I am

now suggesting, the ventilated tachocline is distinctly deeper than the tacho-

cline defined by shears visible in a helioseismic inversion. But observational

invisibility does not imply dynamical insignificance. And indeed, in the

scenario to be developed, the invisible shear has a crucial role in the high-

latitude dynamics and ventilation of the tachocline, all the way down to the

tachopause — defined, as here, to mean the ventilated layer and its lower

boundary, or equivalently the top of the helium settling layer.

8.2 Gyroscopic pumping and HSZ burrowing

Consider the thought experiment of Haynes et al. (1991), performed on

GMi’s nonmagnetic, linearized Cartesian slab model. We take coordinates

(x, y, z) respectively eastward, northward and upward as in GMi, with cor-

responding velocity components (u, v, w) and Coriolis vector idealized as

(0, 0, 2Ω). For definiteness the top of the model, z = ztop say, is taken to be

isothermal, stress-free, and impermeable to mass. The prescribed azimuthal

force field {F̄ (y, z), 0, 0} is applied to an upper layer zf < z < ztop. The

force F̄ is assumed weak enough for linearization to remain valid. We ask

to what extent the response to F̄ penetrates downward into the unforced

region z < zf , where we take the buoyancy frequency N of the stratification

to be constant as in GMi. As in GMi we ignore compositional gradients, as

would be an appropriate idealization if the interior were nonmagnetic and

HSZ burrowing active over the gigayear timescale. For then no helium set-

tling layer would have a chance to form (further discussion in §8.5), and the

thermal stratification would dominate. Steady-state solutions of the type

found in GMi should, of course, be valid in the unforced region.

The profile of N within the forcing layer zf < z < ztop will be left unspeci-

fied. In the original GM98 scenario, in which the forcing layer was identified

as the convection zone, we would have N ≡ 0 for z f < z < ztop. But there is

no difficulty in including the overshoot layer, and indeed an entire turbulent
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tachocline, as part of the forcing layer. The thought experiment is meant

to imitate the effect of any overlying layer, stratified in any way, in which

the turbulent Reynolds and Maxwell stresses in an x-averaged description

diverge to give the force field F̄ (y, z). Any such force field, arising from

internal stresses, must have a domain integral that vanishes,
∫∫

F̄ (y, z)dydz = 0 , (8.1)

even though its vertical integral F̄(y) =
∫ ztop
zf

F̄ (y, z)dz need not vanish.

Again following GMi we use the Boussinesq equations and describe ther-

mal relaxation toward radiative equilibrium by a constant thermal diffusivity

κ ≈ 107 cm2s−1. Some aspects of the problem depend on non-Boussinesq

effects, which in a doubly infinite domain select downward penetration at

the expense of upward, as illustrated by Haynes et al.’s analysis. Here we

have replaced those effects by the artifice of cutting off the fluid domain at

z = ztop.

Defining the buoyancy-acceleration anomaly ϑ in the standard way as

gravity times the fractional temperature anomaly on a pressure surface, ϑ =

gT/T̄ in GMi’s notation, we have, for axisymmetric dynamics ∂/∂x = 0,

∂v

∂y
+
∂w

∂z
= 0 , (8.2a)

∂u

∂t
− 2Ωv − ν ∂

2u

∂z2
= F̄ (y, z) , (8.2b)

∂2v

∂z∂t
+ 2Ω

∂u

∂z
+
∂ϑ

∂y
− ν ∂

3v

∂z3
= 0 , (8.2c)

∂ϑ

∂t
+N2w − κ∂

2ϑ

∂z2
= 0 . (8.2d)

As in GMi we have included viscous terms, with constant momentum diffu-

sivity ν. The third equation (8.2c) may be called the generalized thermal-

wind equation. It is formed by eliminating the pressure between the hy-

drostatic equation and the vertical derivative of the meridional momentum

equation. As is realistic for the solar tachocline we assume that Ω is effec-

tively large (rapidly rotating system, small Rossby number), so that in (8.2c)

there is a powerful tendency toward thermal-wind balance, 2Ω ∂u/∂z ≈
−∂ϑ/∂y.

If a system like this is started from an undisturbed initial state with

u, v, w, and ϑ all zero then, as Haynes et al. showed in an essentially

similar problem, the typical behaviour within the forcing layer is robustly

as follows. First, u accelerates in response to F̄ , followed by Coriolis turning

of (u, v). The system then approaches a locally steady or nearly-steady state
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in which thermal-wind balance prevails, and in which −2Ωv has come into

approximate balance with F̄ in Equation (8.2b). The effect of the ν term

in (8.2b) is equivalent to a slight redistribution of F̄ , leaving the qualitative

picture unaffected. The balance

−2Ωv ≈ F̄ (8.3)

describes the persistent gyroscopic pumping of meridional flow v by the

steady azimuthal force field F̄ . Note that F̄ < 0 implies v > 0, confirming

that a retrograde force pumps fluid poleward.

Now GMi’s results should apply to the unforced region z < z f . GMi

assume a steady state with F̄ ≡ 0, leading to a single equation that applies

in the unforced region,

∂6v

∂z6
+

4Ω2

ν2
∂2v

∂z2
+

N2

νκ

∂2v

∂y2
= 0 . (8.4)

(This comes from assuming N constant, taking ∂3/∂z3 of (8.2c), then suc-

cessively eliminating u, ϑ, and w.) GMi consider solutions of the form

v ∝ ekz sin(y/`), where ` is a suitable latitudinal lengthscale and k is a

complex constant satisfying the characteristic equation

k6 +
4Ω2

ν2
k2 − N2

νκ
`−2 = 0 , (8.5)

of whose six roots three correspond to downward evanescence. Considera-

tion of the scale (Rek)−1 for evanescence when the latitudinal lengthscale

` takes reasonable values ∼ 102Mm gives vertical scales of the order of a

few tens of megametres at most, even when both ν and κ are both taken

to have large eddy values ∼ 1012 cm2s−1. Microscopic values give a small

fraction of a megametre. If these were the only possible solutions then they

would certainly imply what was claimed at the Workshop, namely that there

is no such thing as HSZ burrowing into a nonmagnetic interior. GM98’s

inevitability argument would then fail.

Let us ask, however, what a boundary-layer solution of this kind in the

unforced region z < zf would imply about the forcing function F̄ (y, z) in

the layer above. All variables are downward evanescent. Therefore, by

integrating (8.2a) over all z and invoking the assumption that the upper

boundary z = ztop is impermeable to mass, we may deduce that the y

derivative of
∫ ztop
−∞

v dz vanishes, so that
∫ ztop
−∞

v dz = C (8.6)

where C is a constant. We have also assumed that the upper boundary is
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stress-free, ν∂(u, v)/∂z = 0. So integrating (8.2b) for the steady state gives

F̄(y) =
∫ ztop
zf

F̄ (y, z)dz = −2Ω
∫ ztop
−∞

v dz = −2ΩC . (8.7)

Now this is compatible with (8.1) only if C = 0; therefore

F̄(y) = −2Ω
∫ ztop
−∞

v dz = 0 (8.8)

at each y. In other words, there is no net gyroscopic pumping — no vertically

integrated azimuthal force, and no vertically integrated meridional mass flux

and volume flux in the boundary layer — at any y. GMi’s solutions are all

solutions for which the net gyroscopic pumping exactly vanishes at each y.

That fact is not obvious from GMi’s perspective, in which only the un-

forced layer z 6 zf is considered. We may note, however, that all GMi’s

solutions satisfy the special relation ν∂2u/∂y∂z = 2Ωw. This can be

straightforwardly verified either from the solutions, or from the variant of

(8.8) obtained by integrating (8.2b) from −∞ to any z 6 z f , noting that

F̄ = 0. Even though it might appear that w is being arbitrarily prescribed

at the top — and should therefore represent any gyroscopic pumping from

above — the u field, invisible in GMi’s formulation, has cunningly organ-

ized itself in such a way that the boundary z = z f exerts an azimuthal

viscous stress on the fluid beneath that just cancels† the pumping effect of

the prescribed w.

To double-check this we look at an explicit solution that includes the upper

forcing layer zf < z < ztop. For simplicity we set N ≡ 0 and F̄ ∝ sin(y/`),

independent of z within the forcing layer. Then within that layer we see

that equations (8.2) admit a simple solution of the form v = −F̄ /2Ω, with

u ∝ sin(y/`), both independent of z, the remaining variables being given

by ϑ ≡ 0 and w = −(ztop − z)(dF̄ /dy)/2Ω ∝ (ztop − z) cos(y/`). But

a boundary-layer solution in which u is a continuous function of z satisfies

(8.2b) at z = zf only if (consistently with ν∂2u/∂y∂z = 2Ωw for z 6 zf) we

add a delta function to F̄ whose strength is precisely −(ztop − zf)F̄ . That

is, to get a solution of GMi’s boundary-layer form we must choose this extra

contribution to F̄ such that the total force integrates to zero, F̄(y) = 0, as

already seen from (8.8). For this particular solution we also need a delta-

function heat source and sink ∝ cos(y/`) at z = z f , that is, where N2 is

discontinuous, but such an artifice does not affect the issue of gyroscopic

pumping.

For the generic case in which F̄(y) does not, by contrast, vanish, we

† The Spiegel–Zahn eddy viscosity similarly cancels the pumping from above, through horizontal
rather than vertical transmission of azimuthal stress. In effect one has two gyroscopic pumps,
an upper pump producing a certain mass flux, and a lower one negating it by producing an
equal and opposite mass flux.
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must expect to find additional solutions that do not have the boundary-

layer character implied by (8.5). Even within the steady-state framework,

we do not have to look far to find them. In place of (8.4) consider the

corresponding equation for u. Substituting v ∝ ∂2u/∂z2 from (8.2b), we

have

∂8u

∂z8
+

4Ω2

ν2
∂4u

∂z4
+

N2

νκ

∂4u

∂y2∂z2
= 0 , (8.9)

with characteristic equation

k8 +
4Ω2

ν2
k4 − N2

νκ
`−2k2 = 0 . (8.10)

This has two more roots, both zero, signalling the existence of two extra

solutions, u = constant and u ∝ z. So if we leave the y-origin arbitrary the

general solution in the unforced region is

u =

(

6
∑

1

Cj e
kj z + C7 + C8z

)

sin(y/`) , (8.11)

where the kj are the six roots of (8.5) and the Cj are arbitrary constants.

Such solutions are applicable when, for instance, we take

F̄(y) = F0 sin(y/`) (8.12)

with constant F0.
To see what (8.11) means physically, it is simplest to consider first a

problem with an artificial lower boundary, say z = 0, far beneath the forcing

layer, where far means many evanescence height scales (Rek)−1. On z = 0

we impose u = v = w = 0 (impermeable and no-slip) and κ∂ϑ/∂z = 0

(heat flux held to its background value). Then with F̄(y) = F0 sin(y/`) it

is a straightforward exercise to prove that C7 = 0 and C8 = ν−1F0, with
exponentially small error, and that the solution in the unforced region is

u =





3
∑

j=1

Cj e
kj z + ν−1F0 z



 sin(y/`) (8.13)

where k1, k2, k3 are the downward-evanescent roots of (8.5). They are needed

to describe details within a thin layer near the top. Beneath that layer, we

have v = w = 0 and ϑ = 2Ω `ν−1F0 cos(y/`). The upward-evanescent roots

k4, k5, k6 are absent because the solution just described satisfies the four

lower boundary conditions as it stands, with exponentially small error. The

coefficient of z, C8 = ν−1F0, is determined regardless of details near the
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top, because in the steady state (8.8) is replaced by

F̄(y) = ν
∂u

∂z

∣

∣

∣

∣

z=0

. (8.14)

This comes from integrating (8.2a) and (8.2b) from z = 0 to ztop then using

(8.1) and the bottom boundary conditions. In order to have a steady state

in this linear model, the net applied force F̄ must be balanced at each y by

the stress on the bottom. This pins down the coefficient of z. The existence

of the steady-state solution (8.13) is an easy way to see that, in the original

time-dependent thought experiment, the influence of F̄ must have burrowed

all the way to the bottom — regardless of how far down the bottom may

be. If we take the bottom down toward z = −∞ then the time to reach the

steady state increases without bound.

Notice that this solution describes another situation in which the gyro-

scopic pumping has been cancelled by a viscous stress. Before that, as

the burrowing proceeds, the pumping drives a MMC whose Coriolis force

accelerates u values up to such extremes, ∝ ν−1 when ν is considered small,

that the viscous stress spanning the entire depth 0 < z < z f comes into

balance with the force applied to the overlying layer z f < z < ztop. Of

course such extremes could violate the original linearization. But the real

significance of the foregoing is that the response to F̄(y), in the absence of

artificial lower boundary, must be inherently time-dependent as originally

shown by HSZ.

On the long timescale of the burrowing process, and when κ À ν, the

time derivative in (8.2d) may be neglected as well as that in (8.2c), where,

moreover, thermal-wind balance is an excellent approximation. So by tak-

ing ∂2/∂y2 of (8.2b) and then successively eliminating v through (8.2a), w

through (8.2d) with ∂/∂t neglected, then finally ϑ through thermal-wind

balance ∂ϑ/∂y = −2Ω ∂u/∂z in place of (8.2c), we get
(

∂

∂t
− ν ∂

2

∂z2

)

∂2u

∂y2
− 4Ω2κ

N2

∂4u

∂z4
=

∂2F̄

∂y2
, (8.15)

recovering Spiegel & Zahn’s result that when thermal relaxation is diffusive

and ν sufficiently small then the burrowing behaviour is hyperdiffusive, with

hyperdiffusivity 4Ω2`2κ/N2 for latitudinal lengthscale `. This may be com-

pared with Haynes et al.’s result in the Boussinesq limit, H → ∞ in their

notation: when the thermal relaxation is Newtonian with timescale κ−1Newt

then the burrowing behaviour is diffusive with diffusivity 4Ω2`2κNewt/N
2 .

Notice that the timescale for burrowing is sensitive to the latitudinal scale

`, behaving as `−2.
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Before leaving this topic we note for completeness the steady-state solu-

tion of (8.2a)–(8.2d) that idealizes the GM98 laminar-downwelling scenario,

within a nonmagnetic tachocline of nominal thickness ∆ = z f at the bottom

of which, z = 0, there is a thermomagnetic boundary layer able to accept

a certain volume flux w0 cos(y/`), say, per unit area. That flux is governed

by the magnitude of the global-scale interior field Bi, and so the overlying

layers must adjust themselves so as to pump exactly that much flux, which

flux GM98 estimated to scale as |Bi|1/3.
With microscopic values of ν and κ we may take ∆ À (Rek)−1. Then,

apart from details near z = zf = ∆, the solution in 0 < z < ∆ is as follows.

It confirms the GM98 result that, for given uz=∆, w0 ∝ ∆−3 implying

∆ ∝ |Bi|−1/9 :
u =

N2w0

24Ω`κ
z2(3∆− 2z) sin(y/`) , (8.16a)

v = 0 , (8.16b)

w = w0 cos(y/`) , (8.16c)

ϑ =
N2w0

2κ
z (∆− z) cos(y/`) . (8.16d)

The relation w0 ∝ ∆−3 follows from (8.16a) with z = ∆. Also F0 = −2Ω`w0

in (8.12), from integrating (8.2a) and (8.2b) as before. Following GM98 we

have assumed isothermal conditions ϑ = 0 at z = 0 as well as at z = ztop, and

N ≡ 0 in the forcing layer zf < z < ztop to make it into an idealized, exactly

isothermal convection zone. The model tachocline described by (8.16) is

frictionless, with angular momentum exchange across it mediated solely by

the MMC and handed over to the Maxwell stress in the thermomagnetic

boundary layer. GM98 estimated that w ∼ 10−5 cm s−1, more than enough

to ventilate the tachocline and to confine Bi in high latitudes.

8.3 The nearly-laminar magnetic interior

Following GM98’s inevitability argument we now take for granted the exis-

tence of the global-scale interior field Bi, and expand our timeframe to the

gigayear perspective of solar spindown. Let us accept, in particular, that

the present-day interior is close to solid rotation essentially because spin-

down was, and presumably still is, Ferraro-constrained — in other words

constrained by the Alfvénic elasticity of a sufficiently strong poloidal com-

ponent of Bi.

This is almost the same thing as saying that Bi was, and is, strong

enough to stop HSZ burrowing, allowing a helium settling layer to form.

The burrowing depends on the sustained gyroscopic pumping of an MMC,

whose Coriolis force accelerates a deepening layer of differential rotation in
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thermal-wind balance. It is the resulting baroclinicity, together with ther-

mal diffusion, that allows the MMC to persist and to continue burrowing.

If the Ferraro constraint is strong enough to stop the differential rotation

(with the help of MHD shear instabilities as necessary, see below), then it

also stops the baroclinicity† and therefore the burrowing. In other words it

impedes the response to the pumping, almost as if the interior were solid.

Thus the response is limited to being an MMC such that its entire mass flux

can be accepted by the thermomagnetic boundary layer at the top of the

interior, as in GM98.

The estimates of Mestel & Weiss (1987) and the detailed numerical ex-

periments of Charbonneau & MacGregor (1993, hereafter CM93) suggest

that the order of magnitude required to impose the Ferraro constraint is

|Bi| & 10−2G. The GM98 inevitability argument then implies that Bi must

be at least this strong, in reality, and furthermore, as already mentioned,

that in high latitudes Bi must be largely confined to the interior by the gyro-

scopic pumping from above, as required in spindown scenarios like those of

CM93. If the poloidal field were not so confined then its lines would diffuse

upward and outward through a substantial high-latitude region, such that

the Sun’s differential rotation would differ from that observed. Such scenar-

ios are illustrated in various ways by the numerical experiments of Garaud

(2002), Braithwaite & Spruit (2004), and Brun & Zahn (2006) mentioned

earlier.

In spindown scenarios like those of CM93 there are poloidal-field tori

within the interior, surrounding the neutral ring, that do not thread the

convection zone or tachocline. In order to spin those tori down, avoiding

a “dead zone” of superrotation surrounding the neutral ring and hence a

contradiction with the helioseismic evidence, CM93 had to use an artificial

viscosity ν far greater than the actual microscopic viscosity. In the real Sun,

therefore, some kind of turbulent eddy viscosity must be involved.

Now S99 and S02 cogently argue that, when shear develops in the in-

terior, the first turbulent process to kick in will be a small-scale dynamo

mediated by Tayler instabilities — stratification-modified pinch or kink-

type (‘tipping’) instabilities — of the toroidal field wound up by the shear.

See also Spruit (1999), and the numerical verification of dynamo action by

† I use the term ‘baroclinicity’ in its most fundamental sense, meaning the nonvanishing of the
∇p × ∇ρ term in the three-dimensional vorticity equation, where ρ is density and p is total
pressure including the hydrostatic background. In the case of thermal-wind balance this in
turn implies the nonvanishing of the axial derivative of angular velocity Ω and hence, usually,
violation of the Ferraro constraint. In a perfect gas the nonvanishing of ∇p×∇ρ is equivalent
to the nonvanishing of ∇p × ∇ϑ and of ∇p × ∇T , where T is temperature, and is therefore
equivalent to having nonvanishing isobaric gradients of T .
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Braithwaite & Spruit (2006). The dynamo is shear-driven and, arguably,

has the robustness of an interchange instability. One may therefore reason-

ably assume that it will act to reduce shear through the Maxwell stresses

produced by windup. In this respect it is somewhat like the better-known

magnetorotational instability in hot accretion disks (e.g. Chapter 12 & refs.),

which, however, has a much higher shear threshold (Spruit 1999 §4.1 & refs.).

Therefore the Tayler-mediated small-scale dynamo appears likely to be the

main mechanism inhibiting the formation of superrotating “dead zones” in

the real Sun.

The existence of the Ferraro constraint, aided by the rapid damping of

global torsional oscillations by phase mixing, implies that instability need

only occur at one location on each torus. This point is significant since,

unlike the magnetorotational instability, the Tayler instability tends to be

ineffective near the equator and so needs the help of the Ferraro constraint, if

it is to bring about uniform spindown. Without the Ferraro constraint, there

would be nothing to stop global scale sub-threshold shears from building up.

Near the equator, above the neutral ring, magnetorotational instability may

have a role as well. Recall that by adopting sufficiently small scales the

instabilities can make use of thermal diffusivity, κ, to release the constraint

due to thermal stratification (e.g. Townsend 1958, Fricke 1969, Zahn 1974,

Acheson 1978).

Now because spindown is so slow, we may expect the instabilities to kick in

very sporadically in space and time, and certainly not uniformly throughout

the interior. The Ferraro constraint is needed for that reason as well. Such

sporadic or intermittent behaviour is generic for any high-Reynolds-number

fluid system whose coarse-grain shear is well below all instability thresholds.

In this respect the Sun’s interior must be somewhat like sheared, stably

stratified terrestrial fluid systems at high Richardson number. In all such

systems it is well known that turbulence occurs sporadically, the more so

the higher the Richardson number. The terrestrial lower stratosphere is

a case in point. The sporadic occurrence of turbulence there is familiar

to everyone in these days of universal air travel. Most of the time the

seat belt sign is off, and the ride almost perfectly smooth. Since coarse-

grain Richardson numbers Ri are large, shear-instability thresholds Ri . 1
4

cannot be exceeded over large volumes.

We are forced to conclude — because of the extreme slowness of spindown

— that the Sun’s interior, even more than the terrestrial stratosphere, must

be laminar at most times and locations. And, as already remarked, the

whole picture is consistent with the presence of a distinct helium settling
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layer in perhaps the top 100Mm or so of the radiative envelope, for which

there is some helioseismic support (Chapter 3 §5).
Corresponding estimates for the stably-stratified tachocline (S02 §5) point

toward the opposite conclusion. A coarse-grain view of the tachocline puts

it well above threshold, in high latitudes at least, (8.26)–(8.28) below). The

high-latitude tachocline seems therefore likely to be in some sense much

more turbulent than the interior. For a turbulent tachocline we need to

consider how convection-zone stresses are handed over to the interior. This

involves understanding how an MHD-turbulent flow goes over into a laminar,

Ferraro-constrained flow. It is this problem that is considered next.

8.4 The high-latitude tachocline and its invisible shear

How then is the stress handed over? More precisely, what is the pat-

tern of angular momentum transport, from some combination of MMCs

and turbulent stresses, that transmits to each latitude of the mostly lami-

nar, Ferraro-constrained interior any torque that arises from the convection

zone’s propensity to rotate differentially? And could that pattern include

an MMC capable of confining Bi in a band of high latitudes — let us say

something like latitudes 50◦–80◦ or colatitudes 10◦–40◦ — holding the field

lines of Bi nearly horizontal there against magnetic diffusion, as required to

bring about Ferraro-constrained spindown in most of the interior?

Now it happens that the Tayler instability is likely to be effective in some-

thing like the same latitude band, as well as in the neighbourhood of the

pole. To assess this more closely one would need to consider the latitudinal

gradients of the actual toroidal field produced by the small-scale dynamo

— which is why a low-latitude band might also be unstable, from time to

time at least — and one would need to consider the possible shear-induced

modifications of the Tayler instability itself (Chapter 10).

For the moment, however, I simply assume that there is an “active band”

of high latitudes, probably something like the nominal 50◦–80◦, where the

vertical shear is enough to drive the Tayler-mediated small-scale dynamo and

for S02’s order-of-magnitude estimates to apply. I ignore horizontal shear, in

effect supposing that the tachocline is in shellular solid rotation in the active

band of latitudes. The angular-velocity contours in Figure 3.7 of Chapter 3

hint that this may not be too bad an approximation.† Thus the focus is

† Shellular solid rotation in the active band is plausible, in any case, because of the shear-
reducing propensities of the Tayler-mediated small-scale dynamo pointed out in S02. Indeed,
unlike nonmagnetic turbulence, the small-scale dynamo could have taken on the role of the
Spiegel–Zahn horizontal eddy viscosity had it not been for the dependence on the latitudinal
gradients of toroidal field. That dependence precludes the small-scale dynamo from being
effective across all latitude bands, implying that the GM98 inevitability argument still holds
good. In order to enforce solid rotation in the manner of the Spiegel–Zahn theory, a horizontal
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on the vertical structure. I further simplify by assuming a single latitudinal

scale ` ∼ 102Mm, in a formal sense staying with slab-model thinking for

the moment. It will be convenient to stay with the slab-model notation as

well; thus, z will still be the upward, i.e. radial, coordinate, and ∂u/∂z will

be the vertical shear of the mean azimuthal velocity. (Strictly it is ∂/∂z of

the mean angular velocity that is relevant, but the difference is unimportant

for present purposes.) It will be convenient to define a nondimensional shear

q = Ω−1∂u/∂z (8.17)

(S02’s notation); the threshold value of |q | will be denoted by qcrit. Its

order of magnitude is given by (8.26) below.

The key points are listed next, followed by the order-of-magnitude rela-

tions that underpin them. It will emerge that the processes involved cover

practically the entire range of timescales from gigayears down to the months

and years of convective overshoot and the solar-cycle dynamo. The latter,

being self-evidently a large-scale, low-latitude dynamo as well as a relatively

fast one, is a different beast altogether from the small-scale, stably-stratified

dynamo presently under discussion. The small-scale dynamo will turn out

to be vastly slower, yet still fast in comparison with gigayears. To avoid

confusion it will need to be remembered that “small-scale” refers not to

horizontal scales but only to the vertical scale of the eddy motion.

(i) The small-scale dynamo has plenty of headroom, given any of the

current estimates of tachocline thickness ∆. This would be so even

if the real high-latitude tachocline were as thin as the ∆ ≈ 13Mm

≈ 0.019R¯ estimated by Elliott & Gough (1999), let alone the ∆ ≈
65Mm≈ 0.09R¯ now anticipated in connection with lithium burning.

The vertical scale δκ of the eddy motion, governed here by the thermal

diffusivity κ acting to release the stratification constraint, is of the

order of 10−1Mm, Equation (8.25) below.

(ii) The dominant azimuthal stress across horizontal area elements is the

turbulent Maxwell stress. Its mean value is proportional to the local

vertical shear ∂u/∂z with a proportionality coefficient νe , (8.24) be-

low, that is approximately constant like an ordinary viscosity. In

particular, νe is independent of shear for any supercritical shear

|∂u/∂z| > Ωqcrit. This shear-independence of νe is remarkable for

a fully developed turbulent flow. S02 aptly calls it a “coincidence”.

For the stably-stratified tachocline, νe ∼ 1.6× 108 cm2s−1.

eddy viscosity would need to support a stress that transmits azimuthal torques horizontally
across all latitudes. It would need to produce, respectively, prograde and retrograde torques in
high and low latitudes, in just such a way as to cancel the gyroscopic pumping from above.
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(iii) So powerful is the Maxwell stress that it dominates the angular mo-

mentum transport in the bulk of the high-latitude, stably-stratified

tachocline. This statement holds over a vast range of possible |Bi|
values. It dominates even when |∂u/∂z| is much smaller than typi-

cal coarse-grain shear values estimated from helioseismology. That is

part of why the shear |∂u/∂z| in the lower, stably-stratified portion of

a 65Mm deep ventilated tachocline may be expected to be helioseis-

mically invisible in high latitudes. We shall see that the magnitude of

νe is large enough to bring |∂u/∂z| down to values close to threshold,

Ωqcrit, in high latitudes. Such values are about an order of magnitude

less than the visible shear.

(iv) The simplest version of the implied scenario is for |∂u/∂z| to stay

just above threshold, |∂u/∂z| ∼ Ωqcrit. We shall see that this is pos-

sible if tachopause |Bi| values are large enough, & 102G. There are

other possible scenarios, for lower |Bi| values, in which time-averaged

|∂u/∂z| values are sub-threshold and the dynamo action intermit-

tent. In such cases νe takes |∂u/∂z| below threshold and switches

off, |∂u/∂z| then builds up through gyroscopic pumping (temporar-

ily like an unsteady version of the GM98 scenario), then νe switches

on again, and so on cyclically. Possible cycle times could be anywhere

in the range from ∼ 106y upward, depending on |Bi|.
(v) In the bulk of the stably-stratified tachocline, thermal-wind balance

holds robustly. There, the weak vertical shear constrains baroclin-

icity qua latitudinal buoyancy gradients |∂ϑ/∂y| to be weak as well.

Furthermore, the dynamo turbulence leaves unaffected both the N

value of the subadiabatic thermal stratification itself and the value of

κ felt by mean motions (H. Spruit, personal communication). This

is because of the way the turbulent motion depends on κ to release

the stratification constraint. So MMCs are still tied to |∂ϑ/∂y| via
the microscopic κ value, ∼ 107 cm2s−1, just as if the turbulence were

absent, i.e. in just the same way as in GM98. The upshot is that in

the bulk of the stably-stratified tachocline there is no MMC, to a first

approximation, and that even with the weakened |∂u/∂z| the angular
momentum transport, there, is mediated predominantly by νe. To a

higher approximation, one might expect an MMC like GM98’s except

that there is now no impediment to weak equatorial downwelling.

(vi) One peculiar consequence is that in stark contrast with GM98 the

present scenario, as developed so far, appears to leave ∆ values almost

completely unconstrained. This opens the possibility already men-

tioned that ∆ is large enough, ≈ 65Mm, to explain lithium burning,
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even with no “polar pits”. It seems that ∆ is determined in a rather

subtle and delicate way, not amenable to simple order-of-magnitude

analysis. Indeed it may well be that ∆ is not determined by quasi-

steady dynamics but, rather, depends on the history of convection-

zone retreat and helium settling layer formation, as well as on |Bi|
values. (Thus the scatter in lithium abundance found in samples of

solar-type stars might be related to a scatter in |Bi| values as well as
to rotation histories.)

(vii) The dynamo begins to lose headroom in a lowermost turbulent layer

of thickness ∼ δκ ∼ 10−1Mm. Notice from (8.25) that the scale δκ is,

like νe, independent of shear, as long as the dynamo is switched on.

As we enter the lowermost turbulent layer, vertical eddy scales and

νe values must decrease downward. Shear values |∂u/∂z| increase,
but not enough to stop the turbulent Maxwell stress from diverging

and giving rise to an azimuthal force F̄ , hence gyroscopic pumping.

(viii) A slight extension of S02’s arguments suggests that νe ∝ z2 within

the lowermost turbulent layer, joining continuously to the constant

value νe ∼ 1.6 × 108 cm2s−1in the bulk of the tachocline, where z is

measured from some virtual origin near the bottom of the lowermost

layer. Further analysis suggests that the azimuthal and meridional

turbulent Maxwell stress components

νe

(

∂u

∂z
,
∂v

∂z

)

= (σ, τ) , (8.18)

say, take on a modified Ekman-layer structure, breaking the thermal-

wind constraint as well as gyroscopically pumping an MMC in the

form of a poleward Ekman mass flux. Note that this pumping is

entirely due to the fluctuating Maxwell stresses described by the

eddy viscosity νe, and nothing whatever to do with the sort of quasi-

steady Maxwell stresses that would characterize a laminar Hartmann

or Ekman–Hartmann layer, or the thermomagnetic boundary layer

of GM98.

(ix) To the extent that we have shellular solid rotation Ω(z) in the ac-

tive band of latitudes, and the dynamo is switched on, the poleward

Ekman mass flux must converge so as to produce an approximately

uniform downwelling, wEk < 0. To see this one has to depart from

slab-model geometry and substitute spherical or polar cylindrical ge-

ometry. The vertically integrated mass-flux convergence is approxi-

mately uniform for the same reasons as in ordinary laminar spindown

in a laboratory cylinder. It is only the vertical structure, not the ver-
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tically integrated mass flux, that is changed by the vertically variable

eddy viscosity within the modified Ekman layer. Indeed we have the

simple formula

wEk = νe
d(lnΩ)

dz

∣

∣

∣

∣

bulk

, (8.19)

implying wEk < 0 since d(lnΩ)/dz |bulk < 0 in the high-latitude ta-

chocline. The value of νe in (8.19) is just the constant bulk value

νe ∼ 1.6×108 cm2s−1 outside the layer. The formula is readily derived

by assuming incompressible flow together with the gyroscopic-pump-

ing relation (8.3), setting F̄ = ∂σ/∂z in (8.3), then integrating across

the modified Ekman layer and computing the horizontal volume-flux

convergence in polar geometry. So (8.19) depends only on the fact

that σ(z) drops from νe∂u/∂z|bulk down to zero across the modified

Ekman layer, as the small-scale dynamo finally runs out of headroom.

It does not depend at all on the detailed vertical structure within the

modified Ekman layer.

(x) The downwelling described by (8.19) is prevented by Bi from bur-

rowing into the interior, as noted in §8.3. Having nowhere else to go,

the mass flux must recirculate through a laminar thermomagnetic

boundary layer of thickness δκη, say, like that proposed in GM98, ly-

ing immediately beneath the modified Ekman layer and forming with

it a tight double-boundary-layer structure. Values of δκη , (8.30) be-

low, go like |Bi|−1/3 but are typically a fraction of a megametre.

Thus we have convergent poleward flow in the lowermost turbulent

layer, and divergent equatorward flow in the laminar thermomag-

netic boundary layer just beneath. It is in this way that the stress

transmitted by νe, i.e. by the averaged fluctuating Maxwell stress in

the bulk of the stably-stratified tachocline, is handed over via the

MMC in the lowermost tachocline to the quasi-steady Maxwell stress

in the outermost fringe of the laminar interior — which fringe is just

the thermomagnetic boundary layer. That boundary layer therefore

has a dual role: it serves both as the laminar sublayer of the tur-

bulent lowermost tachocline, and also as the outermost fringe of the

laminar, Ferraro-constrained interior. It is here that the Ferraro con-

straint begins to make itself felt directly, through the downwelling

and advective-diffusive balance in the boundary layer as discussed

in GM98. And it is this same downwelling and advective-diffusive

balance that brings about the high-latitude confinement of Bi, in the

same way as in GM98.
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The order-of-magnitude relations on which the foregoing statements are

based are now summarized. The relations are equivalent to those in S02

except that I revert to formal slab-model thinking and use ` ∼ 102Mm as

the latitudinal scale instead of the tachocline radius r used in S02; the scale

` roughly corresponds to what GM98 called r/L. As in S02 I also ignore

factors like 2 cos θ in front of Ω, where θ is colatitude, and factors like π.

The formal assumption of a single latitudinal scale ` may not be as bad as

it sounds, despite the importance of the real polar geometry for the pattern

of mass transport in the MMC, as noted in point (ix) above. The Tayler

instability, as such, has a large horizontal reach because of its kink or tipping-

type kinematics dominated by azimuthal wavenumber m = 1 . It is certainly

able to reach across the pole — one might say more aptly “slide across the

pole”, as suggested in Figure 1 of S99 — and will probably do so even though

the mean shear defined by azimuthal averaging must, technically speaking,

vanish at the pole. The instability is a physical process with no respect for

coordinate singularities. Indeed, it tends to use as much horizontal space as

is available to it, and S02’s estimates assume that it does so. As in GM98,

the scale ` is meant to be no more than a rough way of characterizing the

magnitudes of horizontal derivatives constrained by the available horizontal

space.

Let η be the microscopic magnetic (ohmic) diffusivity and ΩA the typical

toroidal field strength produced by the small-scale dynamo within the ta-

chocline, measured as angular Alfvén speed, i.e. as the number of radians

of longitude per unit time travelled by the phase of an Alfvén wave. We

assume that the microscopic diffusivities satisfy

κ À η À ν , (8.20)

consistent with typical numerical orders of magnitude κ ∼ 1.4×107 cm2s−1,

η ∼ 4 × 102 cm2s−1, ν ∼ 3 × 101 cm2s−1 near the top of the tachocline, at

0.7R¯ and κ ∼ 1×107 cm2s−1 and η ∼ 3×102 cm2s−1 at 0.62R¯ (Chapter 1,

Table 1.1ff.). Following S99 and S02 we assume

N À Ω À ΩA , (8.21)

the first of which is well satisfied with thermal buoyancy frequency N ∼
10−3 s−1, and Ω ∼ 3× 10−6 s−1. The second is also well satisfied because,

defining the dimensionless thermal diffusivity and Prandtl–Rossby ratio by

K = κ/N`2 ∼ 10−10 , P = Ω/N ∼ 3× 10−3 , (8.22)

with κ = 1 × 107 cm2s−1 and ` = 102Mm = 1010 cm, we have from S02
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equation (19)† that

ΩA/Ω = q1/2(KP )1/8 ¿ 1 , (8.23)

since the dimensionless shear q . 1 even with extreme assumptions, as will

emerge shortly. Now a slight rearrangement of equations (10) and (32) of

S02 produces†

νe = `2Ω(KP )1/2 = Ω δ2κ ∼ 1.6× 108 cm2s−1; (8.24)

where

δκ = `(KP )1/4 ∼ 0.7× 10−1Mm . (8.25)

The second formula for νe in (8.24) shows at once why the lowermost turbu-

lent layer of thickness ∼ δκ will have the characteristics of an Ekman layer,

point (vii) above, since not only is δκ independent of q, the “coincidence”

mentioned in point (ii) above, but also, by a further coincidence, δκ is the

same as the Ekman thickness scale (νe/Ω)
1/2.

The dimensionless shear threshold or critical shear for the small-scale dy-

namo to operate is, from S02 (27),

qcrit = K1/4P −7/4(η/κ) ∼ 2.5× 10−3 (8.26)

at 0.62R¯. Reading Ω values from the horizontal contours in Figure 3.7 of

Chapter 3, we see that Ω goes from about 390 to 430 nHz, corresponding to

a fractional change

α = (430− 390)/410 = 1× 10−1 (8.27)

from which we may derive a nominal q value, with the conservative choice

∆ = 65Mm,

q = α`/∆ ∼ 1.5× 10−1 . (8.28)

Even with such a large ∆ this nominal shear is nearly two orders of magni-

tude greater than qcrit. However, as already noted, the stress and therefore

† As long as the small-scale dynamo’s toroidal magnetic field is expressed as the Alfvén angular
velocity ΩA, the spherical and cylindrical radii, as such, do not enter any of the formulae
being quoted from S02. The significance of the symbol r in S02 is always that of the available
latitudinal lengthscale. That is why the formulae are written here using ` in place of r.

† All these expressions depend on S99 Equation (49) after correcting a typographic error: the
last occurrence of N should be Ω; see Equation (A29) of S99 and footnote on p 927 of S02. We
may note also that the statement on S99 page 194b that “rotation does not by itself remove the
instability” is made in the wrong context, that of zero diffusivities. The statement is correct
for the real-world diffusive problems of interest here, but incorrect for a diffusionless problem.
This latter point is illustrated by Equation (10.15) in Chapter 10, which is for the kink or
tipping mode, azimuthal wavenumber m = 1, of a diffusionless Tayler instability in the case
of solid background kinetic rotation Ω and Alfvénic rotation ΩA. In that diffusionless case,
Ω > ΩA implies stability.
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the actual shear, in the bulk of the stably-stratified tachocline, is tightly

linked by (8.19) to the downwelling velocity wEk, which must equal the

downwelling velocity wκη that can be accepted by the thermomagnetic bound-

ary layer. That is why the actual shear, in the stably-stratified tachocline,

is likely to be far smaller than the nominal shear just computed — though

still dynamically significant, sharply distinguishing the tachocline from the

interior — and why a tachocline 65Mm deep could be consistent with the

high-latitude Ω contours in Figure 3.7 of Chapter 3, despite appearances.

We assume that GM98’s estimate of wκη is correct in order of magnitude:

|wκη| ∼ η/δκη ∝ |Bi|1/3 ∝ V
1/3
Ai , (8.29)

whereVAi is the interior Alfvén speed corresponding to |Bi|, about 0.4 cm s−1

per gauss near 0.62R¯, with density ρ ∼ 0.42 g cm−3, and where the boundary-

layer thickness scale is

δκη = K1/3
(η

κ

)1/6
(

Ω `

VAi

)1/3

` , ∝ (κη)1/6 . (8.30)

Equating wEk to wκη and using (8.17) and (8.19), with ∂u/∂z ∼ ` ∂Ω/∂z,

we have

q ∼ `
d(lnΩ)

dz

∣

∣

∣

∣

bulk

= `
wEk

νe
∼ K−1/3

(

η

νe

) (

κ

η

)1/6(VAi

Ω `

)1/3

, (8.31)

equivalently

VAi ∼ Ω ` q3K

(

νe
η

)3 ( η

κ

)1/2

. (8.32)

For an extreme value |q | ∼ 1 this would imply an impossibly large |Bi| of the
order of thousands of megagauss, again suggesting that |q | ¿ 1 and further

supporting our earlier assumption (8.23). It should be cautioned, however,

that GM98’s scaling relation (8.29) has yet to be verified by a full analysis

of the boundary-layer structure, and indeed δκη and therefore (8.31)–(8.32)

might well change at high |Bi| values, because Maxwell stresses then modify

the meridional momentum balance assumed in GM98 (P. Garaud in Chap-

ter 7). For |q | = qcrit we have a more reasonable value VAi = VAi(crit), say,

corresponding to |Bi| ∼ 102G. This follows from (8.24), (8.26) and (8.32):

VAi(crit) = Ω4`7K13/4P −15/4η1/2κ−7/2

= Ω `K1/4P −3/4(η/κ)1/2 ∼ 0.4× 102 cm s−1 , (8.33)

implying in turn that δκη ∼ 0.7 × 10−1Mm and that wκη = wEk ∼ 4 ×
10−5 cm s−1. This magnitude VAi(crit) ∼ 0.4 × 102 cm s−1 or |Bi| ∼ 102G
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Fig. 8.1. Solutions of (8.18), (8.34) regarded as an idealized model of the lower
portion of the modified Ekman layer where the eddy viscosity ∝ z2. Somewhat
arbitrarily, this lower portion is assumed to occupy a layer of thickness δκ , in
dimensionless coordinates 0 6 z 6 1. Again somewhat arbitrarily, the eddy
viscosity in (8.18) is taken to have reached the value 1

2
νe∞ at z = 1, i.e. half the

asymptotic value νe∞ ∼ 1.6 × 108 cm2s−1 in the bulk of the stably-stratified ta-
chocline above. The solutions finite at z = 0 are then (u, v) = (Re , Im) e3iπ/4za

and (σ, τ) = z2∂(u, v)/∂z = (Re , Im) ae3iπ/4za+1 , in dimensionless units, where
a = 1

2
{−1 + √(1 + 16i)} = 0.9591 + 1.3707i. In fact there is a 1-parameter

family of solutions with a = 1

2
{−1 + √(1 + 4iC)}, where C = 4z2

1/2 with z1/2

the dimensionless altitude at which the eddy viscosity reaches the value 1

2
νe∞ .

Such solutions cannot describe the upper portion of the layer where the viscosity
profile approaches its asymptotic value νe∞, nor can they correctly describe the
fine details near the bottom of the real modified Ekman layer where it interfaces
with the thermomagnetic boundary layer. This is because the dynamo runs out
of headroom somewhere above z = 0, depending on |Bi| values. The saving grace,
however, is that the mass-flux relation (8.19) depends only on σ going to zero
somehow, and not on the detailed vertical structure.

represents the critical order of magnitude of Bi above which the stably strat-

ified, high-latitude tachocline can continuously sustain small-scale dynamo

action and below which the dynamo action would have to be intermittent,

point (iv) above.

A curious aspect of the scaling (8.33) is the implication that VAi(crit) =

`ΩA at threshold. One may see this by substituting (8.26) into (8.23).

Therefore the critical magnitude of Bi — whose most important compo-

nent for this purpose is the poloidal component, as explained in GM98 —
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coincides with the order of magnitude of the Tayler-unstable eddy toroidal

field of the small-scale dynamo. Furthermore, we see from (8.30) and (8.33)

that VAi = VAi(crit) implies δκη ∼ δκ. It seems that, just above threshold,

the scaling for the small-scale dynamo eddies is the same as GM98’s scaling

for the thermomagnetic boundary layer. This is perhaps not unreasonable

since both structures have shallow aspect ratios δκ/`, δκη/` and both, at

threshold, feel not only a strong Coriolis effect but also the magnetic as well

as the thermal diffusivity. We may also note from S02 (3) that, under these

threshold conditions, the eddy timescale for the small-scale dynamo, i.e. the

growth time for the Tayler instability, is Ω/ΩA
2 ∼ 104y — fast from some

viewpoints and slow from others.

A full analysis of the double-boundary-layer structure is beyond our scope

here, and awaits further investigation. However, in the lower portion of the

modified Ekman layer, where we are provisionally supposing that the eddy

viscosity falls off like z2 as the small-scale dynamo runs out of headroom,

points (vii) and (viii) above, the Ekman-layer equations have complex power-

law solutions that give some idea of the structure. Figure 8.1 shows some

possible profiles of σ, u, τ and v. These satisfy (8.18) with νe ∝ z2 together

with the standard Ekman-layer equations

−2Ωv = ∂σ/∂z , 2Ωu = ∂τ/∂z ; (8.34)

see caption for further details. The profiles give what seems to be a quali-

tatively reasonable description of the lower portion of the modified Ekman

layer, showing how the shears can stay finite and the stresses go to zero as

z → 0. There is another set of complex power-law solutions, rejected as

unphysical, for which the shears and stresses go to infinity as z → 0.

In the upper portion of the layer, not shown, where the power-law solu-

tions cease to apply, as the eddy-viscosity profile departs from its z2 depen-

dence and begins to approach its asymptotic value νe∞ ∼ 1.6×108 cm2s−1 in

the bulk of the stably-stratified tachocline above, we can imagine the profiles

being smoothly continued upward with τ and v making an oscillatory ap-

proach to zero in the usual manner of Ekman profiles. The azimuthal stress

σ must continue toward its asymptotic negative value νe∞∂u/∂z|bulk, and
the azimuthal shear ∂u/∂z toward a corresponding negative value, smaller in

magnitude than in the portion of the u profile visible in Figure 8.1, point (vii)

above. Again one expects an oscillatory approach toward these asymptotes.

A consistent description of the upward continuation requires the second of

(8.34) to be replaced by an equation corresponding to a steady, variable-

viscosity version of (8.2c) with a small but significant thermal-wind term,

as already hinted by the scaling relation δκη ∼ δκ. That is a further sense
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in which the Ekman layer is ‘modified’. The v profile and its upward con-

tinuation describe, of course, the gyroscopically-pumped poleward flow.

The issue of tachocline ventilation turns out to involve subtleties that

depend on the effects of compositional stratification Nµ. So we discuss the

latter first.

8.5 The effects of compositional stratification Nµ

As already emphasized, the helium settling layer just beneath the tachocline

owes its existence to the suppression of global-scale HSZ burrowing by the

interior field Bi. Once the settling layer has formed, the vertical gradient of

mean molecular weight µ adds a contribution

N2
µ = −g ∂ lnµ/∂z (8.35)

to the buoyancy frequency squared that is a significant fraction of the typ-

ical thermal value N 2 ∼ 10−6 s−2. For instance, a standard solar model

(Figure 3.4 of Chapter 3) gives a fractional contrast d lnµ = 0.014 across

the settling layer and a corresponding reduced gravity g′ = 0.014g ∼ 0.9 ×
103 cm s−2. Measuring the slope shown in the inset to Figure 3.4a, one gets

∂/∂z ∼ (0.05R¯)
−1 ∼ (35Mm)−1; so N2

µ ∼ g′/0.05R¯ ∼ 0.25 × 10−6 s−2,

or Nµ ∼ 0.5 × 10−3 s−1. However, neither d lnµ nor N 2
µ can really be said

to be known precisely, because as discussed in Chapter 3 the helioseismic

evidence is undergoing revision, though still generally supporting the exis-

tence of the settling layer. It is possible that the real settling layer may

be somewhat deepened, with ∂/∂z perhaps more like (100Mm)−1, by the

weak and highly sporadic interior turbulent mixing discussed in §8.3. Fur-

thermore, the overall µ contrast across the layer could be somewhat bigger

than indicated by the number d lnµ = 0.014, if the same weak mixing were

even slightly effective in bringing up helium-rich gas from the core, on the

gigayear timescale. Fortunately, however, the following arguments depend

only on very rough orders of magnitude for d lnµ and N 2
µ.

The main issue is whether HSZ burrowing can penetrate the interior near

the polar weak spots in Bi, as speculated in GM98. These are the zero

points or “hairy-sphere defects” of the vector field formed by the horizontal

projection of Bi. If such burrowing were possible, then it could create

“polar pits” or “cauldrons”, in which lithium could be burned even if ∆

were less than 65Mm. The most favourable conditions for such burrowing

would be that |Bi| is altogether negligible near the poles. We ask whether,

in that most favourable case, the burrowing could locally penetrate the hel-

ium settling layer in those neighbourhoods. It will appear that the answer

is a clear “no”.
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The nonmagnetic slab model of §8.2 is sufficient to reveal the essential

effects, which turn out to be insensitive to the choice of horizontal scale `.

The only changes needed are to replace the thermal buoyancy acceleration ϑ

by the total buoyancy acceleration ϑ+ϑµ in (8.2c), and to append an equa-

tion for the compositional buoyancy acceleration ϑµ. In the latter equation

we may safely neglect all diffusive effects, which are tiny.† By analogy with

the thermal buoyancy acceleration we define ϑµ as g times the fractional

departure of µ from its background stratification, so that the equation for

ϑµ is ∂ϑµ
∂t

+N2
µw = 0 , (8.36)

in which we idealize by taking Nµ = constant. Simplifying (8.2c) as before,

we have the appropriate form of the thermal-wind equation,

2Ω
∂u

∂z
+

∂(ϑ+ ϑµ)

∂y
= 0 , (8.37)

and readily find that (8.15) is replaced by
{(

∂

∂t
− κµ

∂2

∂z2

)

∂2

∂y2
− 4Ω2κ

N2

∂4

∂z4

}

∂u

∂t
=

(

∂

∂t
− κµ

∂2

∂z2

)

∂2F̄

∂y2
(8.38)

where κµ = κN2
µ/N

2. The microscopic viscosity ν has been neglected, since

it is nearly as small as the helium self-diffusivity, χ ∼ 101 cm2s−1, which has

already been neglected in (8.36).

Now the key point is that (8.38) is an equation for ∂u/∂t and not for

u. The ∂/∂t is a crucial and essential feature, coming from the need to

eliminate ϑµ between (8.36) and (8.37). By contrast, ϑ is eliminated as in the

derivation of (8.15), via (8.2d) with its ∂/∂t neglected. That is appropriate

because of the enormous magnitude of κ ∼ 107 cm2s−1 relative to χ.

With a relatively small horizontal scale ` — as before, we consider slab-

model solutions sinusoidal in y/` — one might think at first that the new

quasi-diffusive term in κµ signals the possibility of burrowing straight down

into the helium settling layer. But appearances are deceptive here.

Consider a thought-experiment in which the forcing is switched on at time

zero. The time-dependent solutions of (8.38) below the forcing layer, right-

hand side zero, describe burrowing that commences in just the same way as

with the Spiegel–Zahn equation (8.15). The hyperdiffusive term dominates

the new quasi-diffusive term in the earliest stages, in which the vertical scale

increases from zero. As the disturbance penetrates more deeply, however,

the quasi-diffusive term comes into balance with the hyperdiffusive term.

† For instance χ ∼ 101 cm2s−1, where χ is the self-diffusivity of helium anomalies in the appro-
priate hydrogen–helium mixture (Chapter 1, Table 1.1).
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Thus ∂u/∂t reaches a steady state with vertical structure exp(z/h) where

the vertical scale h is given by h = (2Ω`/N)(κ/κµ)
1/2 = 2Ω`/Nµ . This

is just the (nondiffusive) Rossby height belonging to the horizontal scale `,

and the response, from then onward, is nothing but the well-known Eliassen

response to gyroscopic pumping in a nondiffusive stratified fluid. Its most

important feature, for our purposes, is that ∂u/∂t and ∂ϑµ/∂t are steady,

not u and ϑµ. The other variables ϑ, v and w are all steady. The response

consists of perpetual spindown, with u and ϑµ asymptotically proportional

to t.

This means, of course, that the response is self-limiting, in one of two

possible ways. The first way is for the spindown to continue — with the u

and ϑµ terms in(8.37) asymptotically proportional to t — until the compo-

sitional stratification surfaces are overturned and the stratification is wiped

out. That is what would have taken place on a global scale, preventing the

helium settling layer from forming at all, had there been no Bi and no Fer-

raro constraint. Such a response is a nonlinear response, outside the scope

of our linearized equations.

The second way, which is the one relevant here, is well within the scope

of the equations. If, as here, the gyroscopic pumping is ultimately due

to the convection zone’s propensity to rotate differentially, then there is a

saturation value beyond which the spindown cannot proceed, having taken

up all the available differential rotation and thus killed off the gyroscop-

ic pumping. We may say that the underlying layers are fully spun down.

Just what the final saturation value might be is difficult to say, but one may

reasonably suppose that spindown cannot proceed beyond limits governed by

the value of α in (8.27), α ∼ 10−1, the fractional angular-velocity increment

across the whole tachocline. It is easy to verify (see the Margules-slope

estimate below) that such limits are essentially zero for present purposes.

They tell us that the self-limiting of the Eliassen response would take place

with hardly any tilting of the compositional isopleths.

In other words, for realistic α the helium settling layer spanning the poles

presents an almost perfect barrier against HSZ burrowing. That is why the

polar pits cannot be dug.

Two further points need comment. The first is that (8.38) also admits

perpetual-spindown solutions with a linear dependence on z, such as u ∝
t sin(y/`) and u ∝ zt sin(y/`). These, however, fail to satisfy physically

reasonable boundary conditions. For instance the first of them requires both

|ϑ| and |κ∂ϑ/∂z| to increase like t at the top boundary, if w = 0 at some

bottom boundary. This is because ϑ has to be asymptotically proportional

to zt cos(y/`) in order to avoid violating (8.37), in which ∂u/∂z = 0 despite
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the perpetual tilting of µ-surfaces, implying ϑ = −ϑµ. The second solution

has a similar pathology and, furthermore, does not even permit w = 0 at the

bottom, since it can be shown to imply a z-independent contribution to w,

∝ t cos(y/`). Also, both types of solution would disappear if any horizontal

heat diffusion were allowed. So we need not consider them further.

The second point is that the tilting of compositional isopleths or strati-

fication surfaces is so small, in fact, that it tightly constrains vertical dis-

placements of the tachopause even on a global scale. We have just found

that HSZ burrowing is ineffective even at the polar weak spots of Bi. Still

less is it effective in the rest of the interior where the Ferraro constraint

has control. There is no MMC to tilt the thermal, or overturn the com-

positional, stratification surfaces. The implication is that those surfaces

must be accurately horizontal, in the sense that they accurately follow the

gravitational–centrifugal heliopotentials.

As a check on that assertion, and to get some idea of its error bar, let

us calculate the tilting of compositional stratification surfaces that would

occur if they alone were tilted and if the Ferraro constraint were artificially

relaxed, to permit a thermal-wind shear across the helium settling layer

of the same order as the shear across the whole of the high-latitude ta-

chocline. The slope can be obtained from the thermal wind equation (8.37)

evaluated with ϑµ alone, or equivalently and more directly from the Margules

slope formula 2ΩU/g′ where U ∼ Ωα`, the velocity increment across the

layer, and α the fractional angular-velocity increment as before. Even with

the extreme value α ∼ 10−1 we have U ∼ 3 × 103 cm s−1 and a Margules

slope 2Ω2α`/g′ ∼ 2 × 10−5. The nominal elevation change over a distance

r ∼ 500Mm is only 10−2Mm. The real elevation change from pole to

equator, with the Ferraro constraint brought back into play, is therefore far,

far smaller still — a very tiny fraction of a megametre indeed.

8.6 Concluding remarks

The main issue not yet addressed is that of the tachocline’s ventilation

timescale. This turns out to be by far the most delicate issue, and crude

order-of-magnitude arguments are unable to decide it directly. Taken at face

value, the threshold numbers used in §8.4 imply gigayear ventilation times.

This is because the main ventilation mechanism is now turbulent mixing by

the small-scale dynamo. From S02 (15), (19), or first of (43), we have an

eddy diffusivity D for vertical material transport of the order of

D ∼ qΩ `2 P 3/4K3/4 , (8.39)
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in the notation of §8.4. If q is close to its threshold, qcrit , then one may verify

by substitution from (8.26) that D is of the same order as the microscopic

magnetic diffusivity η ∼ 300–400 cm2s−1. With ∆ ∼ 65Mm the nominal

ventilation time ∆2/η is then about the same as the Sun’s main-sequence

lifetime, ∼ 4Gy. Perhaps this is not an accident: could it be that the

thickness of the tachocline is such that it can only just stay ventilated?

One can imagine playing games with factors like π2 or taking one or

two tens of megametres off the ∆ value by assuming a deep overshoot lay-

er, or one could suppose that the small-scale dynamo in the stably-strat-

ified tachocline is well above threshold, with the implication from (8.32)

that |Bi| À 102G. And when a full analysis of the double-boundary-layer

structure becomes available, including a quantitative numerical model, then

the net effect of the the numerical factors might go one way or the other. As

regards large |Bi|, there seems no reason why the Sun should not have an

interior field as a strong as that of ordinary (non-neutron) magnetic stars,

which should allow us to consider |Bi| values perhaps into the hundreds

of kilogauss, magnetic escapology permitting. If, despite the cautionary

remark below (8.32), the 1/3 power in (8.31) were to apply over the whole

range of |Bi| and |VAi| values, then we would be able to use D ∼ 10η.

However, we may also invoke Occam’s razor, appealing to the effects of

compositional stratification discussed in §8.5. The key point is again the dy-

namical impossibility of significantly tilting the compositional isopleths in

the helium settling layer. This presents a powerful barrier not only against

the burrowing of MMCs but also against the turbulent erosion of heavy

elements into the tachocline. Erosion rates must be severely limited by

that circumstance alone. They will be further limited by the diffusive leak-

age of Bi across the tachopause, and into the tachocline, in those latitude

bands equatorward of the active high-latitude band where there is either

no confining downwelling, or very weak downwelling such as might occur

over the equator (point (v) on page 18). In such latitude bands the Ferraro

constraint will reach across the tachopause, now defined as the top of the

helium settling layer, and will tend to suppress shear across it and protect

it from any kind of erosion. So the tachocline could be helium-poor, there-

fore, not so much because of fast ventilation from above, as in the GM98

scenario, but because of minuscule erosion rates of heavy elements across

such a heavily-protected compositional tachopause.

There remains, however, the lithium problem, which of itself still argues

for substantial ventilation. But further discussion must await detailed solu-

tions of the nonlinear equations for the double-boundary-layer structure, as

well as a more quantitative description of the small-scale dynamo.
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One final twist in the tail of this tale. The visible shear at the top of the

high-latitude tachocline — visible, for instance, in Figure 3.7 of Chapter 3

and already indicated by helioseismology to occupy mainly the lower con-

vection zone and its overshoot layer (Chapters 1, 3 & refs.) — would be

dynamically impossible in the presence of the small-scale dynamo. That is

very clear from Spruit’s order-of-magnitude relations as used in §8.4, to the

extent that (8.29) correctly indicates the thermomagnetic boundary layer’s

mass-carrying capability. At first sight it might seem paradoxical: “surely

the lower convection zone and overshoot layer is much more turbulent?”

But that would be to underestimate the power of the Maxwell stresses in

the small vertical scale dynamo, arising from the large horizontal reach of its

eddy structures via the Tayler instability’s kink or tipping-type kinematics,

dominated by azimuthal wavenumber m = 1 , and reflected in the large

vertical eddy viscosity νe . So the suggestion must be that the convective

plumes break up that horizontal structure, disconnecting and reconnecting

the wound-up field lines in such a way as to drastically reduce the eddy

viscosity and permit much larger shears.

Acknowledgements. I thank the organizers, in alphabetical order Pascale Garaud,

Douglas Gough, David Hughes, Bob Rosner, Nigel Weiss, and Jean-Paul Zahn, for

inviting me to participate in this interesting and stimulating Workshop. Joergen

Christensen-Dalsgaard kindly tutored me on everything about solar models and

their notational conventions, Pascale Garaud stimulated me to reexamine the GM98

thermomagnetic boundary layer scaling, leading to the cautionary remarks about

large |Bi|, Nigel Weiss patiently helped me to improve my general knowledge of

MHD and other astrophysical processes, and at the eleventh hour Douglas Gough

kindly shared with me his careful calculations of diffusivity values as well as offering

wise and helpful comments on many aspects of the problem. Above all, however,

on this occasion, I am grateful to Henk Spruit for a extensive correspondence that

helped me to improve my understanding of the Tayler-mediated small-scale dynamo

and of magnetic stability, instability, and escapology.

References

Acheson, D. J., 1978: On the instability of toroidal magnetic fields and differential
rotation in stars. Phil. Trans. Roy. Soc. Lond., 289, 459–500.

Braithwaite, J. & Spruit, H. C., 2004: A fossil origin for the magnetic fields in
A stars and white dwarfs. Nature, 431, 819–821.

Braithwaite, J. & Spruit, H. C., 2006: A differential rotation driven dynamo in
a stably stratified star. Astron. Astrophys., submitted. Available at astro-
ph/0509693 and at www.mpa-garching.mpg.de/˜henk/dynamo.pdf

Brun, A. S. & Zahn, J.-P., 2006: Magnetic confinement of the solar tachocline.
Astron. Astrophys., submitted.

Charbonneau, P. & MacGregor, K. B., 1993: Angular momentum transport in



32 McIntyre

magnetized stellar radiative zones. II. The solar spin-down. Ap. J. 417, 762–
780. [CM93]

Christensen-Dalsgaard, J., Gough, D. O. & Thompson, M. J., 1992: On the rate
of destruction of lithium in late-type main-sequence stars. Astron. Astrophys.,
264, 518–528.

Elliott, J. R. & Gough, D. O., 1999. Calibration of the thickness of the solar
tachocline. Ap. J., 516, 475–481.

Fricke, K., 1969: Stability of rotating stars II: the influence of toroidal and poloidal
magnetic fields. Astron. Astrophys., 1, 388–398.

Garaud, P., 2002: Dynamics of the solar tachocline – I. An incompressible study.
Mon. Not. Roy. Astron. Soc., 329, 1–17.

Gilman, P. A. & Miesch, M. S., 2004: Limits to penetration of meridional circulation
below the solar convection zone. Ap. J., 611, 568–574. [GMi]

Gough, D. O. & McIntyre, M. E., 1998. Inevitability of a magnetic field in the Sun’s
radiative interior. Nature, 394, 755–757. [GM98]

Haynes, P. H., et al., 1991: On the “downward control” of extratropical diabatic
circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651–678.
Also 53, 2105–2107.

Manney, G. L., et al., 1994: On the motion of air through the stratospheric polar
vortex. J. Atmos. Sci., 51, 2973–2994 (Upper Atmosphere Research Satellite
special issue).

McIntyre, M. E., 1994. The quasi-biennial oscillation (QBO): some points about
the terrestrial QBO and the possibility of related phenomena in the solar inte-
rior. In The Solar Engine and its Influence on the Terrestrial Atmosphere and
Climate (Vol. 25 of NATO ASI Subseries I, Global Environmental Change),
ed. E. Nesme-Ribes; Heidelberg, Springer, 293–320.

McIntyre, M. E., 2003a. Solar tachocline dynamics: eddy viscosity, anti-friction,
or something in between? In Stellar Astrophysical Fluid Dynamics, ed. M.J.
Thompson & J. Christensen-Dalsgaard. Cambridge, University Press, 111–130.

McIntyre, M. E., 2003b. On global-scale atmospheric circulations. In Perspectives
in Fluid Dynamics: A Collective Introduction to Current Research, ed. G. K.
Batchelor, H. K. Moffatt, M. G. Worster; Cambridge, University Press, 631 pp.,
557–624. Paperback edition, with corrections.

Mestel, L. & Weiss, N. O., 1987: Magnetic fields and non-uniform rotation in stellar
radiative zones. Mon. Not. Roy. Astron. Soc., 226, 123–135.

Riese, M., et al., 2002. Stratospheric transport by planetary wave mixing as ob-
served during CRISTA-2. J. Geophys. Res., 107 (D23), paper no. 8179,
doi:10.1029/2001JD000629.

Spiegel, E. A. & Zahn, J.-P., 1992. The solar tachocline. Astron. Astrophys., 265,
106–114.

Spruit, H. C., 1999: Differential rotation and magnetic fields in stellar interiors.
Astron. Astrophys., 349, 189–202. [S99]

Spruit, H. C., 2002. Dynamo action by differential rotation in a stably stratified
stellar interior. Astron. Astrophys., 381, 923–932. [S02]

Townsend, A. A., 1958: The effects of radiative transfer on turbulent flow of a
stratified fluid. J. Fluid Mech., 4, 361–375.

Zahn, J.-P., 1974: Rotational instabilities and stellar evolution. In Stellar Instability
and Evolution, ed. P. Ledoux et al.. Dordrecht, Reidel, 185–195.


