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Abstract. High-latitude laminar confinement of the interior fiedglis shown to be possible. Mean
downwellingU as weak as 2 10-6cm st — gyroscopically pumped by turbulent stresses in the
overlying convection zone and/or tachocline — can hold thkl fin advective—diffusive balance
within a confinement layer of thickness scéle- 1.5Mm ~ 0.002R.. The confinement layer sits
at the base of the high-latitude tachocline, near the topefadiative envelope and just above the
‘tachopause’ marking the top of the helium settling layerfafily of exact, laminar, frictionless,
axisymmetric confinement-layer solutions is obtained ilinclyical polar coordinates, for uniform
downwelling in the limit of strong rotatiorQ; and stratificationN. The downwelling cannot
penetrate the helium layer and must therefore feed into aategvard flow immediately above
the tachopause. The retrograde Coriolis force on that fldwaianced by a prograde Lorentz force
within the confinement layer. Buoyancy forces keep the tpabee approximately horizontal. For
typical solamN values~ 10-3s~1 this type of dynamics holds over a substantial range of itots,
e.g. nearly out to colatitude 24&henU < 10-°cm s for modestB;| values~ tens of gauss.

The angular-momentum budget implied by the downwelling eqdatorward flow, importing
low and exporting high angular momentum, dictates that th&fisement layer must exert a net
retrograde torque on its surroundings through laminar Melkstresses. Some of that torque is
exerted downward through the tachopause upon the interi@inst the Ferraro constraint, and
the rest is exerted across the periphery of the confinemgat k&t some outer colatitudg 40°.
The profiles of velocity and magnetic field within the confirerhlayer are fixed by two external
conditions, first the partitioning of the torque betweendbatributions exerted on the interior and
across the periphery, and second the vertical profile of Mdbstress at the periphery. In default of
detailed models of what happens near the periphery, weganally suggest that a natural simplest
choice of model would be one in which all the net torque is &deon the interior.
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INTRODUCTION

The near-rigid rotatior); = 2.7 x 10 %rad s'! observed in the Sun’s interior can be
most credibly explained via the Ferraro constraint from aficd global-scale interior
magnetic fieldB; (Gough & Mcintyre 1998, hereafter GM98); also Mcintyre (499
2007). For stabilityB; must have comparable toroidal and poloidal components (e.g
Braithwaite & Spruit 2004). B; could be axisymmetric and aligned with the Sun’s
rotation axis as proposed in GM98, or oblique as is typicahpfstars. We focus on
the aligned case as presenting, in some ways, the greabedems.

The main problem, previously addressed by Garaud (2002a1@8)y Brun & Zahn
(2006), is how to confin®; at the pole and in high latitudes. It is necessary to stop the
poloidal field from diffusing up through the polar caps anerby imposing the convec-
tion zone’s high-latitude differential rotation upon tmarior. Such differential rotation
conflicts with the helioseismic evidence.
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FIGURE 1. Streamlines of the downwelling flow (dashed curves) and of the poloidal part®f(solid
curves), spacing arbitrary. The horizontal axis is calak# in arbitrary units, measured from the central
symmetry axis or rotation axis. The vertical axis is helitgrtial altitude, or radial incremerg, in units

of 8. Although there is a field line on the central symmetry axiswell as a streamline, the strength of
the field decays like eXp-z/d) with altitudez. The downwelling profiler(z) = —U[1—exp(—3z/9)].

Following GM98 we propose th&; is confined to the interior, in high latitudes, via
a frictionless laminar boundary layer at the base of thelgtsibatified tachocline. The
confinement is brought about by weak downwelling of magratudsay, taken to be a
persistent feature of the mean meridional circulations (@8Ylin the lower tachocline.
Such downwelling is to be expected from the ‘gyroscopic pungicaused by turbulent
Reynolds and Maxwell stresses in the overlying layers (Me&2007), in the same
way that Ekman pumping is caused by ordinary viscous stsesse

The overlying turbulent layers consist of the convectioneand possibly also the
tachocline (Spruit 2002). There are uncertainties in howharacterize those turbulent
layers in detail. But because of the ‘antifrictional’ seregehe convection zone’s tur-
bulent stresses — driving it retrogradely relative to thieiitor in high latitudes — there
should be a systematic tendency, by one means or anothéngfgyroscopic pumping
to produce downwelling above the top of the radiative erpelm high latitudes. One
possible such scenario is discussed in Mcintyre (2007pviahg Spruit (2002). There
the gyroscopic pumping is, in fact, a case of ordinary Ekmamping near the bottom
of an MHD-turbulent tachocline.

We assume that the bulk of the radiative envelope beneatbel$ iocked into rigid
rotationQ; with the help of the Ferraro constraint frdag, and that gravitational settling
has produced molecular-weight gradients in the form of auhekettling layer in the
outer 50—100Mm or so. Such a helium layer is a feature of stahsolar models (e.g.
Ciacio et al. 1997). Its existence is indicated also by tH®éeismic evidence, despite
current uncertainties about heavy-element abundancethamaffects on opacity (e.g.
Christensen-Dalsgaard & Di Mauro 2007).

The helium diffusivity is tiny,~ 10cn?s™1, in comparison with the thermal and
magnetic diffusivitiesk ~ 10’cn?s™! and n ~ 3 x 10%cn?s ! (e.g. Gough 2007).
Therefore the helium layer is nearly impervious to MMCs. ke Moss (1986)
call this the u-choke’ or ‘u-barrier’ effect; see also Mestel (1953). The high-lat¢ud
downwelling, whatever its origin, must therefore feed i@o equatorward flow just
above the ‘tachopause’ marking the top of the helium layee Tetrograde Coriolis
force on that equatorward flow needs to be balanced by a ptegrarentz force.
Buoyancy forces from the stable stratification keep thedpahse and the helium layer
beneath it very close to the horizontal, along with the Btcation surfaces themselves
(Mclintyre 2007, 88.5). We report a new family of exact steaditions of the nonlinear
equations showing how all these elements fit together, dogfi; within a layer of
thickness scal&d = n /U while transmitting a retrograde torque to the interior.
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FIGURE 2. Further views of the same solution. The view (a) of field lisesws only those lines that
emerge from the tachopause at a single colatitude near the Tiee lines emerging at other colatitudes
have the same shape dilated horizontally (see text). Thidgwdb) are those ofi, (solid), u (dashed)
anduy, (dot-dashed), in units &, Ur /6 and 5QJr /5 respectively; (c) ar@, (solid), B, (dashed, (dot-

dashed), and the auxiliary functidy (dotted), in units of nQ;)*/2 for B, and (nQ;)*/?r /& for the rest.
The shape ofi,(2), not shown in (b), is nearly indistinguishable frag(z) — uy(«). See (4)—(9) below.

CONFINEMENT-LAYER SOLUTIONS

The confinement-layer solutions are axisymmetric sintiyegolutions obtained in cylin-
drical polar coordinatef, ¢, z) and valid in some region surrounding the pole, for any
finite stratificationN. Figure 1 shows an example, with the north pole at the cenbe.
Zaxis is central, pointing upward, azaneasures altitude in units 8 The cylindrical
radial coordinate is proportional to colatitude and is in arbitrary units, gteucture be-
ing self-similar under radial dilatation. The similaritglations have vertical field com-
ponentsu, andB; that are independent of and horizontal components, u, andB;,

By proportional tor. Becausél-B = 0 we have B, = —Br where the prime denotes
d/0z. We assume anelastic flow wih< pressure scale height (60 Mm or more), so that
background density is constant (Boussinesq limit) @nd = 0, implying 2 = —ulr.

The boundary conditions include continuity Bfat the tachopause= 0. The mag-
netic fieldB; just beneath the tachopause therefore has a matching isiyngaucture.
The simplest such field h&, = Bjor andB;, = —2Bjpz+ C;, whereBjp, andC; are con-
stants, so thafl - B; = 0, while the azimuthal componeB}, is taken[d B;,r to ensure
the vanishing of the interior’'s azimuthal Lorentz forcghi-hand side of (3) hereunder.
Figure 2 shows further views of the same solution. The equoatsolved are

nB; = B, —Bu, (1)
nBy, = By, — By, (2)
2Qiu = —Qjur = BB,-BBy = BS(By/B,)’ 3)

of which the first two come from the induction equation aft@bstituting the similarity
structure intod x (u x B), and the third from the azimuthal momentum equation in the
limit of small Rossby number, thus retaining only Coriolrglanot relative accelerations;

B is in units of Alfvén speed;- %cm s 1 per gauss at tachocline mass densities. The
terms are exact because the similarity structure makesatizamtal derivatives vanish.



In the absence of specific information about the verticafilref Maxwell stresses
BBy, at the periphery, there is an undetermined functioninfthe problem. We may use
this freedom to specify the vertical profilg(z) of the downwelling. Then (1) becomes a
linear problem foiB,(z). Itis solvable withB,(0) = —2Bjs (matching the components)
and withB,(z) decaying like exp—z/d) asz— . This determines botB,(z) andC,.
Then, provided only thdty| converges tdJ faster than exp-2z/9), (3) has a solution

~ ©u
By = By = —ZQiBZ/Z 8 7 (@)

In the example shown in the figures we took= —U[1—exp(—3z/d)], which implies
that u = — %ugr = %(U r/o)exp(—3z/d), giving theB, profile shown as the dotted,
leftmost curve in Fig. 2c. Then (2) has a corresponding gmiut

. = By — B,
Uy Uy = /Z B dz. (5)
Under our assumptions, both (4) and (5) are finite-at0, and are evanescentas- o,
respectively like exp-2z/5) and exfj—z/d) in the example shown. The foregoing
procedure is robust and well-conditioned. In the simpleses in whichy, andu, are
both negative for alt, as in the figures, it is easy to see by inspection of (1), tatale-
ly integrating it downward fronz = o, thatB. on the left and both terms on the right
are positive for alkz. It then follows from (4) thaéq, is negative for alz. But Uy andu’éo
can change sign, though in fags iS negative and monotonic in the example shown.
We still have a pair of undetermined parameters at our dadmscause (2) and (3)
are also satisfied, for any constantand, by

By = Bp+aBsr  and  uy, = Gp+(au+P)r. (6)

Here (1) has been used to simplify the last term on the righg.dlterm inB,, contributes
nothing to the azimuthal Lorentz force on the right-handesid (3), but does change
the Maxwell stresses acting across the tachopaus€ and the periphery, = r, say,
by equal and opposite amounts. In other wosdgoverns the partitioning of Maxwell
torques between tachopause and periphery.

In the example showm was chosen, purely on Occam’s-razor grounds, to make
the Maxwell torque on the periphery zero. Lacking inforroatabout conditions at the
periphery, zero is arguably the simplest choice. The tofqyg BB, dz. It is zero if

 Jo' BrBypdz
Jo BiByrdz

from the first of (6); the quotient is independentrobecause of the similarity structure.
To find B we integrate (2) across the tachopause and use (3) to give

Up(0) = —A"'u (0) 8)

whereA = B2(0)/(2Qin), the Elsasser number based B#i0) (~ Bjgd), determining
the direction of the frictionless slip flow at the tachopajust above the rigidly-rotating
interior. The slip flow is equatorward and retrograde, faflog a logarithmic spiral.
For finite viscosityv there would be a laminar Ekman layer of thickness scégle-

a = = 13151 (7)



(v/QY?2 ~ 3x 10 °Mm < §, if we takev ~ 30cn?s~! (Gough 2007). Its flow
is unobstructed by the field lines since magnetic diffusiontioe scaled, is almost
instantaneous. Note (8) gives the spiral jalstve the Ekman layer. From (6) and (8),

B = —r 10,000 — A" lu(0) = 17306 1x 107, (9)

In fact A—1 measures the spiralling of the field lines as well as that efftbw lines,
because (4)—(9) imply the order-of-magnitude relations

By ~ By ~ 2Q;Ur/B,, Up ~ Gy ~ UBy/B,, (10)
and Bp/Br ~ Up/ ~ AL, (11)

Recall thatd = n/U and 2y = —uyr ~Ur/d, 2B, = —Bjr ~ Bjgr. The numerical
factors implicit in (11) differ considerably from unity bagse of the disparity in verti-
cal scales between eipz/d), exp(—2z/d) and exg—3z/d), along with the peculiar
balance of terms in (2) that enablBg to evanesce faster than gxgz/d). In the ex-
ample shown in the figured, = 1.57 x 1072 Fig. 2 shows tha{B,,/B| attains values
considerably smaller numerically, ang,/u | distinctly larger, tham\~1 ~ 60.

By contrast with GM98’s thermomagnetic boundary layer, sdndynamics crucially
involved the tilting of stratification surfaces, our exaotwions of (1)—(3) impose no
restriction onJ values and mass throughput for gi8g. However, there is an implicit
restriction, for given peripheral radius= rp and stratificatioN. N has been assumed
strong enough to hold stratification surfaces horizontallyGhen can the uniform
downwelling satisfy the thermal diffusion equation, desphg the stratification surfaces
vertically without tilting them. A scale analysis, omitteat brevity, shows that the tilting
becomes noticeable at the periphery if in order of magnitude

U ~ Ugit = min |(aBio/rp)¥3, b(Biorp) ™ (12)

where a = 0.4(n/k)Y?(n?N/Q;) ~ 0.7 x 10°cnf*'s 2 and b = 0.1(n/k)Y?nN ~
0.15x 10-3cn?s 2. The min function arises from the azimuthal vorticity balanin
the strong-field case (second argument, roughly correspgnd A 2> 1), the tilting of
the stratification surfaces is balanced solely by a Loreotee-curl. In the weak-field
case (first argument)\ < 1) there is an additional contribution from vortex twisting
2Qiu§p. The crossover correspondsBgrp ~ 15 cm st (~30G) whenrp = 350Mm,
i.e. to|Bi| ~ 30G near an outer colatitude40°. ThenUit ~ 10 >cms L,

The Rossby numbeZ = maxr—1u-O(rug)/(2Qiuy)| ~ (U/B(0))? ~ U%(nBpp)?,
< 1076 at crossover ifU < Ugrit, and similarly small throughout the parameter
range of interest, strongly justifying our use of the sn¥llimit. Inverse gradient
Richardson numbersu’|2/N? ~ (U /Ugit)(n/K)Z in the confinement layer, and
~ (U /Uerit) (N /K)%(8/0v)? ~ (U /Uerit)(n/K)U2Q;i /(VvBZ) in the Ekman slip layer,
respectively< 10~ and< 103 at crossover. So the flows are strongly shear-stable.

Spruit (1999) shows that in stably stratified shear flows thet MHD instabilities
to kick in will be diffusion-mediated Tayler kink or tippingstabilities ofB,. In the
weak-field case\ < 1 (the most vulnerable, with strong spiralling) we find Tayle
stability forU < (Bio/Biocrossove)” ®Ucrit. Stability increases further wheh > 1. So



the solutions probably represent real laminar flows.

CONCLUDING REMARKS

The suggestion in (12) of a limiting mass flow and therefong,irhplication, of an
upper bound on the torque transmissible to the interioroignore than a suggestion
at present. However, the scaling leading to (12) does hawdspof similarity to the
scaling governing the mass-flow-limited thermomagnetiariatary layer proposed in
GM98. A peripheral thermomagnetic boundary layer mightasg a mass-flow limit.
Such a limit would have implications, in turn, for the podsibange of interior field
strengthg|B;|. In particular, the steep falloff dflc;it on the strong-field side of (12)
suggests a sharp upper bound on confindéilestrengths.

A mass-flow limit, if confirmed, would also bear on the questd whether a Tayler—
Spruit dynamo can run continuously or intermittently in taehocline above the con-
finement layer (Mcintyre 2007, 88.4). That question is caltito associated questions
about deep tachocline ventilation and lithium burning.

ACKNOWLEDGMENTS

We thank Jagrgen Christensen-Dalsgaard, Werner Dappéla Begl'Innocenti, Pascale
Garaud, Douglas Gough, Mark Miesch, Steven Shore, and Mikeripson for helpful
comments. TSW is supported by a Research Studentship frerf8dience and Tech-

nology Facilities Council.
REFERENCES

Braithwaite J., Spruit H. C., 2004, Nat, 431, 819

Brun A. S., Zahn J.-P., 2006, A&A, 457, 665

Ciacio F., Degl'lnnocenti S., Ricci B., 1997: A&A, 123, 449

Christensen-Dalsgaard J., Di Mauro M. P., 2007, in Strak&/Cl ebreton Y., Monteiro M. J. P. F. G., eds,
Stellar Evolution and Seismic Tools for Asteroseismologiffusive Processes in Stars and Seismic
Analysis. EAS Publ. Ser. 26, EDP Sciences, Les Ulis, Fran€d; 10.1051/eas:2007121

Garaud P., 2002, MNRAS, 329, 1

Garaud P., 2003, in Thompson M. J., Christensen-Dalsgdaregs, Stellar Astrophysical Fluid Dynam-
ics. Cambridge University Press, Cambridge

Garaud P., 2007, in Hughes D. W., Rosner R., Weiss N. O., dds,Splar Tachocline. Cambridge
University Press, Cambridge

Garaud P., 2008, this Proceedings.

Gough D. O., 2007, in Hughes D. W., Rosner R., Weiss N. O., Bdes,Solar Tachocline. Cambridge
University Press, Cambridge

Gough D. O., Mcintyre M. E., 1998, Nat, 394, 755

Mcintyre M. E., 1994, in E. Nesme-Ribes, ed, The Solar Engind its Influence on the Terrestrial
Atmosphere and Climate (Vol. 25 of NATO ASI Subseries |, GlbBnvironmental Change), Springer-
Verlag, Heidelberg

Mcintyre M. E., 2003, in Thompson M. J., Christensen-Dadedal., eds, Stellar Astrophysical Fluid
Dynamics. Cambridge University Press, Cambridge

Mcintyre M. E., 2007, in Hughes D. W., Rosner R., Weiss N. @s,&he Solar Tachocline. Cambridge
University Press, Cambridge

Mestel L., 1953, MNRAS, 113, 716

Mestel L., Moss D. L., 1986, MNRAS, 221, 25

Spruit H. C., 1999, A&A, 349, 189

Spruit H. C., 2002, A&A, 381, 923



