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1. Lighthill’s idea

Lighthill’s most important idea is in our opinion the
following, when expressed in a form appropriate to geo-
physical fluid dynamics. The idea is that the sponta-
neous-adjustment1 emission of inertia–gravity waves by
unsteady vortical motion is sufficiently weak, in param-
eter regimes of interest, that the emission may be ne-
glected when solving for the vortical motion. The suf-
ficient weakness, in this sense, of the wave emission or
‘‘Lighthill radiation,’’ as we also called it, is the fun-
damental reason—transcending all details of mathe-

1 As in Ford et al. (2000), we (a) distinguish spontaneous adjust-
ment from Rossby or initial-condition adjustment, and (b) avoid the
term ‘‘geostrophic adjustment,’’ since an adjustment toward balance
is often an adjustment away from geostrophy. The example of a
circular vortex adjusting toward ageostrophic, gradient-wind balance
is enough to illustrate the point. The self-contradictory notion of
‘‘ageostrophic geostrophic adjustment’’ may be compared to other
such notions, which tend to invade human language, such as ‘‘variable
solar constant,’’ ‘‘asymmetric symmetric baroclinic instability,’’ and
‘‘fuzzy manifold.’’
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matical method and physical mechanism—why the con-
cepts of balance, balanced model, slow quasimanifold,
and potential-vorticity inversion are useful in parameter
regimes of interest. The weaker the emission, the more
useful the concepts.

Lighthill’s idea also provides the surest way of seeing
that these same concepts, in their full fluid-dynamical
context, beyond low-order models, have ultimate lim-
itations throughout the parameter regimes of interest.
Though useful, indeed sometimes astonishingly accu-
rate, these concepts are also inherently approximate.
That was the key message of the Ford et al. (2000) paper.
In other words, Lighthill’s idea is the surest way of
recognizing that the existence of a strict slow mani-
fold—implying the exact ‘‘slaving of fast variables’’ and
exact versions of all the above concepts—is overwhelm-
ingly improbable.

For if the wave emission is so weak that one can
regard the vortical motion as known, or knowable, in-
dependently of the emission to good approximation,
then one can also regard the source term for the emission
as known to good approximation, as soon as one knows
the vortical motion. One can then confirm, as in the
original analysis of Lighthill (1952) and in those that
followed (e.g., Crow 1970; Crighton 1975, 1981, and
references therein), taking note of the special quadru-
pole form of the source term, that the emission is indeed
weak in parameter regimes of interest, yet almost always
nonvanishing. See also section 4 below, regarding the
function a(t) defined in Ford et al.’s (2000) Eq. (54).

The weakness of the emission makes the whole pic-
ture self-consistent, as Lighthill recognized: the emis-
sion is, in his own words (Lighthill 1952, p. 565), ‘‘so
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weak relative to the motions producing it that no sig-
nificant back-reaction can be expected.’’ The nonvan-
ishing of the emission, on the other hand, precludes the
exact slaving of fast variables.

Thus it is the sufficient weakness of the wave emis-
sion that is the key—both to Lighthill’s original analysis
and to its generalization to geophysical fluid dynamics.
The question of exactly how weak is a secondary ques-
tion, from this viewpoint, interesting but less funda-
mental. It was with all these points in mind that we
wrote in section 2 of Ford et al. (2000) that ‘‘the emis-
sion is very weak. . . helping to explain why balance
and potential-vorticity inversion, though inherently ap-
proximate, can be far more accurate than might be sug-
gested by the standard order-of-magnitude consider-
ations and filtered balanced models.’’ And Lighthill’s
idea applies even more powerfully in the context of
geophysical fluid dynamics than in its original context,
aerodynamic sound generation, because ‘‘Coriolis ef-
fects can be expected to weaken the emission still fur-
ther’’ (Ford et al. 2000, p. 1237b). The weaker the emis-
sion, the more secure the whole picture!

If, as speculated by Saujani and Shepherd (2002,
hereafter SS02), the further weakening manifests itself
as exponential rather than algebraic smallness in the
limit of small Rossby number R—as concretely illus-
trated by the Ford (1994) example quoted both by SS02
and by ourselves—then in that particular parameter re-
gime the power of Lighthill’s idea is very great indeed.
Exponential smallness is, of course, far smaller—almost
unimaginably smaller—than anything one might guess
from ‘‘standard order-of-magnitude considerations and
filtered balanced models.’’

We agree with SS02 that exponential smallness is
generally speaking plausible, in the small-R limit,
though unproven. A proof would require one to prove
among other things that some counterpart of the function
a(t) is infinitely differentiable.

2. Parameter regimes

In the thinking that led to the Ford et al. (2000) work,
we were interested in all the parameter regimes where
Lighthill’s idea is applicable, that is, in all regimes,
including limiting cases and other cases, where spon-
taneous-adjustment emission is in some sense weak, not
just the particular small-R limit discussed by SS02. That
small-R limit is, as they mention, the limit involved in
a particular filtered model, the standard extratropical
quasigeostrophic theory. We may specify the limit more
precisely, following SS02 and using their notation and
definitions, as R → 0 with L ; LR, implying F → 0
with R ; F. Here LR is the radius of deformation, F is
the Froude number, and the flow is assumed, rightly or
wrongly, to have a single length scale L.

A specific reason for our interest in a wider range of
parameter regimes was the existence of the astonish-
ingly accurate results described in Norton (1988) and

in McIntyre and Norton (1990, 2000). These came from
high-order balanced models of shallow-water flows on
a hemisphere with strong, unsteady vortical activity
deep within the Tropics, showing initial-condition sen-
sitivity. We were therefore especially concerned to in-
clude parameter regimes appropriate to the Tropics in
our thinking.

Standard quasigeostrophic theory is grossly inaccu-
rate for these flows. As remarked in McIntyre and Nor-
ton (1990), a geostrophic computation for one of them
‘‘gives maximum velocities typically wrong by a factor
;2.’’ That is no great surprise: although L ; LR, flow
speeds are so high that R and F are anything but nu-
merically small. Numerically, F attains values of 0.7 or
more, in subtropical jets, and R is typically somewhere
near unity, and of course infinite at the equator. For
these flows there is no parameter limit, no rational hope
of using asymptotic methods, no clear timescale sepa-
ration, and therefore no clear distinction between ‘‘fast
motion’’ and ‘‘slow motion.’’

What was, by contrast, a great surprise, and remains
noteworthy and very remarkable, is that the high-order
balanced models are exquisitely accurate even for the
flows just mentioned. By exquisitely accurate we mean
that cumulative accuracy, over several eddy turnaround
times, was such as to produce a final potential-vorticity
distribution nearly indistinguishable from that of the
corresponding primitive-equation evolution. Yet these
highly unsteady flows involve vortex-merging events
and were explicitly demonstrated to be initial-condition
sensitive. The results can therefore be viewed as stun-
ning vindications of Lighthill’s idea, as understood here
and in Ford et al. (2000), showing, quite unexpectedly,
the power of that idea in circumstances far wider than
the circumstances originally considered by Lighthill
himself (F → 0 with R 5 `, in the present notation),
and far wider than the circumstances considered by
SS02 (F → 0 with R ; F)—indeed, as already em-
phasized, far beyond the reach of any asymptotic anal-
ysis whatever.

3. The parameter limit F → 0 with R * 1

Why Lighthill’s idea should be quite so powerful is
still an unsolved mystery, though clearly it must be
related to the short-range character of potential-vorticity
inversion operators when R ; F ; 1 (e.g., McIntyre
2001). Faced with that mystery, we opted in Ford et al.
(2000) to consider another parameter-limit, F → 0 with
R constant, formally R * 1 [as stated in Ford et al.’s
(2000) abstract and on pp. 1238b and 1239b]. This was
not because we thought it the only interesting parameter
regime, but first of all because it is arguably relevant
to the Tropics, and second because it allowed sponta-
neous-adjustment emission to be analyzed in a precise
and detailed way, building on the work of Crow (1970)
for R 5 `.

In considering so subtle and so surprisingly weak a
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process as spontaneous-adjustment emission, it seemed
to us that there would be great value in having a class
of examples that would allow us to look at the mech-
anistic details, with explicit representations of the very
weak back-reaction or radiation reaction of the emission
upon the vortical motion, and of the interplay of multiple
spatial scales—an interplay that is excluded by low-
order, spectrally truncated models, as SS02 recognize,
but liable to occur in the full fluid-dynamical context
because of the way in which frequency matching works.
Such explicit and detailed examples would be valuable,
we thought, even if unable to cover the entire parameter
space of interest.

Frequency matching is not, of course, a matter of
choice. It is simply an automatic and inescapable prop-
erty of any wave emission process. Any waves emitted
must have frequencies that match frequencies in the
spectrum of the wave source. One might say that when
one hears a Mozart symphony the air carrying the sound
has performed ‘‘multiscale frequency matching’’ with
the source; it is ‘‘multiscale’’ for the bass notes at least,
whose wavelengths can dwarf the size of the sound
source. Alternatively, and more clearly and simply, we
think, one might say that the frequency spectrum of the
waves emitted is governed by the (known) frequency
spectrum of the source, taking account of the possible
range of frequencies of freely propagating waves.

We therefore, taking account of the range of fre-
quencies of freely propagating inertia–gravity waves,
agree with SS02 and with Errico (1981) that the strength
of the wave emission in the limit R → 0 depends ex-
clusively on the high-frequency tail of the source spec-
trum. That is why, after the remark that ‘‘Coriolis effects
can be expected to weaken the emission still further,’’
we went on to say that Coriolis effects would ‘‘not . . .
make it exactly zero, even for arbitrarily small Rossby
number . . . because of the expectation that typical vor-
tical flows, being chaotically unsteady, . . . will have a
frequency spectrum with no high-frequency cutoff.’’ The
absence of a high-frequency cutoff has never been prov-
en rigorously, to our knowledge, but seems overwhelm-
ingly probable for chaotic vortical flows.

4. Cases in which R is numerically small

Although the detailed analysis in Ford et al. (2000)
does not formally cover the limiting case R → 0, the
analysis does, arguably, point toward what must happen
in such cases. It does so through the complex-valued
function a(t) defined in Eq. (54) of Ford et al. (2000).
The frequency spectrum of a(t) governs the leading-
order wave emission. The definition says that a(t) has
real and imaginary parts proportional to certain second
spatial moments of the potential-vorticity distribution,
quantities that are nonvanishing, and temporally fluc-
tuating, for all vortical flows outside a tiny set of ex-
ceptional cases. The reader who would like to see this
last point illustrated in more detail may consult the re-

cent work of Bridges and Hussain (1992, 1995), in
which a function closely analogous to a(t) is examined,
together with the associated wave emission, both the-
oretically and through high-precision laboratory exper-
iments on three-dimensional, axisymmetric aerodynam-
ic sound generation.

The dependence of a(t) exclusively upon second spa-
tial moments stems directly from the multiscale spatial
structure of the emission problem, and from the fact that
the zeroth and first moments cannot fluctuate and hence
cannot contribute to wave emission. The zeroth and first
moments are constrained to be steady by the laws of
free vortex motion, indirectly expressing the quadrupole
nature of the emission source. The third and higher mo-
ments are relevant but only as small corrections. All this
structure is present in the emission problem as soon as
F becomes small. Ford et al.’s (2000) analysis does cov-
er cases in which R is numerically small, provided only
that R is bounded away from zero as F → 0. In the
usual manner of an asymptotic analysis, the formal con-
dition conventionally written as R * 1 has no absolute
numerical significance when we take the limit F → 0.

Making R numerically small tends to reinforce, not
to diminish, the multiscale structure. For given a(t) the
emitted wavelengths are lengthened, not shortened, and
the dominance of second moments should be enhanced.
This is a direct consequence of the dispersion properties
of inertia–gravity waves. It is therefore reasonable to
speculate that even for arbitrarily small R the strength
of the emission will continue to be governed to some
first approximation by the function a(t) or, more pre-
cisely, by its Fourier transform (v), in the frequencyã
range | v | $ f of freely propagating inertia–gravity
waves, where f is the Coriolis parameter. If (v) hasã
an exponentially decreasing tail as | v | → `, as seems
likely for chaotic vortical flows, then we have a clear
pointer not only toward exponential weakness of the
emission but also, again, toward its nonvanishing for
arbitrarily small R, precluding the exact slaving of fast
variables.

5. Velocity splitting

Cases like those mentioned in section 2 pose an even
greater challenge to our understanding. When neither F
nor R can be considered small, the multiscale spatial
structure disappears. Asymptotic methods are no longer
applicable, Lighthill’s idea has no formal justification,
and the function a(t) is sure to be replaced by something
much more complicated. Why Lighthill’s idea never-
theless seems to survive as numerically valid in such
extreme circumstances remains an unsolved mystery.
There is no a priori expectation that spontaneous-ad-
justment emission is necessarily weak even though, in
cases studied so far, we have striking evidence that it
is, nevertheless, weak in some numerical sense, as men-
tioned in section 2. That evidence comes solely from
numerical experiments.
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However, the other aspect of the problem with which
we were concerned, the nonvanishing of the emission
for unsteady vortical motion, and its most fundamental
implication, the nonexistence of a strict slow manifold,
has recently been illuminated from an unexpected new
angle that may be worth mentioning briefly.

The new insight comes via the so-called velocity split-
ting phenomenon, first noticed in the context of Ham-
iltonian balanced models (Salmon 1988; McIntyre and
Roulstone 2002, and references therein), but now known
to be a general property of high-order non-Hamiltonian
balanced models as well (A. R. Mohebalhojeh and M.
E. McIntyre 2002, manuscript in preparation). By di-
rectly analyzing the (rather complicated) equations de-
fining a general class of high-order balance conditions
and potential-vorticity inversion operators—which in-
cludes those that produced the accurate results men-
tioned in section 2, and those that produced the further
such results of Mohebalhojeh and Dritschel (2001)—
we have found that such models are inherently ‘‘schizo-
phrenic’’ in that they possess not one but two velocity
fields. One field advects the potential vorticity while the
other advects the mass; the two fields are nearly but not
quite equal.

The key point is that such velocity splitting or schizo-
phrenia is not, as one might at first think, merely the
result of imperfections in formulating the high-order
balance conditions. Rather, it is an inherent property of
any balance condition and potential-vorticity inversion
operator that exceeds a certain standard of accuracy. The
critical accuracy is that of the well known Bolin–Char-
ney balanced model. The splitting of the velocity field
for any balanced model of greater accuracy may seem
paradoxical until one recognizes it as simply another
strong line of evidence against the existence of a strict
slow manifold, and against the vanishing of spontane-
ous-adjustment emission. A fuzzy slow quasimanifold
or stochastic layer, regarded as a constraint on the mo-
tion, is itself, so to speak, schizophrenic; and this be-
comes noticeable as soon as one is computing with
enough accuracy to see the fuzziness.

6. Remark concerning SS02’s Fig. 1

We note finally that, in interpreting SS02’s Fig. 1b,
the sloping lines v 5 vV need to be pictured as being
smeared out, filling the entire figure upward and left-
ward and thus showing the overlap of the hyperbola v
5 vG with the weak but infinitely broad spectral tail
appropriate to chaotic vortical motion. This is necessary
in order that the figure express the relevant frequency
matching. As in all wave emission problems, as already
noted, the frequencies of waves emitted must agree with
frequencies in the wave source spectrum. The symbol
‘‘;’’ in SS02’s Eq. (1), replacing the symbol ‘‘5’’ and
acknowledging the ‘‘nonlinear broadening of the zero-
frequency linear mode,’’ needs to be, as it were,

stretched out infinitely in order to acknowledge the in-
finite nonlinear broadening involved in the spectral tail.

Postscript by MEM. The foregoing may well be Ru-
pert Ford’s last scientific publication. It has had to be
revised in his absence, in response to the final revision
of SS02, using extensive notes made during our last
coauthors’ consultation. The revision tries to echo Ru-
pert’s wonderful spirit of generosity, engagement, and
enthusiasm, and above all tries to be something like
what would have emerged had he still been with us—
conveying some sense of his penetrating insight and
rigor and of his joy in serious intellectual endeavour, of
his joy in trying to bring understanding to a difficult
problem area. There are a few more remarks about Ru-
pert’s life and about his brief yet brilliant research career,
so tragically cut short in March 2001, in the obituary
published in the Quarterly Journal of the Royal Mete-
orological Society (April 2001, B127, 1489–1490). The
Royal Meteorological Society, in which Rupert was ac-
tive as Secretary of the Dynamical Problems Specialist
Group, now administers a Rupert Ford Memorial Fund
supporting travel and exchange among young scientists
of any nationality.
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