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The Master said:
To know what you know, and to know what you do not know: that is knowledge.
                                                                                        – Analects of Confucius
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Disclaimer:
This talk won’t provide operational answers to all our 

problems of statistical testing and statistical inference.
It will try, however, to indicate recent conceptual advances  

that help us to  know what we’re doing  when using 
probability theory.

 There’s an over-arching conceptual framework covering all 
the traditional methods including Bayesian methods, 
and clarifying the old subjectivity-objectivity dilemmas.

Main take-home message: probabilities are always 
conditional (on the information you have and the 
assumptions you make)

– so the fundamental ideal of ultra-orthodox (‘hardcore 
frequentist’) statistical theory – that probabilities are 
absolutely objective, i.e. properties of things in the 
outside world – is, and always was, a delusion.

Indeed, it’s a delusion highly injurious to good science.



  

• For a coherent account of what science is, we need to 
distinguish between data and models.

• To build good models, we need to be able to use 
probabilities as model properties.

• We also, of course, need to make assumptions.
• Same for a coherent account of what ordinary perception 

is  –  despite its subjective feeling of directness, e.g. of 
directly ‘seeing what’s there’.

•  (Cf. the way music works, acausality illusions etc.  I tried to explain 
all this in the “Lucidity and Science” papers of 1997  –  websearch 
“lucidity principles”.)

• What are models?  They are partial and approximate 
representations of reality.

• What are data?  Data consist of information coming 
directly from the outside world.   One example is  patterns 
of photons hitting the retinas of your eyes:

Why?
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‘‘No organism can afford to be conscious of matters
with which it could deal at unconscious levels.’’
                                         – Gregory Bateson (1972)

That of course applies to ourselves as well as to other
species. So if we think we’re making no assumptions,
it means only that all our assumptions are unconscious.

So ‘seeing what’s there’ is not wholly objective!!
Unconscious assumptions are always involved!

The hardcore frequentist statisticians of the early 20th century
seem to have fallen into this trap.  They thought they could
attain absolute objectivity:  “Let the data speak for themselves.”



  

• Brain is fitting a particular model (piecewise-3D skeletal motion) to data 
consisting, essentially, of 12 moving points in a 2D plane.

• The model-fitting process is wholly unconscious, and involves unconscious 
assumptions including something like Bayesian prior “probabilities”.  Details 
in  ww.atm.damtp.cam.ac.uk/people/mem/index.html#thinking-probabilistically

• Illustrates “observations are theory-laden”; there’s always some subjectivity.

• YET there are such things as  goodness-of-fit,  model simplicity,  large 
domain of applicability etc…  Some models are much better than others. 
But none can be “absolutely true”.

• All this applies to science, because science fits models to data and is 
thus an extension of ordinary perception.

• (Science wars: “science as mere opinion” vs “science as absolute truth” is a 
false dichotomy!)

• Actually use/need hierarchy of models
• (consciously or unconsciously)
• (Natural selection has equipped us therewith)

http://www.atm.damtp.cam.ac.uk/people/mem/index.html
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(further
discussion
in my
Kobe Lecture
(websearch
 will find it)

The models we
use to make
sense of sounds
– to do ‘auditory
scene analysis’ –
use the harmonic
series as a basic
building block.



  

From “Lucidity and Science” Part 1:



  

How does the brain cope with the problem  
of combinatorial largeness – of selecting 
from the combinatorially large number of 
possible models to fit to the data?

 
One way is by perceptual grouping: – 

another wholly unconscious process first 
studied by the Gestalt psychologists:



  



  

Bruno de Finetti
(1906-1985)

Pierre Simone de Laplace
(1749-1827)

Jakob Bernoulli
(1654-1705)

SOME GREAT NAMES IN GAMBLING

“ARBITRAGE”
 
       “DUTCH   
        BOOKS”



  

BUT how many of you have ever heard of

                         Richard Threlkeld Cox?

Cox’s theorem(s) of 1946 illuminate the foundations of probability 
theory, emphasizing the status of probability as a model property 
(and, incidentally, why natural selection equipped us with unconscious 
probability theory, along with other kinds of unconscious mathematics).

This brings with it a new clarity, power, and flexibility in the uses of 
probability theory – via an overarching framework that includes all the 
traditional frequentist thought-experiments (dice-throwing, sampling 
from large populations, etc.), and includes so-called Bayesian 
methods too.

Frequentist thought-experiments are, of course, useful in their place.  
It’s the hardcore frequentist ideology, conflating data with models, 
that’s injurious to good science.

howing in particular that its scope is wider even than 

 and a clear resolution of old dilemmas about
subjectivity versus objectivity.

☺╣☻♥♫  =  ♥╦◊╪◘     just kidding
 P(AB|Z) = f  [ P(A|BZ) , P(B|Z) ]
    



  

The conceptual framework built on Cox’s theorems
is available in two landmark books:

Jaynes, E. T., Probability Theory: The Logic of Science,
727 pp.                                                     …beware maxent

MacKay, D. J. C. Information Theory, Inference, and
Learning Algorithms,  628 pp. ..beware Cox’s Theorems!

Both published by Cambridge University Press in 2003.

Online versions are available, partial or complete –
details at
www.atm.damtp.cam.ac.uk/people/mem/index.html#thinking-probabilistically



  

• All of probability theory follows from a single qualitative 
primordial idea,namely that

• for given background knowledge or information Z,  our 
brains can assess the plausibility of any proposition A; 
call this plausibility P(A|Z).

• Then, under very weak qualitative assumptions, we can 
prove that the quantities  P(A|Z)  are mathematically 
indistinguishable from probabilities.

• That is, aside from trivial transformations, they obey the 
product rule P(AB|Z) = P(A|BZ) P(B|Z) = P(B|AZ) P(A|Z) and 
the sum rule P(A|Z) + P(not A|Z) = 1.

• Note that Bayes’ Theorem or Bayes’ Rule is just the 
second equality in the product rule.

• NB!! Conditioning statements are primordial.
• So: priors are always involved, whether or not we are 

using Bayes’ Theorem

Cox’s theorems tell us that:
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Monty Hall, host of  Let’s Make a Deal

Marilyn vos Savant, 
who
received nearly
10,000 wrong answers.

Making the |Z  explicit blows away all kinds of difficulties --  take for instance
the notorious Monty Hall  “3 doors”  or  “3 cards”  problem:

3-cards version: Player 1
(‘Monty’) puts three cards
face down.  One is an ace,
the others, ordinary cards.



  

So Marilyn was right.  On these assumptions,
it’s better to switch.
And NB again: priors are involved, whether or not we use
Bayes’ Theorem (Bayes’ Rule).

Z  includes the rules of the game (MacKay Ex 3.8ff),  most crucially that:
Player 1 (‘Monty’) knows where ace is, and will always flip ANOTHER card.
Label positions as
     1             2             3

As Player 2, I assume  Z  also includes priors:

P(A1|Z) = P(A2|Z) = P(A3|Z) = 1/3  (subjective!!)

I finger card 1:  Z updated to Z' but I still have

P(A1|Z')  =  P(A2|Z')  =  P(A3|Z')  =  1/3. 

Z' updated to Z'', but (if Player 1 unbiased)

P(A1|Z'') = 1/3,  P(A2|Z'') = 2/3,  P(A3|Z'') = 0  
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Bayes’ Rule and its chain-consistency property

• Bayes’ Rule is just part of the product rule, usually written

• The standard use is to let some set of candidate models or 
hypotheses M to define the pdf P(D|MZ), and use P(M|Z) to 
express one’s prior judgement of the plausibility of model 
M.  Remember, there’s no escape from subjectivity; so it’s 
a good thing to be forced to make your prejudices explicit.

• If new data are acquired, we can set D to be the statement 
that those data take whatever values they do.  (more 
loosely, but succinctly, D = ‘the data just acquired’)

• This keeps the data-model distinction clear, and forces us 
to make our assumptions explicit.

• Chain-consistency: can refine prior by repeating the above

)|(
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Conclusions
• Frequentist thought-experiments can be useful (especially 

with computer-aided Monte Carlo).  But they’re only a tiny 
subset of what’s relevant to science.

• The hardcore frequentist dogma (that P values are 
absolute properties of real things in the outside world) 
conflates reality with models of reality.  That’s injurious 
to science.

• Hardcore frequentism also makes taboo a consideration 
of background information, and the associated prior 
probabilities.  That’s catastrophic to science.

• Intuition can be very treacherous – e.g. the way my 
fingers got burned in the 3-cards (Monty Hall) problem!

• But, in that quicksand of conscious vs unconscious 
probabilistic thinking, Cox’s theorems give us a rock to 
stand on and free us to think flexibly and creatively.

• I think Cox’s theorems should be taught to all science 
undergraduates and have the same status for statistical 
inference as thermodynamics for physics. 


