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ABSTRACT

An initial zonally symmetric quasigeostrophic potential vorticity (PV) distribution qi( y) is subjected to

complete or partial mixing within some finite zone jyj , L, where y is latitude. The change in M, the total

absolute angular momentum, between the initial and any later time is considered. For standard quasigeo-

strophic shallow-water beta-channel dynamics it is proved that, for any qi( y) such that dqi/dy . 0 throughout

jyj, L, the change in M is always negative. This theorem holds even when ‘‘mixing’’ is understood in the most

general possible sense. Arbitrary stirring or advective rearrangement is included, combined to an arbitrary

extent with spatially inhomogeneous diffusion. The theorem holds whether or not the PV distribution is

zonally symmetric at the later time. The same theorem governs Boussinesq potential-energy changes due to

buoyancy mixing in the vertical. For the standard quasigeostrophic beta-channel dynamics to be valid the

Rossby deformation length LD� �L where � is the Rossby number; when LD 5 ‘ the theorem applies not

only to the beta channel but also to a single barotropic layer on the full sphere, as considered in the recent

work of Dunkerton and Scott on ‘‘PV staircases.’’ It follows that the M-conserving PV reconfigurations

studied by those authors must involve processes describable as PV unmixing, or antidiffusion, in the sense of

time-reversed diffusion. Ordinary jet self-sharpening and jet-core acceleration do not, by contrast, require

unmixing, as is shown here by detailed analysis. Mixing in the jet flanks suffices. The theorem extends to

multiple layers and continuous stratification. A least upper bound and greatest lower bound for the change in

M is obtained for cases in which qi is neither monotonic nor zonally symmetric. A corollary is a new nonlinear

stability theorem for shear flows.

1. Introduction

Ideas about the turbulent mixing of vorticity and po-

tential vorticity (PV), going back to the pioneering work

of Taylor (1915, 1932), Dickinson (1969), Green (1970),

and Welander (1973), are an important key to under-

standing such phenomena as Rossby-wave ‘‘surf zones,’’

jet self-sharpening, and eddy-transport barriers. For

a review see Dritschel and McIntyre (2008, hereafter

DM08); also, for example, Killworth and McIntyre

(1985), Hughes (1996), Held (2001), McIntyre (2008),

Esler (2008a,b), and Bühler (2009). A key point is that

PV mixing generically requires angular-momentum

changes. In the real world those changes are usually

mediated by, or catalyzed by, the radiation stresses or

Eliassen–Palm fluxes due to Rossby waves and other

wave types, including the form stresses exerted across

undulating stratification surfaces. Usually, therefore,

there is no such thing as turbulence without waves.

PV mixing by baroclinic and barotropic shear insta-

bilities depends on radiation stresses internal to the sys-

tem, mediating angular-momentum changes that add to

zero. Cases like that of Jupiter’s stratified weather layer

probably depend on form stresses exerted from below, as

is known to be true of the terrestrial stratosphere.

Consider for instance the quasigeostrophic thought

experiment shown in Fig. 1a. This is an idealization of

Rossby-wave surf-zone formation. An initially linear PV

profile (thin line) is mixed such that the PV becomes

uniform within a finite latitudinal zone jyj , L (thick

zigzag line). The mixing is assumed to be conservative in

the sense that

ð ð
dx dy Dq 5 0, (1.1)

where q is the quasigeostrophic PV and Dq its change

due to mixing; dxdy is the horizontal area element. It is
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well known that, according to standard quasigeostrophic

theory, the resulting change DM in the total absolute

angular momentum M is negative or retrograde, in this

special case with the initial profile linear in y.1 Such

angular-momentum deficits are key to understanding

why, for instance, breaking stratospheric Rossby waves

gyroscopically pump a Brewer–Dobson circulation that

is always poleward and never equatorward. The tropo-

sphere exerts a persistently westward form stress on the

stratosphere. The physical reality of such surf-zone

formation events and their tendency to mix PV has been

verified in a vast number of observational and modeling

studies, including studies of the stratospheric ozone

layer (e.g., Lahoz et al. 2006, and references therein).

In an interesting recent paper in this journal, Dunkerton

and Scott (2008, hereafter DS08), consider a class of PV

reconfigurations in a single layer on the sphere, with

zonally symmetric initial and final states, satisfying (1.1)

and constructed so as to make DM 5 0. In DS08 the

dynamics is nondivergent barotropic. That is, the Rossby

deformation length LD 5 ‘, and q is the absolute vor-

ticity. As illustrated in DS08, the constraint (1.1) does

not by itself dictate the sign of DM. However, in view of

the ubiquity of radiation stresses in real atmospheres

and oceans, one is led to question whether the assump-

tion DM 5 0 is a natural one for realistic models.

Figure 1b shows a simple case where DM is positive and

Fig. 1c a case where DM is zero as in DM08. Both these

cases must involve unmixing, or antidiffusion. To go from

the initial to the final state in Fig. 1b or Fig. 1c, one must

transport q nonadvectively against its local gradient, at

least in some locations (x, y). Such locally countergradient

transport seems unnatural, at least as a persistent phe-

nomenon in a model free of gravity wave stresses.

To exclude such countergradient transport we will re-

strict the PV reconfigurations, throughout this paper, not

only to respect (1.1) but also to be describable as ‘‘gener-

alized partial mixing,’’ or ‘‘generalized mixing’’ for brevity.

This will be made precise in section 2, using the standard

‘‘mixing kernel’’ or ‘‘redistribution function’’ formalism,

but in essence it means that no unmixing is allowed. With

that restriction, and a nonvanishing change Dq in the PV

profile, we will prove a theorem stating that DM will al-

ways be negative, as it is in the special case of Fig. 1a,

provided only that the initial PV profile is zonally sym-

metric and monotonically increasing in y. In all other

respects the initial profile is arbitrary.

This theorem—which we designate as ‘‘basic’’ since it

underpins the rest of our analysis—has been proved in

several different ways. In section 5 we give what we

think is the most readable of these proofs, after relating

DM to Dq in sections 3 and 4. Section 6 points out that

the basic theorem has an alternative interpretation in

terms of potential energy and available potential energy.

Central to the proof in section 5 is an intrinsically non-

negative ‘‘bulk displacement function’’ constructed from

the redistribution function. Its physical meaning is briefly

discussed in section 7. Appendix A presents one of the

alternative proofs, based on a second, quite different non-

negative function. That function is related to the so-called

momentum–Casimir invariants of Hamiltonian theory

and therefore mathematically related, also, to energy–

Casimir invariants (e.g., Shepherd 1993) again connecting

with the theory of available potential energy. This second

nonnegative function is constructed from the initial PV

profile rather than from the redistribution function.

The upshot is that from section 5 and appendix A we

have two entirely different proofs not only of the sign

definiteness of DM, but also of the sign definiteness of

the potential-energy change due to generalized vertical

mixing of an initially stable stratification. This general-

izes classical results both on vortex dynamics (Arnol’d

FIG. 1. Examples of initial and final zonally symmetric PV pro-

files (thin and thick lines, respectively). For each initial profile the

PV increases linearly with latitude y. The examples could represent

PV distributions in a quasigeostrophic shallow-water system, in a

nondivergent barotropic system, or in a single layer within a multi-

layered or continuously stratified system. The angular-momentum

changes DM are, respectively, negative, positive, and zero in cases

(a)–(c), all of which satisfy (1.1). Cases (b) and (c) require unmixing,

or antidiffusion. Dunkerton and Scott (2008) restrict attention to

cases like (c).

1 For an explicit demonstration, see, e.g., DM08 Eqs. (7.1)–(7.2)

and below Eq. (A.4), noting that the integration by parts at the

penultimate step is valid both for bounded and unbounded beta

channels provided that the change Du in the zonal-mean zonal flow

vanishes at the side boundaries (Phillips 1954). For the unbounded

channel, DM is entirely due to the ageostrophic mass shift associ-

ated with the northward residual circulation, since Du integrates to

zero. For the bounded channel there are contributions both from

the mass shift and from Du.
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1965) and on available potential energy (Holliday and

McIntyre 1981), beyond the Hamiltonian framework.

The potential-energy interpretation applies to a Boussi-

nesq model with a linear equation of state. The proofs in

sections 5 and appendix A provide us with two com-

pletely different types of sign-definite integral formulas,

typified by (5.6) and (A.3) below, for DM and for the

analogous sign-definite change in potential energy.

As summarized in section 8, the basic theorem covers

three classes of model system: first, a shallow-water beta

channel; second, a stratified quasigeostrophic beta

channel; and third, the system considered in DS08—a

sphere with LD 5 ‘. Section 8 also points out that the

basic theorem provides, as a corollary, a substantial gen-

eralization of the Charney–Stern shear-flow stability

theorem, related also to the classical work of Arnol’d

(1965).

Section 9 presents a generalization of the basic theo-

rem to cases in which the initial PV profile is neither

monotonic nor zonally symmetric.

Sections 10 and 11 discuss how the basic theorem

applies to jet self-sharpening by PV mixing in the jet

flanks. In section 10 we show via a specific example how

a process for which DM must always be negative can

nevertheless result in jet-core acceleration. Section 11

goes on to prove a much more general result. For the

shallow-water model, PV mixing anywhere on one or

both the flanks of a jet must always accelerate the jet

core, provided that the jet is zonally symmetric both

before and after mixing.

Section 12 briefly discusses the possibility of extending

these results beyond quasigeostrophic to more accurate

models. So far, we have failed to find such extensions.

Obstacles to progress include the nonlinearity of accu-

rate PV inversion operators. In the concluding remarks,

section 13, we touch on the implications for models of

geophysical turbulence. In particular, our results un-

derline the need to pay closer attention to the angular-

momentum budget in such models.

2. Definition of generalized mixing

As well as ordinary diffusion-assisted mixing we want

to include the limiting case of purely advective rear-

rangement, or pure stirring. All such cases, from pure

stirring to partial mixing to perfect mixing, can be de-

scribed as linear operations on the PV field. They are

conveniently represented in terms of a Green’s func-

tion or integral kernel in the standard way (e.g., Pasquill

and Smith 1983; Fiedler 1984; Stull 1984; Plumb and

McConalogue 1988; Shnirelman 1993; Thuburn and

McIntyre 1997; Esler 2008a). Such Green’s functions have

properties akin to probability density functions, and are

called bistochastic or doubly stochastic. The correspond-

ing linear operators are sometimes called polymorphisms.

The Green’s function formalism is essentially the

same for all the model systems under consideration,

including those describing potential-energy changes. So

it will suffice to restrict attention at first to the shallow-

water case. For a general two-dimensional domainD, let

qi(x, y) be the initial PV distribution and q‘(x, y) the PV

distribution at some later time. Because of linearity and

horizontal nondivergence we may write

q
‘
(x, y) 5

ð ð
D

dx9 dy9 q
i
(x9, y9)r(x9, y9; x, y) (2.1)

where the kernel r satisfies the following three conditions:

ð ð
D

dx dy r(x9, y9; x, y) 5 1 for all (x9, y9) 2 D,

(2.2)

ð ð
D

dx9 dy9 r(x9, y9; x, y) 5 1 for all (x, y) 2 D,

(2.3)

and r(x9, y9; x, y) $ 0 for all (x, y), (x9, y9) 2 D,

(2.4)

but is otherwise arbitrary. Here we call r(x9, y9; x, y) the

‘‘redistribution function’’ defining the generalized mix-

ing that takes place between the initial time and the later

time. The condition (2.2) ensures that r(x9, y9; x, y) re-

presents a conservative redistribution of PV substance

in the sense that (1.1) is satisfied. To show this, integrate

(2.1) with respect to x and y and then use (2.2) to deduce

(1.1) with Dq 5 q‘ 2 qi. The conditions (2.3) and (2.4)

ensure that, for given (x, y), q‘(x, y) is a weighted average

(with positive or zero weights) of the initial PV values

qi(x9, y9). This in turn ensures that generalized mixing

cannot increase the range of PV values, and in particular

that an initially uniform PV profile remains uniform.

We may think of r(x9, y9; x, y) dxdydx9dy9 as the pro-

portion of fluid transferred from area dx9dy9 at location

(x9, y9) to area dxdy at location (x, y). Here ‘‘fluid’’ has to

be understood in a particular way. The notional fluid, or

material, has to be the sole transporter of q substance,

whether by advection or by diffusion or otherwise. That

is, we imagine that different amounts of q substance are

attached permanently to each fluid particle so that, in

particular, the diffusivity of q is the same as the self-

diffusivity of the notional fluid. The notional fluid is in-

compressible, as required by (1.1), (2.2), and the concept

of self-diffusivity.

The mathematical properties of the Green’s function

operators are further discussed in Shnirelman (1993).
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For instance, they form a partially ordered semigroup.

The partial ordering corresponds to successive mixing

events.

For the PV-mixing problem we are mainly interested

in a zonally symmetric domain jy9j, L; and sections 2–8

will consider only zonally symmetric initial PV profiles,

qi(y9). The PV distribution after generalized mixing may

or may not be zonally symmetric. However, the angular-

momentum change DM depends only on qi(y9) and on

the zonal or x average of q‘(x, y), denoted q
‘
(y). It is

convenient to define

R(y9, y)d

ð
dx9 r(x9, y9; x, y), (2.5)

the overbar again denoting the average with respect to x

(not x9). The zonal average of (2.1) is then

q
‘
(y) 5

ðL

�L

dy9 q
i
(y9)R(y9, y), where (2.6)

ðL

�L

dy R(y9, y) 5 1 for all y9 2 [�L, L], (2.7)

ðL

�L

dy9 R(y9, y) 5 1 for all y 2 [�L, L], and (2.8)

R(y9, y) $ 0 for all y, y9 2 [�L, L], (2.9)

(2.7)–(2.9) being the counterparts of (2.2)–(2.4).

A redistribution function R representing pure diffu-

sion is symmetric in the sense that R(y9, y) 5 R(y, y9).

This follows from the self-adjointness of the operator

representing the divergence of a downgradient diffusive

flux. It is sometimes assumed that all redistribution

functions are symmetric, but that would be too re-

strictive for our purposes.

Consider the examples of purely advective rearrange-

ment in Fig. 2. The first two examples, with redistribution

function R1(y9, y) and R2(y9, y), are symmetric. They

correspond to patterns in the (y9, y) plane that are mir-

ror symmetric about the main diagonal, representing sim-

ple pairwise diffusionless exchanges of fluid elements. The

third example depicts the effect of R1 followed by R2,

giving

q
‘
(y) 5

ðL

�L

dy9

ðL

�L

dy0 q
i
(y0)R

1
(y0, y9)R

2
(y9, y). (2.10)

That is, the effect of R1 followed by R2 is described by

the composite redistribution function

R
2 8 R

1
(y0, y)d

ðL

�L

dy9 R
1
(y0, y9)R

2
(y9, y), (2.11)

which is asymmetric. It represents a cyclic permutation

of three fluid elements and is the simplest kind of asym-

metric redistribution function. To be completely general

we need to include such cases and their elaborations.

In section 9 and appendix A we use the fact that purely

advective rearrangements are reversible, hence de-

scribed by invertible mappings.

3. M in terms of q for shallow water

For shallow-water beta channel dynamics we may de-

fine M as the total absolute zonal momentum per unit

zonal (x) distance. Let the shallow-water layer have depth

H 2 b(x, y, t) 1 h(x, y, t), where H is constant, h is the free

surface elevation, b is the bottom topography, and h�H,

b � H. We assume b 5 b(y). The fluctuating part
~b(x, y, t)db� b can provide a quasi-topographic form

stress to change M and catalyze PV mixing, as may hap-

pen in Jupiter’s stratified weather layer. We choose the

Coriolis parameter to be a constant, f0, thus regarding

the beta effect as due to the northward or y gradient of

the zonally averaged bottom profile b(y), corresponding

to the latitudinal gradient of Taylor–Proudman layer

depth in the middle latitudes of a spherical planet. Let

r0 be the constant mass density and u(x, y, t) the zonal

velocity with u(y, t) its zonal average. Then to quasi-

geostrophic accuracy

M 5 r
0

ðL

�L

dy (H 1 h� b)(u� f
0

y) (3.1)

5 r
0
H

ðL

�L

dy u� f
0
y

h� b

H
� f

0
y

� �
(3.2)

5 r
0
H

ðL

�L

dy u� f
0
y

h� b

H

� �
1 const. (3.3)

Introducing the quasigeostrophic streamfunction c 5

gh/f0 and the Rossby deformation length L
D

5
ffiffiffiffiffiffiffi
gH
p

/f
0

we have

M 5 r
0
H

ðL

�L

dy �›c

›y
� f

0
y

h� b

H

� �
1 const. (3.4)

5 r
0
H

ðL

�L

dy
›2c

›y2
� L�2

D c 1 by

� �
y 1 const., (3.5)

where the first term has been integrated by parts. We

have defined

byd
f

0
b

H
(3.6)

and assumed that the Phillips boundary condition holds,
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namely

›u

›t
5� ›2c

›y›t
5 0 on y 5 6L, (3.7)

implying that the boundary term

�r
0
H

›c

›y
y

� �1L

�L

5 const. (3.8)

The Phillips boundary condition is the standard way of

stopping mass and angular momentum from leaking

across the side boundaries (Phillips 1954). Denoting the

variable part of M in (3.5) by ~M and defining q in the

standard way, ignoring a contribution f0, as

qd=2c� L�2
D c 1 by, (3.9)

we have

~M 5 r
0
H

ðL

�L

dy q(y)y. (3.10)

This expression has an alternative interpretation as the

Kelvin impulse for the quasigeostrophic system, per unit

zonal distance (e.g., Bühler 2009). Initially

~M 5 ~M
i

d r
0
H

ðL

�L

dy q
i
(y)y. (3.11)

At the later time after generalized mixing, the averaged

q becomes q‘ 5 qi 1 Dq, so that

~M 5 ~M
‘

d r
0
H

ðL

�L

dy q
‘
(y)y, (3.12)

5 r
0
H

ðL

�L

dy

ðL

�L

dy9 q
i
(y9)R(y9, y)y, (3.13)

5 ~M
i
1 DM, (3.14)

say, with

DM5r
0
H

ðL

�L

dyDq(y)y, (3.15)

5r
0
H

ðL

�L

dy

ðL

�L

dy9q
i
(y9)DR(y9, y)y, (3.16)

where

DR(y9, y)dR(y9, y)� d(y9� y), (3.17)

the difference between the redistribution function R(y9, y)

and the do-nothing redistribution function d(y9 2 y).

Here d denotes the Dirac delta function.

4. M in terms of q for other systems

The relations in section 3 extend straightforwardly to

the sphere and to a stratified quasigeostrophic system in

a beta channel.

In the stratified system, with say a bottom boundary at

pressure altitude z 5 z0, the PV is redistributed sepa-

rately on each z surface, and the buoyancy acceleration

f0›c/›z is redistributed on z 5 z0. Therefore, each alti-

tude z has its own R and DR functions, R(y9, y; z) and

DR(y9, y; z) say. To obtain a concise formulation we

may define the PV to include a delta function at z 5 z0

following Bretherton (1966),

Q(x, y; z)d =2c 1
1

r
0
(z)

›

›z
r

0
(z)

f 2
0

N(z)2

›c

›z

 !

1
f 2

0

N(z
0
)2

›c

›z
d(z� z

0
) 1 by, (4.1)

where r0(z) is the background density, N(z) is the

background buoyancy frequency, and =2 still denotes

the horizontal Laplacian. If there is a rigid top boundary,

then a further delta function can be added. The initial

and later ~M values and the difference between them are

now, respectively,

~M
i
5

ð
dzr

0
(z)

ðL

�L

dy Q
i
(y; z)y, (4.2)

~M
‘
5

ð
dzr

0
(z)

ðL

�L

dy

ðL

�L

dy9 Q
i
(y9; z)R(y9, y; z)y, and

(4.3)

D ~M 5

ð
dz r

0
(z)

ðL

�L

dy

ðL

�L

dy9 Q
i
(y9; z)DR(y9, y; z)y.

(4.4)

FIG. 2. Three redistribution functions of which the first two are

symmetric and the third asymmetric. They represent purely ad-

vective rearrangements within the zone jyj , L, with no diffusive

smearing. Values are zero except on the black sloping lines, which

represent Dirac delta functions, e.g., d(y 2 y9) on the main diagonal

y 5 y9. The first two redistribution functions R1 and R2 describe

simple exchanges of small but finite (striplike) fluid elements. The

composite rearrangement described by the third redistribution

function R2 8 R1, see (2.11), is a cyclic permutation among three

fluid elements, a ‘‘three-cycle’’ in group-theoretic terminology.

Notice that the off-diagonal delta functions line up with the gaps, or

zeros, in the main diagonal. They line up both in the y direction and

in the y9 direction so that both (2.7) and (2.8) are satisfied.
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The contributions to ~M add up layerwise because PV in-

version is a linear operation in quasigeostrophic dynamics.

These relations also extend to a single layer on a

sphere, provided that LD 5 ‘ and that absolute zonal

momentum per unit zonal distance is replaced by ab-

solute angular momentum per radian of longitude. Then

the counterpart of (3.15) is

DM 5 r
0
Ha4

ð1

�1

dm Dq(m)m, (4.5)

where a is the radius of the sphere, m d sinf where f is

the latitude, and q now denotes the absolute vorticity.

The generalized-mixing conditions (2.6)–(2.9) and the

formulas (3.11)–(3.17) apply to the sphere provided that

y is replaced by m, r0H by r0Ha4, and 6L by 61.

5. The basic theorem

In this section we prove the basic theorem that DM is

always negative for monotonically increasing qi(y9) and

any nontrivial rearrangement function R such that in-

tegrals like (3.16) make mathematical sense, with values

independent of the order of integration. The same proof

will apply to the potential-energy problem, with zonal

averaging replaced by horizontal area integration for

general container shapes, as explained in section 6.

Nontrivial means ‘‘do something’’ rather than ‘‘do

nothing’’: DR in (3.17) must be nonvanishing in an ap-

propriate sense. More precisely, nontrivial means that

R(y9, y) and DR(y9, y) have nonvanishing off-diagonal

values somewhere, where those off-diagonal values have

nonzero measure in the sense that they can make non-

zero contributions to integrals like (3.16). This in turn

means that the nonvanishing off-diagonal values must

exist in some finite neighborhood, albeit possibly a neigh-

borhood in the form of a line segment, as in the delta-

function examples of Fig. 2.

Equation (3.16) can be rewritten

DM 5 r
0
H

ðL

�L

dy9 q
i
(y9)h(y9), (5.1)

where by definition

h(y9) d

ðL

�L

dy DR(y9, y)y. (5.2)

By virtue of (3.17), h(y9) may be regarded as the average

latitudinal displacement of fluid initially at y9. Denote

the indefinite integral of h(y9) by J(y9) (Cyrillic-style

capital Eta). Specifically,

J(y9)d

ðy9

�L

dy0 h(y0) 5

ðy9

�L

dy0

ðL

�L

dy DR(y0, y)y (5.3)

5

ðy9

�L

dy0

ðL

�L

dy DR(y0, y)(y� y9) (5.4)

5�
ðL

y9

dy0

ðL

�L

dy DR(y0, y)(y� y9), (5.5)

where the penultimate step uses (2.7) and (3.17), imply-

ing that
ÐL

�L dy DR(y0, y) 5 0 for all y0, and the last step

(2.8) and (3.17), implying that
ÐL

�L dy0 DR(y0, y) 5 0 for

all y. The last step depends on interchangeability of the

order of integration. From (5.4) and (5.5) we see that

J(2L) 5 0 5 J(1L). Therefore (5.1) may be integrated

by parts to give

DM 5�r
0
H

ðL

�L

dy9
›q

i
(y9)

›y9
J(y9). (5.6)

So if, finally, for nontrivial R, we can prove that J(y9) is

nonnegative for all values of y9 and nonvanishing with

nonzero measure for at least some values of y9, then the

theorem will follow. That is, (5.6) will then imply that

DM , 0 if
›q

i
(y9)

›y9
. 0 for all y9, (5.7)

and vice versa. That is, the sign of DM must always be

opposite to the sign of the initial monotonic PV gradient.

To prove that J(y9) is nonnegative we rewrite (5.5),

after changing the order of integration, as

J(y9) 5

ðy9

�L

dy

ðL

y9

dy0 DR(y0, y) y� y9j j

�
ðL

y9

dy

ðL

y9

dy0 DR(y0, y) y� y9j j. (5.8)

Again because
ÐL

�L dy0 DR(y0, y) 5 0 for all y, we may

replace
ÐL

y9
dy0 by�

Ð y9

�L dy0. Applying this to the second

term only, we obtain an expression in which DR can be

replaced by the nonnegative function R,

J(y9) 5

ðy9

�L

dy

ðL

y9

dy0 R(y0, y) y� y9j j

1

ðL

y9

dy

ðy9

�L

dy0 R(y0, y) y� y9j j, (5.9)

because there are no contributions from the main di-

agonal y 5 y0. For given y9, the two rectangular domains

of integration for (5.9) intersect each other and the main

diagonal at a single point only, y 5 y0 5 y9. (The two

domains are mirror images of each other in the main

diagonal.) At the point y 5 y0 5 y9 the factor jy 2 y9j is
zero, annihilating any delta functions. Therefore J(y9)

is nonnegative.
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Now as y9 runs from 2L to L, the two domains sweep

over the upper and lower triangles of the square 2L #

y # L, 2L # y0 # L, together covering the entire square.

By definition, a nontrivial R function must have nonzero

measure somewhere off the main diagonal, in some finite

neighborhood of a location with jyj 6¼L, jy9j 6¼L, and y 2

y9 6¼ 0. Whichever moving domain encounters that loca-

tion must continue to intersect it as y9 runs through some

finite range of values, implying that J(y9) . 0 over that

finite range. So J(y9) is not only nonnegative, but also

nonvanishing with nonzero measure, for any nontrivial

R, and the theorem follows.

An alternative proof using an entirely different non-

negative function is given in appendix A.

6. Connection to available potential energy

The basic theorem can alternatively be read as govern-

ing the sign of the potential-energy change due to three-

dimensional generalized mixing of a Boussinesq fluid

within a fixed container in a uniform gravitational field.

Consider first a container with vertical walls. Then

(5.6) carries over at once if we read qi as the buoyancy

acceleration, y9 as the altitude, the R and DR functions as

applying to horizontal area averages, starting from a

three-dimensional version of the r function in (2.1)–

(2.4), and DM as proportional to minus the potential-

energy change. Second, consider a container of arbitrary

shape V as being embedded within the vertical-walled

container. We merely extend the definition of r and

hence of R and DR such that no generalized mixing takes

place outside V. With this understanding (5.6) still ap-

plies, and (5.7) follows. That is, if the initial state is un-

disturbed and stably stratified, with the same stratification

at all horizontal positions (including those in any separate

‘‘abyssal basins’’), then the potential-energy change is

guaranteed to be positive for any nontrivial R whatever.

This generalizes a standard result in the theory of avail-

able potential energy saying the same thing for a purely

advective R (e.g., Holliday and McIntyre 1981; appendix

A below).

We emphasize that the generalized result depends on

having a linear equation of state, as is standard for

Boussinesq models, since only then is the buoyancy ac-

celeration a transportable, mixable quantity.2

7. The physical meaning of J(y9)

Reverting to the PV interpretation, with y northward

rather than upward, we consider the function J(y9)/

(L 1 y9). The definition (5.3) shows that J(y9)/(L 1 y9) is

the average northward displacement of all the notional

fluid initially south of y9. Equivalently, J(y9)/(L 1 y9) is

the northward displacement of that fluid’s centroid. This

makes the nonnegativeness of J more intuitively appar-

ent. The centroid is initially as far south as it can be, and

can therefore only move northward. We may reasonably

call J(y9) itself the ‘‘area-weighted bulk displacement’’

of all the fluid initially south of y9, or ‘‘bulk displacement

function’’ for brevity.

The fact that J(L) 5 0 expresses what can also, now,

be seen to be intuitively reasonable, namely, that there

can be no bulk displacement of the entire zone 2L #

y9 # L. The fluid has nowhere to go. Its centroid must

remain fixed under any generalized mixing operation

confined to the zone 2L # y9 # L. And the symmetry

expressed by (5.9) says that we may equally well think of

J(y9) as the southward area-weighted bulk displace-

ment of all the fluid initially north of y 5 y9.

Figure 3 shows a simple example, the bulk displace-

ment function J(y9) corresponding to the R function

shown in Fig. 2b. Nothing happens to the fluid south of

y1 and north of y2. However, there is, for instance,

a northward bulk displacement of the fluid originally in

FIG. 3. Illustration of J(y9) for a redistribution function that

simply exchanges material between latitudes y1 and y2, as for in-

stance in Fig. 2b. The finite slopes near y1 and y2 are due to the finite

widths of the fluid elements exchanged. The maximum value of J is

y2 2 y1.

2 For more general equations of state, especially those contain-

ing thermobaric terms, there is no straightforward concept of po-

tential energy. As first shown by W. R. Young, the Boussinesq limit

then needs reconsideration, and the consequences are nontrivial. It

turns out that potential energy has to be replaced by a ‘‘dynamic

enthalpy’’ that contains both gravitational and vestigial thermo-

dynamic contributions (Young 2010). Such generalized Boussinesq

models are outside our scope here.
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(2L, y9) whenever y9 lies between y1 and y2. The tran-

sitions across y1 and y2 have small but finite widths,

corresponding to the small but finite line segments in the

off-diagonal regions of Fig. 2b.

The foregoing applies of course to the potential-

energy interpretation, with northward and southward

replaced by upward and downward.

8. Further implications, including generalized
shear-instability theorems

The result (5.6) carries over to DS08’s case of a sphere

with LD 5 ‘, with y replaced by m, the sine of the lati-

tude, and DM replaced by its spherical counterpart, the

absolute angular-momentum increment (4.5), as noted

at the end of section 4. And (5.6) also carries over to the

stratified systems of section 4, with the factor r0H re-

placed by a vertical integration and q by Q as in (4.1)–

(4.4). Therefore, the basic theorem (5.7) holds in any

case for which there are monotonic profiles of Q on each

of the levels subject to mixing, provided that all the

gradients ›Q/›y have the same sign including the gra-

dients of the Bretherton delta function or functions.

It is worth noting the implications of such cases for the

theory of quasigeostrophic shear instability, in particular

the theorems of Charney and Stern (1962) and Arnol’d

(1965). These theorems in their original forms apply

only to nondiffusive Hamiltonian dynamics, and there-

fore only to purely advective rearrangements. The basic

theorem (5.7) generalizes the Charney–Stern theorem

and a case of Arnol’d’s first stability theorem—which we

call ‘‘Arnol’d’s zeroth stability theorem,’’ or ‘‘the Arnol’d

theorem,’’ for brevity—to cover finite-amplitude distur-

bances with arbitrary amounts of PV mixing. The Arnol’d

theorem in question is the nonlinear counterpart of the

Rayleigh–Kuo theorem, rather than the Fjørtoft theorem

of which Rayleigh–Kuo is a special case.

In instability problems there are no external sources or

sinks of absolute angular momentum. Growing instabil-

ities exchange angular momentum purely internally,

through radiation or diffraction stresses. This is possible,

the basic theorem tells us, only if there are regions in

which the q or Q gradients have different signs. Con-

versely, whenever the q or Q gradients are nonzero and all

of one sign, instability is impossible. These are exactly the

circumstances in which the Charney–Stern theorem and

the Arnol’d theorem were originally proved for purely

advective rearrangements and can now be proved, using

(5.7), for the far more general redistributions defined in

section 2, which include PV mixing.

The proof runs as follows. We start with q 5 qi(y), or

Q 5 Qi(y) on each level. An initial finite-amplitude

disturbance is set up advectively, by undulating the PV

contours. To do so requires artificial forcing. This is

because of the hypothesis that the q or Q gradients are

nonzero and all of one sign. By (5.7), M must change by

some nonvanishing amount DM during the setup.

We then let the system run freely. The free dynamical

evolution may include wave breaking and PV mixing—

going beyond Hamiltonian evolution. PV invertibility

implies that the free evolution can be fully described by

specifying a succession of PV distributions. Equivalently,

therefore, the free evolution can be described by a suc-

cession of R functions operating on q 5 qi(y) or Q 5

Qi(y). Each such function is the composite of two R

functions, the purely advective R function describing the

initial setup and one of the general R functions describing

the subsequent free evolution.

The free evolution keeps DM constant. Since (5.6) or

its Q counterpart, vertically integrated as necessary, is

sign definite by hypothesis, either it or its negative

qualifies as a Lyapunov function (from R functions to

nonnegative real numbers), whose constancy under free

evolution implies neutral nonlinear stability. This is the

generalized Arnol’d’s zeroth theorem.

We may remark that the sign-definite function (A.3)

below also qualifies as a Lyapunov function, vertically

integrated as necessary, providing an alternative proof.

9. Nonmonotonic, zonally asymmetric qi

The basic theorem (5.7) applies to zonally symmetric

and monotonic qi(y9) only. This is the most important

case, but it may be of interest to note what can be proved

for more general initial conditions qi(x9, y9).

Consider a pair of PV distributions q1(x9, y9), q2(x9, y9)

that can be derived from each other by purely advective,

and therefore reversible, rearrangement. That is,

q
2
(x, y) 5

ð ð
D

dx9dy9q
1
(x9, y9) s(x9, y9, x, y) and (9.1)

q
1
(x, y) 5

ð ð
D

dx9 dy9 q
2
(x9, y9) s(x, y, x9, y9), (9.2)

where the redistribution function s describes an invert-

ible mapping.

For given s, consider the set of all possible redistribution

functions r together with the set of all possible composites

r 8 s. Because of reversibility, the set of all r must be the

same as the set of all r 8 s. Therefore the set of all possible
~M‘ values that can result from applying the r’s to an initial

PV distribution q1 must be the same as the set of all

possible ~M‘ values from applying the r’s to an initial q2.

For a general initial q1(x9, y9) we can always find an

advective rearrangement s such that q2 is a monotonically
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increasing function of y alone (appendix B). Denote that

function by q2[y; q1(�)]. The corresponding ~M value is

~M
2
[q

1
(�)] 5

ðL

�L

dy9 q
2
[y9; q

1
(�)]y9. (9.3)

The basic theorem of section 5 restricts the possible ~M
‘

values that can be attained starting from q2[y; q1(�)].

Specifically,

~M
‘

# ~M
2
[q

1
(�)]. (9.4)

The same argument applies to the monotonically de-

creasing case. Because the y origin is in the center of the

y domain, the resulting q2 function is simply q2[2y; q1(�)]

and the corresponding ~M value is � ~M2[q1(�)]. In sum-

mary, identifying q1(x9, y9) with our general initial con-

dition qi(x9, y9), we now have

� ~M
2
[q

i
(�)] # ~M

‘
# ~M

2
[q

i
(�)]. (9.5)

That is, the two possible extreme values of ~M‘ correspond

to the two extreme, monotonically decreasing or in-

creasing, zonally symmetric profiles into which qi(x9, y9)

can be advectively rearranged.

10. The simplest jet-resharpening problem

Consider the following shallow-water thought exper-

iment in an unbounded domain, L 5 ‘. We begin with

a perfectly sharp jet, with concentrated PV gradients at

its core (solid curves in Fig. 4). First, the concentrated

PV gradients are smeared out, decelerating the jet and

decreasing the absolute angular momentum M (dotted

curves in Fig. 4). Second, the PV is mixed on both sides

of the jet, resharpening and accelerating it (dashed

curves in Fig. 4). Perhaps counterintuitively, the basic

theorem (5.7) implies that M must decrease further, at

this second stage, even though the jet core accelerates.

Let us look at what happens in more detail.

Consider the quasigeostrophic shallow-water system

with the initial PV profile in the form of a step of size 2qs,

q
i
(y9) 5

q
s

(y9 . 0)

�q
s

(y9 , 0):

�
(10.1)

Inversion gives the familiar velocity profile

u
i
(y9) 5 q

s
L

D
exp

� y9j j
L

D

� �
, (10.2)

shown by the solid curve in Fig. 4b. After the first stage,

in which the concentrated gradients are smeared out, the

PV profile is taken in error-function form

q
1
(y) 5

2q
s

L
ffiffiffiffi
p
p

ðy

0

d~y exp � ~y2

L2

� �
, (10.3)

shown by the dotted curve in Fig. 4a, for which the

length scale L has been taken as 2LD. Inversion gives

the corresponding smeared velocity profile, shown by

the dotted curve in Fig. 4b, as

u
1
(y) 5

L
D

q
s

L
ffiffiffiffi
p
p

ð‘

�‘

d~y exp � y� ~yj j
L

D

� ~y2

L2

� �
(10.4)

[cf. (11.2)ff.]. The change in M due to the PV redis-

tribution in this first stage is

DM
1

5

ð‘

�‘

dy (q
1
� q

i
)y 5�

q
s
L2

2
, (10.5)

FIG. 4. The jet-resharpening thought experiment. An initial PV

profile in the form of a step function (solid curves) is smeared

diffusively (dotted curves). This smeared profile is then re-

sharpened by mixing PV on the flanks of the jet (dashed curves).

Here, as throughout this paper, ‘‘mixing’’ entails conservation of

PV substance (1.1).

APRIL 2010 W O O D A N D M C I N T Y R E 1269



as can be verified from an integration by parts.

After the second stage, the PV has been perfectly

mixed on either side of the jet core (dashed curves) out

to fringes at around jyj 5 lLD, say, where l� 1. In the

figure, we have taken l 5 10. Within the two perfectly

mixed regions, the resharpened PV distribution is

q
2
(y9) 5

q
s
� dq

s
(y9 . 0)

�(q
s
� dq

s
) (y9 , 0)

�
, where (10.6)

dq
s
5 (lL

D
)�1 q

s
Lffiffiffiffi
p
p
� �

� q
s
. (10.7)

This assumes fringes antisymmetric about y 5 6lLD,

as well as total PV conservation, Eq. (1.1), and neglect

of the Gaussian tails in (10.3) for y � LD. The corre-

sponding resharpened velocity profile is

u
2
(y9) 5 (q

s
� dq

s
)L

D
exp(� y9j j/LD

), (10.8)

provided that the peripheral fringes have length scales

�LD. (Narrower peripheral fringes, not �LD, would

invert to give two extra jets, albeit weak ones.)

The change in M due to the PV redistribution in the

second stage is

DM
2

5�DM
1

1

ðlL
D

�lL
D

dy(q
2
� q

i
)y

5�q
s
L2 l

L
D

L
ffiffiffiffi
p
p

� �
� 1

2

� �
. (10.9)

Because l� 1, jDM2j � jDM1j. In this example, M not

only decreases at each stage, as the basic theorem says it

must, but the decrease is far greater at the second stage,

even though the jet core still accelerates. The total

change DM over both stages is

DM 5 DM
1

1 DM
2

5�q
s
L2l

L
D

L
ffiffiffiffi
p
p

� �
. (10.10)

This can also be written

DM 5�
q

s
L2

p

dq
s

q
s

� ��1

. (10.11)

As dqs/qs decreases, the PV profile q2 returns closer and

closer to the initial PV profile qi while DM becomes in-

creasingly large and negative. There is an increasingly

large cost associated with mixing far from y 5 0. In the

case of Fig. 4, dqs/qs ’ 0.11. Furthermore, DM1 5

22qsLD
2 and DM2 ’ 29qsLD

2. If dqs/qs were decreased to

0.01, then DM2 would become ’2125qsLD
2.

11. General jet sharpening

Consider a more general shallow-water thought ex-

periment, now starting from a general monotonic PV

profile qi(y9). For definiteness, we take the mono-

tonically increasing case ›qi(y9)/›y9 . 0.

We suppose that generalized mixing takes place except

that there is no mixing across a particular material contour

initially at latitude y 5 y0. That is, the contour behaves as

an eddy-transport barrier. The contour may undulate

during the mixing, but we assume that it straightens out

afterward and returns to latitude y0, consistent with qua-

sigeostrophic, area-preserving advection. The net effect of

the mixing can then be described by a nontrivial zonally

averaged redistribution function R(y9, y) 5 R(y9, y; y0),

recall (2.5), such that

R(y9, y; y
0
)50 if y,y

0
,y9 or y9,y

0
,y. (11.1)

It will be proved that, in this thought experiment, for

finite LD, the net change Du(y0) in the zonal-mean zonal

flow at y 5 y0 is always positive.

In particular, we may choose the material contour y 5

y0 to be in the core of a jet. So mixing on one or both

flanks of a jet must always accelerate the straightened-out

jet core, regardless of the details of the mixing provided

only that the jet core has persisted, throughout, as an

eddy-transport barrier. Mixing could be confined, for

instance, to locations arbitrarily far from the jet core,

though of course the resulting Du(y0) would then be

small.

Differentiating the expression for q in (3.9) with re-

spect to y, and taking the zonal average, we obtain the

inversion problem for the change Du(y) in u(y) due to an

arbitrary change Dq(y) in q(y),

›2

›y2
� L�2

D

� �
Du(y) 5�›Dq(y)

›y
. (11.2)

This can be solved with the Green’s function G(y, y0)

defined by

›2

›y2
� L�2

D

� �
G(y, y

0
) 5�d(y� y

0
) (11.3)

with G(y, y0) vanishing on the boundaries y 6 L to sat-

isfy the Phillips boundary condition (3.7). The proof will

apply both to finite and to infinite L (though LD has to be

finite). We have

Du(y
0
) 5

ðL

�L

dy G(y, y
0
)

›

›y
Dq(y), (11.4)
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as can be verified by subtracting G(y, y0) times (11.2)

from Du(y) times (11.3) and integrating with respect to y.

Taking Dq 5
ÐL

�L dy9q
i
(y9)DR(y9, y; y

0
), with DR de-

fined by (3.17), we may integrate (11.4) by parts to give

Du(y
0
) 5�

ðL

�L

dy9 q
i
(y9)ĥ(y9, y

0
), (11.5)

where by definition

ĥ(y9, y
0
) d

ðL

�L

dy DR(y9, y; y
0
)Y(y, y

0
) (11.6)

with Y(y, y0) d ›G(y, y0)/›y. Now let

b
J(y9, y

0
)d

ðy9

�L

dy0 ĥ(y0, y
0
). (11.7)

The reasoning below (5.2)–(5.5) applies word for word

to the functions ĥ and b
J, after replacing the right-

hand factors y and y 2 y9 in (5.2)–(5.5) by Y(y, y0) and

Y(y, y0) 2 Y(y9, y0) respectively, y0 being fixed through-

out. It follows that bJ(�L, y
0
) 5 0 5 b

J(1L, y
0
). Inte-

grating (11.5) by parts, we therefore get a result analogous

to (5.6),

Du(y
0
) 5

ðL

�L

dy9
›q

i
(y9)

›y9
b
J(y9, y

0
). (11.8)

We now use the eddy-transport-barrier assumption

(11.1). The assumption says that R(y9, y; y0) and DR(y9,

y; y0) have a block diagonal structure in the y9y plane,

with nonvanishing values confined to two diagonal blocks

meeting at y 5 y9 5 y0. If y9 . y0, then nonvanishing

contributions to b
J(y9, y0) come from the upper right

block only, and if y9 , y0 from the lower left only. With-

in each block Y(y, y0) is a monotonically increasing

function of y, as will be shown next, implying that

sgn[Y(y, y0) 2 Y(y9, y0)] 5 sgn(y 2 y9). It will then follow

that bJ(y9, y0) is given by the right-hand side of (5.9) with

jy 2 y9j replaced by jY(y, y0) 2 Y(y9, y0)j, proving not only

that bJ $ 0 but also that Du(y0) . 0 when ›qi(y9)/›y9 . 0,

in the same way as below (5.9).

Because the reasoning below (5.9) involves a finite

neighborhood in the y9y plane, it is enough to prove

monotonicity in the interior of each block, more spe-

cifically that ›Y(y, y0)/›y . 0, equivalently ›2G(y, y0)/

›y2 . 0, for y 6¼ y0 and y 6¼6L. It is here that we need the

finiteness of LD.

Consider the graph of G(y, y0) as a function of y, in

each block y , y0 and y0 , y separately. From (11.3) the

second derivative satisfies

›2G(y, y
0
)/›y2 5 L�2

D G(y, y
0
) for y 6¼ y

0
. (11.9)

For finite LD the graph is therefore convex toward the y

axis everywhere except at y 5 y0 and y 5 6L. Because

the graph goes to zero at both boundaries y 5 6L, it can

have only the one extremum at y 5 y0. The jump con-

dition from (11.3),

›G(y, y
0
)

›y

				
y5y01

y5y0�

5�1, (11.10)

ensures that the extremum is a maximum. Therefore

G(y, y0) must be positive everywhere apart from the

boundaries y 5 6L and therefore, from (11.9),

›2G(y, y
0
)/›y2 . 0 for all y 6¼ y

0
, 6L. (11.11)

This completes the proof. We have established that, for

both finite and infinite L, the velocity change Du(y0) in

the straightened-out jet core satisfies

Du(y
0
) . 0 if ›q

i
(y9)/›y9 . 0 for all y9, (11.12)

and vice versa, for any nontrivial R that preserves the

eddy-transport barrier at the jet core.

It is not clear whether there is an alternative proof

analogous to that of appendix A. The counterpart of the

last term of (A.4) no longer makes a vanishing contri-

bution to the counterpart of (A.3).

12. Beyond the present models?

It might be thought that the beta-channel results

should extend to the full sphere for finite as well as for

infinite LD. However, such an extension would be far

from straightforward, if only because the standard

quasigeostrophic theory relies on LD being constant.

Hence for finite LD the results are valid only to the ex-

tent that the beta channel is valid, namely, in a zone that

is narrow relative to the planetary radius a and suffi-

ciently far from the equator. A remaining challenge,

therefore, is to make progress beyond the restrictions of

quasigeostrophic theory and nondivergent barotropic

theory, LD 5 ‘.

Could there be an exact counterpart to the basic

theorem (5.7)? The question makes sense at least for

thought experiments having a zonally symmetric final as

well as initial state, with both states in exact cyclo-

strophic balance. Then PV invertibility tells us that there

is an exact counterpart to the question ‘‘what is the sign

of the absolute angular-momentum change that results

from generalized PV mixing?’’ Here ‘‘exact’’ indicates

not only exact cyclostrophic balance but also use of the

exact (Rossby–Ertel) PV.
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The conservation and impermeability theorems satis-

fied by the exact PV (Haynes and McIntyre 1990) guar-

antee that the distinction between generalized mixing

and unmixing is still clear. ‘‘Particles’’ of PV substance or

PV charge (of either sign) can be thought of as being

transported along isentropic surfaces, but never across

them, even when diabatic heating is significant. Hence the

upgradient transport involved in unmixing means that PV

substance is transported against its isentropic gradient.

Furthermore, even though the first-moment formula (3.10)

fails, the total absolute angular momentum is still well

defined, and exactly defined.

An exact counterpart to the basic theorem (5.7) would

therefore make sense as a conjecture. However, we have

so far failed to prove any such exact theorem. So the

question remains open for now. The main technical

obstacle appears to be the nonlinearity of the exact

cyclostrophic PV inversion operator.

13. Concluding remarks

The basic theorem (5.7) proved here underlines the

point that, especially in problems of jet formation and

maintenance, as well as in ‘‘beta-turbulence’’ problems

in general, it is advisable to consider the angular-

momentum budget as well as the enstrophy and energy

budgets. The theorem underlines another fundamental

point as well, namely that thought experiments in which

one imagines ‘‘stirring’’ the fluid to mix the PV are not

well defined until one specifies what is doing the stirring.

Artificial body forces will in general cause some un-

mixing of PV. So too will immersed bodies such as We-

lander’s massless goldfish (P. B. Rhines 1971, personal

communication), which produce vortex quadrupoles and

are therefore capable of extending the range of PV values.

Indeed massless goldfish, by definition, cannot change the

absolute angular momentum. The goldfish might there-

fore produce profiles like those studied in DS08 and il-

lustrated in Fig. 1c above.

Another motivation for this work was to advance our

understanding of Jupiter’s weather layer. An adequate

representation of what we observe on the real planet will

undoubtedly require a coupled model of the weather

layer and the underlying convection zone. The convec-

tion zone is, in turn, bounded below by a strongly

stratified transition to metallic hydrogen, as the pressure

increases and the proportion of ionized hydrogen atoms

to neutral atoms and H2 molecules builds up with tem-

perature. It is likely that Richardson numbers in the

transition zone are enormous. So it may well be that one

can treat the transition zone as a rigid but perfectly

slippery boundary, whose only function is to supply heat

from below.

Our current aim is less ambitious, namely to isolate

one aspect of the coupling between the top of the con-

vection zone and the overlying weather layer by making

the simplifying assumption that the main effect of the

convection zone is to exert the fluctuating form stress

required to catalyze PV mixing and jet formation. For

instance, the form stress can be exerted via an artificial

‘‘heaving topography’’ ~b(x, y, t) acting as the forcing

function on a shallow-water layer, in place of the usual

artificial body forces. Arguably, the addition of such

quasi-topographic forcing might improve the realism of

simulations like that of Showman (2007). Showman also

avoids using artificial body forces, but assumes that the

sole effect of the convection zone is to produce small-

scale mass injections into the weather layer, like thun-

derstorm anvils.

A further question is whether, with a more natural and

realistic forcing, we can reach a statistically steady state

without having to invoke large-scale Rayleigh friction

or hypodiffusion, both of which are hardly natural as-

sumptions for a planet with no nearby solid surface.

These questions are as yet unanswered but we hope

to make progress on them soon, through numerical

experiments based on sophisticated numerical codes

that as far as possible respect the angular-momentum

principle.
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APPENDIX A

An Alternative Proof

The connection to potential energy noted in section 6

suggests an alternative proof of the basic theorem via

a mathematical route quite different from that of section

5. It is motivated by positive-definite exact formulas for

potential-energy changes that are already known for

purely advective rearrangements of buoyancy (e.g.,

Holliday and McIntyre 1981; Andrews 1981; Molemaker

and McWilliams 2010; Roullet and Klein 2009). These

exact formulas are now recognized as cases of the energy–

Casimir and momentum–Casimir formulas arising in

Hamiltonian models of disturbances to nontrivial initial

or background states (e.g., Arnol’d 1965; Shepherd 1993).

The resulting proof of (5.7) can be seen as a nontrivial

generalization of the Hamiltonian theory, made possible

by the R-function formalism.
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For a purely advective rearrangement, the Hamiltonian

formulas apply. In the shallow-water case, for instance,

we have

DM 5�r
0
H

ðL

�L

dy A(y, �h), (A.1)

where �h is the latitudinal displacement of a fluid element

expressed as a function of its final latitude y rather than

its initial latitude y9, so that �h(y) 5 h(y9) 5 y� y9, and

where the function A is defined by

A(y, �h)d

ð�h

0

d�hy
›q

i
(y� �hy)

›y
�hy. (A.2)

It is only because of the invertible mapping between the

initial latitude y9 and final latitude y of a given fluid el-

ement, in the purely advective case, that we can write

the displacement of that element as a function either of

y9 or of y.

We now show that the R-function formalism allows us

to rederive (A.1) together with its generalization be-

yond the Hamiltonian framework, as a single expression

DM 5�r
0
H

ðL

�L

dy

ðL

�L

dy9R(y9, y)A(y, y� y9). (A.3)

First, we see by inspection that in the purely advective

case, for which R(y9, y) 5 d[ y� y9� �h(y)], the ex-

pression (A.3) does reproduce (A.1). Second, to see that

(A.3) is correct for a general R function, we rewrite

(A.2) by substituting yyd y� �hy and integrating by

parts to obtain

A(y, y� y9) 5�q
i
(y9)(y� y9)�

ðy9

y

dyy q
i
(yy). (A.4)

Now the last term of (A.4) contributes nothing to (A.3).

This is because it has the functional form a(y) 2 a(y9). In

virtue of the integral constraints (2.7) and (2.8), the

contribution to (A.3) is
ÐL

�L

Ð L

�L dy dy9 R(y9, y)[a(y) �
a(y9)] 5

ÐL

�L a(y) dy �
ÐL

�L a(y9) dy9 5 0, for any func-

tion a(�).

The definition (5.2) of the average displacement h(y9)

can be rewritten using (2.7) and (3.17) as

h(y9) 5

ðL

�L

dy DR(y9, y)(y� y9)

5

ðL

�L

dy R(y9, y)(y� y9). (A.5)

Hence, by substituting the first term of (A.4) into (A.3),

then using (A.5) to rewrite the result in terms of h(y9),

we see that (A.3) is equivalent to the original expres-

sion (5.1) for DM. The basic theorem (5.7) now follows,

because (A.2) shows that the function A is positive

definite whenever ›qi/›y is positive, and negative defi-

nite whenever ›qi/›y is negative.

APPENDIX B

Monotonizing Q

To see how to obtain monotonically increasing q2[y9;

q1(�)] from the general q1(x9, y9) by advective rear-

rangement, one may proceed as follows.

The function describing the monotonic PV distribu-

tion q 5 q2[y; q1(�)] will have an inverse function y 5

y2[q; q1(�)]. For a given q value, all the fluid with q1 . q

will, after rearrangement, lie between y 5 y2[q; q1(�)]

and the northern boundary y 5 L. Hence we may define

y
2
[q; q

1
(�)] d L�

ðL

�L

dyH q
1
(x, y)� q


 �
, (B.1)

where H is the Heaviside step function and the overbar

again denotes averaging in x. The redistribution func-

tion representing the advective rearrangement from

q1(x9, y9) to q2[y9; q1(�)] is

s[x9, y9, x, y; q
1
(�)] 5

1ð
dx9

d y� y
2
[q

1
(x9, y9); q

1
(�)]


 �
,

(B.2)

where d is the Dirac delta function. Equation (B.2) can

be verified by substituting this s into (9.1).
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