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ABSTRACT

The ultimate limitations of the balance, slow-manifold, and potential vorticity inversion concepts are inves-
tigated. These limitations are associated with the weak but nonvanishing spontaneous-adjustment emission, or
Lighthill radiation, of inertia–gravity waves by unsteady, two-dimensional or layerwise-two-dimensional vortical
flow (the wave emission mechanism sometimes being called ‘‘geostrophic’’ adjustment even though it need not
take the flow toward geostrophic balance). Spontaneous-adjustment emission is studied in detail for the case of
unbounded f -plane shallow-water flow, in which the potential vorticity anomalies are confined to a finite-sized
region, but whose distribution within the region is otherwise completely general. The approach assumes that
the Froude number F and Rossby number R satisfy F K 1 and R * 1 (implying, incidentally, that any balance
would have to include gradient wind and other ageostrophic contributions). The method of matched asymptotic
expansions is used to obtain a general mathematical description of spontaneous-adjustment emission in this
parameter regime. Expansions are carried out to O(F4), which is a high enough order to describe not only the
weakly emitted waves but also, explicitly, the correspondingly weak radiation reaction upon the vortical flow,
accounting for the loss of vortical energy. Exact evolution on a slow manifold, in its usual strict sense, would
be incompatible with the arrow of time introduced by this radiation reaction and energy loss. The magnitude
O(F4) of the radiation reaction may thus be taken to measure the degree of ‘‘fuzziness’’ of the entity that must
exist in place of the strict slow manifold. That entity must, presumably, be not a simple invariant manifold, but
rather an O(F4)-thin, multileaved, fractal ‘‘stochastic layer’’ like those known for analogous but low-order coupled
oscillator systems. It could more appropriately be called the ‘‘slow quasimanifold.’’

1. Introduction

The ideas of balanced flow and slow manifold for
stratified, rotating fluid systems (e.g., Charney 1948;
Leith 1980; Lorenz 1980) are among the most useful,
important, and arguably central ideas in dynamical me-
teorology and oceanography, for well-known reasons.
In one form or another, these ideas underlie practically
all of our theoretical knowledge about vortical eddy flow
in such systems, including shear instabilities, telecon-
nections, blocking, vortex isolation, and other phenom-
ena dependent on Rossby wave ‘‘quasi elasticity’’ (e.g.,
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Armi et al. 1988; Manney et al. 1994; McIntyre 1993;
Polvani and Plumb 1992; Simmons and Hoskins 1979;
Hoskins et al. 1985; Chang and Orlanski 1993; Thorn-
croft et al. 1993, and references therein). The same ideas
have recently led to a new interpretation of helioseismic
data (Gough and McIntyre 1998) that promises to rev-
olutionize thinking about the behavior and possible var-
iability of the sun’s stratified, rotating interior.

The ideas are central because of their conceptual sim-
plifying power. Not only do these ideas, when justifi-
able, permit one to confine attention to a far smaller
phase space of possible states, but they also make ex-
plicit—and keep conceptually separate—important as-
pects of the dynamics that are hard to disentangle from
Newton’s laws or from the primitive equations of mo-
tion. These aspects include prognostic versus diagnostic,
advective versus nonadvective, and local versus non-
local aspects. The resulting viewpoint is able to treat
the central difficulty of fluid dynamics, the advective
nonlinearity, with maximum possible simplicity by rep-
resenting it solely in terms of the advection of potential
vorticity and near-surface potential temperature. The
nonlocal aspects are made explicit through the idea of
‘‘potential vorticity inversion,’’ helped by the various
analogies such as the membrane analogy and the elec-
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trostatic analogy (Obukhov 1962; Hoskins et al. 1985,
and references therein; McIntyre 1993, and references
therein; Bishop and Thorpe 1994).

It is therefore of great interest to know the accuracy
and limitations, if any, of the ideas of balanced flow,
slow manifold, and potential vorticity inversion. These
ideas have a long history, going back to the classic
papers of Charney (1948), Kleinschmidt (1950a,b,
1951), Lorenz (1980), and Leith (1980); and it has long
been appreciated that the slow-manifold idea entails
mathematical subtlety. Strictly speaking, ‘‘slow mani-
fold’’ means an invariant manifold or single, smooth
hypersurface within phase space on which freely prop-
agating inertia–gravity waves are altogether absent from
the corresponding physical states. What this means
mathematically will be made precise shortly. The im-
plied picture has always been attractive since, if correct,
it means that balanced flow is an exact and uniquely
defined concept having the same qualitative character
as quasigeostrophic or other approximately balanced
flow, and that potential vorticity inversion is, in prin-
ciple, exactly and uniquely definable.

Indeed, so attractive is this picture that there have
been attempts to argue for the existence of such a slow
manifold, in the strict mathematical sense just referred
to, via expansion or iteration procedures that are pre-
sumed to converge. However, there are two strong lines
of evidence against such convergence, supplementing
the arguments already in the literature (Errico 1981;
Warn 1997; Warn and Ménard 1986; Vautard and Legras
1986; Lorenz and Krishnamurthy 1987; Lorenz 1992).

The first line of evidence comes from the theory of
coupled oscillators, which provides examples of simpler
systems, such as the perturbed simple pendulum, to
which fundamentally similar arguments might seem to
apply but, in fact, as has been rigorously proven, do
not. The expansion or iteration procedures do not con-
verge because, as it turns out, there is nothing for them
to converge to. An isolated, unperturbed simple pen-
dulum, for instance, has what might be called a ‘‘slow-
est’’ invariant manifold, namely, the homoclinic orbit
corresponding to the unperturbed pendulum motion of
infinite period, motion on which orbit can reasonably
be considered analogous to quasigeostrophic or other
strictly balanced motion in fluid systems. But this hom-
oclinic orbit ceases to exist, as a uniquely defined in-
variant manifold, under even the smallest perturbation,
for instance weak coupling to another oscillator of high-
er frequency (e.g., Berry 1978; Bokhove and Shepherd
1996). The single homoclinic orbit is replaced by a
‘‘stochastic layer’’ of chaotic orbits, having small but
finite thickness, and fractal dimensionality. There is no
single orbit to converge to, and it is this, rather than
any purely technical difficulty with the expansion pro-
cedure, that accounts for the failure of convergence.
Such coupled oscillator problems are reasonable analogs
for our purposes because the fluid system can be re-
garded as an infinite set of nonlinearly coupled oscil-

lators; indeed, that it how it is routinely regarded in the
literature on numerical weather prediction.

The second, and for our purpose even stronger, line
of evidence—related to the above but applying directly
to the fluid systems of interest here, which are dynamical
systems with infinite-dimensional phase spaces—comes
from a large body of theoretical and experimental work
on the spontaneous emission or radiation of sound
waves by unstratified, three-dimensional vortical flows
beginning with the Lighthill theory for the case of small
Mach number (Lighthill 1952; see also, e.g., Crighton
1981; Kambe 1986; Webster 1970). A generalized ver-
sion of the Lighthill theory, with inertia–gravity waves
in the role of sound waves, can be developed (e.g.,
section 2 below) and strongly suggests that the unsteady
stratified, rotating, vortical flows of interest here, which
can be regarded as ‘‘layerwise-two-dimensional,’’ must
generally emit inertia–gravity waves. Here, the Froude
number corresponds to the Mach number of the original
theory. In a strongly justifiable sense, at least for small
Froude number, the waves can be said to be sponta-
neously emitted or radiated by the vortical flow. This
again implies nonexistence of a slow manifold in the
strict sense of complete absence of freely propagating
inertia–gravity waves. Coriolis effects can be expected
to weaken the emission still further, but not to make it
exactly zero, even for arbitrarily small Rossby number.
This is because of the expectation that typical vortical
flows, being chaotically unsteady (e.g., Aref and Pom-
phrey 1982), will have a frequency spectrum with no
high-frequency cutoff (Errico 1981). We say ‘‘sponta-
neously emitted or radiated’’ to emphasize the distinc-
tion between such emission or radiation on the one hand,
and the radiation due to an imbalance in the initial con-
ditions, as in the well-known Rossby adjustment prob-
lem, on the other (e.g., Gill 1982). A further example
of spontaneous emission, confirming unequivocally that
it is liable to take place, though very weakly, at arbi-
trarily small Rossby number, has been studied by Ford
(1994a).

We may summarize the essence of the foregoing, and
make it more precise, by defining what a strict slow
manifold is—or, rather, what it would have to be if it
existed—as follows.

A strict slow manifold is an invariant manifold within
the full phase space, such that on it the full flow at each
instant can be deduced, uniquely and exactly, by potential
vorticity inversion.

Here potential vorticity inversion is understood in its
usual sense. That is, it signifies that the full flow at each
instant, including velocity and geopotential fields, can
be deduced diagnostically and unambiguously from the
potential vorticity field alone where ‘‘potential vorticity
field,’’ in the case of stratified flow, has to include sur-
face potential temperature, and where it is understood
that the basic stratification has been prescribed in terms
of the mass under each isentropic surface (e.g., Hoskins
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et al. 1985) or, for shallow water systems, in terms of
the total mass or mean depth of the fluid layer. Potential
vorticity inversion, as understood here, also has the usu-
al time symmetry or ‘‘sign-reversal property.’’ That is,
if the potential vorticity field has its sign reversed ev-
erywhere (which includes changing the sign of the Cor-
iolis parameter f if we view the system in a rotating
frame, but keeping surface potential temperature un-
changed), then the velocity field produced by inversion
also changes sign everywhere.

Notice that the definition just given is consonant with
the standard idea of slow manifold as normally used in
connection with approximate balanced models, such as
quasigeostrophy, semigeostrophy, and Bolin–Charney
balance (e.g., Whitaker 1993). All these balanced mod-
els permit potential vorticity inversion in the sense just
described, including the sign-reversal property, except
for the fact that the results of the inversion are approx-
imate.

It is plain that the existence of a slow manifold, in
the strict sense just defined, requires the complete ab-
sence of freely propagating inertia–gravity waves, or,
more precisely, that it requires the corresponding vor-
tical flows never to emit such waves. Any such emission
would be incompatible with the sign-reversal property.
The example of Ford (1994a) is a sufficient illustration.
There, a circular vortex patch spontaneously develops
sinusoidal Rossby wave undulations of its edge, grow-
ing exponentially in time and emitting inertia–gravity
waves with a spiral pattern of phase lines. For the cor-
responding case in which the sign of the potential vor-
ticity is reversed, we get an inertia–gravity wave spiral
in the opposite sense (because the waves are still being
emitted). It follows that, in this example, not all con-
tributions to the velocity field have their sign reversed.
In particular, the radial velocity components in the out-
going wave field keep the same sign. This is enough to
show that the strict slow manifold cannot, in fact, exist.

There is still, however, a question as to whether there
could be a ‘‘generalized slow manifold’’ that includes
the spontaneously emitted waves (J. Tribbia 1991, per-
sonal communication), such as the spiral wave field in
Ford’s example. This motivates an additional definition.

A generalized slow manifold is an invariant manifold on
which the full flow is known in terms of the instantaneous
potential-vorticity field, but which does not respect the
sign-reversal property and may therefore include inertia–
gravity waves satisfying a causality or radiation condi-
tion.

If such a generalized slow manifold were to exist, then
finding it would have to involve backward integration
in time from the instant at which the potential vorticity
is given. We postpone further discussion until after the
detailed analysis to be presented here.

Working with the simplest fluid system for which the
foregoing issues are nontrivial, namely, the shallow wa-
ter system on an unbounded f plane, we investigate in

detail the fluid dynamics of spontaneous emission in a
way that complements, and in a sense generalizes, the
example presented in Ford (1994a). The outcome is new
mechanistic insight plus a clear confirmation that non-
zero spontaneous emission is the usual state of things,
even for arbitrarily small Froude number, verifying the
expectation from the Lighthill theory and adding to the
evidence against the existence of a strict slow manifold.
It also becomes clear how the notion of high-order po-
tential vorticity inversion (McIntyre and Norton 2000)
fits into the picture, and what its limitations are in the
parameter regime studied here. Furthermore, we make
progress toward answering the question of whether a
generalized slow manifold might exist for this fluid sys-
tem.

The plan of the paper is as follows. Section 2 presents
the generalization of Lighthill’s theory to include Cor-
iolis effects, and points to why a more detailed analysis
is necessary. Section 3 presents the detailed analysis.
The approach assumes that the Froude number F and
Rossby number R satisfy F K 1 and R * 1 (implying,
incidentally, that any balance will be strongly ageo-
strophic). The method of matched asymptotic expan-
sions is used (van Dyke 1964) to obtain a general math-
ematical description of spontaneous-adjustment emis-
sion in this parameter regime. Expansions are carried
out to O(F4), which is high enough to describe not only
the emitted waves but also the correspondingly weak
radiation reaction upon the vortical flow. The radiation
reaction is described by a contribution to the ad-(rad)u4

vecting velocity field. This shows explicitly how time
symmetry is violated and the existence of the strict slow
manifold precluded. In section 4 we offer some con-
cluding remarks on the implications for the concepts of
slow manifold, generalized slow manifold, and related
concepts.

2. Lighthill’s argument in a rotating reference
frame

In order to generalize Lighthill’s argument, we write
the f -plane shallow water equations in flux form:

] ] g ]
2(hu ) 1 (hu u ) 2 « fhu 1 (h ) 5 0, (1a)i i j ij j]t ]x 2 ]xj i

]h ]
1 (hu ) 5 0, (1b)i]t ]xi

where h is the layer depth, (ui) 5 (u1, u2) are the com-
ponents of the velocity field in Cartesian coordinates
(xi) 5 (x1, x2), f . 0 is the constant Coriolis parameter
or inertia frequency, g is the gravitational force per unit
mass, and «ij is the two-dimensional alternating tensor,
defined by «12 5 2«21 5 1 and «11 5 «22 5 0. As in
Lighthill’s original work, one can derive from these
equations a single equation with the appropriate linear
wave operator on the left and all the nonlinear terms on
the right. The most convenient dependent variable for
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the left-hand side is ]h/]t; so we proceed by subtracting
]/]t of the divergence of Eq. (1a) from 2 f times the
curl of Eq. (1a), then eliminating = · (hu) and its second
time derivative using Eq. (1b) and its second time de-
rivative. The result is

2 2] ]h ]
2 2 21 f 2 c ¹ 5 T , (2)0 ij21 2]t ]t ]x ]xi j

where

] f
T 5 (hu u ) 1 (« hu u 1 « hu u )ij i j ik j k jk i k]t 2

g ]
21 (h 2 h ) d . (3)0 ij2 ]t

The wave operator on the left is the linear Poincaré or
inertia–gravity wave operator, as distinct from the clas-
sic wave operator with no f 2 term, which appears in
Lighthill’s original theory. Crucially, however, the non-
linear terms on the right-hand side retain the second-
derivative form found in the original theory.

Rephrased in terms of the present problem, Lighthill’s
main point is that when F K 1, the right-hand side of
(2) is known to good approximation from the vortical
flow alone, approximated as nondivergent. The right-
hand side can therefore be regarded as a given source
of inertia–gravity waves—a source that is known as
soon as the nondivergent barotropic vortex flow is
known—with two important implications. First, with
few if any exceptions, unsteady vortical flows will emit
freely propagating inertia–gravity waves, implying non-
existence of a strict slow manifold as defined above.
Second, however, the emission is very weak for F K 1
[with radiated power O(F4); details below]—corre-
sponding to very weak coupling in the coupled-oscil-
lator analogy—helping to explain why balance and po-
tential vorticity inversion, though inherently approxi-
mate, can be far more accurate than might be suggested
by the standard order-of-magnitude considerations and
filtered balanced models (Norton 1988; McIntyre and
Norton 2000). As Lighthill pointed out, it is the second-
derivative form of the right-hand side of (2), rather than
the precise form of Tij itself, that makes the emission
weak.

More precisely, if we assume that Tij is ‘‘compact’’
in the sense of having significant magnitude only over
a finite region in space that is of small length scale in
comparison with the wavelength of radiated waves, then
the emission is of quadrupole type in the sense that it
suffers two orders of destructive interference, where
‘‘order’’ corresponds to powers of the small parameter
F. It is also quadrupole in the sense that far from the
source the waves are of form r21/2ei(kr2vt)e2iu to leading
order (as will be shown in section 3f), where v is the
frequency of the emitted wave, k the radial wavenumber,
r 5 ( 1 )1/2 the radial coordinate, and u the azimuthal2 2x x1 2

coordinate. By contrast, monopole radiation has the

form r21/2 e i(kr2v t) and dipole radiation the form
r21/2ei(kr2vt)eiu.

That this picture of weak, quadrupole radiation is
justified is confirmed by the detailed analysis to be given
next. In the analysis, nontrivial technical difficulties
emerge. Circumventing them is one of the motivations
for this paper. Some of these difficulties are related to
the dispersive character of the wave operator on the left
of (2) when f ± 0 and to understanding in detail how
the presence of rotation weakens the spontaneous emis-
sion, despite the factors f in some of the terms on the
right of (2). Other difficulties are related to the non-
convergence of certain integrals in two space dimen-
sions, to the occurrence of logarithmic terms in the anal-
ysis, and to the need to maintain, if possible, well-or-
dered expansions over a large time interval. The way
in which this last difficulty is overcome connects the
present work with the results of the companion paper
(McIntyre and Norton 2000) and those of Warn et al.
(1995).

3. Detailed analysis

a. Preliminaries

Attention will be restricted to cases in which the vor-
tical flow takes place within some relatively small region
of the f plane, so that we can clearly see whether freely
propagating waves are being emitted therefrom. By as-
sumption, this vortical region, as we shall call it, is
characterized by a horizontal scale L. We shall assume
that the potential-vorticity anomaly q 2 qb decays ex-
ponentially in space on the length scale L: that is, q 2
qb 5 O(r2`) as r → ` in the vortical region, where the
notation O(r2`) means smaller than any inverse power
of r, and qb is the uniform background value. To the
order of asymptotic analysis that we require, the vortical
region is then the only region in which the potential
vorticity q differs significantly from qb. We further as-
sume that the Froude number F of the flow in the vortical
region is small. This implies that the layer depth ev-
erywhere takes a uniform value D0, with departures
from this uniform value at O(F2). The value of qb is
thus f/D0.

The Froude number is defined here as F 5 U/c0 K
1, where U is the typical velocity associated with the
vortical region, and c0 5 (gD0)1/2 is the nonrotating
gravity wave phase speed. The Rossby number R is
defined by R 5 U/ fL and we assume that R * 1. Inertia–
gravity wavelengths l for waves of frequency v are
given by l 5 2pc0/(v2 2 f 2)1/2. If the waves are gen-
erated by the vortical flow then we expect v ; U/L,
hence, l * 2pL/F. This means that wavelengths of emit-
ted inertia–gravity waves are long in comparison with
(2p times) the length scale L of the vortical region. The
larger scale L/F characterizes a second region, the wave
region, as we shall call it, in which waves propagate
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FIG. 1. A schematic picture showing the vortical region and the
surrounding wave region. The vortical region is characterized by
length scale L, and the wave region by the larger scale L/F (F K 1).
The solid curves in the vortical region represent potential vorticity
contours. The circular arcs in the wave region represent wavecrests;
solid and dashed lines are supposed to represent positive and negative
divergence, respectively. The 1808 rotational symmetry of the wave
field is consistent with radiation from a quadrupole source, as pre-
dicted by the Lighthill theory.

freely away from the vortical region. The regions are
shown in Fig. 1.

The technique to be used, following and extending
the work of Crow (1970), is the method of matched
asymptotic expansions (see also van Dyke 1964). Here
the small expansion parameter is the Froude number F.
For the present purposes, it is necessary to take the
expansions to higher order in F than in Crow’s pio-
neering work. It is also necessary to treat the vortical
evolution in the special way suggested by the work of
Norton (1988), and more explicitly by that of Warn et
al. (1995), in order to avoid secular disordering of the
expansions and a corresponding restriction of their time
interval of validity.

To cope with the technicalities, we need to introduce
some special notation. In particular, we replace the total
layer depth h of (1) by D where

D 5 D0(1 1 F2h). (4)

Here D0, a constant, is the undisturbed layer depth as
before, and h now represents a dimensionless measure
of the departure therefrom.

With velocity u 5 (u1, u2) scaled on U, horizontal
coordinates x 5 (x1, x2) scaled on L, time t scaled on
L/U (so that the dimensionless inverse Coriolis param-
eter f 21 5 R, the Rossby number), and h in its new

sense defined by (4), the dimensionless shallow water
equations appropriate to the vortical region, now more
conveniently written in advective rather than flux form,
are

Du
1 f k 3 u 1 = h 5 0 (5a)xDt

Dh
2F 1 h= · u 1 = · u 5 0, (5b)x x1 2Dt

where =x represents ]/]x as distinct from ]/]X, to be
used below. The dimensional potential vorticity is scaled
on U/(D0L), so that the dimensionless potential vorticity
q takes the form

f 1 z
q 5 5 f 1 q̂, (6)

21 1 F h

say, where z is the dimensionless relative vorticity
]u2/]x1 2 ]u1/]x2. Note that the uniform background
potential vorticity qb takes the dimensionless value f.
The potential vorticity evolves according to

]q
1 u · = q 5 0. (7)x]t

Thus the leading-order dynamics in the vortical region,
(5a) with F 5 0 in (5b), is simply two-dimensional
nondivergent barotropic vortex dynamics. The presence
of background rotation plays no part in the leading-order
evolution of the potential vorticity field, relative to the
uniform background value. The rotation does affect the
dimensionless height field h, but h affects the definition
of q at O(F2) only. Therefore, the leading-order evo-
lution of the potential vorticity field is unaffected by f,
over short time intervals t 5 O(1).

To take the analysis further, it proves convenient to
use (7), (5b), and the divergence of (5a) as the evolution
equations. We write the last of these as

]
2= · u 1 = · [( f 1 z)k 3 u] 1 ¹ B 5 0, (8)x x x]t

where B 5 h 1 |u| 2 is the Bernoulli potential. This use1
2

of B rather than h will prove necessary in order to main-
tain convergence of certain integral representations that
arise in the analysis, given by (15), (34), and (35) below.
Note incidentally that such a device is not needed in
the three-dimensional nonrotating problem (Crow
1970).

To obtain equations for the surrounding wave region,
valid in the limit of small F, we must rescale the equa-
tions using the length scale L/F. We therefore introduce
the wave-region spatial variable X, defined such that X
5 Fx. Similarly, other scaled fields in the wave region
are represented by capital letters in place of the corre-
sponding lowercase letters for the corresponding field
in the vortical region. Thus h is replaced by H, the
departure from undisturbed layer depth in the wave re-
gion. The velocity is one order in F smaller in the wave
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region, so u is replaced by FU. Under these scalings,
(5a) and (5b) are replaced by

]U 1
2 21 f k 3 U 1 = H 1 F (k · = 3 U)k 3 U 1 = UX X X1 2]t 2

5 0 (9a)

]H
21 = · U 1 F = · (HU) 5 0, (9b)X X]t

where =X represents ]/]X. Equations (9a) and (9b) admit
propagating inertia–gravity waves as leading-order so-
lutions for small F. In the wave region it is the nonlinear
terms, rather than the leading-order divergence terms,
that are of small order in F. The potential vorticity in
the wave region is given by

2f 1 F k · = 3 UXQ 5 . (10)
21 1 F H

By assumption, the potential vorticity anomaly q̂ 5 q
2 f is O(r2`) in the vortical region as r → `. Therefore,
in the wave region, the potential vorticity Q takes its
uniform value f to all algebraic orders in F. This fact
will be used in (20) below.

The flow in each of the two regions is expressed as
an asymptotic expansion, with small expansion param-
eter F. The expansions in the two regions must be
‘‘matched,’’ that is, made mutually consistent in the
region where they overlap. More precisely, the ‘‘inner
limit’’ |X| → 0 of the flow in the wave region, when
reexpressed in terms of x, must be the same as the ‘‘outer
limit’’ |x| → ` of the flow in the vortical region (van
Dyke 1964). This is known as the asymptotic matching
condition. It will be used repeatedly throughout section
3. The entire solution, in both regions, with matching,
is referred to as a pair of ‘‘matched asymptotic expan-
sions.’’ We impose a radiation condition on the wave
region in the limit |X| → `.

b. Perturbation expansion for the flow in the vortical
region

The expansion for the flow in the vortical region takes
the form

2 2 4 2u 5 u 1 F lnFu 1 F u 1 F ln Fu0 21 2 42

4 41 F lnFu 1 F u 1 · · · (11a)41 4

2 2 2h 5 lnFh 1 h 1 F ln Fh 1 F lnFh01 0 22 21

21 F h 1 · · · . (11b)2

The logarithmic terms, which cannot be predicted
from (5), that is, from consideration of the vortical re-
gion alone, arise from the asymptotic matching condi-
tion between the flow in the vortical region and the flow
in the wave region. Although the expansion for h starts
at O(lnF), which becomes unbounded in the limit F →
0, we should recall from (4) that the actual nondimen-

sional layer depth is given by 1 1 F2h, and so the actual
layer depth remains finite as F → 0. Moreover, we will
show that =xh01 5 0, so there is no unbounded term in
the momentum equation (5a).

Now in order to maintain validity over times t k 1,
we need to pay special attention to the potential vorticity
field q(x, t). Given q everywhere in space, it proves
possible to determine not only the leading-order velocity
u0 in the vortical region, but also, by inverting a se-
quence of Poisson equations, the higher-order terms in
the velocity and height fields up to the highest orders
displayed in (11a) and (11b), with the exception of a
contribution of to u4 associated with the radiation(rad)u4

reaction. Note well that q itself is not expanded, nor is
its evolution equation (7). Rather, q is evolved according
to (7) with the advecting velocity u replaced by its full
expansion up to whatever order is required, which in
our case is just that displayed in (11a).

As explained by Warn et al. (1995), this is necessary
in order to maintain extended validity in time. Such
validity requires that the expansion remain well ordered
over some suitable time interval. In particular, the terms
arising from the sequence of Poisson equations need to
remain well ordered, in turn requiring that they do not
increase secularly in time. The terms do remain well
ordered provided that we evolve q in the way just de-
scribed. This part of the procedure is equivalent to a
high-order potential vorticity inversion, done by as-
ymptotic expansion (Warn et al. 1995) rather than by
numerical iteration (Norton 1988; McIntyre and Norton
2000).

The contribution depends on a certain ‘‘history(rad)u4

integral,’’ appearing in Eq. (67) below and involving
q(x, t) for all past t. On the assumption that the same
pattern of Poisson solutions and history integrals con-
tinues to higher order, with no secular behavior, the
expansion (11) gives us an approximate solution valid
out to times of order F24 k 1.

c. The leading-order flow in the vortical region

We now take the first step in the solution procedure
just described, by obtaining from the potential vorticity
field expressions for the velocity field and height field
at leading order in F in the vortical region. Because (5b)
reduces to =x · u0 5 0 at leading order, we may write
u0 5 k 3 =xc0. Thus, neglecting F2h in (6), we have

c0 5 q 2 f 5 q̂.2¹x (12)

The potential vorticity anomaly q̂ is assumed, as men-
tioned earlier, to be O(r2`) as r → `. It follows that

1
2 cc (x, t) 5 q̂(x9, t) ln|x 2 x9| d x9 1 c , (13)0 EE 02p 2R

where R2 denotes the entire plane and the complemen-
tary function is a nonsingular solution of Laplace’scc 0

equation 5 0, that is, is a linear combination2 c c¹ c cx 0 0

of terms of the form rneinu, where r 5 |x|, and n 5 0,
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1, 2, . . . . However, we will show from the asymptotic
matching conditions as r → ` that 5 constant. Incc 0

other words, the leading-order velocity u0 is unaffected
by the flow in the wave region and is obtained by in-
version as in two-dimensional nondivergent barotropic
vortex dynamics with relative vorticity q̂(x, t). The con-
dition q̂ 5 O(r2`) as r → ` is sufficient to guarantee
convergence of the integral in (13).

A simple example, with three Gaussian vortices in
the vortical region, is shown in Fig. 2. For maximal

simplicity in this example we have taken f 5 0. The
potential vorticity q is shown in Fig. 2a, and the cor-
responding streamfunction c0 is shown in Fig. 2b.

To obtain the corresponding expression for h0, we use
the leading approximation to (8), which is

B0 5 =x · (q̂=xc0) 1 f c0.2 2¹ ¹x x (14)

Inverting the Laplacian in (14), and using h 0 5 B 0

2 |= x c 0| 2 and |= x c 0| 2 5 ( ) 2 c 0 c 0 , we1 1 2 2 2¹ c ¹2 2 x 0 x

obtain

1 1 1
2 2 2h (x, t) 5 fc (x, t) 1 q̂(x, t)c (x, t) 2 ¹ {c (x, t)} 1 = · (q̂(x9, t)= c (x9, t)) ln|x 2 x9| d x90 0 0 x 0 EE x9 x9 02 4 2p 2R

c1 h (x, t),0 (15)

where =x9 5 ]/]x9, and satisfies 5 0. Again,c 2 ch ¹ h0 x 0

will be determined from the asymptotic matchingch0

conditions as r → `. By contrast with , however, wecc 0

shall show that is nontrivially different from zero.ch0

The field h0 corresponding to the Gaussian vortices
in Fig. 2a is shown in Fig. 2c. Note that, as r → `, h0

takes a quadrupolar pattern, with amplitude decreasing
as r22, consistent with matching to a quadrupolar wave
in the surrounding wave region.

d. The flow in the wave region at O(1) and O(F)

The expansion for the flow in the wave region takes
the form

2 2U 5 U 1 FU 1 F lnFU 1 F U 1 · · · (16)0 1 21 2

2 2H 5 H 1 FH 1 F lnFH 1 F H 1 · · · . (17)0 1 21 2

These must be matched to (13) and (15) as r → `.
Taking the limit r → ` in (13), and recalling q̂ 5 O(r2`)
as r → `, we obtain

lnr
2c (x, t) 5 q̂(x9, t) d x9 (18a)0 EE2p 2R

1
iu 22 Re e (x9 2 iy9)q̂(x9, t) d x9 (18b)EE5 62pr 2R

221 O(r ).

The two integrals (18a) and (18b) have vanishing time
derivatives at leading order, because at this order the
dynamics looks the same as two-dimensional nondi-
vergent barotropic vortex dynamics with relative vor-
ticity q̂ (see, e.g., Batchelor 1967). From this and from
matching to be done shortly, we shall show that the flow
in the wave region may be taken to satisfy ]H/]t 5
O(F2) and ]U/]t 5 O(F2). Equation (9b) then implies
that =X · U 5 0 at O(1) and at O(F), and this means

that we may write U0 5 k 3 =XC0 and U1 5 k 3
=XC1. Moreover, since ]U/]t 5 O(F2), we have from
(9a), neglecting O(F2), that

f{C0, C1} 5 {H0, H1}. (19)

Now, at all algebraic orders in F the potential vorticity
in the wave region takes its uniform background value
f, and so (10) implies that

( 2 f 2){C0, C1} 5 0.2¹X (20)

The match to the vortical region, see (18), implies
that C 0 and H 0 must be independent of u, and that
C1 and H1 must have the u-dependence eiu . Solving
(20) with decaying boundary conditions as |X| → `,
we get

C 5 C K ( fR), (21)0 0 0

iuC 5 C K ( fR)e , (22)1 1 1

where Kn(z) is the modified Bessel function of order n
that decays as z → `, and it is understood that the real
part of (22) is taken, as in (18b). Here we have denoted
|X| by R. The values of C0 and C1 are determined by
matching conditions onto the flow in the vortical region
in the limit R → 0, as follows. In the limit R → 0, we
have

1
2 2K ( fR) ; 2(lnR 1 ln f 1 g 2 ln2) 1 1 f R0 1 24

1
2 2 41 f R 1 O(R lnR), (23)

4

where g ø 0.5772 is Euler’s constant. If this is rewritten
in terms of r 5 R/F, and expanded for small F, we obtain
from (21) the expression for C0 in terms of the coor-
dinates of the vortical region:
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FIG. 2. Fields in the inner or vortical region for the simplest, nonrotating case (infinite Rossby number): (a) the PV q,
Eq. (6); together with (b) the corresponding leading-order streamfunction c0, Eq. (13); (c) height field h0, Eq. (15); and
(d) velocity potential f 2, Eq. (34). The contour values are (a) 0.5 to 9.5 in increments of 3; (b) 20.75 to 0.55 in increments
of 0.2, then 1 to 4 in increments of 1; (c) 22.25 to 0.25 in increments of 0.5, and 20.005 to 0.005 in increments of 0.001;
and (d) 20.07 to 0.07 in increments of 0.01. In all cases, solid lines indicate positive values, dashed lines indicate negative
values, and dotted lines in (c) and (d) are the zero contour. The quadrupolar pattern in f 2, see the far-field expression (56),
matches the velocity potential F of the radiating gravity waves in the surrounding outer or wave region, not shown.

1
2 2 2C ; 2C (lnr 1 lnF 1 ln f 1 g 2 ln2) 1 1 F f r0 0 1 24

1
2 2 2 41 F f r 1 O(F lnF).

4
(24)

The asymptotic matching condition requires that, at each
order in F, the limit of the velocity field FU in the wave
region as R → 0 must agree with that of the velocity
field u in the vortical region as r → `. In particular, at
O(1), this means that the coefficients of the lnr term in
(18a) and (24) must agree, and hence

1
2C 5 2 q̂(x, t)d x. (25)0 EE2p 2R

Notice that, since the asymptotic matching condition

applies only to the pair of physical variables u and U,
and not to c and C directly, the expressions for c and
C may differ in the matching region by a global con-
stant. This implies that we can satisfy all matching and
boundary conditions by taking 5 0.cc 0

The asymptotic matching condition applies also to
the height field. From (15), we can see that in the vortical
region h0 ; fc0 1 O(r22) 1 as r → `, and this mustch0

agree with the expression for h in the wave region in
the limit R → 0. Now, in the wave region, (19), (21),
and (23) imply that

H0 ; 2 fC0(lnR 1 ln f 1 g 2 ln2) 1 O(R2 lnR) (26)

as R → 0. If this is rewritten in terms of r 5 R/F, we
see that, at O(1) in the matching condition, the terms
of form lnr agree, provided C0 is given by (25). How-
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ever, the full expression for h in the vortical region in
the limit r → ` can be made to agree, up to O(1), with
the expression for H in the wave region in the limit R
→ 0 only if we can find and h01 such that lnFh01 1ch0

; 2 fC0(lnF 1 ln f 1 g 2 ln2) as r → `. Recallch0

now that satisfies 5 0. Also, h01 satisfies =xh01
c 2 ch ¹ h0 x 0

5 0 for consistency with (5a). The only solution is ch0

5 constant and h01 5 constant, throughout the vortical
region. Matching now implies

(x, t) 5 2 fC0(ln f 1 g 2 ln2), h01(x, t) 5 2 fC0,ch0

(27)

where C0 is given by (25). Note that it is the lnF term
in h that contributes the largest term to the height field
in the vortical region. As a check on the sign of h01,
we see that a cyclonic vortex ( fC0 , 0) corresponds to
a depression in the free surface of O(F2 lnF).

An expression for C1 is similarly obtained as follows.
In the limit R → 0 we have

1 1 1 9 1
K ( fR) ; 1 fR ln( fR) 1 g 1 2 ln2 fR1 1 2fR 2 2 4 2

31 O(R lnR). (28)

Again writing this in terms of r 5 R/F and expanding
for small F, we obtain from (22) the expression for C1

in terms of the coordinates of the vortical region. The
asymptotic matching condition on the velocity requires
that the coefficients of the r21 terms at O(1) from (18b)
and (28) agree, and this implies

f
2C 5 2 (x 2 iy)q̂(x, t)d x. (29)1 EE2p 2R

It can readily be verified that, with C1 given by (29),
the expressions for the height also match at this order.

e. The flow in the vortical region at O(F2 lnF) and
O(F2)

Now that we have determined the flow in the vortical
region up to O(1), we can proceed to obtain the velocity
field in the vortical region at O(F2 lnF) and O(F2). Here
we write u21 5 k 3 =xc21 and u2 5 =xf 2 1 k 3
=xc2. Expanding (5b) and (6) to O(F2), we obtain equa-
tions for f 2, c2, and c21:

] h0 02¹ f 5 2 2 = · (u h )x 2 x 0 0]t

] h0 05 2 2 u · = h , (30)0 x 0]t
2¹ c 5 ( f 1 q̂)h , and (31)x 2 0

2¹ c 5 ( f 1 q̂)h . (32)x 21 01

The symbol ]0/]t is a leading-order diagnostic estimate
of ]/]t, defined as follows. First, ]0q̂/]t defined to be
2u0 · =xq̂. Second, ]0c0/]t is defined to be the result
of applying ]0/]t to (13), with ]0 /]t 5 0 by definition,cc 0

so that

] 10 2c (x, t) 5 2 u · = q̂(x9, t) ln|x 2 x9| d x9.0 EE 0 x]t 2p 2R

(33)

Finally, ]0h0/]t is defined to be the result of applying
]0/]t to (15). Note that ]0 /]t 5 0 by the first of (27)ch0

and the fact that ]0C0/]t 5 0, by (25) and the remarks
below (18b).

The solutions must be regular for all finite x, and this
means that f 2, c2, and c21 are determined up to non-
singular solutions of Laplace’s equation. Using the in-
tegral expression (15) for h0 obtained above, we can
write down the solutions

f ] 1 ]0 02 2 2f (x, t) 5 2 q̂(x9, t)|x 2 x9| (ln|x 2 x9| 2 1) d x9 2 c (x9, t)q̂(x9, t) ln|x 2 x9| d x92 EE EE 08p ]t 4p ]t2 2R R

1 ] c (x, t) 1 ]0 0 0 2 21 c (x, t) 2 = [q̂(x9, t)= c (x9, t)]|x 2 x9| (ln|x 2 x9| 2 1) d x90 EE x9 x9 02 ]t 8p ]t 2R

1
2 c2 = · [(h (x9, t) 2 fc (x9, t))u (x9, t)] ln|x 2 x9| d x9 1 f (x, t), (34)EE x9 0 0 0 22p 2R

1 1 1
2 2c (x, t) 5 2 fc (x, t) 1 q̂(x9, t) h (x9, t) 1 fc (x9, t) ln|x 2 x9| d x92 0 EE 0 0[ ]4 2p 22R

2f
2 21 q̂(x9, t)|x 2 x9| (ln|x 2 x9| 2 1) d x9EE8p 2R

f 1
2 2 2 c c1 = [q̂(x9, t)= c (x9, t)]|x 2 x9| (ln|x 2 x9| 2 1) d x9 1 fr h 1 c (x, t), (35)EE x9 x9 0 0 28p 42R
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and

f
2 cc (x, t) 5 h r 1 h c (x, t) 1 c (x, t), (36)21 01 01 0 214

where , , and are solutions of Laplace’s equa-c c cf c c2 2 21

tion, the boundary conditions for which must be deter-
mined by asymptotic matching conditions. The factors
q̂ appear in all but one of the integrands, because of the
use of (8) via (15).

It can readily be verified that (34), (35), and (36)
satisfy (30), (31), and (32), respectively. It is also nec-
essary to establish that all the integrals in (34) and (35)
converge. To see this, recall that q̂ 5 O(r2`) as r → `.
This is sufficient to establish that all integrals converge,
except the last integral in (34). To show that this integral
converges, we observe that h0 2 fc0 5 O(r22), and u0

5 O(r21), as r → `. Thus the integrand is O(r24 lnr)
as r → `, and hence the integral converges. For further
details, see Ford (1993).

As in the case of the O(1) flow, we must use as-
ymptotic matching conditions to determine , , andc cf c2 2

. The full details of the analysis are given in appendixcc 21

A. However, we can readily see that such matching con-
ditions cannot affect the time-dependent flow in the vor-
tical region at O(F2), as follows.

First, recall that, since , , and satisfy La-c c cf c c2 2 21

place’s equation and must be finite for all finite r, they
can be expressed as a sum of terms of form rneinu, for
n 5 0, 1, 2, . . . . Moreover, since f and c are unde-
termined up to a global constant, we need only consider
the matching conditions for n 5 1, 2, . . . . By consid-
ering the order, in F, of such terms, when r 5 O(F21),
we see that they will be determined by the flow in the
wave region at O(F), O(1), . . . , respectively. There is
no flow in the wave region at orders greater than O(1),
so we conclude that we need only consider the addition
of terms with n 5 1, 2 to , , and , and that anyc c cf c c2 2 21

such terms will be determined by asymptotic matching
conditions to the flow in the wave region at O(1) and
O(F). However, we know from section 3d that the flow
in the wave region at these two orders has vanishing
time derivative at these orders, and therefore so will

, , and . Consequently, they will not affect thec c cf c c2 2 21

details of the wave radiation at O(F2).
The complete analysis to determine , , andc cf c2 2

, in the way just sketched, is presented in appendixcc 21

A. The result is

1
c iuc 5 C f (5 1 g 1 ln f 2 ln2)re ,2 12

1
c iu cc 5 C fre , f 5 0, (37)21 1 22

where C1 is given by (29).
The field f 2 corresponding to the Gaussian vortices in

Fig. 2a is shown in Fig. 2d. Note that, as r → `, f 2 takes
a quadrupolar pattern, with amplitude approaching a con-
stant value as r → ` [see Eq. (56) below]. This is con-

sistent with matching to a quadrupolar wave in the sur-
rounding wave region [see Eq. (61) below]. With f 5 0
the corresponding c2 field (not shown) has no quadrupolar
far-field form and is qualitatively similar to the c0 field.

No actual time derivatives ]/]t have yet appeared in
the analysis, but only the leading-order diagnostic es-
timate ]0/]t. The entire analysis so far, including the
Poisson equations (30)–(32), has been purely diagnostic
and corresponds, as mentioned in section 3b, to part of
a sequence of Poisson equations representing a high-
order potential vorticity inversion operator.

Now that we have a complete description to O(F2)
of the flow in the vortical region, we can determine the
flow to O(F3) in the wave region. Propagating waves
arise at O(F2). The terms representing the waves are
found in section 3f. Then section 3g finds the radiation
reaction on the vortical region, which requires taking
the expansion in the vortical region as far as O(F4).

f. Propagating waves in the wave region at O(F2)
and O(F3)

At O(F2) and O(F3), the flow in the wave region is
conveniently decomposed into two parts: one part, for
example, C 2, for which ]0C 2/]t 5 0; and a second part,
for example, , for which ]0 /]t ± 0. We shall referC9 C92 2

to the first as the quasi-steady part of the flow, and the
second as the wavelike part. The division is made
unique, and useful, in the following way.

We expand the equations for the flow in the wave
region, (9), to O(F3). The flow in the wave region at
O(1) and O(F) makes quasi-steady, that is, not wavelike,
contributions to the equations at O(F2) and O(F3)
through the nonlinear terms in (9). The quasi-steady
flow in the wave region at O(1) and O(F) has nonvan-
ishing time derivative at O(F2) and O(F3). However, C0

and C1 represent leading-order approximations to the
circulation and momentum in the vortical region. Since
the circulation in the vortical region must be conserved
to all orders, and the momentum conserved to O(F2), it
follows that by making corrections O(F2) to the coef-
ficients C0 and C1, the time derivatives of the O(1) and
O(F) flow in the wave region can be made O(F4) and
O(F5), respectively. Therefore, the quasi-steady nonlin-
ear contributions to (9) at O(F2) and O(F3) have time
derivatives O(F4) and O(F5), respectively. By retaining
these quasi-steady terms in the equations for the quasi-
steady fields at O(F2) and O(F3) [and therefore removing
these quasi-steady terms from the equations for the
wavelike fields at O(F2) and O(F3)] we find that the
equations for C 2 and C 3 are

1 1
2 2 2 3 2(¹ 2 f )C 5 2 f |= C | 1 f C and (38)X 2 X 0 02 2
2 2 3(¹ 2 f )C 5 2 f = C · = C 1 f C C , (39)X 3 X 0 X 1 0 1

with

f {C , C } 5 {H , H }. (40)2 3 2 3
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None of these quasi-steady contributions will be con-
sidered further, because they do not represent propagating
waves in the description up to O(F3), nor do they interact
with the propagating waves that are emitted at these orders.

We turn now to determining the wavelike part of the
flow in the wave region, C9, etc., at O(F2) and O(F3).
In particular, we shall determine explicit expressions for
the waves emitted from the vortical region at O(F2), and
also the nature of the next correction at O(F3). Since, as
just explained, the nonlinear terms in (9) do not enter the
equations for the wavelike part of the flow in the wave
region at O(F2) and O(F3), the equations for the wavelike
part of the flow, which can be obtained from (9), are

2]
2 21 f 2 ¹ {F9, C9, H9, F9, C9, H9} 5 0, (41)X 2 2 2 3 3 321 2]t

where 5 =X 1 k 3 =X and 5 =X 1 kU9 F9 C9 U9 F92 2 2 3 3

3 =X , and where, without loss of generality, we takeC93
]

{C9, C9} 1 f {F9, F9} 5 0. (42)2 3 2 3]t

The boundary conditions are the radiation condition at
infinity and the matching to the vortical region as R →
0. Because our concern is entirely with the wavelike
part of the flow at O(F2), we drop the primes from

, , and . The solutions of these equations areC9 F9 H92 2 2

freely propagating waves, the amplitude and phase of
which must be determined by matching to the vortical
region, as we shall now demonstrate.

For the purposes of applying the asymptotic matching
conditions, it is convenient to work in the frequency
domain, in which the general solutions of (41) are

((v2 2 f 2)1/2R)ei(mu2vt) , provided that v represents(k)Hm

a radian frequency. Here, represents a Hankel func-(k)Hm

tion of the kth kind, exactly as defined by Abramowitz
and Stegun (1964); m is the order of the Hankel function,
determined by the u dependence of the match to the
vortical region; k is determined by the radiation con-
dition, and R 5 |X| as before. The order m 5 0 cor-
responds to a monopole wave, m 5 1 to a dipole, m 5
2 to a quadrupole, and so on.

Throughout, we shall represent the Fourier transform
of a function g(t) by g̃(v), where

`

ivtg̃(v) 5 g(t)e dt. (43)E
2`

Consequently, it can be shown that solutions of form
((v2 2 f 2)1/2R)ei(mu 2 vt) satisfy the radiation con-(1)Hm

dition as R → `, provided we define an analytic branch
of (v2 2 f 2)1/2 in the complex v plane such that Re(v2

2 f 2)1/2 . 0 for v . f, and Re(v2 2 f 2)1/2 , 0 for v
, 2 f. The solution also satisfies an evanescence con-
dition for v2 , f 2, provided we take Im(v2 2 f 2)1/2 .
0 for real v between 2 f and f. That is, for real v,

2 2 1/2|v 2 f | v . f
2 2 1/2 2 2 1/2(v 2 f ) 5 i| f 2 v | 2 f , v , f (44)


2 2 1/22|v 2 f | v , 2 f .

We now turn to the asymptotic matching condition,
which completely determines the O(F2) and O(F3)
waves in the wave region. To do this, we must examine
the time-dependent flow in the vortical region in the
limit r → `, which we obtain by expansion of (13),
(34), (35), and (36) for |x9| K |x|.

We first consider (13). In the limit r → `, this yields,
going beyond (18),

1
2c(x, t) 5 lnr q̂(x9, t) d x9 (45a)EE5 62p 2R

1 1
iu 22 e (x9 2 iy9)q̂(x9, t) d x9 (45b)EE5 6r 2p 2R

1 1
2iu 2 22 e (x9 2 iy9) q̂(x9, t) d x9 (45c)EE2 5 6r 4p 2R

231 O(r ).

Recall that (45a) and (45b) are identical to (18a) and
(18b), which have vanishing time derivatives at leading
order. Thus, the time-dependent form of c0 in the vor-
tical region as r → ` is given in (45c), which has the
spatial form r22e2iu.

To match this to a flow in the wave region, we note
that the O(F2) wave field must have e2iu angular depen-
dence, and R22 radial dependence as R → 0. Hence, we
choose mode m 5 2 in the Hankel function and write
the general solution for the O(F2) wave fields in the
frequency domain:

2 2 (1) 2 2 1/2 2iu˜ ˜F 5 iA(v)(v 2 f )H ((v 2 f ) R)e (46a)2 2

2 2 (1) 2 2 1/2 2iu˜ ˜C 5 iB(v)(v 2 f )H ((v 2 f ) R)e (46b)2 2

2 2 (1) 2 2 1/2 2iu˜ ˜H 5 iC(v)(v 2 f )H ((v 2 f ) R)e . (46c)2 2

To determine expressions for Ã, B̃, and C̃, we must
examine (46a), (46b), and (46c) in the limit R → 0,
reexpressed in terms of the variable r. With the Hankel
function defined as in Abramowitz and Stegun (1964),
we have that

2 2 2 (1) 2 2 1/2F i(v 2 f )H ((v 2 f ) R)2

4 1
2 2 2 25 F 1 (v 2 f ) 1 O(R lnR)

21 2pR p

4 1
2 2 2 45 1 F (v 2 f ) 1 O(F lnF) (47)

2pr p

as R → 0.
We consider first the terms that are O(r22) in c. The

corresponding velocity field in the wave region, in the
limit R → 0, reexpressed in terms of the coordinate r, is

3 3˜ ˜ ˜F U 5 F (= F 1 k 3 = C )2 X 2 X 2

4
2iu˜ ˜ ˜ ˜5 [(22A 2 2iB)r̂ 1 (2iA 2 2B)û]e

3pr
211 O(r ), (48)
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where and are unit vectors in the radial and azimuthalr̂ û
directions, respectively. The condition (42) gives us

2ivB̃ 1 fÃ 5 0, (49)

and hence

8
3 2iu˜ ˜ ˜F U 5 [2( f /v 1 1)Ar̂ 1 i( f /v 1 1)Aû]e2 3pr

211 O(r ). (50)

The velocity field in the wave region at O(F2), in the
limit R → 0, is thus equal to the velocity associated
with an effective streamfunction,

4 f
2iu˜c̃ 5 1 1 Ae . (51)eff 21 2ipr v

The asymptotic matching condition, applied to the ve-
locity field, requires that eff be equal to the time-de-c̃
pendent part of c0 in the limit r → `. This we know
from (45c) to be given by

1
2 2 2iuc (x, t) 5 2 (x9 2 iy9) q̂(x9, t) d x9e0 EEtime-dependent 24pr 2R

231 O(r ). (52)

Equating these two asymptotic forms (51) and (52), as
required by the asymptotic matching condition, we ob-
tain an expression for Ã:

iv
Ã 5 2 ã(v), (53)

v 1 f

where is the Fourier transform of a(t), and a(t) isã(v)
defined by

1
2 2a(t) 5 (x9 2 iy9) q̂(x9, t) d x9. (54)EE16 2R

The expression for B̃ follows directly from (53) and
(49). The expression for C̃ can be obtained by applying
the asymptotic matching condition to the height field
directly, but it is more readily obtained by using an
identity in the wave region—H̃ 5 1 which˜ ˜ivF fC,
implies that C̃ 5 ivÃ 1 fB̃. The final result is

ivã fã˜ ˜A 5 2 , B 5 2 ,
v 1 f v 1 f

C̃ 5 (v 2 f )ã. (55)

Note that, despite the singular appearance of the ex-
pressions for Ã and B̃, the velocity fields remain regular,
even for v 5 2 f.

Taking F2, C2, and H2 defined by (46), with Ã, B̃,
and C̃ defined by (55), ensures matching between the
flow at O(1) in the vortical region and the flow at O(F2)
in the wave region. To complete the asymptotic match-
ing for the time-dependent flow in the wave region at
O(F2), we must also ensure matching between the flow
in the vortical region at O(F2) and the flow in the wave
region at O(F2).

To perform this matching, we must obtain the time-
dependent parts of F2f 2, F2c2, and F2 lnFc21, in the
limit r → `, retaining those terms that are O(F2) or
larger when r 5 (F21). This must then match to terms
in the time-dependent flow in the wave region to (F2).

Consider F2f 2, F2c2, and F2 lnFc21 in the limit r →
`. From (34), (35), and (36) we have

x x d x x df d 1 di j ij i j ij2 2f (x, t) 5 2 2 x9x9q̂(x9, t) d x9 2 2 x9x9= · (q̂(x9, t)= c (x9, t)) d x92 EE i j EE i j x9 x9 02 21 2 1 28p r 2 dt 8p r 2 dt2 2R R

211 O(r ), (56)

2 2f f f
2 2 2 c 2c (x, t) 5 1 r (lnr 2 1) q̂(x9, t) d x9 1 r h 2 (2 lnr 2 1)x x9q̂(x9, t) d x92 EE 0 i EE i8p 4 8p2 2R R

2 x x d x x df fi j ij i j ij2 21 2 x9x9q̂(x9, t) d x9 1 2 x9x9= · (q̂(x9, t)= c (x9, t)) d x9EE i j EE i j x9 x9 02 21 2 1 28p r 2 8p r 22 2R R

1
21 lnr q̂(x9, t)h (x9, t) d x9EE 02p 2R

2f f
2 2 2 21 r9 q̂(x9, t) d x9 1 r9 = · (q̂(x9, t)= c (x9, t)) d x9 lnrEE EE x9 x9 0[ ]4p 4p2 2R R

2
f

2 2 c 212 q̂(x9, t) d x9 ln r 1 c (x, t) 1 O(r lnr), (57)EE 22 [ ]16p 2R
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and

f
2 c 21c ; h r 2 h C lnr 1 c 1 O(r ). (58)21 01 01 0 214

In obtaining the expression for (56) from (34), we have
used the fact that ] 0 /]t of r 2 q̂(x, t) d 2x,## 2R

r2=x · (q̂(x, t)=xc0(x)) d2x, and c0(x, t)q̂(x) d2x## ##2 2R R

are all zero. This shows that (56) represents the leading-
order time-dependent part of f 2 in the limit r → `. The
expressions for , , and C0 also have vanishing timech h0 01

derivatives at leading order, and so c21 has vanishing
time at leading order in F, in the limit r → `.

This fact proves useful in the discussion of the time-
dependent behavior of (57), which follows. The first
two integrals in (57) have vanishing time derivatives at
leading order, that is, ]0/]t of each of them is zero, as
remarked in section 3d. Therefore, these terms are of
no interest in this section and are not considered further.

The next two integrals in (57) are time dependent at

leading order, that is, ]0/]t ± 0, and so they must be
retained in our representation of the the leading-order
time-dependent part of c2 in the limit r → `.

The fifth integral in (57) has nonvanishing ]0/]t.
However, to determine the time dependence of c at
O(F2), we must consider not only c2 but also the O(F2)
time dependence of c 0 . Therefore, we combine

q̂(x, t) d2x from c0, and h0(x, t)q̂(x, t) d2x from## ##2 2R R

c2. If we also include the contribution h01q̂(x, t)## 2R

d2x from c21, which in any case has vanishing ]0/]t,
then the total, [1 1 F2 lnFh01 1 F2h0(x, t)]q̂(x, t)## 2R

d2x represents the circulation of the vortical region to
O(F2). Since the circulation around any closed contour
is conserved by the shallow water equations, it follows
that [1 1 F2 lnFh01 1 F2h0(x, t)]q̂(x, t) d2x must## 2R

have vanishing time derivative to O(F2). The remaining
integrals in (57) have vanishing ]0/]t; and hence the
time-dependent parts of f and c, at O(F2), in the limit
r → `, are

x x d x x df d 1 di j ij i j ij2 2f (x, t) 5 2 2 x9x9q̂(x9, t) d x9 2 2 x9x9= · (q̂(x9, t)= c (x9, t)) d x92 EE i j EE i j x9 x9 0time-dependent 2 21 2 1 28p r 2 dt 8p r 2 dt2 2R R

211 O(r ), (59)

2 x x d x x df fi j ij i j ij2 2c (x, t) ; 1 2 x9x9q̂(x9, t) d x9 1 2 x9x9= · (q̂(x9, t)= c (x9, t)) d x92 EE i j EE i j x9 x9 0time-dependent 2 21 2 1 28p r 2 8p r 22 2R R

211 O(r ), (60)

with no ]0/]t time dependence at O(F2 lnF) at O(r0).
These terms must match to flow in the wave region at
O(F2).

In the wave region, we have

1
2 2 2iu˜ ˜F | 5 (v 2 f )Ae , (61)2 O(1) p

1
2 2 2iu˜ ˜C | 5 (v 2 f )Be , (62)2 O(1) p

where Ã and B̃ are given by (55), where the shorthand
notation , etc., means the contribution to that˜ ˜F | F2 O(1) 2

is O(1) in the limit R → 0.
If (61) and (62) are reexpressed in the time domain,

it can be shown that (59) and (61) are equivalent, and
also that (60) and (62) are equivalent. Therefore, (46)
represents the leading-order [i.e., O(F2)] radiating wave
field that is spontaneously emitted by the flow in the
vortical region. The flow in the vortical region at O(F2),
in the limit r → `, provides further terms required for
the asymptotic matching to the wave field (46), which
was required by the matching conditions at lower order,
but no further waves are required at O(F2).

Note, however, that the expressions (34) and (35) will

in general possess time-dependent dipoles, of form
b(t)r21eiu as r → `, for some time-dependent function
b(t), which can be computed in terms of integrals over
the vortical region. (The details are omitted for brevity,
but direct computation has shown that db/dt ± 0 for
the potential vorticity distribution shown in Fig. 2.)
These give rise to dipolar waves at O(F3) in the wave
region, reminding us that Lighthill’s result—that the ra-
diated wave field is of quadrupole or higher type—is
true only at the leading order in F.

g. The effect of wave radiation on the vortical flow

We turn now to the radiation-reaction problem. That
is, we calculate the effect of the wave radiation in the
wave region on the flow that is generating it. In the
vortical region, the radiation reaction must be felt via
a velocity field that somehow causes the vortical region
to lose energy, in compensation for the energy radiated
by the waves. We shall show that this velocity field is
O(F4).

To obtain the flow in the vortical region at O(F4), we
can proceed as in section 3e, solving a sequence of
Poisson equations similar to (30)–(32). The radiation
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reaction enters not through the right-hand sides of the
Poisson equations, which are purely diagnostic in the
same sense as before, but only through the boundary
conditions in the limit r → `. The boundary conditions
are derived from the asymptotic matching condition
with the wave region, just as before; and the radiation
reaction enters at O(F4).

In order to determine the asymptotic matching con-
ditions implied by the O(F2) waves in the wave region,
in the limit R → 0, we must consider the expansion of
the Hankel function ((v2 2 f 2)1/2R) in the limit R(1)H2

→ 0:

2 2 (1) 2 2 1/2ip(v 2 f )H ((v 2 f ) R)2

4
5 (63a)

2R
2 21 (v 2 f ) (63b)

1 1
2 2 2 2 2 2 1/22 (v 2 f ) R ln (v 2 f ) R (63c)1 24 2

1
2 2 2 21 (v 2 f ) (c (1) 1 c (3))R (63d)G G8

1
2 2 2 21 ip (v 2 f ) R (63e)

8
41 O(R lnR),

where cG( · ) is the logarithmic derivative of the G func-
tion (Abramowitz and Stegun 1964, p. 258), that is,
cG(a) 5 (d/da) lnG(a). Expanding this in the variables
r, u, and substituting into (46a)–(46c) we get

4
{f̃, c̃, h̃} 5 (64a)

2[r
2 2 21 F (v 2 f ) (64b)

1
4 2 2 2 22 F lnF (v 2 f ) r (64c)

4

1
4 2 2 2 22 F (v 2 f ) r lnr (64d)
4

1
4 2 2 2 21 F (v 2 f ) r
4

2 2 1/23 (ln2 2 ln(v 2 f ) ) (64e)

1 3
4 2 2 2 21 F (v 2 f ) 2 2g r (64f)1 28 2

4F
2 2 2 21 ip (v 2 f ) r (64g)]8

1
2iu 6˜ ˜ ˜3 {A, B, C}e 1 O(F lnF),

p

where g is Euler’s constant, and the logarithm in (64e)

is taken to be the principal branch, and with the branch
of (v2 2 f 2)1/2 taken according to (44). We now consider
each of these terms, expressed in the time domain.

The term (64a) is consistent with the outer limit of
the O(1) flow in the vortical region by construction,
since the amplitude of the flow in the wave region was
determined by matching to the leading-order flow in the
vortical region. The term (64b) can be shown to be
consistent with the outer limit of the O(F2) flow in the
vortical region (56) and (57), as discussed in section 3f.
We must now express terms (64c)–(64g) in the time
domain, to provide asymptotic matching conditions on
the flow in the vortical region up to O(F4).

The coefficients of terms (64c) and (64d) can be ex-
pressed as a finite sum of integer powers of v multi-
plying one of Ã, B̃, or C̃. Upon taking the inverse Fourier
tranform, we see that these coefficients, which depend
on t, can be expressed in terms of a finite number of t
derivatives acting on a(t), where a(t) is given by (54).
Consequently, the straining flow at O(F4 lnF) at any
time t, implied by (64c), can readily be expressed in
terms of the leading-order flow in the vortical region,
which can ultimately be determined from the potential
vorticity at time t.

We must now consider (64e), (64f ), and (64g). For
(64e) we cannot represent the coefficients in terms of a
finite sum of integral powers of v multiplying Ã, B̃, or
C̃. Therefore, the inverse Fourier transform of these co-
efficients must be expressed as a convolution, the ex-
pression for which we obtain as follows.

First, it can readily be checked that taking the branch
of ln(v2 2 f 2)1/2 defined by (44), we obtain

ip
2 2 1/2 2 2 1/2ln(v 2 f ) 5 ln|v 2 f | 2 sgn(v 2 f )

4

ip
2 sgn(v 1 f ) 1 ip /2. (65)

4

Then, we combine the ln(v2 2 f 2) term in (64e) with
(64g) and (for convenience) the g term from (64f ) to
give

1
4 2 2 2 2 2iu2F (v 2 f ) r e ln|v 2 f | 1 ln|v 1 f | 1 2g[8p

ip
2 (sgn(v 2 f ) 1 sgn(v 1 f ))]2

3 s̃(v), (66)

where 5 {Ã, B̃, C̃}.s̃
The remaining terms in (64e) and (64f ), in common

with the terms (64c) and (64d) above, take the form of
integral powers of v multiplying known functions of
time, and can therefore be obtained from the potential
vorticity at time t.

The expression of (66) in the time domain now requires
only some elementary manipulation of Fourier trans-
forms. For details of the analysis, see appendix B. The
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result is that when (66) is converted back into the time
domain, it produces an integral in the matching condition
that depends on the past history of the dynamics.

When the terms (64c)–(64g) are taken all together,
the asymptotic matching condition for f 4, c4, and h4,
and f 41, c41, and h41 taken all together as r → ` is

4 4F {f , c , h } 1 F lnF{f , c , h }4 4 4 41 41 41

t d
4 2 2iu5 2F Re r e ln(t 2 t9) [cos( f (t 2 t9)) 3 {g (t9), g (t9), g (t9)}] dt9E 1 2 3[ ]dt9

2`

4 2 2iu 4 2 2iu2 F lnFRe[4r e {g (t9), g (t9), g (t9)}] 1 F Re[(3 2 4 ln(r/2))r e {g (t9), g (t9), g (t9)}] 1 O(r), (67)1 2 3 1 2 3

where

221 d
2{g (t), g (t), g (t)} 5 1 f {A(t), B(t), C(t)},1 2 3 21 216p dt

(68)

and A(t), B(t), and C(t) are defined by (55). The con-
tribution mentioned in section 3b is that given by(rad)u4

the contribution to =xf 4 1 k 3 =xc4 from the second
line of (67).

Here at last, then, is the first nontrivial effect of grav-
ity wave radiation, that is, the first departure from high-
order potential vorticity inversion anticipated in section
3b. At this order, O(F4), the effect of the radiation on
the vortical flow is to induce a contribution to the large-
scale straining flow described by the second line of (67).
At time t this contribution cannot be computed from the
potential vorticity at time t alone, but instead requires,
as the time integral shows, knowledge of the potential
vorticity field for the entire history of the vortical flow.

This O(F4) straining flow in the vortical region can,
and must, cause the energy in the vortical region to
decrease in a way that is consistent with the radiation
of energy by the waves. Recall that an O(F2) wave ra-
diates energy away from the vortical region at a rate
O(F2)2 5 O(F4). As a further check, the energy loss
was explicitly calculated both ways for simple cases,
that of a Kirchhoff ellipse (Lamb 1932; Ford 1994b;
Zeitlin 1988, 1991) and a pair of point vortices. Details
are omitted for brevity.

There is one further contribution to the radiation re-
action, namely, the next, O(r) contribution to (67), again
omitted for brevity, which matches to the dipolar wave
at O(F3) in the wave region discussed at the end of
section 3f. This does not affect the energetics at O(F4).
It arises from matching the solution in the vortical region
to the O(F3) dipolar wave and takes the form of a uni-
form flow across the vortical region. It may be computed
in precisely the same way as the straining flow above,
also requiring the evaluation of a history integral.

4. Concluding remarks

We have shown how the matched asymptotic expan-
sion method, based on the Froude number F as the small
parameter, can be used to describe the spontaneous emis-
sion or radiation of inertia–gravity waves by unsteady
vortical flow. The results add powerfully to the evidence
against the existence of a strict slow manifold within
the full phase space and, furthermore, show explicitly
how the spontaneous emission works, and how, and at
what order, the associated radiation reaction interferes
with what would otherwise look like high-order poten-
tial vorticity inversion.

The radiated inertia–gravity wave field is of quad-
rupole type, as expected from Lighthill’s heuristic ar-
guments (recall section 2). To justify this conclusion,
however, a rather extensive analysis was needed, es-
sentially because of the long-range character of the in-
teractions as reflected, for instance, in the spatial di-
vergence of certain integrals, and in the appearance of
logarithmic terms in the expansions. The technicalities
become more delicate than one would expect, because
of having to go from three dimensions to two, and from
a nonrotating to a rotating system. The radiation reaction
on the vortical region takes the form of a large-scale
straining flow at O(F4), the first term on the right of
(67), the history integral, which is the first term that
affects the energetics of the flow in the vortical region
and interferes with PV invertibility.

Potential vorticity invertibility holds up to O(F4 lnF).
That is, the terms in the velocity field at O(1), O(F2

lnF), O(F2), O(F4 ln2F), and O(F4 lnF) at any time t can
be determined diagnostically from the potential vorticity
at time t, and the result has all the usual properties of
potential vorticity inversion, including the sign-reversal
property.

So far we have said nothing about the possible ex-
istence of a generalized slow manifold, as distinct from
a strict slow manifold. However, the nature of the prob-
lem is hinted at by the history integral in (67). The
interpretation of the integral requires some care. If we
proceed on the assumption that the functions gi(t9) will
remain O(1) over all times t9 , t, then the integrand in
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(67) does not generally decay, as t9 → 2`, and, at first
sight, there is no reason to suppose that the integral will
converge.

This difficulty can be avoided as follows. Let us sup-
pose that the source, represented by gi(t), was somehow
‘‘turned on’’ at time t9 5 t0, so that we set gi(t9) 5 0
for t9 , t0. Note in particular that this means that gi(t9)
5 0 as t9 → . Furthermore, for t9 . t0, gi(t9) is a2t0

smooth function of t9, given by (68), and will not nec-
essarily be zero as t9 → . Therefore, when we evaluate1t0

(d/dt9)(cos( f (t 2 t9))gi(t9)), we must include a Dirac
delta function at t9 5 t0. More precisely, we write

d
cos( f (t 2 t9))g (t9) 5 [cos( f (t 2 t9))g (t9)]9i idt9

1 cos( f (t 2 t ))g (t )d(t9 2 t ).0 i 0 0

(69)

Thus, the integral in (67) can be rewritten as
t d

ln(t 2 t9) [cos( f (t 2 t9)g (t9))] dt9E idt9t0

t95t2«5 lim [ln(t 2 t9) cos( f (t 2 t9))g (t9)]i t95t051«→0

1 ln(t 2 t ) cos( f (t 2 t ))g (t )0 0 i 0

t2« dt9
1 cos( f (t 2 t9))g (t9)E i 6t 2 t9t0

5 lim ln« cos( f«)g (t 2 «)i[1«→0

t2« dt9
1 cos( f (t 2 t9))g (t9) . (70)E i ]t 2 t9t0

Now, as t0 → 2`, the last integral converges, on the
assumption that cos( f (t 2 t9))gi(t9) has zero mean. This
assumption might appear to be very restrictive. How-
ever, we recall that the gi(t) are given by (68). The form
of (68) implies that none of the gi(t) will have any
contribution at the Coriolis frequency f, and therefore
cos( f (t 2 t9))gi(t9) will have zero mean, unless A, B,
and C exhibit secular growth in time. The absence of
such secularity can be proven if the relative vorticity in
the vortical region is single signed, but not otherwise.
In the latter case it is possible for vortex pairs to form
and propagate out of the region, violating the assump-
tion that the vortical region is confined to a finite-sized
region on the scale L. Therefore, the last line in (70),
an alternative form of the history integral, is a conver-
gent integral representation of the effect of gravity wave
radiation on the flow that generates that radiation, pro-
vided that the assumption of a finite vortical region re-
mains valid for all times.

The last integral in (70) can evidently be computed

if the full time history of the evolving potential vorticity
field is known. Moreover, if the time history of the
potential vorticity field is known for times t . t1 . t0,
say, then the last integral in (70) can be computed cor-
rect to O(|t1|21), because the kernel 1/(t 2 t9) implies
that contributions from the more distant past (the in-
tegral from t0 to t1) are asymptotically smaller. This in
turn might be thought to suggest the possible existence
of a generalized slow manifold, because one can imag-
ine obtaining past from present potential vorticity dis-
tributions by integrating backward in time, advecting
the potential vorticity with the direction of flow re-
versed. For instance, if we take F21 K |t1| K F22, then
it is sufficient to use the leading-order velocity field
given by (13) to advect the potential vorticity, because
of the second condition; and the integral is obtained
with error O(F), because of the first condition. This
means that the integral at time t can be computed to
leading order, in principle, from the potential vorticity
distribution at time t, provided that the backward time
integration is feasible.

However, such backward time integration is not pos-
sible in practice, and may well not be possible in prin-
ciple either, over asymptotically long time intervals |t1|
k F21, owing to the chaotic nature of most unsteady
vortex flows and to the time-reversed anticascade of
enstrophy from small to large scales when time runs
backward. If the problem were to be modified by adding
diffusion, then the situation would be even worse: any
diffusive process would, as is well known, make back-
ward time integration catastrophically ill conditioned.
These considerations, together with those about coupled
oscillators mentioned in section 1, strongly suggest the
nonexistence of a single, well-defined generalized slow
manifold—despite the appearance of the last integral in
(70).

The important point in the foregoing is that one can-
not integrate the equations arbitrarily far backward in
time, as would be necessary for a unique and unam-
biguous evaluation of the history integral. In other
words, there is no escape from evaluating the history
integral using some finite turn-on time t0. There are
infinite numbers of choices for t0. This is exactly what
one expects from the fuzziness of stochastic layers in
phase space: there are infinite numbers of neighboring
‘‘leaves,’’ each of which looks locally like a generalized
slow manifold but none of which has any privileged
status, making potential vorticity inversion correspond-
ingly fuzzy.

We conclude that the stochastic-layer hypothesis is
strongly supported by our analysis. In other words, it
appears that neither a strict slow manifold nor a unique
generalized slow manifold exists. As Warn (1997) and
others have already argued in other ways, it seems prac-
tically certain then that the entity traditionally called the
slow manifold—whose practical usefulness is not in
question—is not, in fact, a manifold. We therefore sug-
gest, for the sake of continuity with the traditional ter-



1252 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

minology, that this entity might be referred to as the
slow quasimanifold.
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APPENDIX A

The Determination of , , andc c cf c c2 2 21

In this appendix, we show how to use asymptotic
matching conditions to obtain the expressions (37) for

, , and . We do this by matching the ]0/]t-wisec c cf c c2 2 21

time-independent part of the flow in the vortical region,
at O(F2), in the limit r → `, to the ]0/]t time-indepen-
dent flow in the wave region.

In the limit r → `, we see from analysis of (35) via
(57) that c in the vortical region at O(F2) is

2F c (x, t)2 time-independent

2f f
2 2 2 2 2 c; 1 F r (lnr 2 1) q̂(x9, t) d x9 1 F r hEE 08p 42R

2f
2 22 F (2 lnr 2 1)x x9q̂(x9, t) d x9i EE i8p 2R

2 c 21 F c 1 F 3 O(lnr).2 (A1)

This is required to match onto the ]0/]t time-indepen-
dent flow in the wave region, which must be expanded
to O(F2), and expressed in terms of the vortical coor-
dinate r. We observe that, when r 5 O(F21), the terms
displayed in (A1) are O(lnF), O(1), O(F lnF), and O(F).
We also have, at these orders, contributions from c21:

f
2 2 2 2F lnFc ; h F lnFr 1 O(F lnF) 3 lnr. (A2)21 014

Here we observe that, when r 5 O(F21), the term dis-
played in (A2) is O(lnF). The remaining terms in (A1)
and (A2) are asymptotically smaller, when r 5 O(F21),
than the terms displayed.

When r 5 O(F21), the terms O(lnF) and O(1) from
(A1) and (A2), taken together, must match to the O(R2)
and O(R2 lnR) terms from the O(1)-solution C0 in the
wave region in the limit R → 0. Similarly, the terms
O(F lnF) and O(F) from (A1) must match to the
O(R)term from the O(F) solution C1 in the wave region.

The remaining terms from (A1) and (A2) must match to
terms in the wave region that are O(F2 ln2F) or smaller.

We shall consider first matching between the terms
that are O(R2) and O(R2 lnR) in the wave region. We
expand the O(1) solution in the wave region in the limit
R → 0 and express it in terms of the vortical coordinate
r. We find

1
2 2C ; C f R (1 1 ln2 2 lnR 2 ln f 2 g)0 0 4

1
2 2 25 F r C f (1 1 ln2 2 lnr 2 lnF 2 ln f 2 g); (A3)0 4

while in the vortical region, in the limit r → `, the
terms that are O(lnF) and O(1) from (A1) and (A2)
combined yield

2 2F c 1 F lnFc2 21

2f 1
2 2 2; 2 R C (lnr 2 1) 2 R f C (ln f 1 g 2 ln2)0 04 4

1
22 fR lnF fC .04

(A4)

It can be verified that (A3) and (A4) are identical; and
hence the expressions for c2 and c21, combined, when
r 5 O(F21), match to the appropriate part of the solution
in the wave region at O(1). There is therefore no need
to modify c2 in the vortical region as a result of match-
ing these terms.

We now consider the terms that are O(FR) in the wave
region as R → 0. We expand the O(F) solution in the
wave region in the limit R → 0 and express it in terms
of the vortical coordinate r. We find

1 1 1 1 9
2FC ; C f F r ln f 1 lnr 1 lnF 1 g 11 1 12 2 2 2 4

1
iu2 ln2 e . (A5)22

From the O(F2) flow in the vortical region we must
consider the terms that are O(F2r), O(F2r lnr), and O(F2

lnFr) in the limit r → `, since it is these terms that are
O(F) when r 5 O(F21). These terms contribute

1
2 iu 2 c 2 cC f F r(2 lnr 2 1)e 1 F c 1 F lnFc1 2 214

2 2to F c 1 F lnFc . (A6)2 21

The asymptotic matching condition now requires that
(A5) and (A6) agree, and we must add to c21 and c2

terms to ensure this agreement. Since and bothc cc c2 21

satisfy Laplace’s equation, we can see from (A5) and
(A6) that the added terms will be of form Creiu, where
C is a constant. The asymptotic matching condition de-
termines the value of C in each case. It is straightforward
to show that
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1
c iuc 5 C f (5 1 g 1 ln f 2 ln2)re ,2 12

1
c iu cc 5 C fre , f 5 0, (A7)21 1 22

where C1 is given by (29). Notice that the terms of form
R lnR in (A5) and (A6) agree, which is essential, since
we cannot add to c2 a term that satisfies Laplace’s equa-
tion, with asymptotic form r lnreiu as r → `. We take

5 0, since there is no contribution to f in eithercf 2

region at the order considered, and so the matching of
the velocity is ensured by the matching of c.

In principle, we could now continue to consider the
t-independent terms at O(F2) and O(F3) in the wave
region (i.e., to obtain equations for C2, C3, H2, and
H3). However, since and satisfy Laplace’s equa-c cc c2 21

tion, the asymptotic matching condition applied at O(F2)
can, at most, require constants to be added to andcc 2

, and no further contributions to and can arisec c cc c c21 2 21

from application of the matching condition at any higher
order. Moreover, since the matching condition applies
to the velocity fields u and FU, and since the constants
in c and C are irrelevant to the determination of the
corresponding velocity fields, the expressions given
above and in (37) for , , and , when used inc c cf c c2 2 21

(34), (35), and (36), completely determine the flow in
the vortical region up to O(F2).

APPENDIX B

Inverse Fourier Transform of (66)

The purpose of this appendix is to obtain the inverse
Fourier transform of

ln|v 2 f | 1 ln|v 1 f | 1 2g[
ip

2 (sgn(v 1 f ) 1 sgn(v 2 f )) s̃(v), (B1)]2

where s(t) is a arbitrary function of time, with Fourier
transform s̃(v). We shall denote the Fourier transform
operator by Lv, so that s̃(v) 5 Lv{s(t)}.

First, it proves convenient to obtain the Fourier trans-
form of lntH(t), where H(t) is the Heaviside step func-
tion. To do this, we first consider the Fourier transform
of taH(t) for 0 , a , 1. Following Lighthill (1958),
we find that the Fourier transform of taH(t) is G(a 1 1)/
(2iv)2(11a), where G is the gamma function (see, e.g.,
Abramowitz and Stegun 1964). We then observe that

d
a at H(t) 5 t lntH(t). (B2)

da

Thus, to obtain the Fourier transform of lntH(t) we
must compute the derivative, with respect to a, of the
Fourier transform of taH(t), and evaluate this at a 5 0.
After a few lines of algebra, we find that

d G(a 1 1)
(a11)[ ]da (2iv)

G(a 1 1) ip
5 c (a 1 1) 2 ln|v | 1 sgn(v) . (B3)Ga111 2(2iv) 2

Thus, setting a 5 0, we have

1 ip
L {lntH(t)} 5 ln|v | 1 g 2 sgn(v) . (B4)v 1 2iv 2

Using shifting formulas, we have the further results
6i f tL {e lntH(t)}v

1 ip
5 ln|v 6 f | 1 g 2 sgn(v 6 f ) . (B5)1 2i(v 6 f ) 2

Thus, the inverse Fourier transform of

ln|v 2 f | 1 ln|v 1 f | 1 2g1
ip

2 (sgn(v 1 f ) 1 sgn(v 2 f )) s̃(v) (B6)22

is given by

i f t 2i f t^e lntH(t), (2d 1 if )s& 1 ^e lntH(t), (2d 2 if )s&,t t

(B7)

where the angle brackets denote a convolution. Adding
these together, we obtain

` d
L 2 lnt9 (cos( ft9)s(t 2 t9)) dt9v E5 6dt90

5 ln|v 2 f | 1 ln|v 1 f | 1 2g[
ip

2 (sgn(v 1 f ) 1 sgn(v 2 f )) s̃(v). (B8)]2
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