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ABSTRACT

This paper examines algorithmic nonlinear dictionary enhancements for dynamic mode decomposition (DMD) based analysis of an
industrially relevant flow problem. Several nonlinear variants of DMD are used to analyze flow interacting with two tandem cylinders in a bi-
stable configuration. This study investigates the coexistence of two vortex shedding regimes, distinguished by their characteristic frequencies.
Using DMD, we extract coherent structures associated with each regime and consider their relation to surface pressure and far-field noise at
these frequencies. Simultaneous experimental measurements of velocity fields, unsteady surface pressure, and far-field acoustic pressure are
performed using high-speed particle image velocimetry, a remote microphone technique, and a far-field microphone. Two DMD algorithms
are applied to investigate the flow. First, we apply kernelized extended DMD to demonstrate how a nonlinear dictionary can improve modal
reliability compared with the usual linear alternative. The extracted modes are validated by analyzing their modal residuals, which are further
used to explore phenomena at other frequencies and harmonics while examining the impact of dictionary depth and characteristics. Second,
we study the flow physics of each shedding frequency via the Rigged DMD algorithm, which provides detailed spectral insights for dynamical
systems with continuous spectra. A new kernelized Rigged DMD is introduced, showing improved accuracy in resolving generalized eigen-
functions and spectral measures compared to linear dictionaries.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0271497

I. INTRODUCTION

Dynamic mode decomposition (DMD) is a popular tool to
extract dominant flow characteristics and dynamics.1–3 It was devel-
oped as a data-driven method to approximate the Koopman operator
of trajectory data.4,5 The Koopman operator linearizes a nonlinear
dynamical system, allowing representation through successive experi-
mental snapshots.6 DMD has proven to be a powerful and versatile
tool in fluid dynamics research. The development of improved algo-
rithms provides insight into physical applications in fluids7 and, in
turn, can also be influenced by applications. Such applications include,
but are not limited to, cylinder wake studies,8–11 cavity flows,3,12–14

and the tandem cylinder flow interaction problem,15–17 which will be
the focus of our study.

Flow interaction with tandem cylinders is a classical problem in
fluid mechanics, associated with various phenomena that include

vortex shedding, wake dynamics, and acoustic radiation. Extensive
research has been conducted on this topic,18–22 aiming to understand
the diverse flow physics exhibited. In particular, several flow regimes
arise depending on the spacing between the two cylinders.
Understanding the flow phenomena in these interactions is relevant
for civil and ocean engineering applications. In addition, analyzing the
noise generated is crucial for aeroacoustics, especially due to the pres-
ence of cylinders in landing gear and airframes.23,24 The noise gener-
ated when flow interacts with tandem cylinders has been the focus of
experimental and numerical studies,25–28 in which porous coatings are
used as an effective strategy for noise-reduction.

When two cylinders are positioned with a critical spacing, the
flow over tandem cylinders can exhibit bi-stability,29,30 wherein the
flow alternates between two distinct quasi-stable regimes. This phe-
nomenon has implications for noise generation, structural vibrations,
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and heat transfer, which is of considerable interest to engineers.
However, the bi-stable nature and the interactions between wake
dynamics and far-field noise remain poorly understood, particularly in
real-world configurations that involve turbulent flows. These complex
dynamics are particularly suited to DMD since the transition between
regimes and the respective harmonics can be captured by distinct
modes and studied for their properties. However, relating modes asso-
ciated with vorticity to other observables, such as surface or far-field
pressure, is a more challenging task.

Recent experimental studies on flow interactions with tandem
cylinders in bi-stable configurations include Refs. 31–37 with Refs. 31
and 32 focusing on experiments involving cylinders of different diame-
ters. Variations of this problem that have been studied include square
cylinders38–40 and configurations using multiple cylinders placed in a
range of arrangements.41–44 High-fidelity numerical simulations, as
performed in Refs. 45–53, have also become a popular approach to
understanding the complex flow physics that underlies the observed
phenomena. Numerical simulations provide high-resolution data that
are often challenging to capture experimentally, allowing easy adjust-
ments to initial and boundary conditions for parameter studies.
Simulations, while computationally expensive, rely on assumptions
that may not reflect real-world conditions. Experiments validate them.

Previous near-field velocity measurements have been limited by
intrusive or non-time-resolved techniques.54–58 Thus, experimental
methodology involving both velocity and pressure measurements is of
significant interest to the field for understanding correlations between
coherent vortical structures and generated noise. One method to inves-
tigate modal correlation with pressure signals, based on canonical cor-
relation analysis, is presented in Ref. 59.

This study involves an advanced experimental setup capable of
time-resolved, simultaneous measurements of near-field velocity,
unsteady surface pressure, and far-field acoustic pressure. These exper-
imental data are suitable for applying innovative DMD techniques to
bring new light to the area. We examine a tandem cylinder configura-
tion in an anechoic wind tunnel with a high-speed particle image
velocimetry (PIV) system and instruments for unsteady surface pres-
sure and far-field noise measurements. The cylinders are spaced at
3.7D (D is the diameter of both cylinders), creating a bi-stable flow
state where two vortex shedding regimes alternate at distinct frequen-
cies.29,30 Flow structures associated with surface pressure fluctuations
and far-field noise are identified using cross correlation analysis and
are compared to equivalent DMDmodes.

To improve the accuracy of our comparable DMDmodes, we uti-
lize several variants of DMD and present a novel algorithm that lever-
ages the advantages of each approach. Since its inception, numerous
DMD variants have emerged, thoroughly reviewed in Refs. 7 and 60.
This paper focuses on three key variants: kernelized extended DMD
(kEDMD),61 Residual DMD (ResDMD),62–64 and Rigged DMD.12 We
briefly introduce each in turn.

Extended DMD (EDMD)65 is a generalization of DMD that ena-
bles the use of nonlinear basis functions to approximate the eigenfunc-
tions of the Koopman operator. kEDMD61 builds on this by
associating a kernel function with the EDMD dictionary, helping to
mitigate the curse of dimensionality—particularly beneficial when
handling high-dimensional state spaces, as often encountered in fluid
experiments. Moreover, capturing complex nonlinear flow features
demands a nonlinear dictionary.

ResDMD was developed as an alternative algorithm with built-in
error control.62,66 The residual is an error measure for each eigenpair,
indicating whether a mode faithfully represents the true dynamics. (It
can also be used to compute general spectral properties of Koopman
operators.) Given that finite-dimensional approximations of the
infinite-dimensional Koopman operator can produce spurious modes,
residuals provide critical error control for eigenvalues grounded in
convergence theorems. We implement the residual within both the
kEDMD and RiggedDMD frameworks.

Rigged DMD12 is designed to construct smoothed generalized
eigenfunctions of the Koopman operator and approximate the sys-
tem’s spectral measure. The spectral measure effectively diagonalizes
the Koopman operator when the underlying system is measure-
preserving, providing insights into its power spectrum.62 A key
advantage of Rigged DMD is its efficient and flexible calculation of
generalized eigenfunctions (modes) at any spectrum point, equiva-
lently, at any frequency relevant to the data’s power spectrum, with
adjustable accuracy via a tailored wavepacket approach. Demonstrated
applications include high-Reynolds lid-driven flow in a square cavity
and the Lorentz system.12 Further investigation is needed to evaluate
the algorithm’s dependence on the initial dictionary and directly com-
pare kEDMD and Rigged DMD in experimental contexts.

This paper demonstrates a clear improvement in modal analysis
by implementing nonlinear dictionaries within RiggedDMD. The
modes are verified to be physically meaningful when compared with
coherence modes between vorticity and far-field noise data. These
improvements are supported by calculating modal residuals, demon-
strating the benefits of implementing a means of error control within
machine learning. Finally, we introduce a fundamental new algorithm
for investigating the properties of fluids by combining the advantages
of the three aforementioned DMD variants. The new algorithm, ker-
nelized Rigged DMD (kRigged DMD), implements nonlinear dictio-
naries and estimates residuals of eigenfunction within a Rigged DMD
framework. This approach enhances modal accuracy for high-rank
approximations over kEDMD. The primary benefits of this algorithm
are:

• Efficient generation of wavepacket approximations to eigenfunc-
tions with pre-selected levels of smoothing. This can be done
even in the presence of continuous spectra.

• Permits the pre-selection of any frequency for an eigenfunction.
These can be chosen by computing the spectral measure or by
testing the residuals of a large sample of test eigenvalues.

• Produces physically meaningful modes whose residuals are lower
on average than kEDMD for high-rank approximations.

This paper is structured as follows. We begin in Sec. II with an
overview of the experimental methodology for obtaining two-
dimensional, time-resolved velocity data synchronized with surface
and far-field pressure measurements. Next, in Sec. III, we briefly review
kEDMD, discussing key concepts adapted for our investigation. This
section includes a preliminary low-rank application of kEDMD to
velocity data, identifying key modes and exploring the impact of non-
linear dictionaries within the kEDMD framework. In Sec. IV, we con-
duct a detailed comparison of kernels with an expanded dictionary size
N, enabling the analysis of additional nonspurious modes. This is fol-
lowed by the development and implementation of kRigged DMD in
Sec. V. We discuss this new algorithm in depth, demonstrating its
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ability to produce meaningful modes, which are further validated
through cross correlation analysis of experimental velocity and pres-
sure data. Finally, we compare different kernels and dictionary sizes
within the kRigged DMD framework in Sec. VI, highlighting its advan-
tages over kEDMD for identifying a broader range of modes with
larger dictionaries.

II. EXPERIMENTAL METHODOLOGY

To validate these methods, we took measurements in the UNSW
Anechoic Wind Tunnel (UAT), an open-jet wind tunnel with a
0.455� 0.455 m test section housed within a 3� 4.7� 2.15m3

anechoic chamber with a cutoff frequency of 300Hz. Further details
on the UAT are available in Ref. 67. Figure 1 shows the wind tunnel
schematics. We tested a tandem cylinder configuration with a cylinder
diameter of D ¼ 20mm and a gap of 3.7D in the open-jet test section
of the UAT. The freestream velocity was set at U1 ¼ 15m/s, resulting
in a Reynolds number of ReD ¼ 20 000 based on the cylinder diame-
ter. Figure 2 illustrates the experimental setup.

We placed a VEO 640L camera on the side of the test section to
take high-speed planar PIV measurements on the streamwise plane
(x–y plane) at the cylinder midspan. A LaVision aerosol generator pro-
duces seeding particles with an average diameter of �1lm. A Litron
LD25-527 PIV laser system supplies illumination for PIV measure-
ments with a maximum output energy of 25mJ per pulse at 1 kHz. We
control the data acquisition and synchronization between the laser and
camera using a LaVision Programable Timing Unit (PTU X). Figure 2
shows these experimental schematics. We recorded PIV images at a
sampling rate of 1 kHz with a resolution of 2560� 1192 pixels and
processed these results using a final interrogation window size of
32� 32 with a 50% overlap.

The instantaneous vorticity flips between two stable regimes: the
co-shedding and reattachment regimes. We show a representative
snapshot for the co-shedding regime in Fig. 3(a). It is characterized by
the shedding of vortices by both cylinders. The vortices shed by the
upstream cylinder convect downstream and interact with those shed
by the downstream cylinder. This leads to oscillations in the wake that
contribute to far-field noise due to vortex interactions. Figure 3(b) rep-
resents the reattachment regime. This regime is characterized by two
shear layers emanating from the upper and lower sides of the upstream
cylinder and remaining attached to the downstream cylinder. In this
regime, vortex shedding by the upstream cylinder is mostly sup-
pressed, while vortex shedding from the downstream cylinder is also
weaker and restricted to regions behind the downstream cylinder. This
suppression of shedding leads to lower far-field noise levels. When the

flow transitions between these two states, observed far-field noise and
pressure fluctuations are expected to change drastically. The shear
layers either stabilize or break down, while the onset of vortex shed-
ding either begins or significantly weakens. We couple our DMD-
based investigation into the flow vorticity with synchronized pressure
and far-field noise measurements to understand how the flow physics
observed during these transitions relates to changes in surface pressure
or far-field noise.

We acquired unsteady surface pressure data using a remote
microphone technique,68,69 equipped with a GRAS type 40 PH 1/4 in.
microphone. We recorded all microphone signals at a sampling rate of
40kHz using a National Instruments PXI platform, while PIV mea-
surements were made. The synchronization between PIV data and
pressure signals was achieved using the camera trigger signal measured
from the PTU X. We acquired far-field acoustic data using a GRAS
type 40 PH 1/4 in. microphone placed 0.95m ð47:5DÞ underneath the
midspan of the downstream cylinder. The surface pressure tap
(0.9mm diameter) is located in the midspan of the downstream cylin-
der, facing the far-field microphone (azimuth angle of 270�).

The PSD for the far-field noise and the surface pressure are plot-
ted in Fig. 4. The two shedding frequencies at approximately 100 and
130Hz have significant peaks for both PSDs. We notice significantFIG. 1. Schematic of the UNSW anechoic wind tunnel (UAT).

FIG. 2. Schematics of the experimental setup.
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peaks for either or both PSDs when looking at the higher frequency
harmonic (integer multiples of these two shedding frequencies).

Figure 5 shows the evolutionary power spectral density (EPSD)
for the vorticity signal averaged along the line x=D ¼ 1:0. We take this
EPSD in the gap to observe both regimes. The first shedding frequency
is related to the vortex shedding present at the reattachment regime,
while the second peak relates to the co-shedding regime. Between
t� ¼ 700 and 1400, the PSD is significant at frequencies f ¼ 126 and
130Hz, when we see the co-shedding regime is dominant but then
changes to a weaker signal at around f ¼ 100Hz between t� ¼ 1400
and 2300, where the reattachment flow regime is stable but has

weakened vortex shedding from the second cylinder. Our paper
focuses on improving the DMD algorithms used to study the flow fea-
tures. Regardless, we remain motivated in this venture by the reconcili-
ation of pressure and velocity data and the physical structures relevant
to both.

III. A NOVEL APPROACH FOR VORTICITY DATA
ANALYSIS USING KEDMD

In this section, we explore the fundamentals of kEDMD when
used to analyze our data. We outline the foundations of the algorithm
and examine how different kernels influence the results.

A. A brief overview of DMD

DMD1,3 is a data-driven technique that captures spatial and tem-
poral patterns within modes by using two important d �M matrices,
where d is the total spatial dimension of the data and M is the total
number of snapshots. These matrices are traditionally defined as

X ¼ ½X1;X2;…;XM �; Y ¼ ½X2;X3;…;XMþ1�;
where each Xi is a vector representing the datafield at the ith snapshot.
For our experiment, the PIV window had a grid spacing
Dx ¼ 0:814mm, with a grid size of 161 x points and 75 y points, thus
d ¼ 12 075. Due to the presence of the cylinders, 2289 of these grid-
points are not measured. Hence, the dimension of the data can be
reduced, or the data can be set to zero at these points. Our experiment
tookM ¼ 7800 snapshots.

We view our data within the context of dynamical systems gov-
erned by some potentially nonlinear, unknown function F satisfying

Xnþ1 ¼ FðXnÞ; n ¼ 0; 1; 2;…: (1)

The Koopman operator is a linear operatorK acting upon an observ-
able g of the system such that

½K g� Xnð Þ ¼ g Xnþ1ð Þ: (2)

An observable is a function used to measure the state of the system we
initially defined in Eq. (1). The goal of DMD70 is to approximate the
Koopman operator by a matrix KDMD such that

Y � KDMDX: (3)

FIG. 3. Instantaneous vorticity snapshots of the co-shedding and reattachment
regimes, normalized by xD=U0, at specific times t� ¼ tU0=D.

FIG. 4. Power spectral density (PSD) of the fluctuating surface pressure and the
far-field acoustic pressure.

FIG. 5. EPSD for average vorticity along a line in the gap between the two
cylinders.
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To find this matrix, Exact DMD minimizes Eq. (3) in a least
squares sense and defines the Koopman matrix as

KDMD ¼ YX†; (4)

where † denotes the Moore–Penrose pseudo-inverse.
By construction, any eigenfunction of K should be expected to

capture coherent behaviors of the system. In particular, if K g ¼ kg,
then

gðXnÞ ¼ kngðX0Þ;
and hence the eigenvalue k describes the decay and/or oscillation of
the observable g with time. Thus, it is important to approximate poten-
tial eigenfunctions by finding the eigenvectors and eigenvalues of the
Koopman matrix,

KDMDV ¼ VK: (5)

The matrix V will contain the modes, and K is a diagonal matrix of
the corresponding eigenvalues. The entries of this matrix can be related
to the eigenfrequencies, given a particular sampling frequency fs for
the data via the relation,

f ¼ �i
log kð Þfs

2p

� �
:

This experiment used a sampling frequency of fs ¼ 1000Hz.
When approximating the infinite-dimensional Koopman opera-

tor K by a finite-dimensional linear operator represented by KDMD,
several problems occur:7 the first is spectral pollution,71 in which spuri-
ous eigenvalues arise that are unrelated to the Koopman operator of
the system; the second is the noise corruption of modes,7,72 where it
has been shown that DMD has an inherent bias to any additional ran-
dom noise as a consequence of solutions to the least squares problem
being optimized only when noise is present in Y; finally, the issue we
are most interested in is that exact DMD eigenvectors can be consid-
ered a linear combination of POD modes, and this linearity can miss
spectra associated with nonlinear characteristics of data. This final
issue concerns the choice of a dictionary of basis functions that we use
to derive a Koopman matrix. This dictionary can be considered a
finite-dimensional subspace of observables for which the restriction of
the Koopman operator acting on this subspace will be approximated
by the Koopman matrix KEDMD. This matrix is the solution to a least
squares problem.65

The success of EDMD lies in its ability to reflect the inherent
nature of the system through a careful choice of dictionary. This will
be explored in Sec. III B. More specifically, in EDMD, the Koopman
matrix relies on two new matrices WX and WY that are functions of
matrices X and Y. For EDMD with a POD basis, we can calculate

WX ¼ XTV; WY ¼ YTV; (6)

where V is the right singular matrix from a singular value decomposi-
tion of the data and T is the usual matrix transpose. Then, we define

G ¼ W�
XWX ; A ¼ W�

XWY (7)

and define the Koopman matrix K ¼ G†A.
To focus on key modes, rank reduction can be performed by

truncating the SVD decomposition to restrict attention to N � M
modes. This will also make the dictionary size N. Naturally, reducing

the rank leads to decreased accuracy in the approximation of the sys-
tem but can help in the presence of noise. A rich dictionary may allow
for more intricate features to be better understood. The modal residual
is derived in Refs. 62 and 66 as a method of modal error control. The
residual of an eigenfunction v with eigenvalue k is used to compute the
projection error kK v � kvk and is defined as

res k; vð Þ2 ¼ v� L� kA� � �kAþ jkj2G
� �

v
v�Gv:

(8)

This formula relies on an additional matrix

L ¼ W�
YWY : (9)

Calculating the projection error of a mode helps avoid spurious eigen-
values. This notion will be considered in more detail during Sec. III B
when we compare the effects of dictionary choices more directly. We
use the residual as a means to measure modal reliability as opposed to
modal modulus since it has been demonstrated in previous work, such
as Ref. 62, that it is a more accurate indicator of convergence to true
dynamics. In this paper, an example showed that recreating a system
with the lowest residual modes can give more accurate results than
with the modes closest to the unit circle. We prefer the residual to
modal energy since there is no guarantee that high-energy modes are
reliable solely due to their importance in modal reconstruction. If the
algorithm does not capture the system well enough, it may feature
high-energy spurious modes that may be misleading. The role of the
residual is to assess whether a potential eigenpair ðk; vÞ is accurate by
approximating its relative residual

jj K � kIð Þvjj
jjvjj ; (10)

which is well approximated by Eq. (8), since

lim
M!1

½W�
XK WY �jk ¼ hwj;K wki;

and similar results hold for combinations including WY (as explained
in Sec. 3 of Ref. 62).

In Ref. 62, the use of training data is discussed as an additional
method to improve modal accuracy. Here, an additional independent
dataset is used to construct the dictionary and facilitates the implemen-
tation of convergence theorems for eigenvalues. An alternative
approach that does not require additional data is discussed in Ref. 63,
in which a dual least squares problem is considered. For our experi-
ment, the large number of snapshots is suitable for the former
approach, and we separate the dataset of length M into two separate
segments of lengthM1 andM2, respectively. The former is the training
data used for the dictionary, and the latter is the data we aim to
approximate with our algorithms.

The final important definition is the kernel used to form a dictio-
nary. We have mentioned that EDMD introduces a nonlinear dictio-
nary via matrices WX;Y ; however, the first algorithm to directly relate
functional kernels to dictionary choices was kernelized EDMD
(kEDMD).61 For this algorithm, one explicitly chooses a kernel func-
tionS ðx; x0Þ and defines preliminary matrices ~G; ~A; ~L such that

~Gij ¼ S Xi;Xj
� �

; ~Aij ¼ S Xi;Yj
� �

; ~Lij ¼ S Yi;Yj
� �

: (11)

With these matrices, one computes the eigendecomposition
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~G ¼ QR2Q� (12)

and defines truncated matrices

~Q :¼ Qð:; 1 : NÞ;
~R :¼ Rð1 : N; 1 : NÞ:

Then, the (compressed) kEDMD Koopman matrix is

~K ¼ ~R
† ~Q

�
� �

~A ~Q~R
†

� �
: (13)

The analogous matrices WX;Y to Eq. (6), which we denote Wk
X;Y

for this algorithm, are

Wk
X ¼ ~G

† ~Q~R
†

� �
; Wk

Y ¼ ~A ~Q~R
†

� �
: (14)

We can calculate the residual of a kEDMD mode via an equiva-
lent definition to Eq. (8)

res k; vð Þ2 ¼ v� ~L � k~A
� � �k ~A þ jkj2 ~G

� �
v

v� ~Gv:
(15)

For this paper, we will investigate four common choices of
kernels

S Lin x; x0
� �

:¼ x0x; (16a)

S Lap x; x0
� �

:¼ exp �kx � x0k=c� �
; (16b)

S G x; x0
� �

:¼ exp �kx � x0k2=~c2
� �

; (16c)

S p;n x; x0
� �

:¼ 1þ x0�x=c2
� �n

: (16d)

Equation (16a) is for a linear kernel where the dictionary consists
of linear modes. Equation (16b) is for a Laplacian kernel. Equation
(16c) is for a Gaussian kernel, while the final kernel in Eq. (16d) is for
an nth degree polynomial kernel. Here, c is the average l2-norm of the
mean-subtracted snapshot, while ~c is the average of the snapshot with-
out subtracting the mean. A preliminary investigation of our dataset
demonstrated that a good choice for the polynomial kernel was a quar-
tic polynomial kernel, and we separately observed that an octic polyno-
mial produced characteristics very similar to the quartic, but with
slightly lower residual. We omit comparisons on polynomial kernels
for brevity, but we believe optimizing based on the underlying theory
will be possible in the future. Laplacian and Gaussian kernels are popu-
lar choices due to their ability to successfully capture nonlinearities in
data, since they are universal approximators.

B. A low-rank exploration of velocity modes

To explore the key modes expected from kEDMD, we fix N ¼ 30
and produce a low-rank data decomposition.

For now, we focus more on what flow features we can uncover
using multiple kernels. In Sec. IV, we will compare modes using differ-
ent kernels. We fixM1 ¼ M2 ¼ 3900 and divide our data into training
and experimental sets to perform kResDMD.

Vorticity, being a first-order quantity with complex dynamics
and steep gradients, makes low-rank DMD approximations less effec-
tive at capturing a broad range of behaviors. This is demonstrated in
Fig. 6 in which we plot the spectrum for the linear kernel, where only a
few frequencies lie near the unit circle, representing modes that capture

physical phenomenon more reliably. We will see in future examples
that these modes represent the two shedding frequencies and their first
harmonics as well as steady-state behavior near k ¼ 1. Therefore, we
instead choose to perform DMD on both velocity fields, that is

X ¼ ½U;V�:
Modes are then projected onto the vorticity field by plotting Koopman
modes. Vorticity inherently relies on velocity fields; hence, we expect
important behaviors and frequencies to be captured using this method.
We will see that these modes are very similar to those obtained when
using vorticity directly. However, this section’s exploration is mostly
motivational for the final sections, where we will increase N and use
the vorticity field to capture intricate flow features directly associated
with the vorticity.

A brief comparison of the plots in Fig. 7 shows that the eigenval-
ues of nonlinear kernels tend to be close to the unit circle, suggesting
they capture more persistent flow features. There are subtle nuances to
the individual nonlinear kernels. The quartic kernel captures an extra
mode at around k ¼ i but remains relatively similar to the Laplacian
results. Conversely, the Gaussian kernel also captures more low-
frequency modes near k ¼ 1 but with a non-zero imaginary part.

To view specific modes, we divide our attention between the
steady dynamics (k ¼ 1), modes and harmonics related to the first
shedding frequency, and modes and harmonics related to the second
shedding frequency.

1. Steady dynamics

The steady flow features are captured at k � 1. The linear kernel
has several modes with I½k� ¼ 0; however, their low eigenvalue modu-
lus suggests they are less reliable. For measure-preserving systems, the
residual of a mode is related to the modulus of a mode via

res �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jkj2

q
, as discussed in Ref. 64. This approximation holds

well for the low-rank approximation of the system. We will focus on
the two modes of the Laplacian kernel with k � 1.

Our first projected Koopman modes are plotted in Fig. 8. From
this point onward, we only plot dimensional vorticity modes which
will all have units s�1. The first mode in Fig. 8(a) is a high-energy

FIG. 6. Spectrum for the low-rank velocity eigenvalues. The unit circle jkj is indi-
cated in black.
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steady-state mode found within the spectra of all kernels. This mode is
similar to the lowest frequency mode computed by an alternative algo-
rithm, recursive DMD, in Figs. 18(a), 20(a), and 22(a) of Ref. 47. We
see important features related to each of the two regimes: the shedding
of vortices in the gap related to the co-shedding regime and the forma-
tion and attachment of large shear layers between the two cylinders
that is seen in the reattachment regime. However, the mode has far
less energy in the wake of the downstream cylinder.

The second mode is closer to k ¼ 1 and is unique to the nonlin-
ear kernels. These modes may be linked to more intricate nonlinear
flow features, such as shear layer instabilities and more complex vortex
dynamics. This mode could be more relevant to the inherent bi-
stability of the flow.

2. The first shedding frequency

In Fig. 9(a), the most significant peak for both the far-field noise
and the surface pressure is found at 100Hz. This shedding frequency

is associated with the reattachment regime. The mode corresponding
to the primary vortex frequency in Fig. 9(a) features shedding struc-
tures in the upstream cylinder wake that are deflected by the down-
stream cylinder. We also see separated shear layers that reattach to the
leeward side of the downstream cylinder.

In Fig. 9(b), we plot the first harmonic frequency for the primary
vortex shedding frequency. This mode shows smaller-scale structures
being shed from the downstream cylinder. The higher frequency
dynamics captured by this mode highlights the presence of secondary
shear layer instabilities in the wake of the second cylinder, which influ-
ence the overall wake structure. There is significantly less activity in
the gap, reflecting the lack of vortex shedding in the gap within this
regime. This feature resembles the third and fourth harmonic modes
in Figs. 9(c) and 9(d). The linear kernel cannot pick out any high-
frequency modes, so we used the Gaussian kernel. All nonlinear ker-
nels demonstrate the shedding of several clearly defined elongated
structures that dominate the flow. For Fig. 9(d), these structures are
less defined and have as much energy as the smaller structures in the
gap between cylinders. This could imply that the downstream cylinder
stabilizes the overall flow pattern, with the chaotic structures in the gap
serving to dissipate energy before the flow reorganizes into larger vorti-
ces. These longer structures likely correspond to vortex formation and
shedding in the wake of the second cylinder, driven by interactions
with the incoming disturbed wake from the first cylinder.

3. The second shedding frequency

The secondary shedding mode in Fig. 10(a) shows separated
shear layers that form vortex shedding structures within the gap
between the two cylinders and contribute to significant vortex shed-
ding by the downstream cylinder. These features correspond to the co-
shedding regime. Figure 4 shows several peaks around the second
shedding frequency. With a low-rank dictionary, it is hard for even the
nonlinear kernels to pick out all separate phenomena, but they can
pick out several relevant harmonics. We show the first harmonic from
the Laplacian kernel of an earlier peak in Fig. 10(b) and the first har-
monic for (approximately) the second shedding frequency from the
quartic polynomial kernel in Fig. 10(c). These modes have similar
characteristics but more refined structures in the wake of the second
cylinder or the gap between cylinders for each respective figure. Here,

FIG. 7. Eigenpairs for the low-rank velocity eigenvalues.

FIG. 8. Steady-state low-rank Koopman modes projected onto vorticity data using
the Laplacian kernel. Modes are dimensional with units s�1.

FIG. 9. Low-rank Koopman modes for the first shedding frequency and its harmon-
ics projected onto vorticity data.
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the shear layers merge to form vortical structures in the gap that inter-
act with the downstream cylinder. The larger structures initially pass
over the cylinder but break into smaller ones as the flow transitions to
a more turbulent state.

Finally, a high-frequency mode captured successfully by the quar-
tic kernel is shown in Fig. 10(d). Unlike Figs. 10(b) and 10(c), this
mode has symmetry about y ¼ 0 and a more even spread of energy
between the gap and the wake. The breakup of thin shear layers within
the gap suggests this mode may contribute to the transition from the
reattachment regime to the co-shedding regime.

To finish this section and motivate the next, we visually represent
how the four kernels differ at N ¼ 30. We overlay the modes that each
kernel calculated and their residuals [see Eq. (8)] alongside the far-field
noise PSD in Fig. 11. This plot excludes the steady-state modes, and
we plot 1=res so more reliable modes align better with the larger (more
important) peaks in the PSD they represent. The nonlinear kernels all
have lower residuals for the harmonic frequencies and cover a broader
range of frequencies.

IV. COMPARING NONLINEAR KERNELS

Now that we have discussed the experimental motivation exten-
sively, and we focus on the impact of dictionary choice on results. We

will compare kernels for certain nonlinear dictionaries Eqs. (16b)–
(16d) in their performance against the linear dictionary Eq. (16a) with
two larger dictionary sizes (N). We have already observed that nonlin-
ear dictionaries have an advantage over a linear dictionary in capturing
a wider range of modal frequencies and lower residuals, but this was
for the simplistic low-rank case. We will now focus only on the vortic-
ity data calculated from the experimentally measured U and V fields.
Although we anticipate some difficulties with the modal decomposi-
tion of the vorticity data, a larger dictionary size captures more of the
intricacies of the flow more accurately.

A. The impact of dictionaries on residuals and spectra

We compute the Koopman matrix for each algorithm to find all
modes and residuals to visualize the approximated spectrum. The first
important concept that we will compare is modal energy, defined as

En ¼ kWX vkffiffiffiffiffiffiffi
M2

p
:

(17)

We will represent individual modal energy as a percentage of the total
DMD modal energy. Energy can be used to rank or prioritize modes.
The second important quantity is the residual of a mode, defined in
Eq. (8) or equivalently as

res k; vð Þ ¼ kWk
Yv � kWk

Xvk
kWk

Xvk:
(18)

In addition, we calculate pseudospectra62,66 to demonstrate the
stability or instability of spectra. That is, for any candidate point z in
the complex plane, we calculate

sðzÞ ¼ minv2CN res z;Wvð Þ: (19)

Here, we use the shorthand notationWv to refer to the summation

Wv ¼
XN
j¼1

wjðxÞvj;

where each wj is a member of the kernelized dictionary. The pseudo-
spectrum is another important method for detecting spurious eigenval-
ues unrelated to the spectrum of the Koopman operator and, thus,
serves as a means of error control. For every point in the complex
k-plane, the pseudospectrum associates a value e. This value deter-
mines how large a perturbation of the operator needs to be for k to be
in its spectrum. In summary, the pseudospectrum with associated
value e is the region of the complex plane corresponding to spectra of
perturbations of the underlying Koopman operatorK of size e.

1. N51000

Our first choice of dictionary size is N ¼ 1000. This represents a
mid-rank approximation in which we sacrifice some numerical effi-
ciency to capture more low-residual modes representing a larger selec-
tion of flow features.

First, in Fig. 12, we plot the eigenpairs for each method. The
residuals are indicated by color, and some important modes are cap-
tured with low residuals nearer to the unit circle. The distinction
between linear and nonlinear kernels is noticeable. First, all nonlinear
kernels have more nonspurious eigenvalues and tend to spread out

FIG. 10. Low-rank Koopman modes for the second shedding frequency and its har-
monics projected onto vorticity data.

FIG. 11. Low-rank velocity eigenvalues and their associated 1=res value plotted
against the far-field noise PSD.
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more from the origin. We see that the quartic kernel has the most
spread out eigenvalues. However, not all of these modes may be reli-
able. The Laplacian and Gaussian kernels appear quite similar, and
Figs. 12(c) and 12(d) differ only in terms of residuals, with the
Gaussian kernel having slightly lower residuals for the high-frequency
modes near k ¼ �1 and some of the more transient modes between
the unit circle and central region of spectral pollution.

We plot pseudospectra in Fig. 13 to support our kernel compari-
sons. The high-frequency effects are harder to capture, but the spread
in the darker region toward k ¼ �1 seen in Fig. 13(d) shows that a

careful choice of the kernel can provide insight into the flow. Small
regions surrounding key modes become more pronounced for the
nonlinear kernels, suggesting they capture coherent structures better
within these modes with a rank N < M2.

Finally, we discuss the energies of each mode, including the
modal frequency and residual. As mentioned in the introduction,
ResDMD is unique as a DMD method in that it uses the residual as a
ranking criterion for modal importance. In contrast, other methods,
such as Exact DMD and SPOD, focus on modal energy or modal
modulus.

To demonstrate the importance of the distinction between energy
and residual, we plot energy-frequency modal comparisons for the
N ¼ 1000 case. Since we now have more spurious modes, we restrict
our attention to modes that satisfy res < 0:8. This value is chosen for
esthetic purposes to remove a significant amount of spectral pollution.
The bulk of modes for each method are around this value except for
the quartic kernel. It is clear from Fig. 14(a) that the residual is a better
criterion for modal ranking since we see that a low-residual mode for
the second shedding frequency has less energy than five spurious
modes. Conversely, each nonlinear kernel exhibits a trend where the
more energetic modes also correspond to the low-residual modes, sug-
gesting that these kernels prioritize energy distribution to more reliable
modes. Additionally, we observe that each nonlinear kernel assigns
more similar energy content to the key shedding modes. Furthermore,
we note that the nonlinear kernels have more spurious modes, as their
average residual is lower in every case.

If we perform a low-rank approximation, such as Fig. 6, all algo-
rithms struggle to produce a mode at around 130Hz for the second
shedding frequency. This is due to several distinct peaks between 120
and 130Hz that the low-rank algorithms struggle to distinguish. Once
we set N ¼ 1000, all four methods correctly approximate the second
shedding frequency. In addition, smaller secondary peaks in the pres-
sure power spectra in Fig. 3 are now represented by several nonspuri-
ous modes in Figs. 14(b)–14(d).

2. N53000

Next, we choose a high-rank approximation with a dictionary
size of N ¼ 3000. Since our data contain M2 ¼ 3900 snapshots, we
are approaching the limit in which we can capture more of a continu-
ous spectrum. However, such a limit is still a finite discrimination of
this spectrum that may be hindered by overfitting and has a high com-
putational cost; thus, there are no guarantees that this spectrum is the
exact continuous Koopman spectrum. Thus, it is worth investigating
how beneficial a high rank can be. In particular, for some experiments
with a larger number of snapshots, a full-rank approximation becomes
impractical.

We plot the eigenvalues and residuals for the high-rank approxi-
mation in Fig. 15.

In the large N limit, we still see some spectral pollution, but a
clearer disk of modes emerges that may be approximating a continu-
ous spectrum. However, for the nonlinear kernels, it is possible to spot
several separate nonspurious modes that relate to the shedding fre-
quencies and their harmonics.

We show updated high-rank pseudospectra in Fig. 16. We
observe an annulus that approaches the unit circle with a region repre-
sentative of spectral pollution at its center. Moreover, exceptionally
low-residual modes (with a residual less than 0.4, a baseline chosen to

FIG. 12. Eigenpairs and residuals for the mid-rank case. The unit circle jkj is indi-
cated in black, and the mode color represents residual.

FIG. 13. Pseudospectra [Eq. (19)] for linear and nonlinear dictionaries for the mid-
rank case. Eigenvalues from Fig. 12 are indicated in red.
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exclude the annular region) are highlighted in green and demonstrate
the superiority of the nonlinear kernels. Any kEDMD exploration of
experimental data is improved by initially exploring the pseudospec-
trum using the ResDMD algorithm, as it demonstrates what regions of
the spectra are the most significant and enables a simple ranking of
them.

Finally, we explore the energy distribution for this high-rank
approximation. We focus on the first 300 modes with the lowest resid-
ual to avoid less reliable modes that may not contain significant or
accurate flow structures. We see that the higher residual modes that
can be attributed to transient effects carry the least amount of energy.

FIG. 14. Modal energy [Eq. (17)] against
modal frequency with residual [Eq. (8)]
indicated by color for the mid-rank case.
Only modes satisfying res < 0:8 are kept.

FIG. 15. Eigenpairs and residuals for the high-rank case. The unit circle jkj is indi-
cated in black, and the mode color represents residual.

FIG. 16. High-rank pseudospectra [Eq. (19)] for linear and several nonlinear dictio-
naries. Eigenvalues from Fig. 15 are indicated in red with modes satisfying res
< 0:4 indicated in green.
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When comparing the four kernels for this case, we notice some differ-
ences compared with Fig. 14. First, the high-energy mode at k ¼ 1 is
now more dominant within the quartic kernel spectrum than the other
two nonlinear kernels. When viewing the residuals closely, we can see
that the nonlinear kernels offer double the number of key nonspurious
modes to investigate. A Koopman mode is considered nonspurious if
it corresponds to a physically meaningful, dynamically persistent struc-
ture in the system’s evolution. These modes represent key physical fea-
tures of the flow captured accurately by the modal decomposition
method and will be the focus of Sec. IVB. Moreover, the Laplacian ker-
nel has a less consistent energy distribution, with a steady-state mode
carrying around 4.8% of the total energy [represented with a break in
the y-axis in Fig. 17(c)]. This suggests the Laplacian kernel may not be
suitable for data predictions or reconstructions that involve transient
effects since the steady-state dynamics captures a larger proportion of
modal energy.

B. High-rank vorticity modes

To finish this section, we review some modal comparisons for the
N ¼ 3000 case. This time, we emphasize the modal residual since this
indicates how well the modes approximate an eigenfunction of the
Koopman operator.

While we can learn plenty from the two primary modes, there are
other features captured across other frequencies that we wish to inves-
tigate. Here, dictionary choice helps to ensure that lower residual
modes are chosen at the most accurate frequencies. Since we can only
approximate the full spectrum with a finite number of modes, we are
restricted to what modes the algorithm computes successfully at lower

residuals. Hence, when we plot our mode comparisons, we also include
the specific frequency and residual captured by the algorithm.

We present five modes; three are revisited from Sec. III B 2, while
two distinct frequencies are introduced that are related to previously
studied modes.

The first mode is a low-frequency mode with relatively low resid-
ual, but the mode itself does not lie at k � 1. These modes show high-
energy shear layers that breakup into less energetic regions above the
downward cylinder, best represented by the quartic kernel [Fig. 18(b)],
which has the lowest residual of the four kernels. The differences in
residual seem very small, but the results indicate that the sensitivity of
the results on this parameter may be rather significant. The nonlinear
kernels are similar to the steady-state modes in Fig. 8 within the gap.

The second mode we consider relates to the second shedding fre-
quency at f ¼ 130Hz associated with the proceeding smaller peaks
from Fig. 4. These earlier peaks may relate to different shedding phe-
nomena as the flow transitions from one state to another. We see in
Fig. 19 that all four modes are similar. However, the nonlinear modes
have a much lower residual and demonstrate clearer vortex shedding
from the downstream cylinder that is similar to Fig. 9(a). The primary
difference between these earlier peaks and the mode in Fig. 9(a) is the
longer, thinner shear layers that indicate there may be some influence
from the transition between regimes.

For the third mode, we fix f � 199Hz and compare the second
harmonic of the first shedding frequency to Fig. 9(b). All these modes
have low residuals and are very similar. The structures shed by the sec-
ond cylinder are less even than in the previous modal approximation.
This supports the previous hypothesis that a modal decomposition of
the vorticity field should provide more accuracy of the structures we

FIG. 17. Modal energy [Eq. (17)] against
modal frequency with residual [Eq. (18)]
indicated by color for the high-rank case.
Only modes with residual within the top
10% are kept.
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see when compared to projections of velocity modes. The higher resid-
ual for Fig. 20(a) could be associated with a less accurate portrayal of
the mode in the gap between the two cylinders, and the higher magni-
tude of structures shed from the downstream cylinder. This is a feature
that remains very consistent among the nonlinear kernels.

Our fourth mode is representative of a second harmonic related
to the second shedding frequency, comparable to Figs. 9(b) and 9(c).
All modes show similarity in the wake of the second cylinder but differ
in their strength and structures in the wake of the first. The clearer and
more defined structures are found in Fig. 21(c), which supports the
importance of the residual when compared with the linear kernel in
Fig. 21(a).

The final frequency is the third harmonic of the first shedding
frequency. In Fig. 22, the visual differences between the linear and
nonlinear kernels are pronounced. As in Fig. 21, this supports using
residuals to ascertain whether modes will give clear and suitable
results.

V. KERNELIZED RIGGED DMD: AN ALGORITHM FOR
GENERALIZED EIGENVECTORS

The previous sections highlight the importance of a nonlinear
dictionary in kEDMD. In addition, the physical motivation is to find
an explicit connection between coherent structures in vorticity modes
and peaks observed in the far-field noise PSD. A particular weakness
observed for kEDMD was its restriction to eigenvalues of a Koopman
matrix that forms a finite-dimensional approximation of the
Koopman operator. A novel algorithm, Rigged DMD, was constructed
to overcome this weakness in Ref. 12.

Rigged DMD computes generalized eigenfunction decomposi-
tions of Koopman operators. It implements another algorithm,
measure-preserving EDMD (mpEDMD),73 which approximates the
Koopman operator as a finite-dimensional unitary matrix that pre-
serves the systems norm so that all modes satisfy jkj ¼ 1. Then, the
resolvent of this operator is sampled at a specific frequency to form a

FIG. 18. High-rank modal comparison for a low-frequency mode at � 4 Hz.

FIG. 19. High-rank modal comparison near the second shedding frequency at
� 125 Hz.

FIG. 20. High-rank modal comparison for the first harmonic to the first shedding fre-
quency at � 199 Hz.

FIG. 21. High-rank modal comparison for the first harmonic to the second shedding
frequency at � 256 Hz.
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smoothed approximation of the generalized eigenfunction, using user-
determined smoothing parameters for a wavepacket approximation.

For completeness, we reproduce the traditional Rigged DMD
algorithm from Ref. 12 in Algorithm 1. Algorithm 2, taken from Ref.
12, can be used for the post-processing of generalized eigenfunctions.
Like resDMD, several convergence theorems accompany this algo-
rithm and guarantee the accuracy for these generalized eigenfunctions
and spectral measures.

In Ref. 12, several physical examples are presented that showcase
Rigged DMD. For this paper, in keeping with the focus of Sec. IV, we
use Rigged DMD to analyze our experimental data, focusing on
exploring the effects of dictionary choice. That is, we will introduce a
novel algorithm, kernelized Rigged DMD (kRigged DMD), to compare
alongside “standard” Rigged DMD and investigate the impact of the
initial choice of dictionary on both the spectral measure and the gener-
alized eigenfunctions for key frequencies. For clarity, we outline our
novel updated algorithm to approximate spectral measures and eigen-
functions in Algorithm 3.

A. Coherent structures and noise

One way we can utilize the advantages of kRigged DMD
within our experimental analysis is to investigate the spectral mea-
sure of our vorticity data. The spectral measure can be seen as an
alternative to the power spectral density that removes windowing
and broadening effects. It is closer to the continuous limit of the
fast Fourier transform.

In this section, we show the promise of a modal approach to
identifying coherent flow structures to which tonal far-field noise seen
in Fig. 4 can potentially be attributed. A novel approach to identifying
structures relevant to specific peaks at the pressure spectrum is to plot
the spectral measure of vorticity signals together with the far-field
noise pressure spectra and see which peaks may overlap. We demon-
strate this in Fig. 23(a) for the vorticity signal at a point in the gap
between the two cylinders, where we expect the first shedding fre-
quency to dominate. Then, in Fig. 23(b), we show the spectral measure
for the vorticity signal at a point in the wake of the second cylinder,
where the second shedding frequency should dominate. We fix the

ALGORITHM 1. The Rigged DMD algorithm [12] for computing generalized eigenfunctions ofK .

Input: Snapshots X, Y, quadrature weights wmf gMm¼1, dictionary of observables wj
	 
N

j¼1
, ajf gmj¼1

with ImðajÞ > 0, smoothing parameter

e > 0, angles for the spectral measure H1 	 ½�p; p�per, angles H2 	 ½�p; p�per to calculate generalized eigenfunctions, observable g for the

spectral measure and observables g ¼ ½g1;…; gl�T used to calculate generalized eigenfunctions.
Stage A: Build discretizations of K and g.
1: Apply mpEDMD [73] to compute K, V (eigenvectors), K (eigenvalues).

2: Compute the vector g ¼ ðW1=2WXVÞ†W1=2ðgðXð1ÞÞ;…; gðXðMÞÞÞ>.
Stage B: Apply Rigged DMD to build wave-packed approximations.
1: Solve the m�m system from Stage A for the residues a1;…; am 2 C.
2: For each h 2 H and j ¼ 1;…;m, compute

gðj;þÞ
h ¼ ðKþ eih�ieajÞðK� eih�ieajÞ�1g; gðj;�Þ

h ¼ ðKþ eih�ie�aj ÞðK� eih�ie�aj Þ�1g:
(NB: No matrix multiplications or inverses are needed in this step since K is diagonal.)

3: For each h 2 H, compute

~gh ¼ �1
4p

Xm

j¼1
ðajgðj;þÞ

h � �ajg
ðj;�Þ
h Þ 2 CN ðmpEDMDeigenvector coordinatesÞ;

gh ¼ V~gh 2 CN ðoriginal dictionary coordinatesÞ:
4: For the spectral measure at each h 2 H, compute

nðhÞ ¼ �1
2p

Pm
j¼1 Reðajg�gðj;þÞ

h Þ 2 R:

Output: Vectors gh : h 2 Hf g such that each Wgh 2 L2ðX;xÞ is a wave-packet approximation to a generalized eigenfunction of K corre-
sponding to spectral parameter k ¼ expðihÞ. Smoothed spectral measures nðhÞ : h 2 H

	 

.

ALGORITHM 2. Post-processing of Rigged DMD to compute generalized Koopman modes.12

Input: Snapshots X, Y, quadrature weights wmf gMm¼1, dictionary of observables wj
	 
N

j¼1
, ajf gmj¼1

with ImðajÞ > 0, smoothing parameter

e > 0, angles H 	 ½�p; p�per, observables g ¼ ½g1;…; gl�T .
1: Apply steps 1–5 of Rigged DMD (Algorithm 1) for each observable gp to compute ~gðpÞh (where the superscript denotes dependence
on p) for p ¼ 1;…; l and h 2 H.

2: For each h 2 H, compute the mean ~gh ¼ 1
l

Pl
p¼1 ~g

ðpÞ
h and the vector ch 2 Cl defined component-wise by ½ch�p ¼ ~g�h~g

ðpÞ
h :

Output: Vectors ch : h 2 Hf g.
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smoothing parameter e ¼ 0:1 in both cases and choose sixth-order
polynomials.

We overlay the two spectral measures with the far-field noise
PSD. We see good alignment for each of the two shedding frequencies.
We chose eight frequencies to test by finding peaks existing or either
or both spectra. These eight frequencies form our setF , and we dem-
onstrate their eigenfunctions for a Laplacian kernel dictionary of size
N ¼ 3000. We choose a large kernel to ensure that residuals are low
for almost all frequencies. These residuals can be calculated by insert-
ing ðk; ghÞ pairs from Algorithm 3 into Eq. (18).

ALGORITHM 3. The kRigged DMD algorithm for computing spectral measures and generalized eigenfunctions of K.

Input:M1 snapshots of ‘training data’ ~xm;~ym

n oM1

m¼1
,M2 (distinct) snapshots of experimental data xm; ymf gM2

m¼1
, rank N, quadrature weights

wmf gM2
m¼1, smoothing parameter e > 0, polynomial order n > 0, observable g and a choice of kernel function S . We will use angles h 2 H

for the spectral measure, while we use frequencies f 2 F to approximate generalized eigenfunctions.
Stage A: Choose a kernel for the nonlinear dictionary and construct Wk

XW
k
Y

1: Use kEDMD with both datasets to generate a (potentially nonlinear) dictionary Wk
m

n oN

m¼1
where each Wk

m 2 RN;M2 .

Stage B: Build wave-packet approximations through sampling the resolvent.
1: Use this dictionary within the Rigged DMD algorithm (Algorithm 1) to generate a Koopman matrix K, eigenvalues K, and eigenvec-
tors V.

2: Calculate observable coefficients g ¼ ðX�1ÞTWk
X 2 Rd;N and choose an observable vector g 2 RN for the spectral measure.

3: For the spectral measure, follow stage B of Algorithm 1.
4: For generalized eigenfunctions evaluated at a frequency f 2 F , calculate the corresponding spectral angle via h ¼ 2pfDt, then use the
post-processing method of Algorithm 2 for each angle h to compute smoothed wave-packed approximations to modes ch 2 Rd .

Stage C: Calculate residuals associated with the spectral measure and/or the generalized eigenfunctions.
1: For each h 2 H, fix k ¼ eih and find generalized eigenfunction gh using Algorithm 1. Then calculate the relative residual resðk; ghÞ
from Eq. (18),

2: Repeat the previous step for every k ¼ e2pfDti where f 2 F and the associated gh eigenfunctions.
Output: A smoothed spectral measure nðhÞ : h 2 H

	 

and smooth wave-packet approximations to generalized eigenfunctions

cðf Þ : f 2 F
	 


. Residuals for each approximate eigenfunctions and residuals for a subset H 2 ½�p; p�

FIG. 22. High-rank modal comparison for the second harmonic to the first shedding
frequency at � 298 Hz.

FIG. 23. Comparing the spectral measures of the vorticity signals located at a point
between the cylinders (top) or in the wake of the second cylinder (bottom).
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Figures 24(b), 24(d), and 24(f)–24(h) reproduce the key struc-
tures already discussed in previous sections. However, their direct
relation to the spectral measure can give additional confidence
when relating them to spectral peaks observed for the pressure
data. The remaining figures [Figs. 24(a), 24(c), and 24(e)] represent
less significant modes with weaker shedding strength. The benefit
of Rigged DMD is that we do not have to rely explicitly on the out-
put of a finite truncation of modes, and we can now control the
smoothness of our general eigenfunction approximation. What is
new to this paper is that these eigenfunctions are now a conse-
quence of a better initial understanding of the system by using an
improved dictionary that has been shown to capture the system
behavior more clearly and accurately.

Finally, to justify our conclusions concerning the role of
these structures, we plot the coherence cx;pff between the vorticity
field and far-field pressure signal in Fig. 25. This coherence is
defined as

cx;pff ¼
jSx;pff ðf Þj2

Sx;xðf Þ Spff ;pff ðf Þ
;

where Sx;pff is the cross-spectral density between vorticity and far-field
pressure, while Sx;x; Spff ;pff ðf Þ are auto-spectral densities.

We restrict our attention to the two shedding and harmonic fre-
quencies f ¼ 200 and 297Hz. We find the same patterns and large
structures as seen in the modes from Figs. 8 and 9, suggesting this
approach does have the potential for future studies.

VI. THE IMPACT OF NONLINEAR DICTIONARIES ON
GENERALIZED EIGENFUNCTIONS

To finish, we turn our attention back to the importance of the
dictionary chosen when using DMD methods. Specifically, we will
compare and contrast the four kernels used within the Rigged DMD
framework for the low- and mid-rank dictionary sizes. We compare
eigenfunctions both qualitatively and quantitatively, using the subspace
angle between eigenfunctions for the latter. The subspace angle is the

FIG. 24. kRiggedDMD eigenfunctions for several key frequencies using an N ¼ 3000 Laplacian dictionary.

FIG. 25. Plots of the coherence cx;pff between vorticity and far-field pressure.
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angle between the subspaces defined by two vectors, such as the
d-dimensional generalized eigenvectors. Angles close to zero suggest
two modes are very similar, while angles closer to p=2 indicate that
eigenvectors are increasingly distinct.

An alternative method for finding important modes is calculating
the residuals for a representative subset H 2 ½�p; p� and sampling all
residuals for corresponding points. In other words, one may calculate
residuals for as much (or as little) of the unit circle as desired to find
specific points of physical importance or with suitably low residuals.

To demonstrate this, we plot the frequency-residual lines for
kRigged DMD with increasing rank N alongside the kEDMD modes
withN ¼ 200. Including kEDMDmodes shows that we can now sam-
ple a continuum of values with no frequency restriction. For all
kRigged DMD plots, we fix e ¼ 0:15 and choose polynomial order
n ¼ 6.

We gain plenty of insight from Fig. 26. First, we see the impor-
tance of a large dictionary size as an input to the kRigged DMD algo-
rithm. However, a benefit to this is that for larger N, the average
residual for the continuous approximation from kRigged DMD is
lower than the average residual for kEDMD for all four kernels. This
represents an improvement, thanks to the algorithm. We notice the
advantage of nonlinear kernels in having larger residual troughs,
meaning more frequencies near the key peaks can be sampled and give
insight into transitions leading to or away from major phenomena.
This is particularly clear at the harmonic frequencies for the first shed-
ding frequency.

Using these plots, we will test and compare the predictions from
the kernels at five frequencies. We pick frequencies close to (but not
equal to) the significant modes where kEDMDmay not have been able
to provide nonspurious modes. We will test the results from a mid-
rank approximation, N ¼ 1500, and a high-rank approximation,
N ¼ 3500. The former has mostly high residuals but shows a larger
difference between linear and nonlinear dictionaries. The latter has
low residuals across the entire frequency range and can be considered
much more reliable.

A. N5 1500modes

To begin, we test a mid-rank approximation of N ¼ 1500 modes.
Our first mode is for a low-frequency value of f ¼ 57Hz.

Returning to Fig. 12, this mode would be expected to lie in between
k ¼ 1 and the two low-residual shedding frequency modes. From the
corresponding pseudospectra in Fig. 13, we know all kernels poorly
capture this region. When comparing the predictions in Fig. 27, the
best approximation appears to be from the quartic kernel. The most
significant feature of the mode is the large structure shed downstream
that has the most energy in Fig. 27(b). The subspace angles between
the linear kernel and all nonlinear kernels are larger than 1.3, while the
subspace angles between nonlinear kernels are between 1.14 and 1.18.

Figure 28 compares modes at frequency f ¼ 109Hz, for which
the nonlinear kernels all have smaller residuals. These modes resemble
Fig. 24(c) and show a similar transitional form between the first and
second shedding modes from Figs. 24(b) and 24(d). The modes vary

FIG. 26. Frequency-residual plot for four kernels with three dictionary sizes tested. Modes from the N ¼ 200 kEDMD approximation with the same kernel are added for
comparison.
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primarily in the extent to which the upper and lower shear layers are
attached. However, they generally show similar features and, therefore,
have lower subspace angles. The largest subspace angle is 0.27 and is
for the linear and quartic kernels, while the smallest is 0.21 and that is
between the Laplacian and Gaussian kernels.

In Fig. 29, we approximate a generalized eigenfunction at
f ¼ 190Hz. This is a value preceding the first harmonic for the first
shedding frequency. All four kernels have poor residuals, with the
Laplacian and Gaussian kernels giving slightly better results and recog-
nizing the smaller structures shed from the downstream cylinder. This
example shows significant variation between kernels. All subspace
angles between linear and nonlinear kernels are greater than 1.42;
however, the subspace angle between Laplacian and Gaussian kernels
is 1.15.

For the fourth frequency, we choose f ¼ 261Hz, which has a
large difference in residual between the linear and nonlinear kernels.

This frequency is related to the first harmonic of the second shedding
frequency, which is plotted in Figs. 21 and 24(g). When comparing
Figs. 30(b) and 30(d) to Fig. 30(a), this may be attributed to the forma-
tion of structures in the gap alongside shear layers that break down as
part of the bi-stability transition. For this example, most subspace
angles are �1, excluding the angle between the Gaussian and
Laplacian kernels, which is 0.89.

The final frequency to compare is near the third harmonic of the
first shedding frequency, f ¼ 292Hz. Here, we see a significant benefit
from nonlinear kernels. This time, the Gaussian kernel replicates the
elongated structures shed by the downstream cylinder particularly
well. It also shows less energy in the gap between the cylinders, as char-
acterized by the reattachment regime. The larger residual in Fig. 31(a)
may be due to incorrect predictions between the cylinders and the
structures shed from the second cylinder having less distinct bound-
aries. This frequency shows larger disparity between linear and

FIG. 27. kRigged DMD N ¼ 1500 generalized eigenfunctions at f ¼ 57 Hz.

FIG. 28. kRigged DMD N ¼ 1500 generalized eigenfunctions at f ¼ 109 Hz.

FIG. 29. kRigged DMD N ¼ 1500 generalized eigenfunctions at f ¼ 190 Hz.

FIG. 30. kRigged DMD N ¼ 1500 generalized eigenfunctions at f ¼ 261 Hz.
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nonlinear kernels, and this is reflected by subspace angles. All angles
between linear and nonlinear kernels are greater than 0.77, while the
angles between Gaussian and Laplacian are 0.54; the angle between
Gaussian and quartic is 0.61, and the angle between Laplacian and
quartic s 0.62.

B. N53500 modes

Now, we establish whether the differences between kernels
remain for the N ¼ 3500 high-rank dictionary size. From Fig. 26, all
four kernels should approximate modes similarly well, but some dis-
parities between the frequency-residual plots can be exploited. All ker-
nels’ underlying spectral measures are distinct since they capture
features slightly differently. Hence, different levels of clarity are antici-
pated for less significant modes. This can be fine-tuned by choosing
test frequencies based on the spectral measure instead of the pressure
spectrum, but our approach is based on the converse.

With an increase in N, the residuals are halved for all kernels. The
important feature is the structure occupying x=D > 0, which is
now more similar for each kernel. The lower residual modes from Figs.
32(b) and 32(d) show a detachment of the upper shear layer down-
ward toward the center of the cylinder. The qualitative similarity is
supported by the subspace angle. The angle between linear and nonlin-
ear kernels ranges between 1.04 and 1.08, much smaller than Fig. 27,
while the smallest angle is 0.81, between the Laplacian and Gaussian
kernel’s eigenfunctions.

When comparing Figs. 28 and 33, the residuals are halved again.
However, the initially low residuals from N ¼ 1500 appear reliable
compared to the high-rank modes. These modes support the hypothe-
sis that the lower residual from the quartic kernel is due to its accurate
approximation of the structure between the cylinders. The subspace
angles are reduced, thanks to the increased accuracy due to the large N
value. In fact, all subspace angles are between 0.13 and 0.16.

In Fig. 34, we can form more reliable observations on the flow
modes preceding the first harmonic shown in Figs. 20 and 24(f).
Although the region x=D > 0 appears similar, we notice a smaller and
clearer structure that is positioned on the leeward side of the down-
stream cylinder around y=D ¼ �0:2. This may indicate the final
stages of breakdown in the co-shedding behaviors from the significant
mode at f ¼ 130Hz. Thanks to kRigged DMD, closely inspecting such
frequencies is now more reliably accessible. Regarding the subspace
angles, they become much smaller than Fig. 29. Every pair decreases
by approximately 0.35. The smallest angle this time is 0.96 and is
between Gaussian and Laplacian eigenfunctions.

Figure 35 demonstrates the interplay between dictionary choice
and frequencies. For a larger dictionary, we now see that for
f ¼ 261Hz, the linear kernel is no longer the poorest choice for the
generalized eigenfunction. It has the second-best residual. Naturally, it
is possible to choose closely tailored frequencies within the vicinity of
this value to optimize the residual for all kernels; however, this demon-
strates the capabilities of both Rigged DMD and kRigged DMD for
large N. The mode is consistent across all four kernels and varies only
by the exact size and shape of the structure between shear layers that
break down between the two cylinders. The consistent trend of

FIG. 31. kRigged DMD N ¼ 1500 generalized eigenfunctions at f ¼ 292 Hz.

FIG. 32. kRigged DMD N ¼ 3500 generalized eigenfunctions at f ¼ 57 Hz. FIG. 33. kRigged DMD N ¼ 3500 generalized eigenfunctions at f ¼ 109 Hz.
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subspace angles being largest between linear and nonlinear kernels is
continued, and these angles are between 0.65 and 0.77. The smallest
angle of 0.61 is between the Gaussian and Laplacian eigenfunctions.

Finally, Fig. 36 shows that the nonlinear kernels continue to cap-
ture the eigenfunction at f ¼ 292Hz better than the linear kernel. The
significant difference between the linear and nonlinear kernels lies in
correctly capturing the smaller structures lying in the gap between cyl-
inders. The subspace angle between the linear and nonlinear eigen-
functions stays approximately 0.5, while the Gaussian and Laplacian
eigenfunctions have a subspace angle of 0.36.

In summary, our exploration of the impact of N on generalized
eigenfunctions from the kRigged algorithm primarily showed the trend
that increasing N produces modes that are more and more accurate,
and our comparisons of subspace angles support this. We found signif-
icant similarities between the Gaussian and Laplacian kernels, while
the linear kernel has a higher residual and is more dissimilar to the
nonlinear counterparts.

VII. DISCUSSION

This study emphasizes the importance of a nonlinear dictionary,
leading to developing a new DMD algorithm that can be used for
numerous future applications in fluid mechanics and beyond. The
experiment incorporated synchronized measurements of surface pres-
sure, far-field noise, and velocity fields, providing a comprehensive
dataset for modal decomposition analysis. We obtain two time-
resolved velocity fields using PIV, from which the vorticity field was
calculated and is used as the primary dataset for DMD. The experi-
mental setup allowed us to explore the complex, nonlinear dynamics
of the bi-stable flow and the connection between coherent structures
in the velocity field and the far-field acoustics, contributing valuable
insights to the field of aeroacoustics.

We used our experimental data to test the importance of nonlin-
ear dictionaries within the kEDMD framework. Our findings demon-
strate that using nonlinear dictionaries significantly enhances
kEDMD’s performance. These findings were influenced by computing
and comparing the modal residual calculated using the ResDMD algo-
rithm. These improvements influenced the creation of a novel algo-
rithm, kRiggedDMD, in which a nonlinear dictionary is implemented
within the traditional Rigged framework.

The importance of constructing larger, nonlinear dictionaries to
be used within kRiggedDMD is evident when comparing individual
modes. The successfully extracted modes were physically meaningful
and instrumental in analyzing the complex vortical structures and flow
dynamics characteristic of bi-stable configurations. Going forward, this
efficiency and versatility will be a key advantage of the algorithm.
Furthermore, for the first time, we applied residuals to the kRigged
DMD framework. This provides a robust metric to assess and compare
the quality of the extracted modes generated using different dictionar-
ies. This new measure effectively evaluates how suitably the modes rep-
resent the underlying flow structures, adding error control to modes.
This suggests that an effective strategy for choosing modes is to analyze
frequency-residual plots that are freely sampled across the continuum
of potential frequencies.

The strength of kRigged DMD lies in its flexibility. It allows for
either the selection of user-defined modes or the rapid generation of

FIG. 34. kRigged DMD N ¼ 3500 generalized eigenfunctions at f ¼ 190 Hz.

FIG. 35. kRigged DMD N ¼ 3500 generalized eigenfunctions at f ¼ 261 Hz.

FIG. 36. kRigged DMD N ¼ 3500 generalized eigenfunctions at f ¼ 292 Hz.
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spectral measures, and both can be used for further analysis. However,
this approach relies heavily on the richness of the initial dictionary.
Choosing a well-constructed dictionary is crucial for a successful
modal decomposition. Future work could focus on further optimizing
the dictionary selection. One may produce more dictionary compari-
sons using diverse datasets. Conversely, testing more tandem cylinder
configurations involving cylinders of different sizes or shapes would
also be interesting to see whether different kernels are more suited to
representing specific phenomena. Such advancements would deepen
the understanding of how nonlinear dictionaries influence mode
extraction and could lead to improved modal decomposition techni-
ques for multiple complex flow systems.
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