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We consider a finite perforated plate and study the effects of smoothly varying chordwise
porosity on turbulence-aerofoil interaction noise. To study this problem, we use a novel Mathieu
function collocation method, rather than a traditional Wiener–Hopf approach which would
be unable to deal with chordwise varying quantities. Our main focus is on two bio-inspired
porosity distributions, which are modelled based on air flow resistance data from the wings
of barn owls and common buzzards. As expected, trailing-edge noise is much reduced for the
owl-like distribution. However, and perhaps surprisingly, so too is leading-edge noise, despite
both wings having similar porosity values at the leading edge. We then consider a general
monotonic variation. Our study indicates that there may be a significant acoustic impact of
how the porosity is distributed along the whole chord of the plate (i.e. not just its values at the
scattering edges). Indeed, a plate whose porosity continuously decreases from the trailing edge
to a zero-porosity leading edge can, in fact, generate lower levels of trailing-edge noise than a
plate whose porosity remains constant at the trailing-edge value.

I. Introduction
Porosity adaptations of traditional rigid impermeable aerofoils offer an opportunity for reducing the interaction noise

of aerofoil-turbulence [1–4]. Both leading-edge noise (caused by upstream turbulence impinging on the aerofoil) and
trailing-edge noise (caused by boundary layer turbulence scattering off the trailing edge) can be reduced by replacing an
impermeable aerofoil with a fully porous aerofoil [5], or partially porous aerofoil [6–8]. However, previous theoretical
[1], numerical [9–11] and experimental [5, 6] investigations have focused on materials with uniform porosity or on
chordwise variations achieved only through the use of partially porous aerofoils. This latter case causes an unavoidable
and instantaneous variation of the boundary from impermeable to permeable, where additional noise is generated by
edge scattering [1, 12]. Partially porous aerofoils are very important since one can hope to balance between acoustic
and aerodynamic needs as fully porous aerofoils have significant aerodynamic penalties [5]. The steady aerodynamics
of partially porous aerofoils have previously been predicted theoretically by [13], which has been extended to aerofoils
with porosity gradients by [14].
The goal of this paper is to investigate how porosity gradients effect the noise generated by aerofoil-turbulence

interaction. We do this by studying arbitrary variations in porosity along a finite perforated flat plate, modelling a thin
permeable aerofoil. The scattered acoustic field is computed using a novel spectral collocation method [15–18] based
on Mathieu functions. We first focus on monotonic porosity distributions as done so in [19] inspired by two species
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Fig. 1 Schematic of the variable porosity plate with edges at 𝑥 = −1 and 𝑥 = 1. The plate extends infinitely in
the spanwise (𝑧) direction.

of birds: barn owls (tyto alba), known for their silent flight [20, 21], and common buzzards (buteo buteo). Both are
modelled from air flow resistance data obtained from the wings of the two species. As expected, trailing-edge noise is
predicted to be much reduced for the owl-like distribution (porosity is a known contributor to the ability of owls to fly
silently and hunt prey). A study into general monotonic variation indicates that there may be a significant acoustic
impact of how the porosity is distributed along the whole chord of the plate, not just its values at the scattering edges.
Through this investigation, it is found that a plate whose porosity continuously decreases from the trailing edge to a
zero-porosity leading edge can, in fact, generate lower levels of trailing-edge noise than a plate whose porosity remains
constant at the trailing-edge value. Code for the numerical method can be found at [22].

II. Mathematical Model
Here we briefly discuss the core method for calculating the scattered field due to an acoustic source interacting with

a plate with an arbitrary porosity distribution. Consider an incident field impinging on a flat plate situated at −1 ≤ 𝑥 ≤ 1
and 𝑦 = 0, where lengths have been non-dimensionalised by semi-chord. The plate is in uniform horizontal flow, with
velocities non-dimensionalised by the low-Mach number far-upstream mean flow velocity. The incident field will have
velocity potential denoted by 𝜙I and the scattered field by 𝜙. The incident pressure field is given by 𝑝I = −𝜌 𝑓

𝐷𝜙

𝐷𝑡
, where

𝜌 𝑓 is the mean fluid density and 𝐷𝜙

𝐷𝑡
denotes the material derivative. Pressure shall henceforth be non-dimensionlised

by 𝜌 𝑓 𝑐
2
0 with 𝑐0 denoting the speed of sound, so that throughout we deal with dimensionless fields 𝜙I and 𝜙.

We assume that 𝜙 has the usual time dependence 𝑒−i𝜔𝑡 (which will be omitted throughout), and hence for low Mach
number flow, 𝜙 satisfies the Helmholtz equation(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝑘20

)
𝜙 = 0,

where 𝑘0 = 𝜔/𝑐0 is the acoustic wavenumber for angular frequency 𝜔. We apply an impedance boundary condition
given by

𝜕𝜙

𝜕𝑦
+ 𝜕𝜙I
𝜕𝑦

= 𝜇(𝑥) (𝜙𝑢 − 𝜙𝑙) = 𝜇(𝑥) [𝜙] (𝑥), (1)

to model the effects of the porous plate, where 𝜇 = 𝛼𝐻𝐾𝑅/(𝜋𝑟2) is the porosity parameter [23, 24]. Here 𝐾𝑅 is the
Rayleigh conductivity [25], which for evenly-spaced circular apertures of radius 𝑟 , is given by 𝐾𝑅 = 2𝑟 . The fractional
open area is 𝛼𝐻 [26]. Such a model is valid for 𝛼2𝐻 � 1, and 𝑘0𝑟 � 1. We use the notation 𝜙𝑢 and 𝜙𝑙 to denote the
values of the field just above and just below the plate respectively, and the jump in 𝜙 across the plate is denoted by [𝜙].
Note that, unlike previous theoretical models [1, 23], we allow the porosity parameter 𝜇(𝑥) to vary along the plate.
Finally, the scattered field is required to satisfy the Sommerfeld radiation condition for outgoing waves at infinity. Our
setup is illustrated in Figure 1.
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A. Computing the solution via Mathieu function expansions
Here we solve the problem using the Mathieu function collocation method of [15], which provides an expansion

of 𝜙 in Mathieu functions using separation of variables in elliptic coordinates. When using elliptic coordinates,
𝑥 = cosh(𝜈) cos(𝜏), 𝑦 = sinh(𝜈) sin(𝜏), the appropriate domain becomes 𝜈 ≥ 0 and 𝜏 ∈ [0, 𝜋]. The Helmholtz equation
with homogeneous Dirichlet boundary condition (the continuity condition) along {(𝑥, 𝑦) : 𝑦 = 0, |𝑥 | > 1} and the
Sommerfeld condition at infinity become

𝜕2𝜙
𝜕𝜏2

+ 𝜕2𝜙
𝜕𝜈2

+ cosh(2𝜈)−cos(2𝜏)2 𝑘20𝜙 = 0,
𝜙|𝜏=0 = 𝜙|𝜏=𝜋 ≡ 0,
lim𝜈→∞ 𝜈1/2

(
𝜕
𝜕𝜈

− i𝑘0
)
𝜙(𝜈, 𝜏) = 0.

To simplify the formulae, we let 𝜅 = 𝑘20/4. Separation of variables leads to the full general solution

𝜙(𝜈, 𝜏) =
∞∑︁
𝑛=1

𝑎𝑛se𝑛 (𝜏)Hse𝑛 (𝜈), (2)

where 𝑎𝑛 are unknown coefficients. Here se𝑛 are sine-elliptic functions, which can be expanded in a rapidly convergent
sine series [27]:

se𝑛 (𝜅; 𝜏) = se𝑛 (𝜏) =
∞∑︁
𝑙=1

𝐵
(𝑛)
𝑙
sin(𝑙𝜏), (3)

where 𝐵 (𝑛)
𝑙
are found by a simple Galerkin method. The functions Hse𝑛 are Mathieu–Hankel functions which can be

expanded in a series using Bessel functions [27, 28]:

Hse𝑛 (𝜈) =
∞∑︁
𝑙=1

(−1)𝑙+𝑛𝐵 (𝑛)
𝑙

𝐶𝑛

[
𝐽𝑙−1 (e−𝜈

√
𝜅)𝐻 (1)

𝑙+𝑝𝑛 (e
𝜈
√
𝜅) − 𝐽𝑙+𝑝𝑛 (e−𝜈

√
𝜅)𝐻 (1)

𝑙−1 (e
𝜈
√
𝜅)
]
, (4)

where 𝑝𝑛 = (1 + (−1)𝑛)/2. Here, 𝐽𝑛 denotes the Bessel function of the first kind of order 𝑛 and 𝐻 (1)
𝑛 denotes the Hankel

function of the first kind of order 𝑛. We choose the normalisation constants 𝐶𝑛 so that Hse′𝑛 (0) = 1.
Given the Bessel function expansion of Hse𝑛 (𝜈) in (4), we can directly compute the far-field directivity 𝐷 (𝜃) from

(2) using asymptotics of Bessel functions. In the appropriate limit, 𝜏 becomes the polar angle 𝜃, whereas 𝜈 becomes
cosh−1 (𝑟) (where (𝑟, 𝜃) denote the usual polar coordinates). This leads to

𝐷 (𝜃) =
√︂
2
𝜋𝑘0

∞∑︁
𝑛=1

𝑎𝑛𝐵
(𝑛)
1

𝐶𝑛

exp
(
(2𝑝𝑛 − 3)𝜋

4
i
)
se𝑛 (𝜃). (5)

An advantage of our approach is that we implicitly compute a sine series for the far-field directivity 𝐷 (𝜃) through the
sine-elliptic functions se𝑛 (𝜃) given by (3). We also define the total far-field noise, measured in dB, as

𝑃 = 10 log10

(∫ 𝜋

0
|𝐷 (𝜃) |2𝑑𝜃

)
, (6)

which may be computed numerically from the series expansion for 𝐷 (𝜃).
We must determine the unknown coefficients 𝑎𝑛 in the expansion (2), as required for our particular boundary

condition (1). To do so, we adopt a spectral collocation method to calculate their approximate value. Throughout, we
denote the approximate coefficients by �̃�𝑛. We take our general solution (2) and substitute into (1), written in original
(𝑥, 𝑦) coordinates. We truncate the expansion at 𝑁 terms to obtain the approximate condition

𝑁∑︁
𝑛=1

�̃�𝑛se𝑛
(
cos−1 (𝑥)

) [
1 − 2Hse𝑛 (0)𝜇(𝑥)

√︁
1 − 𝑥2

]
= −

√︁
1 − 𝑥2 · 𝜕𝜙I

𝜕𝑦
(𝑥).

We now evaluate this at chosen collocation points, 𝑥 ∈ {cos((2 𝑗 − 1)𝜋/2𝑁) : 𝑗 = 1, ..., 𝑁}, which correspond to
Chebyshev points in Cartesian coordinates and equally spaced points in elliptic coordinates [29]. This gives rise to an
𝑁 × 𝑁 linear system for the unknown coefficients {�̃�𝑛}𝑁𝑛=1, which we precondition by rescaling to ensure that each row
of the resulting matrix has a constant 𝑙1 vector norm.
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III. Experimental measurements
To obtain quantitative data on the permeability of owl wings compared to the wings of other (non-silently flying) birds

of prey, measurements of the flow resistance were conducted on a set of prepared wing specimen. For measurements
on porous materials according to [30], the materials must be cut into cylindrical samples of constant thickness and
tightly fitted into a sample holder. This is obviously not possible for prepared bird wings, which may consist of only a
single layer of feathers especially close to the trailing edge (see, for example, the work of [31] and [32]), and hence a
special measurement head was constructed. This head is pressed onto the surface of the wings with a defined force,
allowing the area of contact between the planar measuring head and the feather surface to be sealed off. Using this
measurement head, a defined air flow with a volumetric airflow rate 𝑞 (in m3/s) is conducted through the prepared wing
(see Figure 2). The air flow resistance 𝑅 at this position of the wing is then calculated from the resulting static pressure
difference across the wing

𝑅 =
𝑝𝑢 − 𝑝𝑙
𝑞

. (7)

Recall that 𝜇(𝑥) = 𝛼𝐻 (𝑥)𝐾𝑅/(𝜋𝑟2), where we assume the porosity is created by circular apertures of constant
radius, 𝑟, and, for a plate with circular apertures, the Rayleigh conductivity of the plate, 𝐾𝑅 = 2𝑟. However, for an
arbitrary material, 𝐾𝑅 is defined as 𝐾𝑅 = 𝑄/(𝜙𝑢 − 𝜙𝑙), where 𝑄 = 𝑑𝑞/𝑑𝑡 is the volume flux through the plate. Hence
for the wing in harmonic flow, 𝐾𝑅 = 𝜔2𝜌 𝑓 /𝑅. We thus have two ways of calculating 𝜇(𝑥):

𝜇(𝑥) = 𝛼𝐻 (𝑥) 2
𝜋𝑟
, 𝜇exp (𝑥) = 𝛼exp𝐻

𝜔2𝜌 𝑓

1
𝑅

1
𝜋𝑟2exp

, (8)

where 𝛼𝐻 denotes the open area ratio of circular apertures or radius 𝑟 in a flat plate, 𝛼exp𝐻
denotes the open area ratio of

pores of typical radius 𝑟exp in a wing, and 𝑅 is the measured flow air flow resistance. We may thus equate the two to
provide values for 𝛼𝐻 (𝑥) to input into our model

𝛼𝐻 (𝑥) =
𝜔2𝜌 𝑓 𝑟𝛼

exp
𝐻

2𝑅𝑟2exp
. (9)

We shall assume that the chordwise variation in (9) arises only due to the air flow resistance, 𝑅, and that 𝛼exp
𝐻
and 𝑟exp

are constant. According to [23] we take the value 𝛼exp
𝐻

= 0.0014. Since in [23] lengths are non-dimensionalised by
a bending wave number (which does not feature in our analysis since our plate is not flexible), it is more difficult to
determine the corresponding value of 𝑟exp. We, therefore, turn to detailed measurements made on the wings of barn
owls by [33], which results in a value of 𝑟exp = 5.5 × 10−4m. This arises from supposing for a given barn owl feather
there are two fringes per mm [33] (and thus two gaps between the fringes per mm) and the total length of the vane of the
feather is between 12.5 cm and 15 cm [34]. Therefore each feather has between 250 and 300 apertures in the chordwise
direction. We select 𝑟exp as the mid-value, supposing each aperture is 1/275 of our fixed 15 cm chord.
For the theoretical model, we shall suppose a manufactured flat plate has holes with radius 𝑟 = 1mm, which is

practical to construct, and we use a typical frequency of 𝜔 = 500𝐻𝑧 to complete our relationship between 𝑅 and
𝛼𝐻 (𝑥) since we wish to focus on low frequency noise reductions. We shall use the same value of the parameter group
𝛼
exp
𝐻

/(𝜋𝑟2exp) (which can be viewed as the closed area of the wing) for the owl and buzzard as input to obtain our model,
𝛼𝐻 (𝑥). Whilst this is unlikely to be true for the buzzard, it provides an upper bound on the value of 𝛼𝐻 to input to our
model, as it is clear from detailed wing pictures [35] that the closed area of the buzzard’s wing is greater than that for
the owl.

IV. Results

A. Bio-inspired distributions
The results from the air flow resistance measurements on the prepared wings are summarised and converted to their

corresponding 𝛼𝐻 values. Overall, five wings of the barn owl (tyto alba) and nine wings of the common buzzard (buteo
buteo) were investigated to obtain the data used in the present study. Lines of best fit are produced using Matlab’s fit
command (see [19] for the various models considered). From these we shall take the variation which appears most
likely in the owl wing to be:

𝛼owl𝐻 = 0.037 + 0.48
(
𝑥

2
+ 1
2

)
, (10)
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air flow

wing

measurement
head

flexible, impermeable foam

𝑞,
𝑝𝑢

𝑝𝑙

Fig. 2 Setup used to measure the wing air flow resistance 𝑅 (Eq. (7))
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-10
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-6

Fig. 3 ΔP for a near-field quadrupole source at 𝑥0 = 0.95 and various 𝑦0. Negative values indicate the owl is
quieter than the buzzard by that many dB.

and for the buzzard:

𝛼buzz𝐻 = 0.22
(
𝑥

2
+ 1
2

)0.48
, (11)

recalling that our chord lies in the region 𝑥 ∈ [−1, 1].

B. Bio-inspired results
We now present the acoustic results for the bio-inspired spanwise variations. Figure 3 shows the difference in

far-field noise, Δ𝑃 =Powl−Pbuzz for P defined by (6), generated for a near-field quadrupole source located at (𝑥0, 𝑦0)
which models a turbulent trailing-edge source. Unsurprisingly, the owl is predicted to produce less trailing-edge noise
than the buzzard since the trailing-edge of the owl’s wing is far more porous (has a higher 𝛼𝐻 value) than that of the
buzzard’s. This is particularly true for low-frequencies which are known to be significantly reduced by porosity [23].
However, the total level of low-frequency noise reduction is intrinsically linked to the vertical location of the quadrupole
source. At higher frequencies, the owl is predicted to produce only 7 dB less trailing-edge noise, and this is similar
across all quadrupole locations.
Figure 4 shows the effects of the owl versus buzzard distributions on leading-edge noise, and we see surprisingly that

the owl-distribution produces less leading-edge noise despite the two wings having similar leading-edge porosity values.
We consider an incident gust by selecting a potential satisfying 𝜕𝜙I/𝜕𝑦 |𝑦=0 = −𝑒i𝛿𝑥 , where 𝛿 = 𝑘1/

√
1 − 𝑀2, and

𝑘1 =
√
1 − 𝑀2𝑘0/𝑀 thus the Helmholtz number, 𝑘0, is 𝛿𝑀 , such that the gust convects from upstream with the mean
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Fig. 4 ΔP for an incident gust. Negative values indicate the owl is quieter than the buzzard by that many dB.

flow with Mach number 𝑀 . Full details of why this is the case may be found readily in the literature for leading-edge
noise [36, 37]. We assume the same impedance style boundary condition, (1), noting that here the low Mach number
approximation has been used. The difference in leading-edge noise levels is given in Figure 4, for 𝑀 = 0.05. We notice
that, again, the owl is quieter than the buzzard for low frequencies. However, now the reduction is only approximately
3.5 dB. Note the frequency range difference between the trailing-edge noise and the leading-edge noise; trailing-edge
noise is a high-frequency phenomenon, whilst leading-edge noise is more dominant at lower frequencies. The lowest
frequency flyover noise reductions [38] of 3 dB are in agreement with our leading-edge noise reduction predictions.
However, it is unclear how much noise produced during the flyover tests can be attributed to each edge.

C. Monotonic distributions
We now investigate the effect of the precise distribution of porosity in the interior of the plate on trailing-edge noise.

We consider varying porosity along a flat plate through the model

𝛼𝐻 (𝑥) = 𝛼𝐿 + (𝛼𝑇 − 𝛼𝐿)
(
𝑥

2
+ 1
2

)𝛾
, (12)

where 𝛼𝐿,𝑇 denote the open area ratios at the leading and trailing edge respectively. We consider only the case
𝛼𝑇 ≥ 𝛼𝐿 , whereby the trailing edge has the same or greater porosity than the leading edge, as is observed from our
wing measurements, and choose values of 𝛼𝐿,𝑇 representative of those measured for the owl.
We first consider the effect of varying the leading-edge porosity value, 𝛼𝐿 , for fixed 𝛾 = 2 and fixed 𝛼𝑇 = 0.3 in

Figure 5. If 𝛼𝐿 ≠ 0, the effect of increasing the porosity at the leading edge is to uniformly reduce the noise across all
frequencies, due to the increasing average porosity of the total plate. However, specifically 𝛼𝐿 = 0 opposes this trend at
low frequencies, where the noise is reduced versus even a plate with a constant higher porosity of 𝛼𝑇 = 0.3.
The fact that this trend alters at low frequencies where the plate is acoustically compact is not unexpected. For

impermeable plates, back scattering from the leading edge [39] is a significant contributor to the total far field noise.
This back scattering arises because a non-zero jump in pressure across the plate at the leading edge must be smoothly
reduced to zero upstream of the plate. If the leading-edge is porous, 𝛼𝐿 > 0, the back scattering is much weaker than if
𝛼𝐿 = 0, since there is communication between the upper and lower surfaces of the plate and the pressure jump across
the plate at the (porous) leading edge is dampened [4]. This gives rise to two possible reasons for noise reduction at low
frequencies as we vary 𝛾; increased average plate porosity and back scattering effects result in edge-to-edge interference.
For our variable porosity plate, in all cases of 𝛼𝐿 > 0 the back scattering and hence edge-to-edge interference may

be neglected since the leading-edge porosity dampens the jump in surface pressure, and we hypothesise that the overall
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Fig. 5 Effect of varying 𝛼𝐿 on trailing-edge noise over a range of frequencies. In all cases the porosity at the
trailing edge is fixed at 𝛼𝑇 = 0.3.

acoustic behaviour depends only on the relative average porosity, thus mimics the high-frequency behaviour. For a plate
with an impermeable leading edge, the back scattering cannot be neglected, and thus generates an additional acoustic
source at the leading edge. Depending on the relative source strength of these sources, at a given frequency when the
two sources are out of phase they will destructively interfere to result in a lower total amount of far-field noise. Similarly,
if the back scattering is in phase, additional noise will be created. We illustrate this feature by considering the jump in
surface pressure along the plate in Figure 6. There is a clear pressure jump induced near the leading edge for 𝛼𝐿 = 0,
which is not present for porous leading edges even when the porosity is very small.
We investigate the effect of 𝛾 on this pressure jump near the leading edge in Figures 7 and 8 for low and high

frequencies. Both real and imaginary parts of the pressure jump are now given. At low frequencies for small 𝛾, the
pressure jump near the leading edge is dominated by a negative real part. However, as 𝛾 increases the imaginary part
near the leading edge increases. Therefore, the relative phase difference between the fields alters, and an optimal 𝛾
value should exist whereby the fields are in optimal destructive interference with each other. This is in contrast to the
back scattering for a fully impermeable plate, whereby we found the respective pressure jump across the plate to be
always positive for low frequency 𝑘0 = 0.5, and only a fixed interference can be achieved.
At the higher frequency, 𝑘0 = 5, the real and imaginary parts of [𝑝] in Figures 7 and 8 are both oscillatory and

similar in magnitude across all values of 𝛾. This is very similar to what would be observed for a full impermeable plate
in Figure 9. We, therefore, expect that at high frequencies any back scattering effects for a variable porous plate with an
impermeable leading edge are similar to those observed for a fully impermeable plate, namely that the magnitude of the
back scattering is significantly reduced [39] and does not play a key role in the overall far-field noise.
Our results, therefore, corroborate the hypothesis that low-frequency behaviour is dominated by back scattering

when the leading edge is rigid, and high-frequency behaviour is dominated by average plate porosity. This neglects the
possibility of surface wave source cut-off, for which a more detail numerical study would be required to fully validate
our hypothesis in case these surface waves may also play a role.

V. Conclusions
We considered the aeroacoustic effects of plates with chordwise varying porosity distributions. We have measured

the distributions from two species of bird; the barn owl and the common buzzard, and matched their chordwise varying
air flow resistance to an effective open area ratio as arises in the acoustic theoretical modelling of perforated plates. The
noise reduction observed is in agreement with previous experimental results for uniformly porous plates, and is shown
to be similar to that measured during flyover tests. However, the theory over-predicts that seen in laboratory tests. This
is most likely due to additional features on the owl’s wing that promote silent flight such as serrations and a downy
upper coat. These features have not been modelled here.
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Fig. 6 Effect of varying 𝛼𝐿 on the jump in (real) surface pressure, [𝑝] for 𝑘0 = 0.5. In all cases the porosity at
the trailing edge is fixed at 𝛼𝑇 = 0.3, and 𝛾 = 2.
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Fig. 7 Effect of varying 𝛾 on the jump in surface pressure, [𝑝], for 𝑘0 = 0.5. Left shows the real part of [𝑝],
right the imaginary part. In all cases the porosity at the trailing edge is fixed at 𝛼𝑇 = 0.3, and at the leading edge
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Fig. 9 Jump in surface pressure, [𝑝], for 𝑘0 = 0.5, 5 in the case of an impermeable plate, 𝛼𝐻 = 0.

A further study of the effects of general monotonic streamwise distributions was then undertaken. It is seen
that for low frequencies, a monotonic variation from a porous trailing edge to an impermeable leading edge can be
more acoustically beneficial than if the plate remained at the constant trailing-edge porosity. This is attributed to the
leading edge back scattered field [39]; an impermeable leading edge has a strong back scattered field which is able to
destructively interfere with the trailing-edge field. At high frequencies, the back scattered field is both weaker and of
much higher frequency.
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