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We present a fast numerical method for predicting the aerodynamic noise generated by
foam-like porous aerofoils. Darcy’s law, describing the pressure jump across the aerofoil, may be
unsuitable in such situations, particularly for high-frequency noise sources where the unsteady
velocity fluctuations are large relative to the porous structure size. We therefore introduce an
inertial Forchheimer correction that results in a non-linear boundary condition relating the
pressure jump across the material to the fluid displacement. Based on local Mathieu function
expansions, we provide a semi-analytical boundary spectral method that is well-suited to both
linear and non-linear boundary conditions. In the latter case, Newton’s method is employed
to solve the resulting non-linear system of equations. The outcome is a fast semi-analytical
model that incorporates such non-linear effects without requiring a full turbulent simulation.
Whilst we consider only the simplified case of scattering by a thin porous aerofoil with no
background flow, when the non-linear inertial correction is included good agreement is seen
between the model predictions and experimental results. A key conclusion is that for sufficiently
low-permeability materials, the effects of inertia can outweigh the noise attenuation effects of
viscosity. This helps explain the discrepancy between experimental results and previous (linear)
low-fidelity numerical simulations or analytical predictions, which typically overestimate the
noise reduction capabilities of porous aerofoils.

I. Introduction
Controlling aerofoil-interaction noise through porosity has become increasingly popular over recent years [1–5].

Currently there are two main notions within this body of research. The first arises for thin perforated plates [4, 5],
where apertures fully puncture the material. In the case of no background steady flow, the apertures induce an acoustic
(Rayleigh) conductivity on the surface [6]. When there is a background flow (tangential [7] or bias [8]), the generated
vorticity acts dissipatively. Both mechanisms are captured by the Rayleigh conductivity parameter, 𝐾𝑅, whose real part
corresponds to conductivity and whose imaginary part to dissipation. The acoustic pressure, 𝑝𝑒−i𝜔𝑡 (where the factor
𝑒−i𝜔𝑡 will be suppressed throughout), on a thin plate lying in 𝑦 = 0 must satisfy the condition

𝐾𝑅 [𝑝] = i𝜌 𝑓 𝜔 𝑣,

where 𝜌 𝑓 is the external fluid density and 𝑣 is the normal fluid velocity averaged over a unit area of the surface. We
use the notation 𝑝(𝑥, 0+) and 𝑝(𝑥, 0−) to denote the values of the pressure field just above and just below the plate
respectively, and define [𝑝] (𝑥) = 𝑝(𝑥, 0+) − 𝑝(𝑥, 0−). This condition is valid only when the open area of the plate is
sufficiently small (low porosity) and the wavenumber is much smaller than the reciprocal of a typical pore radius [7].
The second notion of porosity arises for materials such as metal foams [1, 9], where microscopic void spaces are

found within a rigid framework. Here, the local Reynolds number is low and viscous dissipation plays a dominant role.
For sufficiently low local Reynolds numbers (𝑅𝑒𝐿 < 1), only the viscous dissipation is important, and the pressure jump
across these materials may be described linearly by Darcy’s Law,

𝐾
[𝑝]
ℎ

= −𝜇 𝑣,

where 𝜇 is the air viscosity, 𝐾 is the permeability of the material and ℎ is the small height over which the pressure
jump is taken. However, at higher local Reynolds numbers (1 < 𝑅𝑒𝐿 < 10), a correction for inertial effects should be
included, and the pressure difference may be described by the non-linear boundary Forchheimer equation [10],

𝐾
[𝑝]
ℎ

= −𝜇 𝑣 − 𝛽𝜌 𝑓

√
𝐾 𝑣 |𝑣 |,

∗Junior Research Fellow, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, email:
m.colbrook@damtp.cam.ac.uk

†EPSRC Early Career Fellow, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, email:
l.j.ayton@damtp.cam.ac.uk

1

D
ow

nl
oa

de
d 

by
 M

at
th

ew
 C

ol
br

oo
k 

on
 J

ul
y 

31
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
22

90
 

 AIAA AVIATION 2021 FORUM 

 August 2-6, 2021, VIRTUAL EVENT 

 10.2514/6.2021-2290 

 Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

 

 AIAA AVIATION Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2021-2290&domain=pdf&date_stamp=2021-07-28


@
@R

quadrupolar incident field

𝑥 = 1𝑥 = −1

Fig. 1 Schematic of the single plate {(𝑥, 0) : −1 ≤ 𝑥 ≤ 1} (zero-thickness approximation) with a quadrupolar
source. The shaded area corresponds to ℎ(𝑥) of an NACA 4-digit aerofoil with 6% thickness.

where 𝛽 is the inertial coefficient. The nature of this boundary condition still permits the time-harmonic form ∼ 𝑒−i𝜔𝑡 .
Previous theoretical [5] and low-fidelity numerical [11] work focuses on the first notion of porosity (perforated

plates). These models do not include a background flow and consider the boundary conditions to be linearised to 𝑦 = 0,
thus effectively reducing an aerofoil to a flat plate. For both perforations and foam-like materials [3, 4], experimental
findings show that porosity is effective at reducing low and mid-frequency noise. Moreover, theoretical and low-fidelity
linear numerical models can capture this feature. However, these models often overpredict the potential reduction of
noise. Few models consider foam-like porous aerofoils, despite these being commonplace in the experimental literature.
At high frequencies for these foam-like materials, the local Reynolds number can be sufficiently high within the material
to require the inclusion of the non-linear Forchheimer correction.
The goal of this paper is to investigate the effect of this non-linear inertial term on the acoustic scattering by thin

porous aerofoils. We provide a fast, semi-analytical model that incorporates the non-linear effects of the Forchheimer
model without requiring a full turbulent simulation. To do this, we extend a previous linear boundary collocation
method [11–14] based on local Mathieu function expansions. A partitioning of the system according to the different
(kinematic and non-linear Forchheimer) boundary conditions, gives rise to a non-linear system of equations (see (10))
for the unknown coefficients, which we solve via Newton’s method. The result is a boundary spectral method that can
deal with the non-linear Forchheimer correction, and more general non-linear boundary conditions, efficiently and
accurately for a wide range of parameters. Whilst the physical model is simplified to consider just the scattering by a
thin porous aerofoil with no background flow, good agreement is seen between the model predictions and experimental
results when the non-linear inertial correction is included. It is found that for sufficiently low-permeability materials,
the effects of inertia can outweigh the noise attenuation effects of viscosity. This helps explain the discrepancy between
experimental results and previous (linear) low-fidelity numerical simulations or analytical predictions, which typically
overestimate the noise reduction capabilities of porous aerofoils. Code for the numerical method can be found at [15].

II. Mathematical Model
Suppose that an acoustic source of pressure 𝑝I interacts with a plate {(𝑥, 0) : −1 ≤ 𝑥 ≤ 1} (lengths have been

non-dimensionalised by the semi-chord, 𝑑). The thickness of the plate, ℎ(𝑥), which is permitted to vary in the 𝑥
direction, is constrained to be much smaller than the semichord, ℎ(𝑥) � 1, and hence we consider the zero-thickness
approximation (see Figure 1). The scattered field has pressure denoted by 𝑝. We assume that 𝑝 and 𝑝I have the usual
time dependence e−i𝜔𝑡 (omitted throughout) and therefore 𝑝 satisfies the Helmholtz equation(

𝜕

𝜕𝑥2
+ 𝜕

𝜕𝑦2
+ 𝑘20

)
𝑝 = 0, 𝑘0 = 𝜔/𝑐0

where pressure has been non-dimensionalised by 𝜌 𝑓 𝑐
2
0 and 𝑐0 is the speed of sound. For example, we shall focus on a

near-field quadrupole sound source corresponding to

𝑝I (𝑥, 𝑦) = 𝑃0
i𝑘20
4𝑟20

(𝑥 − 𝑥0) (𝑦 − 𝑦0)𝐻 (1)
2 (𝑘0𝑟0), (1)

where (𝑥0, 𝑦0) is the source location, 𝑟0 (𝑥, 𝑦) =
√︁
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2, and 𝐻 (1)

𝑛 denotes the 𝑛th order Hankel function
of the first kind. We mention, however, that an arbitrary acoustic source could just as easily be used. In an aerodynamic
setting, the principle source of noise arises from quadrupole type sources, ∼ 𝜕𝑇𝑖 𝑗

𝜕𝑥𝑖 𝑥 𝑗
, as described by Lighthill [16], where
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𝑇𝑖 𝑗 = 𝜌𝑢𝑖𝑢 𝑗 is the Lighthill tensor, with 𝜌 and 𝑢𝑖, 𝑗 the typical (dimensional) density and (dimensional) velocities of the
turbulent flow. We therefore allocate a (non-dimensionalised) scaling of the quadrupole corresponding to 𝑃0 = 𝑀2,
where 𝑀 is the (low) Mach number of the flow local to the quadrupole.
The (non-dimensionalised) average fluid displacement normal to the plate is denoted by 𝜂𝑎. Therefore, the

non-dimensionalised kinematic condition on the plate takes the form

𝜕𝑝

𝜕𝑦

���
𝑦=0

+ 𝜕𝑝I
𝜕𝑦

���
𝑦=0

= 𝐶0 (𝑥)𝜂𝑎 |𝑦=0, |𝑥 | < 1, (2)

with 𝐶0 (𝑥) = 𝑘20. Here we have neglected𝑂 (ℎ) terms arising from the small thickness of the plate allowing us to present
a condition along 𝑦 = 0. The non-linear Forchheimer condition (taking only leading order in ℎ) is

[𝑝] = 𝐶1 (𝑥)𝜂𝑎 + 𝐶2 (𝑥)𝜂𝑎 |𝜂𝑎 |, |𝑥 | < 1, (3)

where 𝐶1 (𝑥) = i𝑘0ℎ(𝑥)/𝐺𝑟𝑛, and 𝐶2 (𝑥) = i𝐺𝑟 𝑓 ℎ(𝑥)𝑘20/𝐺𝑟𝑛 are defined in terms of 𝐺𝑟𝑛 = 𝜌 𝑓 𝐾𝑐0/(𝜇𝑑), and
𝐺𝑟 𝑓 = 𝜌 𝑓 𝛽𝑐0

√
𝐾/𝜇 [10]. The solution 𝑝 is also required to satisfy the Sommerfeld radiation condition for outgoing

waves at infinity. Finally, we have written the boundary conditions (2) and (3) in a general form with coefficients 𝐶0,1,2,
since the collocation method can deal with this generality. However, our focus will be on the above specified values of
𝐶𝑖 throughout. Additionally, the method can be extended to different non-linear couplings in (3), for example, sums of
terms involving 𝜂𝑎 |𝜂𝑎 |𝛼 for 𝛼 ≥ −1 or higher-order corrections.

III. Method of Solution

A. The general solution
We introduce elliptic coordinates via 𝑥 = cosh(𝜈) cos(𝜏), 𝑦 = sinh(𝜈) sin(𝜏), where, with an abuse of notation, we

write functions of (𝑥, 𝑦) also as functions of (𝜈, 𝜏). To simplify the formulae, we let 𝑄 = 𝑘20/4. Separation of variables
leads to the expansion

𝑝(𝜈, 𝜏) =
∞∑︁

𝑚=1
𝑎𝑚se𝑚 (𝜏)Hse𝑚 (𝜈), (4)

where se𝑚 (𝜏) = se𝑚 (𝑄; 𝜏) denote sine-elliptic functions and Hse𝑚 (𝑄; 𝜈) = Hse𝑚 (𝜈) denote Mathieu–Hankel functions.
Full details of this process can be found in, for example, [12, 13, 17]. For example, numerical evaluations can be
achieved by expanding se𝑚 is sine functions and Hse𝑚 in Bessel functions. We choose the normalisation such that
Hse′𝑚 (0) = 1.
We use the boundary conditions to solve for the unknown coefficients 𝑎𝑚, after which the solution can be evaluated

anywhere in the (𝑥, 𝑦) plane. Of particular interest is the far-field directivity, 𝐷 (𝜃), which is defined via

𝑝(𝑟, 𝜃) ∼ 𝐷 (𝜃) e
i𝑤𝑟

√
𝑟
, as 𝑟 → ∞,

where (𝑟, 𝜃) are the usual polar coordinates. Given the Bessel function expansions of Hse𝑚 (𝜈), we can directly compute
𝐷 (𝜃) from (4) using asymptotics of Bessel functions to obtain

𝐷 (𝜃) =
√︂
2
𝜋𝑘0

∞∑︁
𝑚=1

𝑎𝑚𝜆𝑚 (𝑄)se𝑚 (𝜃),

for easily computed constants 𝜆𝑚 (𝑄). This allows easy computation of the scattered far-field sound (in dB):

𝑃 = 10 log10

(∫ 2𝜋

0
|𝐷 (𝜃) |2𝑑𝜃

)
. (5)

B. Collocating the boundary conditions
We adopt a spectral collocation approach to finding the unknown coefficients in the expansion (4). Throughout, we

denote the approximate coefficients by 𝑎̃𝑚. We truncate the expansion (4) to 𝑀 terms and supplement the expansion of
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𝑝 with an expansion of 𝜂𝑎 in terms of Chebyshev polynomials of the first kind

𝜂𝑎 (𝑥) =
∞∑︁
𝑗=0

𝑏 𝑗𝑇𝑗 (𝑥) .

We truncate this expansion to 𝑁 terms for approximate coefficients 𝑏̃ 𝑗 . The kinematic relation (2) becomes√︁
1 − 𝑥2 · 𝜕𝑝I

𝜕𝑦
(𝑥) +

𝑀∑︁
𝑚=1

𝑎̃𝑚se𝑚
(
cos−1 (𝑥)

)
=

√︁
1 − 𝑥2 · 𝐶0 (𝑥)

𝑁−1∑︁
𝑗=0

𝑏̃ 𝑗𝑇𝑗 (𝑥) . (6)

We collocate (6) at the Chebyshev points {cos((2 𝑗 − 1)𝜋/(2𝑀)) : 𝑗 = 1, ..., 𝑀}. The non-linear coupling (3) yields

2
𝑀∑︁
𝑚=1

𝑎̃𝑚se𝑚
(
cos−1 (𝑥)

)
Hse𝑚 (0) =

𝐶1 (𝑥) + 𝐶2 (𝑥)
������𝑁−1∑︁
𝑗=0

𝑏̃ 𝑗𝑇𝑗 (𝑥)

������


𝑁−1∑︁
𝑗=0

𝑏̃ 𝑗𝑇𝑗 (𝑥)
 , (7)

which we collocate at 𝑁 Chebyshev points. Coupling (6) and (7) leads to the non-linear equation

𝐴𝑣 + (𝐵𝑣) ◦ |𝐶𝑣 | = 𝑐, (8)

where 𝐴, 𝐵, 𝐶 ∈ C(𝑀+𝑁 )×(𝑀+𝑁 ) , 𝑣 is the concatenated vector of the unknown coefficients {𝑎̃𝑚, 𝑏̃ 𝑗 : 𝑚 = 1, ..., 𝑀, 𝑗 =
0, ..., 𝑁 − 1}, 𝑐 denotes the forcing that arises from the 𝜕𝑦 𝑝I term in (6), ◦ denotes component-wise multiplication of
vectors, and the absolute value is taken component-wise.

C. Solving the non-linear system
To solve the discretised equation (8), we apply Newton’s method. We partition the unknown coefficients into first the

𝑀 unknown coefficients {𝑎̃𝑚} and then the 𝑁 unknown coefficients {𝑏̃ 𝑗 }, and the collocation points into the kinematic
conditions and then the non-linear couplings. This yields the following block structure of the matrices 𝐴, 𝐵 and 𝐶, and
the vectors 𝑣 and 𝑐:

𝐴 =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
, 𝐵 =

(
0 0
0 𝐵22

)
, 𝐶 =

(
0 0
0 𝐶22

)
, 𝑣 =

(
𝑣1

𝑣2

)
, 𝑐 =

(
𝑐1

0

)
.

By considering the rows corresponding to collocating the kinematic condition, this yields the relation

𝑣1 = 𝐴
−1
11 (𝑐1 − 𝐴12𝑣2) . (9)

Substituting this into the non-linear coupling yields[
𝐴22 − 𝐴21𝐴−1

11 𝐴12
]
𝑣2 + (𝐵22𝑣2) ◦ |𝐶22𝑣2 | = −𝐴21𝐴−1

11 𝑐1. (10)

We solve (10) via Newton’s method. To do this we split vectors into real and imaginary parts so that taking absolute
values is differentiable almost everywhere. We also choose the linearised solution (obtained by setting 𝐵22 = 0) as our
initial vector. We cannot rule out the possibility of multiple solutions to the non-linear system of equations (10). In the
case of multiple solutions, we expect the physically correct solution to be the one closest to the linearised solution.
However, in the following examples we checked for additional solutions using deflation and were unable to find any.
This provides numerical evidence (though not a mathematical proof) that there is a unique solution to (10). Once 𝑣2 is
computed, 𝑣1 is computed via (9). Note that using the decompositions reduces the dimensions of the linear systems we
solve at each iteration of Newton’s method from (2𝑀 + 2𝑁) × (2𝑀 + 2𝑁) to (2𝑁) × (2𝑁) (the factors of two arise from
splitting into real and imaginary parts). Since the linear systems are dense, for the choice of 𝑀 = 𝑁 , and ignoring the
difference in the number of iterations of Newton’s method, this leads to a roughly eightfold speed-up for large 𝑀 = 𝑁 .

D. Numerical Convergence
In this section, we show convergence of our numerical method, taking 𝑀 = 𝑁 throughout. We compute the relative

error of 𝑃 (given by (5)), as well as the relative error of [𝑝] along the plate (measured in the 𝐿2 norm using a large
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Fig. 2 Convergence of the method for the linear case (left) and non-linear case (right).

Case 𝐾 (m2) 𝛽 Material Ref.
1 0 - Impermeable -
2 2.7 × 10−9 0.14 Alantum NiCrAl open-cell metal foam [9]
3 5.72 × 10−11 0.5† Sintered PE granulate (Porex) [1, 3]
4 3.65 × 10−12 0.613 Sintered SUS316L powder (Group 2, 9mm) [18]

Table 1 Summary of test cases. †No inertial parameter specified; we have selected an inertial parameter close to
that of the sintered material of Case 4.

number of discrete points), by comparing to a larger value of 𝑀 = 𝑁 . We tested the numerical method extensively, and
for all cases, we found similar behaviour to the following examples.
To demonstrate generality, we consider the case of

𝐶0 (𝑥) = 𝑘20, 𝐶1 (𝑥) = i𝑘0 (1.2 + sin(20𝑥)), 𝐶2 (𝑥) = i20𝑘20 (𝑥
2 + 1),

where 𝐶2 is set to zero for the linear case. The pressure due to the acoustic source is taken to be a plane wave of unit
amplitude incident at angle 𝜋/3. Figure 2 shows the convergence for 𝑘0 = 5 and 𝑘0 = 100. We see that in both cases we
can obtain a relative accuracy of at least 10−7 for [𝑝] and 10−10 for 𝑃, for 𝑀 = 𝑁 = 1000. We also see that, for a given
accuracy, a smaller number of basis functions are needed for a smaller 𝑘0. Consistent with the linear case in previous
works, there is a value of 𝑀 = 𝑁 (typically of the order 𝑘0) after which the convergence rate increases (particularly
visible in the 𝑃 error curves), before settling to an algebraic rate for large 𝑀 = 𝑁 .

IV. Results
Parameters are set as standard for air: 𝜌 = 1.225kgm−3, 𝑐0 = 343ms−1, 𝜇 = 1.81 × 10−5Pa s, and we shall use a

semichord length of 75mm, which is in line with small-scale experimental wind tunnel tests [1, 4, 9]. We obtain a
number of test case parameters for 𝐾 and 𝛽 from [1, 9, 18], which are summarised in Table 1.
First, we compare the linear and non-linear prediction for noise generated by a quadrupole close to the trailing edge

of a plate of uniform thickness of 0.9mm corresponding to a non-dimensionalised thickness of ℎ(𝑥) = 0.012. This
thickness is much larger than the characteristic size of the selected materials in Table 1, which vary from ∼ 50 − 800𝜇m.
The quadrupole is placed at (0.99, 0.1), corresponding to a vertical height of 5% chordlength. When considering Case
2, we alter 𝐶0 to

𝐶0 (𝑥) =
{
0, if 𝑥 ≤ 0.6,
𝑘20, otherwise,

in order to more accurately model the setup of [9]. There, an impermeable aerofoil had porous inserts appended to the
trailing edge, resulting in potential junction noise (at the impermeable-permeable junction).
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Fig. 3 Far-field sound across a range of frequencies for each Case. Left: Results for non-dimensionalised
thickness of ℎ(𝑥) = 0.012. Right: Results for an NACA 4-digit aerofoil with 6% thickness.

Figure 3 (left) illustrates the non-dimensional scattered far-field sound, defined in (5), for our four cases. Case 1 is
the reference impermeable case. We see that for low permeability (Case 4) there is little difference between the linear
and non-linear predictions over the whole frequency range, and such a low permeability does not produce a significant
noise reduction versus the impermeable Case 1. As permeability increases, the noise reduction versus the impermeable
plate increases but so too does the difference between the linear and non-linear results for mid and high frequencies.
Thus, for higher permeability, inertial effects can become significant on the generation of aerodynamic noise. The
particular metal foam for Case 2 has the largest pores ∼ 800𝜇m, thus the largest local Reynolds number. It is therefore
expected that the non-linear effects should be greatest in this case [10].
The maximum noise reduction observed by Rubio Carpio et al. [9] for Case 2 was 10dB, and a noise increase of

∼ 8dB was observed at high frequencies. The linear prediction hugely overestimates the noise reduction and does
not capture any possible noise increase, whereas the non-linear model predicts a similar ∼ 10dB noise reduction. As
frequency increases, the noise reduction does diminish for the non-linear case, although an increase is not seen. The
high-frequency noise increase in the results of [9] is dominated by roughness noise. Hence, we do not expect to capture
this feature in our model. Furthermore, for this case, the local Reynolds number is 𝑅𝑒𝐿 ∼ 54𝜔𝜂𝑎, where 𝜔𝜂𝑎 is the
local flow speed. This highly porous material constructed from large cells may therefore exceed the limit of validity of
the Forchheimer model (1 < 𝑅𝑒𝐿 < 10, [10]). Nevertheless, the results indicate a reasonable comparison to [9].
Cases 3 has a lower local Reynolds number than Case 2 due to smaller pore sizes and thus should be better described

by the Forchheimer model. The acoustic results from Geyer et al. [1] for Case 3 indicate a maximum noise reduction
of ∼ 6dB, and a noise increase at higher frequencies. Our non-linear model again captures a similar maximum noise
reduction, and trends towards a noise increase at high frequencies. Of course, this model still excludes any surface
roughness noise, which becomes important at high frequencies. However, we can see that not all of the noise increase at
high frequencies can be directly attributed to surface roughness, and some should be attributed to inertial (non-linear)
effects. The noise increase observed in Geyer et al.’s data [1] at low frequencies is a narrow spectral peak that is
attributed to trailing-edge bluntness noise which is not captured in our model. Thus we do not observe a similar peak in
our results.
Case 4 has the lowest local Reynolds number and lowest permeability. Thus the effects of inertia should be weakest.

Indeed this is observed in our results since the linear and non-linear predictions differ only by ∼ 1dB. The defined
porosity of the material in Case 4 is close to 50% (Cases 2 and 3 have higher porosities). Therefore, we anticipate that
for materials with porosities lower than ∼ 50%, the linear Darcy model would be suitable. However, for materials with
greater porosities, the non-linear inertial effects must be included. Predictions from this model, however, will only be
accurate if the local Reynolds number is sufficiently small 𝑅𝑒𝐿 < 10, thus materials with large open pores may still not
be suitably described.
We repeat the results for a NACA 4-digit aerofoil with 6% thickness in Figure 3 (right), and, as expected, observe

similar trends to the constant thickness plate case. To investigate further the agreement with experimental results and
the impact of plate thickness on trailing-edge noise, we plot the noise reduction in Figure 4 for Case 2 and Case 3. Here,
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Fig. 4 Comparisons of noise reduction with experimental data from [1, 9].

a positive value indicates that the corresponding case is quieter than a fully impermeable plate of the same geometry by
that many dB. The experimental data from [3, 9] are also plotted for the respective cases. The results of [9] provide only
high-frequency data and therefore, are impacted by roughness noise. Data from [3] in Figure 4 (right) for Case 3 covers
a wider range of comparable frequencies and, discounting the trailing-edge bluntness noise increase, we see very good
agreement between the non-linear model and the experimental results. The linear model in contrast greatly over predicts
the noise reduction similar to the Case 2 situation. Both Case 2 and Case 3 illustrate that the plate geometry has a minor
effect on noise reduction for the non-linear case, but a more significant effect in just the linear case.
Finally, we consider what effect the non-linear boundary condition has on the far-field directivity and surface

pressure jump. We consider Case 3, for which we know the Forchheimer model is well-suited. Figure 5 illustrates the
pressure jump across 𝑦 = 0 for a plate of constant thickness, alongside the far-field directivity (plotted on a log scale) for
both linear and non-linear boundary conditions. For low frequencies (𝑘0 = 0.1), there is little difference between the
linear and non-linear cases, and thus minimal impact of inertia. This is expected due to relatively low velocities. For
higher frequencies and thus higher velocities, we see a higher trailing-edge peak surface pressure for the non-linear case,
indicating that whilst viscosity dissipates pressure at the surface, inertial effects either hinder this viscous mechanism or
independently amplify pressure. This has two effects on the far-field directivity. First, a higher overall surface pressure
for the non-linear case results in a greater overall magnitude of far-field noise. Second, a higher peak trailing-edge
pressure for the non-linear case results in a scattered field dominated by just the scattering at the trailing edge, and thus a
reduced interference pattern in the far-field directivity when compared to the linear case. Similar effects are observed
for the NACA 0006 profile in Figure 6, where the variable thickness plate also results in a more oscillatory surface
pressure at high frequencies. This causes an increased interference-type pattern in far-field directivities, with the linear
case being most impacted upon comparison to Figure 5.

V. Conclusion
We presented a low-fidelity numerical solution to rapidly predict aerofoil trailing-edge noise accounting for both

linear viscous effects and non-linear inertial effects within metal foam-like porous materials. The linear model at high
frequencies can hugely over-predict the noise reduction upon comparison with experimental data. However, when
supplemented with a non-linear Forchheimer correction, we see good agreement in noise reduction predictions versus
experimental data. Further comparisons with Large Eddy Simulations and experimental results corroborating this
conclusion can be found in [19] (which also discusses extensions to multiple plates). The model allows constant or
non-constant plate thickness. However, it requires the total thickness to be sufficiently small so that we may linearise
the appropriate pressure jump condition to the chord line 𝑦 = 0. We note that for quadrupole-type noise sources, the
peak scattered pressure on the surface at the trailing edge is sufficiently dominant that the effects of altering the frontal
section of the plate are minimal. Conversely, if only viscous (linear) effects are accounted for, significant attenuation of
the source occurs at the trailing edge, and therefore the response along the full plate contributes to the far-field scattered
noise. Variations in the boundary conditions along the plate, therefore, have a greater impact on the scattered noise.
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the imaginary parts are shown as dashed lines. Right: Far-field (log) directivity. In all cases, the plate thickness
is constant, ℎ = 0.012.
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We conclude that for mid and high frequencies and typical high permeability materials, the local inertial effects at the
trailing edge can dominate the overall acoustic scattering behaviour. Thus accurate modelling of the realistic shape of
the aerofoil is unnecessary in comparison to the importance of including the inertial effects of the material local to the
source, in this case, the boundary layer.
Finally, we remark that it is not solely the permeability which determines the inertial effects, since an independent

inertial coefficient in the Forchheimer model must also be provided to characterise the porous material. It may also be
the case that this inertial coefficient is non-constant; many empirical formulae exist for permeable rocks [20]. However,
the literature is less complete for the application considered here of metal foams in air. Since the model presented
here can deal with non-constant coefficients, a variable Forchheimer coefficient could certainly be used should one be
determined for a material of interest. This model further does not account for the impact of the rough porous surface on
the generation of turbulence, and cannot capture any roughness noise measured experimentally. However, it may be
possible to supplement this model with a prediction of surface roughness noise [21]. Another possible extension is to
model non-linear inertial effects for elastic materials [22, 23].
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