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Spanwise homogeneous turbulent boundary layers convect groups of flow structures that
move with similar momentum, often called coherent structures. These coherent structures
remain statistically similar as they get convected downstream. The length scales of such coherent
structures vary with the wall-normal distance of the boundary layer. Large-scale motions on
the order of 20𝛿, often termed superstructures, are conjectured to be present in the outer layer.
However, Particle Image Velocimetry (PIV) data acquired at the bottom of the logarithmic
layer of the boundary layer provides evidence of the existence of superstructures in the overlap
region. Their presence in the close vicinity of the wall makes them a strong candidate to be the
prime contributors to the low-wavenumber pressure fluctuations in a smooth wall. A discussion
on the fundamental nature of these superstructures in the smooth-wall turbulent boundary
layer is presented, followed by the flow field’s decomposition into its streamwise wavenumber
and frequency components. The experimental data is also analyzed using a novel dynamic
mode decomposition technique, ResDMD. This decomposition approach differs from other
known techniques due to error control, verification (e.g., of dictionaries) and convergence
theorems. This technique was used to uncover the transient behavior within the system and
identify turbulence events based on their length scales and convection velocities. The extent
of the streamwise flow homogeneity is also discussed. Evidence of high spectral levels at
low-wavenumbers confirms the role of superstructures in containing a significant fraction of the
turbulence energy. The streamwise wavenumber-frequency spectra of the pressure fluctuations
at sub-convective wavenumbers support this.

I. Nomenclature

𝑢𝑖 = fluctuating velocity component
𝑈𝑖 = mean velocity component
𝐶𝑝 = pressure coefficient
𝑥, 𝑥1 = streamwise direction
𝑦, 𝑥2 = wall-normal direction
𝑧, 𝑥3 = spanwise direction
𝑓𝑠 = sampling frequency
c = airfoil chord
𝜙𝑢𝑢 = spectrum of the streamwise velocity fluctuations
𝜙𝑝𝑝 = spectrum of the pressure fluctuations
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ℎ = height of laser sheet
𝑘 = angular wavenumber
𝜔 = angular frequency
𝛼 = angle of attack
𝜈 = kinematic viscosity of air
𝑢𝜏 = friction velocity
𝐿𝑖 𝑗 = integral length-scale of velocity 𝑢𝑖 in the 𝑥 𝑗 direction

II. Introduction
Turbulence is one of the most frequently encountered and widely studied flow phenomena in aerospace and ocean

engineering. Any device or vehicle in motion will most likely interact with turbulent flow during its mission. The
interaction of an aerodynamic surface with an oncoming turbulent flow gives rise to pressure fluctuations on that surface.
This is detected as near and far-field sound, and it can prove detrimental for vehicles dedicated to defense-related
missions. These pressure fluctuations also give rise to structural vibrations and can result in a structural failure of a
specific component or surface of the vehicle. It is, therefore, essential to understand the quantitative behavior of these
surface pressure fluctuations and identify the flow sources that give rise to these phenomena.

The wavenumber-frequency spectrum of the pressure fluctuations 𝜙𝑝𝑝 provide an excellent statistical tool to allow
the spatio-temporal decomposition of the energy contained in these pressure fluctuations under the influence of turbulent
flows. The direct relation of these spectra to the two-point space-time correlation of the pressure fluctuations makes
it a favorable tool for such an investigation. Equation 1 provides the mathematical definition of these spectra for a
two-dimensional homogeneous turbulent boundary layer.

𝜙𝑝𝑝 (k, 𝜔) =
1

(2𝜋)3

∫ +𝑅∞

−𝑅∞

∫ +𝑅∞

−𝑅∞

∫ +𝑇∞

−𝑇∞
𝑅𝑝𝑝 (Δx, 𝜏)𝑒−𝑖 (k.Δx−𝜔𝑡 ) 𝑑𝜏𝑑𝑥𝑑𝑧 (1)

Here, k represents the wavenumber vector, 𝜔 represents the frequency, Δx shows the spatial separation, 𝜏 represents the
time delay, and 𝑅𝑝𝑝 represents the correlation of the pressure fluctuations also defined in Equation 2.

𝑅𝑝𝑝 (Δx, 𝜏) = 𝐸 [𝑝(𝑥, 𝑧, 𝑡) 𝑝(𝑥′, 𝑧′, 𝑡 + 𝜏)] (2)

A schematic of this wavenumber-frequency spectra is also shown in Figure 1.

Fig. 1 Schematic of the streamwise-spanwise wavenumber-frequency spectra of the smooth wall-pressure
fluctuations [1]

In Figure 1, the horizontal axes represent the streamwise and spanwise wavenumbers, while the vertical axis
represents frequency. Three distinct features of the spectrum space are also labeled in the figure. The acoustic cone
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represents the energy traveling at the sound speed. Anything that has an apparent faster speed is encapsulated by
the acoustic cone and is termed the ’supersonic region.’ The sources of the pressure fluctuations being convected
downstream at the convection velocity leave their footprints on the convective ridge. Three distinct contour levels of the
convective sources are presented. Their slope in the streamwise (𝑘1) direction represents the convection velocity in
meters per second. A peculiar region of interest is the sub-convective region, enclosed between the convective ridge
and the acoustic cone. The sources that give rise to elevated spectral levels in this region have been a source of debate
among the investigators of this problem and have been a subject of research for past many decades. Experimental
campaigns started in the mid-twentieth century with a series of tests conducted by Willmarth, who used pressure sensing
films in a flat plate to correlate the pressure fluctuations experienced on different parts of the plate [2]. Kraichnan
proposed an analytical scheme to qualitatively describe the role of wall-bounded turbulent flow to the induced pressure
fluctuations but highlighted a dearth of experimental data and a limited range of experimentally tested wavenumbers [3].
Corcos proposed semi-empirical models of the pressure fluctuations [4] and Chase [5, 6], which used boundary layer
parameters to collapse the wavenumber-frequency spectra of the pressure fluctuations. A number of these models were
compared by Graham [7] and Blake [8].

Inspired by a recent study on acoustic metamaterials, a novel non-intrusive scheme has been devised to tackle the
spatial aliasing problem in the measurements of surface pressure fluctuations. This involves an array of cavity-based
sensors, covered with Kevlar, used as pressure sensors specifically designed to target low-wavenumber fluctuations. The
details of the cavity-based sensors, the design, and the calibration of the pressure-sensing array have been discussed by
Damani et. al. [9]. The experimental results at varying Reynolds numbers and mean-pressure gradients have also been
documented by Butt et. al. [10]. The pressure-sensing array presented in these two studies resolves the convective
ridge and successfully captures the supersonic elements of the pressure field within the acoustic cone. Spectral levels
associated with low-wavenumbers were identified to be about 30 dB below the convective pressure fluctuations. These
results show promising advancements toward measuring wall-pressure fluctuations with reduced aliasing, though they
are not yet perfected. Moreover, there needs to be more discussion on the flow sources that give rise to these pressure
fluctuations.

The sources of wall-pressure fluctuations within a turbulent boundary layer have been under debate by conflicting
theories. Several attempts to visualize the flow near smooth (and sometimes rough) walls were made to identify the
nature of the flow in such regime Grant [11] Blake [12]. Kovasznay [13] reviewed the earlier understanding of the
turbulent boundary layer and discussed the presence of near-wall vortical motions, which may have larger streamwise
length scales as predicted by previous studies. These were popularized by Townsend [14] as large eddies. Up until the
end of the twentieth century, Large-Scale Motions (LSMs) were explored using hot-wire probes and Direct Numerical
Simulations (DNS), with explanations emerging from theoretical modeling studies as the one explained by Zhou et. al.
[15].

The presence of organized motions in turbulent pipe flows, distinctively larger than the previously discussed
LSMs, (i.e., on the order of 12-14 pipe radii), were observed using hot-wire probes by Kim and Adrian [16]. Similar
observations were made by del Alamo et. al. [17], who used numerical simulations in a turbulent channel flow to
show the presence of two distinct eddy families (coherent structures distinct from one another based on their length
scales). The advent of more sophisticated flow visualization techniques, like Laser Doppler Velocimetry (LDV) and
Particle Image Velocimetry (PIV) revolutionized the research methods among the fluid dynamics community. In an
attempt to visualize the vortex packets (as the one explained in [15]), wall-parallel stereoscopic PIV was conducted in
the logarithmic layer of the turbulent boundary layer by Ganapathisubramani [18, 19]. Packets of streamwise oriented
vortices larger than the boundary layer thickness were discovered. Showing their dominant contribution to the overall
Reynolds shear stress of the flow (more than 25%), they were considered vital for the turbulence transport mechanism.
This inspired further studies to investigate the existence and nature of large-scale coherent motions in turbulent boundary
layers. However, until this time, these large structures were considered grouped packets of ordered hairpin vortices. The
scaling of the measure statistics, such as streamwise velocity spectra or correlation functions, on the inner-wall units
(𝑢𝜏 , 𝜈, etc.) suggested a passive role of these large-scale structures on all Reynolds numbers.

Detailed boundary layer measurements at various wall-normal heights using hot-wire arrays at relatively high
Reynolds numbers (𝑅𝑒𝜏 = 1000, 7300) allowed the scaling of the premultiplied velocity spectra (𝜙𝑢1𝑢1) at both inner
and outer scales [20, 21]. Distinct peaks in the streamwise velocity spectra were observed in the viscous sublayer and the
boundary layer’s logarithmic layer. The bimodal nature of the spectra occurring at two different length scales confirmed
the large-scale organized motions in smooth wall turbulent boundary layers. These organized families were termed’
superstructures’ to separate these large-scale coherent motions in boundary layer flows from the wall-bounded channel
or pipe flows.
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This study aims to identify the large-scale coherent structures near a smooth wall that can be attributed to the
induced low wavenumber wall-pressure fluctuations. Time-Resolved Particle Image Velocimetry (TR-PIV) allows
the visualization of a turbulent boundary layer and its associated flow characteristics. As suggested by the plethora
of literature cited earlier, these structures can be as large as multiple boundary layer thicknesses in the streamwise
direction, and they can have a spanwise-meandering nature [20–22]. Therefore, a wall-parallel flow-aligned PIV plane
in the lower end of the boundary layer’s logarithmic region (𝑦+ ≈ 110 − 157) has been selected for the analysis. The
physical limitation intrinsic to the experimental setup makes it difficult for the laser sheet to align any closer to the wall,
making the inner part of the boundary layer inaccessible. Nevertheless, such a measurement can allow the quantification
of streamwise length scales of turbulent flow and a deeper understanding of the meandering nature caused by the
differences in mean-pressure gradients. Moreover, streamwise wavenumber-frequency spectra can also allow a direct
comparison between the velocity and pressure measurements made by the array used in [9] and [10].

An additional analysis on the flow visualization data is performed with dynamic mode decomposition to gain more
insight into the underlying behaviors of these superstructures. This technique takes nonlinear discretized dynamical
systems and linearizes them by looking at the Koopman operator for the system and its associated eigenfunctions and
eigenvalues. As explained in [23, 24], many variants of Koopman algorithms exist. The Residual Dynamic Mode
Decomposition (ResDMD) method is chosen for this purpose, which has already been used to analyze turbulence within
a wall-jet boundary layer flow [25]. With the introduction of convergence theorems, this algorithm differs from other
popular DMD algorithms thanks to error control of modes via assigning a residual. In [25], nonlinear features of the flow
were captured thanks to the choice of basis functions within the algorithm, while important transient behaviors of the
flow are seen within the modes with low residuals. An initial investigation demonstrates how ResDMD can reliably pick
out coherent structures and also reproduce turbulence statistics from the experimental data obtained in a wind tunnel.

III. Experimental Setup

A. Stability Wind Tunnel
The experiments are conducted in the Virginia Tech Stability Wind Tunnel (VT SWT), a closed-circuit suction type,

single return, subsonic wind tunnel. The wind tunnel provides flow speeds up to 80 m/s (5 million Reynolds number per
meter), and a clean flow with turbulence levels of 0.01% at 20 m/s and 0.023% at 70 m/s. Figure 2 shows a schematic of
the wind tunnel.

Fig. 2 Schematic of the Virginia Tech Stability Wind Tunnel

The wind tunnel provides a large test section with a cross-sectional area of 1.85 m × 1.85 m and a streamwise length
of 7.32 m. All four test section walls are made of 0.61 m × 0.61 m aluminum panels, which can be removed easily. This
modular nature of the test section allows easy installation of various models and instrumentation along the wall, floor,
and ceiling. Figure 3 shows a schematic of the SWT test section. Here, the flow enters the test section from the left
and leaves to the right. The two horizontal lines show the starboard, the port side of the test section, and the general
coordinate system. All four walls of the test section consist of three rows of aluminum panels containing 10 panels in
each row (30 panels on each wall). The global origin is selected to be the mid-span point of the upstream edge of the
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first panel in the middle row of the port wall, with the positive x direction pointing downstream and positive y pointing
normal and away from the wall. Flow is tripped near the end of the contraction chamber using a zig-zagged strip that is
3.18 mm tall (normal to the wall) and 20.39 mm wide (streamwise direction). The sharp zig-zag pattern has an internal
angle of 27.6° and is located at a distance of 3.58 m upstream of the global origin.

Fig. 3 Schematic of the VT SWT Test-Section.

A 0.914 m chord NACA 0012 airfoil that spans from the floor to the ceiling is mounted such that the leading edge is
3.22 m away from the origin. The change in the angle of attack of this airfoil creates mean pressure gradients on the
side walls. A distribution of the pressure coefficient on the port-side wall with the change in airfoil angle of attack is
presented in Figure 4. For this figure, the airfoil was made to change its angle of attack from -10° to +12° in increments
of 2° as shown by the key. The details of the test section, airfoil, mean pressure profiles, and the tripping mechanism
have also been extensively covered in [10].
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Fig. 4 Pressure coefficient distribution along the mid-span of the port side wall of the Stability Wind Tunnel

In Figure 4, the horizontal axis depicts the streamwise distance on the port wall of the test section, while the vertical
axis shows the mean-pressure coefficient. The projection of the leading and trailing edges of the NACA 0012 airfoil on
the port wall, in its zero-degree angle of attack configuration, is shown with black dotted-dashed lines. For convention,
the airfoil is considered to be pitching down (negative angle of attack) when the leading edge is facing the port wall.
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B. Flow Conditions
Flow conditions provided by the wind tunnel were measured using static pressure taps mounted flushed with the

inner linings of the walls. Data acquisition schemes and specifications of the instrumentation used in the experiment
have previously been discussed in great detail by Butt et. al. [10]. For the results presented in this paper, all the flow
measurements were acquired between x = 2.69 m and x = 3.29 m at the port wall of the test section. Referring to Figure
4, this region is upstream of the airfoil’s leading edge, and hence the mean-pressure gradient remains consistently
linked with the airfoil’s angle of attack. In other words, at this location upstream of the airfoil, the negative values of 𝛼
always correspond to a favorable pressure gradient and vice versa. While the general effect of the pressure gradients,
represented by the sign of the Clauser boundary layer parameter (𝛽), remains consistent for the measurement locations,
their specific values vary.

The analyses shown in this paper will correspond to only three out of the 12 cases shown in Figure 4: -10°, 0°, and
+12°. For all figures presented in this paper, the adverse pressure gradient cases (+12°, APG) will be presented in red,
the small (near-zero) pressure gradient cases (0°, SPG) will be presented in black, and the favorable pressure gradient
cases (-10°, FPG) will be shown in blue. Moreover, the location of the upstream edge of the FOV (i.e., 𝑥 = 2.69 m) will
be referred to as a reference location 𝑥0. Figure 5 shows the boundary layer profile for the three pressure gradient cases
under consideration.
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(a) Boundary layer profile along with the average distance of the
upper edge of the PIV laser sheet from the port wall
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(b) Boundary layer profile in terms of the wall units along with the
respective location of the upper edge of the PIV laser sheet.

Fig. 5 Boundary layer profiles at 𝑥 = 3.09 m for 𝑅𝑒𝑐 = 1.2 × 106 for the APG (red), SPG (black) and FPG (blue)
cases.

In Figure 5(a), the horizontal axis represents the streamwise velocity normalized with the edge velocity of the
respective pressure gradient case, while the vertical axis shows the wall-normal distance in millimeters. The difference
in the boundary layer thickness can be observed for the three pressure gradient cases here. A dashed black line shows
the location of the upper edge of the laser sheet thickness used for wall parallel PIV measurements.

To get a perspective in terms of wall units, Figure 5(b) shows the boundary layer profile along with the average
location of the laser sheet’s upper edge. It is important to note that the friction velocity (𝑢𝜏) varies for the three pressure
gradients. Since the wall-normal height of the laser sheet in terms of the wall units depends on friction velocity, it is
different for the three different pressure gradients. Equation 3 shows the relation between the height of the laser sheet in
terms of wall units and the distance of the laser sheet’s upper edge to the wall.

ℎ+ =
ℎ𝑢𝜏

𝜈
(3)

The numerical results extracted from the boundary layer data are essential for the spectral analysis of the velocity
fluctuations. The critical parameters used throughout this paper, along with their values, are shown in Table 1.
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Parameters Units Case I Case II Case III
Airfoil Angle of Attack (𝛼) ° -10 0 12

Mean Pressure Gradient (𝑑𝐶𝑝/𝑑𝑥) 1/m -0.143 -0.041 +0.074
Clauser pressure gradient parameter (𝛽) -0.292 -0.127 +0.409

Freestream Velocity (𝑈∞) m/s 22.8 22.9 22.8
Edge Velocity (𝑈𝑒) m/s 26.0 23.6 20.9

Friction to Edge Velocity Ratio (𝑢𝜏/𝑈𝑒) 0.040 0.038 0.035
Freestream Mach Number (Ma) 0.074 0.068 0.060
Boundary Layer Thickness (𝛿) mm 58.7 67.5 83.6
Displacement Thickness (𝛿∗) mm 6.6 9.0 13.5

Momentum Thickness (𝜃) mm 5.3 7.0 10
Momentum Thickness Reynolds Number (𝑅𝑒𝜃 ) 7.93 × 103 9.56 × 103 12.05 × 103

Friction Reynolds Number (𝑅𝑒𝜏) 3.53 × 103 3.49 × 103 3.52 × 103

Viscous Length Scale (𝜈/𝑢𝜏) mm 16.6 × 10−3 19.3 × 10−3 23.8 × 10−3

Shape Factor (H) 1.25 1.28 1.35
Coefficient of Friction (𝐶 𝑓 ) 3.2 × 10−3 2.9 × 10−3 2.5 × 10−3

Table 1 Boundary Layer Parameters of the three pressure gradients (angles of attacks) used in the analysis for
𝑅𝑒𝑐 = 1.2 × 106 at 𝑥 = 3.09 m

C. Particle Image Velocimetry
Flow visualization measurements were conducted at the mid-span location of the port side wall using a wall-parallel,

flow-aligned planar PIV in the 𝑥 − 𝑧 plane. Figure 6 shows the experimental setup for one of the flow measurements.

Fig. 6 Experimental setup for a PIV measurement (view from flow’s perspective)

Two Phantom v2512 cameras were mounted on the starboard side such that their sensing surface faced the port wall
of the test section, and their fields of view grazed a transparent acrylic window mounted on the port side wall. Both
cameras used a Nikon AF-S Nikkor 200 mm lenses and were separated by 266.7 mm (lens’ center-to-center distance)
from one another. Figure 7 shows the two cameras mounted on the starboard side wall. In this figure, the upstream

7

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
am

br
id

ge
 o

n 
Ju

ne
 8

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

33
37

 



camera is labeled as Camera 1, while the downstream camera is labeled as Camera 2. This convention will be used
throughout the paper.

Fig. 7 Camera Setup showing the separation between the center of the lenses

Camera 1 operated at a working distance of 1.92 m and provided a field of view (FOV) of 333 mm in the streamwise
direction and 206 mm in the spanwise direction. Camera 2 operated at a working distance of 1.91 m and provided a FOV
of 329 mm × 206 mm. A streamwise overlap of 55 mm (9.2% of the combined FOV) was intentionally created between
the fields of view of the respective cameras to allow a smooth merging of the flow field and an optical calibration using
a single coordinate system. This provided an overall field of view of size 606 mm × 200 mm. A schematic of this
procedure has been shown in Figure 8. Please note that the figure is not to scale, and the offset between the two frames
has been greatly exaggerated for ease of understanding. In Figure 8, the blue area (along with the dimensions colored
blue) represents the FOV of Camera 1, while Camera 2 is represented in the green area with its dimensions markers also
shown in green. The overlapping area of both fields of view is shown as a dotted perimeter, along with its dimensions in
black. The combined FOV is centered around the midpoint of the overlapping area (shown as a vertical black dashed
line).

Fig. 8 Schematic of the fields of view of both cameras in overlapping planar configuration grazing the port wall

The data outside the black dotted parameter has not been used in any of the analyses presented in this paper. To
allow a smooth merge between both fields of view, a hyperbolic tangent weighting function 𝑊 , was applied to both
fields of view. This removed any apparent sharp jumps between the velocity field at the point where the two fields of
view connected. This function is given in Equation 4.

𝑊 =
1
2

[
1 ± tanh

(
𝑋𝑐 − 0.3𝑋

𝑋

)]
(4)
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Here, 𝑋 represents the streamwise FOV of each camera while the subscript 𝑐 is placed for the midpoint of the horizontal
(streamwise) FOV. The vector fields were multiplied with the weighting functions and then added to give a smoothly
merged vector field.

The two acrylic windows mounted on the starboard wall (as shown in Figure 7) allowed the cameras to take images
of the flow that was illuminated by a dual-pulsed 532 nm Nd:YaG laser on the port side wall. This laser was emitted by
Photonics Industries DM series system and provided a total energy of 25 MJ per pulse. A plano-concave lens (focal
length = -20 mm) was used to convert the laser beam into a thin sheet of laser (1-2 mm thick) that grazed the port wall.
Since the laser sheet was required to cover a larger area (≈ 600 mm × 200 mm), special attention was given to ensure
that the laser sheet remained at a permanent grazing angle to the wall. This was achieved by adjusting the focal length
of the laser collimator such that the two pulses of the laser sheet converged to a minimum thickness (i.e., 1.5 mm) near
the upstream edge of the FOV. Within the merged field of view, the upper edge of the laser sheet remained between
𝑦+ ≈ 120 and 𝑦+ ≈ 150. The wall aluminum panels were replaced with a large transparent acrylic panel to minimize
potential reflections from the surface. This provided confidence to make the laser sheet graze the wall at the smallest
possible height. The test section was populated with propylene glycol particles (nominal diameter of 500-700 nm)
generated using an MDG fog generator to illuminate the flow.

The PIV cameras were calibrated using a 2D calibration plate, designed in-house using an open-source tool. The
calibration plate provided filled black circles as targets for the cameras. These circles were 10 mm in diameter and
were arranged in a Cartesian grid configuration with a uniform spacing of 30 mm in either direction. A total of 494
circles were arranged in 19 rows and 26 columns over a 5.5 mm thick board, 800 mm × 600 mm in size. The calibration
plate was installed on top of the transparent acrylic panel at the port wall, and the cameras were calibrated on the free
surface of the plate. Once the cameras were calibrated, the calibration plate was removed, and the cameras and laser
were traversed linearly by a distance equal to the thickness of the calibration plate (i.e., 5.5 mm) such that the laser sheet
and the camera’s field of view grazed the port wall. This traversing action was executed using a Parker 4422 linear
mechanical traverse that provided a linear travel accuracy of 2 𝜇m over a travel distance of 25 mm.

The laser sheet was introduced to the flow via a cutout in one of the panels downstream from the area of interest,
where the collimator was mounted. To minimize any blockage effects caused by the presence of the laser collimator,
this region was covered with a NACA 0032 fairing which was manufactured using rapid prototyping, to allow smooth
un-separated flow to convect around the laser. Figure 9 shows the fairing that functioned as an aerodynamic housing for
the laser head. A rectangular cutout of 38.1 mm × 12.7 mm cross-sectional area allows the laser to exit the fairing and
illuminate the oncoming flow. This rectangular cutout was also sealed with a transparent acrylic window to prevent
contamination from entering the fairing and influencing the laser lens.

Fig. 9 Schematic of the NACA 0032 fairing to allow safe housing of the laser head with minimal aerodynamic
blockage effects

The left side of Figure 9 shows a view of the port wall by an observer standing in the test section, while the right side
of the figure shows a view from upstream of the fairing. Using ideal flow analysis, it was calculated that the laser fairing
impacted the flow as far as 80 mm upstream of its leading edge, which remains well outside (further downstream) of the

9

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
am

br
id

ge
 o

n 
Ju

ne
 8

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

33
37

 



field of view. The aerodynamic profile of the fairing also allowed gentle flow reattachment once it passed over the laser
fairing. The PIV results shown in Section IV show no evidence of flow disturbance that can be directly attributed to the
laser fairing and therefore confirm the anticipated behavior.

Using the high speed cameras, images were taken at sampling rates between 3.1 kHz to 3.75 kHz (depending on the
convection velocity) in dual-frame mode. The laser and cameras were synchronized using a Programmable Timing Unit
(PTU), and the entire system was operated in DaVis 10.0, which is a commercial PIV software provided by LaVision.
The same software was later used to process the raw data. A sliding background subtraction was applied to groups of
4 consecutive images to remove contamination caused by any dust particle that passed through the FOV. Mild laser
diffusion effects were observed near the edges of the images, causing a steep loss in signal-to-noise ratio (SNR). To
address this, a uniform rectangular mask was applied to all images for all flow conditions to uphold consistency in the
processing scheme. The data was then processed using two initial passes of 1:1 square correlation windows, 64 × 64
pixels in size with a 50% overlap between consecutive windows. Then three additional passes of 1:1 circular correlation
windows of size 32 × 32 pixels with 75% overlap were used. This processing scheme provided a spatial resolution of
8.40 mm. The generated vector fields were then imported and processed further using MATLAB.

IV. Results and Discussion
Data acquired using the setup described in Section III, and for the flow conditions defined in Section III.B is

presented in this section. However, a brief overview of the pressure gradient effects on the boundary layer will be
discussed before dissecting the results for further analysis.

A. Effects on mean velocity and the boundary layer
Boundary layer growth within the field of view was observed as a direct consequence of the wind-tunnel’s overall

favorable pressure gradient (even in the absence of a pressure-gradient generating airfoil). In other words, the mean flow
velocity varied between the upstream and the downstream region of the measurement plane. This effect is visible in the
time-average contours of the streamwise velocity, shown in Figure 10.

Fig. 10 Time-averaged streamwise velocity for the small pressure gradient (SPG) case

In Figure 10, the horizontal and vertical axes show the streamwise and spanwise distances in meters, while the
contours show the time-averaged velocity for 48,000 time realizations taken as two separate sample sets (24,000 images
per set). Averaging the velocity separately in the streamwise and spanwise direction for all pressure gradient cases
reveals the mean pressure gradient effects. Figure 11a shows the spanwise-averaged streamwise velocity (𝑈𝑐) as a
function of the streamwise distance (𝑥). The variation of the streamwise-averaged streamwise velocity 𝑈𝑠 with spanwise
distance (𝑧) is shown in Figure 11b.

Figure 11 shows a general trend, indicating faster local mean velocities for the favorable pressure gradient (FPG)
case (as high as 67% of the edge velocity). In contrast, the adverse pressure gradient indicates slower mean convection
(as high as 53% of the edge velocity within the FOV). The increase in the convection velocity for the favorable pressure
gradient is a direct consequence of the variation in the boundary layer parameters (𝛿, 𝜃, 𝑈𝑒, etc.) within the field of
view. In other words, while the measurement plane physically remained at a constant height from the smooth wall for
all pressure-gradient cases, the variation in the boundary layer thickness caused the laser sheet to graze a different
region of the boundary layer (in wall-units, see Figure 5), resulting in a different observed velocity within the plane of
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(a) Variation of the spanwise-averaged mean convection velocity
with streamwise distance, normalized with the local boundary layer
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(b) Variation of the streamwise-averaged mean convection velocity
with spanwise distance, normalized with the local boundary layer
thickness

Fig. 11 Variation of the convection velocities within the FOV as a fraction of the local edge velocities.

measurement for each case. To confirm the boundary layer growth and the streamwise variation in 𝛿, boundary layer
profiles from three different streamwise stations were compared. Recall that the boundary layer data was acquired using
a boundary layer rake mounted at the port wall’s mid-span location (𝑧 = 0) at a streamwise distance of 𝑥 = 3.08 m away
from the origin. It is acknowledged that the boundary layer proceeds to vary beyond this point, and hence the parameters
presented in Table 1 do not remain constant throughout the FOV. Therefore, the boundary layer parameters are linearly
interpolated between the locations where data was acquired (i.e., between three streamwise stations at 𝑥 = 2.47 m, 3.08
m, and 3.68 m). This allows local normalization of data with boundary layer parameters specific to each streamwise
location within the FOV. Figure 12 shows the variation of the boundary layer thickness 𝛿, with the streamwise distance 𝑥
for the three pressure gradient cases.
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Fig. 12 Variation of boundary layer thickness, using linear interpolation between streamwise stations at 𝑥 =

2.47, 3.08, 3.68 m.

The vertical axis in this figure corresponds to the boundary layer thickness (𝛿) in millimeters. As predicted, a general
growth in the boundary layer thickness is observed as flow moves downstream due to the pressure gradient provided by
the wind tunnel. However, the growth rate is higher for the APG case, while little to no growth is observed for the SPG
and FPG cases. Similar results are obtained for other boundary layer parameters and therefore are not presented to
avoid reiteration of the same phenomenon. Figure 12 provides a basis for normalization that will be followed for future
analyses. Since the APG case corresponds to a thicker boundary layer, normalizing distances with 𝛿 will result in the
apparent shrinking of physical quantities. The reverse is expected for the FPG case, where 𝛿 changes are comparatively
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minute.
The three pressure-gradients’ mean-subtracted, streamwise velocity contours are shown for a particular time instance

(𝑡 = 0s). The streamwise (horizontal) and the spanwise distance (vertical) have been normalized with the respective
local boundary layer thickness for each of the three pressure-gradient cases. This results in inconsistent window sizes as
three different values of 𝛿 are used for normalization. However, the physical size of the field of view remains the same
(refer to Section III.C for the details regarding the field of view).

(a) Streamwise velocity contours for the favorable pressure gradient (FPG) case

(b) Streamwise velocity contours for the near-zero pressure gradient (SPG) case

(c) Streamwise velocity contours for the adverse pressure gradient (APG) case

Fig. 13 Instantaneous, mean-subtracted streamwise velocity normalized with the edge velocity, at the first frame
of the data acquired for each pressure gradient case

Several important conclusions can be drawn by comparing using the raw images for all three pressure-gradient cases.
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First, the presence of long coherent structures, spread in the streamwise direction on the order of 10𝛿 or greater, is
evident from these raw images. These are the superstructures that were discussed to a great extent in Section II. The
presence of high (yellow) and low (blue) momentum regions coexisting at the same wall-normal height is also evident,
highlighting that a single value of the convection velocity to recreate velocity data remains a questionable approach
beyond a certain streamwise distance. Consequently, this observation suggests that the validity of Taylor’s frozen flow
hypothesis over large streamwise distances must be carefully deliberated before drawing meaningful conclusions from
the data.

A deeper look at the three velocity contours highlights the effects of pressure gradients. As the flow changes from
adverse to a favorable pressure gradient (+12° to -10°), the width of the large structures decreases as they appear to
get aligned in the streamwise direction. In other words, the favorable pressure gradients apply a virtual pull to these
superstructures decreasing their spanwise spread and effectively aligning them along the streamwise direction. An
expected variation in the length scales of the superstructures is expected, although detailed statistical analysis is required
to unveil this trend more quantitatively. In addition to the spanwise spread, the long, slow-moving structures (shown as
blue contours) also appear to be separated from one another by the relatively shorter (∼ 1𝛿) but faster-moving structures.
This separation appears smaller for the FPG case, allowing a higher number of slow-moving structures to fit within the
spanwise FOV. In contrast, the opposite applies to the APG case, where the number of structures per area appears to be
lower.

Another feature that must be clarified in the data set’s first frame is the structure’s meandering in the spanwise
direction . The long structures meander downstream within the FOV at their local convection velocities (generally lower
than the mean convection velocity). This gives them a snake-like slithering motion. This motion appears exaggerated
for the APG cases, whereas the meandering gets diminished for the FPG case. Statistical tools, such as spatial and
temporal correlations, will be used to establish quantitative behavior for the large-scale structures discussed.

B. Turbulence Statistics
In order to get a comparison of the turbulent statistics, the Reynolds stresses for the three pressure-gradients are

compared. Table 2 shows the minimum, maximum, and average values of the streamwise, spanwise, and shear stresses.
All the values presented in the table are normalized with the square of the local edge velocities.

FPG SPG APG
Parameters mean variance mean variance mean variance

𝑢𝑢/𝑈2
𝑒 4.49 × 10−3 2.51 × 10−8 4.29 × 10−3 2.45 × 10−8 5.04 × 10−3 1.74 × 10−8

𝑤𝑤/𝑈2
𝑒 1.54 × 10−3 1.84 × 10−8 1.45 × 10−3 1.19 × 10−8 1.80 × 10−3 9.83 × 10−9

𝑢𝑤/𝑈2
𝑒 7.52 × 10−5 6.35 × 10−9 9.78 × 10−5 1.29 × 10−8 8.43 × 10−5 1.08 × 10−8

Table 2 Variation of the Reynolds stresses (normalized with the local edge velocities) for the three pressure-
gradient cases

The effects of insufficient spanwise resolution are unveiled by comparing the average values of the streamwise
and spanwise Reynolds stresses. It can be seen that the streamwise Reynolds stress is about 3.0 times the spanwise
Reynolds stress for the FPG and SPG cases, while this ratio drops to 2.8 for the APG case. Established data presented
in [26] and [27] shows that for a smooth-wall turbulent boundary layer, the value of the spanwise Reynolds stress is
generally on the order of the streamwise Reynolds stress, and not a third of its value as shown in Table 2. Since the study
aimed explicitly for streamwise aligned large-scale coherent structures, giving up the spatial resolution to capture a large
FOV was a deliberate experimental decision. Therefore, the under-resolution of the data in both the streamwise and
spanwise distance is possibly a consequence of such a trade-off. This attenuation of streamwise and spanwise Reynolds
stresses has been observed in both smooth-wall [28] and in rough-walls [29]. Nevertheless, the average values, at their
respective wall-normal heights can be compared to the wall-normal PIV data acquired at the same flow conditions by
Vishwanathan et. al. [30]. Figure 14 compares the wall-normal and wall-parallel data for the streamwise Reynolds
stresses. Please note that no wall-normal data is provided for the spanwise Reynolds stresses, and it is only presented to
make relative comparisons with the streamwise Reynolds stresses.

The horizontal axis in this figure corresponds to wall-normal distance normalized with the boundary layer thickness,
while the vertical axis corresponds to the streamwise Reynolds stress component. The solid lines represent the streamwise
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Fig. 14 Comparison of the measured streamwise (filled pentagrams) and spanwise Reynolds stresses (filled
circles) with wall-normal PIV data by Vishwanathan et. al. [30] (solid lines).

Reynolds stresses acquired from the wall-normal PIV measurement, while the filled pentagrams represent the data
(spatially averaged over the entire FOV) from the wall-parallel PIV measurements. In addition to the stream Reynolds
stresses, the spanwise Reynolds stresses are plotted on the same plot as filled circles. The location of this data in terms
of the wall-normal distance has also been normalized with the boundary layer thickness and corresponds to the average
height of the laser sheet’s upper edge throughout the FOV. The color scheme is kept consistent with the previous figures,
as discussed earlier. Figure 14 shows that the wall-normal data failed to resolve the statistics closer to the wall where the
wall-parallel data was acquired. It is important to note that while the wall-parallel configuration provided access to
near-wall domain, it also averaged the data within the thickness of the laser sheet.

As discussed previously, a quantitative analysis to unveil the spatial information of the structures was conducted
using spatial anchored correlation coefficients (𝜌𝑢𝑢). Several anchor points (points that were correlated with all other
points within the FOV for all time instances) were used. However, only the anchor point roughly in the center of the
FOV (𝑥 = 0.3 m, 𝑧 = 0 m) is presented here. Figure 15 show the correlation coefficients for the selected anchor point.
The positively correlated regions are shown as light shades of yellow, while the negatively correlated regions are shown
using darker shades of blue.

A streamwise aligned region of highly correlated flow is seen around the anchor point, confirming the presence of
coherence along the streamwise direction. Of course, as we move away from the anchor point in either direction, the
correlation decays away. It is important to note that this does not mean that the edges of these correlations represent the
length scales of the coherent motions present within the flow. In fact, the length scales represented using streamwise
correlation coefficients are restricted due to the limited size of the FOV. In other words, the restriction of the streamwise
extent of the FOV limits us to a separation Δ𝑥 ≈ 0.27 m in either a positive or negative streamwise direction. That
being said, the effects of the pressure gradients on these correlation contours are still evident. It can be seen that as the
pressure-gradient varies from favorable to adverse (top to bottom in Figure 15), the streamwise and spanwise spread of
the correlated region increases. For a value of 𝜌𝑢𝑢 = 0.1, the streamwise extent of the correlation spans about 0.365 m,
whereas this spread increases to 0.399 m for the SPG case and 0.456 m for the APG case. The value for the spanwise
spread of this correlation coefficient is 0.021 m, 0.025 m, 0.034 m for the FPG, SPG and the APG case, respectively,
increasing as the mean pressure-gradient varies from favorable to an adverse pressure gradient. This also confirms
the enhanced streamwise spread of the structures observed in the raw snapshots of the APG cases (Figure 13). An
interesting observation is made while comparing the contour lines’ spanwise spread at a particular correlation coefficient
value. It is observed that the correlated regions around the anchor point show spanwise symmetry, i.e., the edges of the
correlated regions are equidistant from the anchor point in the positive and negative spanwise separation. This trend is
not seen for the APG case, where the correlated regions show a lack of spanwise symmetry about the mid-span location
of the FOV. This may be an indication of relatively increased meandering behavior for the APG case.
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Fig. 15 Correlation coefficient of the streamwise velocity at the anchor point (𝑥, 𝑧) = (0.3, 0) m for the three
pressure gradient cases: FPG (top), SPG (middle) and APG (bottom).

A similar trend is observed in the spanwise separation between the negatively correlated regions (shown as dark
shades in Figure 15). These negatively correlated regions (with the anchor-point) get further apart for the APG case
compared to the FPG cases, suggesting loosely stacked positive and negative structures within the FOV (refer to the
discussion regarding Figure 13).

For a direct comparison, the data presented in Figure 15 is normalized using the respective streamwise averaged-
boundary layer thickness for each of the three pressure-gradient and their contours are superimposed on a single plot.
Figure 16 allows quantitative comparison by plotting contours for a few selected levels (i.e., 𝜌𝑢𝑢 = -0.07, 0.1, 0.8). Here
the negative correlations are shown as dashed lines, while the positive correlated levels are shown as solid lines. The
color schemes are kept consistent with the previous figures.

Normalizing the domain using 𝛿𝑎𝑣𝑔 for the respective pressure-gradient case allows the correlation contours to
collapse on one another. The extent of the correlation 𝜌𝑢𝑢 = 0.1 covers a region roughly equal to 6𝛿 in the streamwise
and 0.42𝛿 in the spanwise direction. Correlated regions beyond this value cover a larger extent of the FOV, but they are
not shown to avoid confusion regarding their edges. The negatively correlated regions show a relatively weaker collapse,
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Fig. 16 Comparison of the extent of the streamwise velocity correlations for the three pressure-gradient cases
for 𝜌𝑢𝑢 = 0.8, 0.1 (solid lines) and 𝜌𝑢𝑢 = -0.07 (dashed lines)

especially in the negative spanwise direction. Admittedly, this behavior needs to be explored quantitatively in more
depth.

For the SPG case, a slice of the spatial correlations calculated at various spanwise and streamwise points within the
FOV is shown in Figure 17. The purpose of showing these results is to establish the extent of streamwise and spanwise
flow homogeneity within the bounds of our planar domain. Five different points in the streamwise and spanwise are
held as anchors separately. The solid lines represent the values for the streamwise velocity fluctuations (𝑢), while the
dashed lines represent the spanwise velocity fluctuations (𝑤).
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as a function of streamwise distance (as observed from 5 spanwise
anchor points)
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(b) Correlation coefficient of the streamwise and spanwise velocity
as a function of spanwise distance (as observed from 5 streamwise
anchor points)

Fig. 17 Variation of the streamwise velocity correlation within the field of view for ten different anchor points
for the SPG case. Solid lines represent streamwise velocity, while dashed lines represent the spanwise velocity.

As expected, the spanwise velocity predicts small length scales, supported by the width of the correlation curve. In
other words, as flow convects downstream, the correlation in the spanwise velocity fluctuations decays much faster when
compared to the streamwise velocity. This difference in the decay rate between the 𝑢 and 𝑤 velocities is not observed
in the spanwise direction, and a neat collapse is observed in this direction. The spatial correlations calculated at five
different streamwise and spanwise points collapse on one another, suggesting the presence of spanwise and streamwise
homogeneity in the boundary layer. To highlight these trends as a function of the mean pressure gradients, the anchor
points at (𝑥, 𝑧) = (4, 0)𝛿 are selected for comparison in Figure 18.

Interestingly, the collapsing of the 𝜌𝑢𝑢 and 𝜌𝑤𝑤 curves, as shown in Figure 17, is repeated. The extent where the
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(a) Correlation coefficient of the streamwise and spanwise velocity
as a function of streamwise distance

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.2

0

0.2

0.4

0.6

0.8

1

 = -10
°

 = 0
°

 = 12
°

(b) Correlation coefficient of the streamwise and spanwise velocity
as a function of spanwise distance

Fig. 18 Variation of the streamwise velocity correlation coefficient as a function of mean pressure-gradient.
Solid lines represent streamwise velocity, while dashed lines represent the spanwise velocity.

streamwise velocity correlation remains a non-zero value spans throughout the FOV (i.e., 6 − 8𝛿 depending on the
pressure-gradient case). This advocates for presence of streamwise-oriented structures that are much larger than the
existing FOV. The faster decay in the spanwise correlation also confirms the flow anisotropy within the measurement
plane. The spatial correlation functions also allow the estimation of integral length scales using Equation 5.

𝐿𝑖 𝑗 =

∫ ∞

0
𝜌𝑢𝑖𝑢𝑖 (Δ𝑥𝑖)𝑑Δ𝑥𝑖 (5)

For a finite domain size, the integral is evaluated between the edges of the domains, i.e., from 𝑥 = 𝑥0 m to
𝑥 = 𝑥0 + 0.57 m and 𝑧 = −0.09 m to 𝑧 = 0.09 m. The spanwise integral length scales (𝐿13, 𝐿33) are shown in Figure
19(a) while the streamwise integral length scales (𝐿11, 𝐿31) are shown in Figure 19(b). For ease of visualization,
the horizontal axis represents the streamwise distance and streamwise-oriented length scales, while the vertical axis
represents the spanwise direction and the spanwise-oriented length scales.
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(a) 𝐿33: solid lines, 𝐿13: dashed lines
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(b) 𝐿11: solid lines, 𝐿31: dashed lines

Fig. 19 Integral Length scales of the streamwise and spanwise velocities

The streamwise integral length scales of the streamwise velocity (𝐿11) dominate as they are on the order of 1𝛿
(between 65-85% of the boundary layer thickness), whereas 𝐿31 are on the order of 20-25% of 𝛿. Comparatively, the
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integral length scales in the spanwise direction remain significantly low (between 6-8% of 𝛿). The details are shown in
Table 3 below.

FPG SPG APG
Length-scale mean variance mean variance mean variance

𝐿11/𝛿 0.80 1.3 × 10−3 0.78 1.2 × 10−3 0.67 4.3 × 10−4

𝐿31/𝛿 0.27 2.1 × 10−4 0.26 1.1 × 10−4 0.22 1.2 × 10−4

𝐿13/𝛿 0.06 1.9 × 10−6 0.06 7.2 × 10−6 0.07 2.6 × 10−5

𝐿33/𝛿 0.08 2.9 × 10−6 0.08 9.1 × 10−6 0.07 2.2 × 10−5

Table 3 Statistical distribution of the length-scales within the measurement plane for the three pressure gradient
cases

The flow’s streamwise dominant anisotropic nature is again evident from Figure 19 and Table 3. As expected, the
streamwise oriented integral length scales normalized with the boundary layer thickness are an order of magnitude
greater for all pressure-gradient cases when compared with those in the spanwise direction. On the other hand, the
length scales oriented in the spanwise direction remain approximately the same for the three cases. The results in Figure
16 also support these trends.

C. Wavenumber-frequency spectra
As discussed earlier, the wavenumber-frequency spectra of the velocity fluctuations (𝜙𝑢𝑢) decompose the velocity

signal into its spatial and temporal components. The importance of such a 2-dimensional spectrum has been well
established in the pressure measurements presented earlier in [9] and [10]. However, the generation of wall-pressure
fluctuations in a smooth surface can only be wholly explained by understanding the turbulence that induces these
pressure fluctuations. Analogous to Equation 1, the wavenumber-spectrum of the velocity fluctuations can be calculated
at a specific spanwise station within the planar field of view.

𝜙𝑢𝑢 (𝑘𝑥 , 𝑧, 𝜔) =
1

(2𝜋)2

∫ +𝑅∞

−𝑅∞

∫ +𝑇∞

−𝑇∞
𝑅𝑢𝑢 (Δ𝑥, 𝜏)𝑒−𝑖 (𝑘𝑥 .Δ𝑥−𝜔𝑡 ) 𝑑𝜏𝑑𝑥 (6)

For a direct comparison, the spanwise location is selected to be the same location where the low-wavenumber
pressure array was mounted, i.e., 𝑧 = 0 m (refer to the experimental setup described in [10]). The spanwise location is
kept consistent for the analysis and is shown as 𝑧0 in the results. It is important to note that although the pressure and
velocity measurements were taken at the same physical location in the test section, they were not taken synchronously.
Moreover, the sampling frequency and spatial resolution of the two measurement modes differed. For instance, the
wall-pressure fluctuations for the SPG case were sampled at 65.536 kHz, while the velocity signal was sampled at 3.75
kHz. The total sampling time also varied for the two measurements. While the pressure was sampled for 32 seconds,
the velocity data was only taken for 6.4 seconds for each data set. These parameters directly impact the wavenumber
and frequency range and resolution presented in the analysis. Since the velocity measurements were sampled with a
relatively higher spatial resolution than the pressure measurements, the velocity spectra could resolve a more extensive
range of wavenumber. The opposite is true for the frequency component (i.e., the pressure measurements were resolved
for a more extensive range of frequencies). For the pressure measurements, the wavenumber resolution is 6.5 rad/m,
while the frequency resolution is 50.3 rad/s. Similarly, for the velocity measurements, the wavenumber resolution is
11.0 rad/m, while the frequency resolution is 184.1 rad/s (SPG) and 152.2 rad/s (FPG and APG). Nevertheless, the plots
presented in Figures 20 - 22 compare the streamwise wavenumber-frequency spectra of the streamwise velocity (left)
with the surface pressure fluctuations (right). The data are presented for a normalized frequency range 𝜔𝛿∗/𝑈𝑒 = 4.5 for
easier comparison. Wavenumbers (presented on the horizontal axis) and frequencies (vertical axis) are normalized with
the boundary layer parameters, specifically the displacement thickness 𝛿∗, and the boundary layer edge velocity 𝑈𝑒.
This normalization is kept consistent throughout the discussion as well.

Figure 20 shows the streamwise wavenumber-frequency spectra of the pressure and velocity fluctuations for the
FPG case. The 𝑥−axis shows the wavenumber normalized on the displacement thickness, and the 𝑦−axis shows the
frequency normalized on displacement thickness and the edge velocity of the boundary layer. It is important to note
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(a) Wavenumber-frequency spectrum of streamwise velocity fluctuations (b) Wavenumber-frequency spectrum of wall-pressure fluctuations

Fig. 20 Comparison of the streamwise wavenumber-frequency spectrum of the velocity (left) and the pressure
(right) fluctuations for the FPG case at the midspan location.

that the two plots show different quantities. However, the degree of association is high, reflecting the characteristics of
large-scale structures in the velocity field to pressure fluctuations. Figure 20(a) shows the velocity spectrum at a specific
spanwise location in the field of view, whereas Figure 20(b) shows the near zero-spanwise separation or spanwise
averaged normalized pressure spectrum due to the finite spanwise separation between the two rows of sensors. The
spanwise location chosen for the velocity spectrum corresponds to the location of the array of sensors in the field of view.
Due to the limited range of normalized frequencies that were resolved by the measurements, the results are restricted to
𝜔𝛿∗/𝑈𝑒 = 2.6 for this specific case. This restriction can be attributed to the choice of normalization, as the value of 𝛿∗ is
relatively small. At the same time, the 𝑈𝑒 is accelerated for the FPG case compared to the other cases, limiting the
normalized frequency range.

Several essential features must be introduced here. The acoustic line (a slice of the acoustic cone as shown in Figure
1 taken at the 𝑧 = 0 plane) is shown as a steep dotted line. This line’s slope represents the sound speed calculated
for the specific experimental conditions. While this feature may appear relatively uneventful in the velocity spectra,
the pressure measurements show successful identification of the acoustic cone. In other words, the pressure events
occurring at or above the speed of sound are captured within the acoustic line successfully.

High spectral levels are observed in pressure and velocity spectra which are concentrated at an angle. This dominant
region is the convective ridge. Here it is essential to distinguish between the convective ridge shown in the pressure
spectra and that shown in the velocity spectra. To understand this region in the pressure spectrum, a solid, dashed line is
plotted at the convection velocity, the slope of which is assumed to be roughly 70% of the average edge velocity within
the field of view. A corresponding solid-dashed line (with the same slope i.e., 0.7𝑈𝑒) is drawn on the velocity spectrum.
Interestingly, the dominant region of the velocity spectrum is not distributed about this line. This is due to the fact
that measurements were acquired at a specific height 𝑦 from the wall, and therefore the plane of measurement only
contains velocity data present within that slice of the boundary layer. Figure 5(b) shows the wall-normal height of these
measurement locations. On the other hand, pressure being a global property, registers the effects of the entire boundary
layer, not just a single slice. A dotted-dashed line is superimposed to understand the dominant region, allegedly the
convective ridge, presented in the velocity spectrum. The slope of this line is the average velocity within the field of
view, normalized with the edge velocity. As evident from Figure 20, the flow convective ridge appears to have a slope
slightly lower than that of the pressure convective ridge. Another essential feature of the velocity spectra, highlighted by
the convective line, is the separation of scales. At low wavenumbers, the convective ridge’s slope closely matches that of
the dotted-dashed line. However, the trend deviates at higher wavenumbers, suggesting the presence of fast-moving
but relatively smaller-scale structures within the boundary layer. Nevertheless, the convective ridge remains the most
dominant feature of the wavenumber-frequency spectrum.

A similar comparison is performed for the SPG case in Figure 21. The normalization and the line styles presented in
Figure 21 are consistent with the previous figure. The trends observed in the convective ridge are also repeated here,
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(a) Wavenumber-frequency spectrum of streamwise velocity fluctuations (b) Wavenumber-frequency spectrum of wall-pressure fluctuations

Fig. 21 Comparison of the streamwise wavenumber-frequency spectrum of the velocity (left) and the pressure
(right) fluctuations for the SPG case at the midspan location.

including the deviation of the spectral levels towards increased frequency at high wavenumbers. At a fixed normalized
frequency of 1.9, the spectral levels drop by 6.7 dB by moving two normalized wavenumber units in the subconvective
direction (i.e., from 3 to 1). In contrast, the levels drop by 12.6 dB in the super-convective direction. Figure 22 shows
the same trends for the APG case.

(a) Wavenumber-frequency spectrum of streamwise velocity fluctuations (b) Wavenumber-frequency spectrum of wall-pressure fluctuations

Fig. 22 Comparison of the streamwise wavenumber-frequency spectrum of velocity and pressure fluctuations
for the APG case at the midspan location.

From the figures presented above, it can be seen that both the pressure and velocity spectra show an asymmetrical
distribution of spectral levels about the convective ridge, which is biased heavily to the subconvective wavenumbers. Out
of the three pressure gradient cases, the favorable pressure gradient cases show elevated levels at the subconvective regions
for both the pressure and velocity spectra. This suggests the presence of large-scale turbulence with high-frequency
content within the boundary layer. In other words, within the plane of measurement, the presence of large-scale
structures that move rapidly across the FOV is suggested by the biased subconvective region.

Another way of understanding these effects is by comparing the levels at a fixed wavenumber. Figure 23 shows the
normalized wavenumber-frequency spectra of the velocity and pressure fluctuations for a fixed normalized streamwise
wavenumber, 𝑘𝑥𝛿 = 0.4. This number is selected to allow a direct comparison with the results provided earlier in [10].
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Since a detailed discussion on the pressure spectra is presented in [10], the discussion here will focus more on the
velocity spectra.
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(a) Wavenumber-frequency spectrum of streamwise velocity fluctua-
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(b) Wavenumber-frequency spectrum of wall-pressure fluctuations
[10]

Fig. 23 Comparison of the streamwise wavenumber-frequency spectrum of the velocity (left) and the pressure
(right) fluctuations with the comprehensive Chase spectrum [6] at 𝑘𝑥𝛿∗ = 0.4.

In Figure 23, the horizontal axis shows normalized angular frequency, while the vertical axis represents the spectral
levels. Note that the pressure spectra are normalized with the wall-shear 𝜏𝑤 to make the units compatible. A black
dotted-dashed line is superimposed on the pressure spectra representing the Chase model at the experimental boundary
layer parameters. A collapse is observed for the pressure spectra at and above the convective frequencies (the frequency
at which the convective ridge occurs i.e, ≥ 𝜔𝛿∗/𝑈𝑒 = 0.28 for this case). This collapse lasts till a normalized frequency
of 2.2 for the pressure but only till 0.57 for the velocity fluctuations. The peaks of the velocity spectra for the three
pressure gradients also occur at different frequencies. The FPG case reaches a maximum of 13.6 dB at a normalized
frequency of 0.26, while the SPG case peaks at the same level but at a slightly lower frequency of 0.23. The APG case
shows a relatively higher peak of 14.1 dB at about 𝜔𝛿∗/𝑈𝑒 = 0.21.

Another important observation is the width of the convective ridge, which varies for the three pressure gradient cases
at the convective frequencies for both the velocity and pressure spectra. The poor resolution at lower frequencies for the
APG case in the pressure spectra makes it challenging to quantify the width. However, the velocity spectra remain
resolved at relatively lower frequencies as well. Clearly, for the APG case, the convective ridge appears to span a larger
range of frequencies, when compared with the FPG case, while the SPG case remains sandwiched between them. This
suggests that the APG case carries a wide range of frequency content around the convective ridge, a trend that can also
be predicted by the near-wall Reynolds stresses (Figure 14 and Table 2). Interestingly, the convective ridge lasts for a
much narrower range of frequencies for the pressure spectra compared to the velocity spectra.

This trend is flipped for the normalized frequencies higher than the convective frequency, at least for the velocity
fluctuations, where the FPG case shows clear dominance compared to the other two cases. This suggests the dominance
of high-frequency turbulence in the subconvective regime for the FPG case. At first glance, a similarity between the
location of the spectral peaks and their levels is observed. Admittedly, the comparison between the pressure and velocity
spectra at the selected wavenumber in Figure 23 creates the illusion that the parameters presented qualify for a direct
comparison. Therefore, it is vital to distinguish between these plots and their interpretation. The similarities in their
energy levels and the locations at which they peak must not be assumed to show a direct relation. That being said,
the relation between the low-wavenumber pressure fluctuations and their sources cannot be discounted and must be
investigated further.

D. Analysis with ResDMD
This section outlines how residual dynamic mode decomposition (ResDMD) [24, 25] can be applied to analyze

the experimental data measured using wall parallel PIV to deduce essential flow features, specifically for studying the
effects of different pressure gradients on wall-bounded turbulent flow. Using the notation from [24, 25], the data is
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viewed as snapshots x𝑛 ∈ Ω from a discrete dynamical system 𝐹 such that

x𝑛+1 = 𝐹 (x𝑛), 𝑛 ≥ 0. (7)

The subscript 𝑛 denotes a time step. The Koopman operator K acts on an ’observable’ 𝑔, which is a function on the
statespace Ω. For example, one can consider the data points as all the velocity-related information at some given
timestep 𝑡𝑛. The observable 𝑔 can also be considered a more specific subset of this data. For this study, the streamwise
velocity of turbulence is of particular interest and hence can take 𝑔 as the streamwise velocity at a timestep 𝑡𝑛. One can
now define the Koopman operator K as the operator acting on 𝑔 satisfying

[K𝑔] (x𝑛) = 𝑔 (𝐹 (x𝑛)) = 𝑔(x𝑛+1). (8)

A particular advantage is that K will always be linear, regardless of the properties of the governing system being studied
- see the review [31]. Thus, the time evolution of the system can be understood if an approximation for K and its
spectral properties can be obtained. The catch is that K acts on an infinite-dimensional function space, meaning that
computing its spectral properties can be a considerable challenge [23]. Challenges include spurious (unphysical) modes
and dealing with continuous spectra, which both occur regularly in turbulent flows. ResDMD [24] overcomes such
challenges through the data-driven computation of residuals associated with the full infinite-dimensional Koopman
operator. ResDMD computes spectra and pseudospectra of general Koopman operators with error control and computes
smoothed approximations of spectral measures (including continuous spectra) with explicit high-order convergence
theorems. Several applications in various fluid dynamic situations at varying Reynolds numbers from both numerical
and experimental data are given in [25]. Advantages of ResDMD include: the ability to resolve nonlinear and transient
modes verifiably; the verification of learned choices of observables; the verification of Koopman mode decompositions;
and spectral calculations with reduced broadening effects. The spectral properties of K are uncovered by the ResDMD
algorithm, preserving nonlinearities in the underlying data thanks to using a nonlinear dictionary and providing residuals
for associated modes. For this study, an initial value of 𝑁 = 2000 basis functions was used for each pressure gradient
case from 𝑀1 = 2000 snapshots of the first experiment. Then having built up these basis functions (‘dictionary’ for the
dataset) using kernelized DMD, the algorithm is applied to 𝑀2 = 24000 snapshots from the second experiment. Figure
24 shows the eigenvalues for each case against a the unit circle.

The vertical axis in Figure 24 represents the real component of the eigenvalues, while the vertical axis represent
their imaginary counterparts. Each eigenvalue is shaded with a different color based on their associated residuals. The
eigenvalues represent the growth or decay of each mode. A mode far from the unit circle usually represents transient
behavior. Conversely, modes near the edge of the unit circle reflect the system’s long-lasting behavior. With the
decomposition performed and a preliminary analysis of the eigenvalues and residues for each case’s modes, a criteria for
observing coherent structures in specific modes can be specified. To do so, one must take into account several properties
that a mode may have:

• Reliable modes with small residual, i.e., modes with residuals smaller than 0.2. Picking modes with small
residuals, as opposed to picking high energy modes, can lead to much more efficient and accurate representations
of the system (see Section 8 of [25]).

• Significant proportions of the modal energy of the remaining modes. This modal energy is taken as the square of
the normalized projection of the Koopman matrix onto the observable.

• Significant relative energy of an individual mode. This is defined as the percentage of the total modal energy
carried amongst the 200 modes with the smallest residual.

To find such modes, a scatter diagram is shown for each case that compares the residuals and relative energies of the
remaining modes after filtering.

In Figure 25 we uncover our first use of ResDMD to investigate the effects of the different pressure gradients. As the
pressure gradient increases, the high energy modes shift towards the left region of low residuals. The modes carrying
more energy tend to have structures that move faster than the mean velocity. Furthermore, modes with lower residuals
tend to have more coherent structures since they are responsible for long-lasting behavior. This suggests that the larger
structures in the adverse pressure gradient case may travel in a relatively more unpredictable manner. A more uniform
energy distribution across modes with an even larger residual range in the favorable pressure gradient case. A deeper
analysis of the key modes, selected based on their modal energy, demonstrates that these modes move comparatively
faster relative to their respective mean velocities, when compared with the other modes. When compared to Figures 20
and 22, a much higher magnitude is observed for the favorable pressure gradient than the adverse pressure gradient.

The mode with the highest energy percentage from each case in Figure 25 is chosen and interesting features are
observed. These modes are plotted in Figure 26. The superstructures are observed in each figure, all moving faster
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(a) Eigenvalues and associated residuals for the FPG case. (b) Eigenvalues and associated residuals for the SPG case.

(c) Eigenvalues and associated residuals for the APG case.

Fig. 24 Modal eigenvalues and associated residuals against the unit circle.

relative to the mean velocity. In each case, we see that the eigenvalues are reasonably close to the unit circle, representing
long-lasting events in our flow. With more refinement of the methods used to pick modes, we may be able to highlight
even more important features of the underlying temporal dynamics observed in each case, so that we may compare and
contrast them.

Having demonstrated the unique capability of ResDMD to pick out the desired features of the flow field, a further
validation of the algorithm is presented by comparing the spectral measure (see section 4 of [25]) calculated by the
algorithm, to the power-spectrum of the streamwise velocity i.e., 𝑆𝑢𝑢 (𝜔). The power spectrum has been normalized
with the edge velocity and the boundary layer thickness for a direct comparison. The spectral measure 𝑣𝑔,𝑁𝑎𝑐

from
equation (4.13) of [25] can be thought of as a discretized approximation of the power spectrum 𝑆𝑢𝑢 that reduces the
issue of broadening. Figure 27 shows agreement of the two quantities in the moderate frequency range, capturing the
−5/3 decay for all pressure gradient cases. However, at the lower-frequencies, clear broadening effects are visible for the
spectra calculated using the velocity measurements, as they get suppressed in this region, whereas this is not observed
for the spectra calculated using the ResDMD analysis. A discussion on the reduced broadening effects of such results
has previously been covered in [25].

In the future, a minimal data approach is planned to replicate other important statistical quantities, such as the
wavenumber-frequency spectrum of the velocity and pressure fluctuations [32], while further investigating the importance
of the transient high-energy modes. This may help to further our understanding of the fast-moving superstructures
and the underlying physics, and aid in creating prediction models for their variation with varying pressure gradients.
However, the results presented here validate the algorithm and show promise for future applications of this novel modal
decomposition technique.
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(a) Relative Squared Residual vs Relative Energy for the FPG case.

(b) Relative Squared Residual vs Relative Energy for the SPG case.

(c) Relative Squared Residual vs Relative Energy for the APG case.

Fig. 25 Scatter plots for each case of the 100 modes with the lowest residuals against their modal energy as a
percentage of the total energy held by all these modes.

V. Conclusion
The near-wall large-scale coherent structures were targeted for this study to unveil the sources of low-wavenumber

surface pressure fluctuations over a smooth wall. Wall-parallel planar (2D2C) time-resolved PIV measurements were
taken at a plane that grazed the smooth wall at 𝑅𝑒𝜏 ≈ 3500. Three different mean-pressure gradient cases were compared
and studied at the same freestream Reynolds number, providing varying boundary layer characteristics and streamwise
and spanwise Reynolds stresses. The streamwise Reynolds stresses were found to be slightly lower than predicted by the
wall-normal PIV data acquired in the same flow conditions earlier. This could be attributed to the wall-grazing height of
the measurement plane and the averaging nature within the thickness of the laser sheet. The spanwise Reynolds stresses
showed the effects of significant filtering in the spanwise direction, causing it to attenuate to only about a third of the
streamwise Reynolds stresses.

Results showed the presence of very large streamwise-oriented coherent structures that were on the order of 1-20𝛿.
Large-scale high-speed structures were separated by even larger slow-moving structures in the streamwise direction as
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(a) Streamwise modal velocity contours for the FPG case. Specific mode contains 3.57% of the total filtered modal
energy, has eigenvalue 𝜆 = 0.9571 − 0.0669𝑖 and residual 𝜏𝑁 (𝜆) = 0.0796.

(b) Streamwise velocity contours for the SPG case. Specific mode contains 5.14% of the total filtered modal energy, has
eigenvalue 𝜆 = 0.9714 + 0.00534𝑖 and residual 𝜏𝑁 (𝜆) = 0.0607.

(c) Streamwise velocity contours for the APG case. Specific mode contains 6.69% of the total filtered modal energy, has
eigenvalue 𝜆 = 0.9785 + 0.0096𝑖 and residual 𝜏𝑁 (𝜆) = 0.024.

Fig. 26 Modal Mean-subtracted streamwise velocity normalized with the edge velocity for each pressure
gradient case (chosen based on energy content and residuals).

they meander downstream with different bulk velocities. The physical characteristics of these structures, such as their
streamwise length scales, time scales, separation widths, were found to be pressure-gradient dependent. For instance, the
anchored spatial correlations showed an increase in the overall extent of the spatial correlation coefficient as the pressure
gradient varied from favorable to adverse. Specifically, when 𝛽 increased from -0.292 to +0.409, the extent of the
correlated region (𝜌𝑢𝑢 = 0.1) increased by 25.9% in the streamwise and 61.9% in the spanwise direction. Similarly, the
spanwise separation of the negatively correlated bands increased by 57% for the same variation in the pressure gradient.
However, upon normalizing these characteristics using the boundary layer’s outer parameters (𝑈𝑒, 𝛿, 𝛿∗), a neat collapse
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Fig. 27 Comparisons of 𝑆𝑢𝑢 (𝜔) for experimental data (solid lines) and ResDMD approximations (dashed lines)
for every pressure gradient case.

was exhibited. This suggested the dependence of these spatial statistics on the outer boundary layer parameters. The
comparison of the length scales in the streamwise and the spanwise direction also confirmed the strong anisotropy of the
flow, biased towards the streamwise direction. The streamwise integral length-scales of the streamwise velocity were
found to be about 65-85% of the boundary layer’s thickness, whereas the spanwise length-scales were about 6-8%.

The wavenumber-frequency spectra between the wall-pressure and velocity fluctuations for the three pressure-
gradient cases were also compared. The asymmetrical distribution of spectral level about the convective ridge was
observed to be biased towards the subconvective region. The subconvective region was significantly dominant for the
FPG case compared to the other cases. These elevated levels suggested the importance and dominant contributions
of the low-wavenumber turbulence. The corresponding pressure spectra indicated similar behavior as the velocity
spectra, hinting towards a stronger connection between the large-scale coherence within turbulent boundary layers and
low-wavenumber wall-pressure fluctuations.

Residual Dynamic Mode Decomposition (ResDMD) was utilized to compare and contrast the three pressure gradient
cases. First, energy distribution was investigated and residuals were assigned to the corresponding modes within the
flow. ResDMD identified a key trend regarding the distribution of energy across the key modes (filtered for low residuals
and hence high reliability). It was identified that more energetic modes are present within the lowest residual modes for
the APG case, suggesting more long-lasting modes contain structures moving with a higher velocity than the mean.
At the same time, the converse is true for the FPG case. The ability of the ResDMD algorithm to pick out the flow
structures based on their length and time-scales was demonstrated. This was done for the three pressure gradients under
consideration. Evidence of increased spanwise meandering for the APG case, as compared to the FPG case was provided
and discussed. It was also shown that by selecting the appropriate ResDMD modes, the fast moving (relative to mean)
superstructures could be identified, which can be critical to develop further understanding of the subconvective region.

In summary, results were presented to quantify the turbulence characteristics of the large-scale coherence in turbulent
boundary layers with the motivation to isolate the low-wavenumber sources of the wall-pressure fluctuations. Although
a strong correlation is presented by comparing the pressure spectra with the velocity spectra in the subconvective
domain, identifying the exact turbulent events still remains a challenge. It is important to remember that correlation
does not necessarily suggest causation and the data must be interpreted carefully. In order to have the liberty of directly
relating the turbulent events in a boundary layer, such as the convection of a large-scale coherent structure, the velocity
measurements must be taken synchronously with the pressure measurements. While these results warrant further
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investigation, they still confirm several essential features of near-wall turbulent boundary layers, which can provide a
basis for the studies to follow.
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