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Abstract

Dynamic Mode Decomposition (DMD) is a popular data-driven analysis technique used to
decompose complex, nonlinear systems into a set of modes, revealing underlying patterns and
dynamics through spectral analysis. This review presents a comprehensive and pedagogical
examination of DMD, emphasizing the role of Koopman operators in transforming complex
nonlinear dynamics into a linear framework. A distinctive feature of this review is its focus
on the relationship between DMD and the spectral properties of Koopman operators, with
particular emphasis on the theory and practice of DMD algorithms for spectral computations.
We explore the diverse “multiverse” of DMD methods, categorized into three main areas: lin-
ear regression-based methods, Galerkin approximations, and structure-preserving techniques.
Each category is studied for its unique contributions and challenges, providing a detailed
overview of significant algorithms and their applications as outlined in Table 1. We include
a MATLAB package with examples and applications to enhance the practical understanding of
these methods. This review serves as both a practical guide and a theoretical reference for var-
ious DMD methods, accessible to both experts and newcomers, and enabling readers to delve
into their areas of interest in the expansive field of DMD.

Keywords – dynamical systems, Koopman operator, data-driven discovery, dynamic mode decom-
position, spectral theory, spectral computations
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1 Introduction

Dynamical systems provide a powerful framework for modeling the evolution of various scien-
tific and engineering systems over time. They are crucial for understanding complex phenomena
ranging from weather patterns and population growth to stock market fluctuations. We consider
discrete-time dynamical systems represented as:

xn+1 = F(xn), n = 0, 1, 2, . . . , (1.1)

where x ∈ Ω denotes the state of the system, and Ω ⊆ Rd is the statespace. The function F : Ω → Ω
governs the system’s evolution. The classical approach to analyzing such systems, tracing back
over a century to the seminal work of Poincaré (1899), is geometric. It involves local analysis of
fixed points, periodic orbits, and stable or unstable manifolds. While Poincaré’s framework has
significantly advanced our understanding of dynamical systems, it faces two main challenges in
modern applications:

• Global understanding of nonlinear dynamics: Unlike linear systems, there is no compre-
hensive mathematical framework for nonlinear systems. The principle of linear superpo-
sition is not applicable in this context. Local models can predict long-term dynamics near
fixed points and attracting manifolds but have limited predictive power for other initial
conditions. Consequently, the global understanding of nonlinear dynamics in state space is
predominantly qualitative.

• Incomplete knowledge of evolution: Many systems cannot be analytically described due
to their complexity or our incomplete understanding. Typically, our knowledge is limited to
discrete-time snapshots of the system, i.e., a finite dataset

{
x(m),y(m)

}M

m=1
such that y(m) = F(x(m)), m = 1, . . . ,M.

We concisely write this data in the form of snapshot matrices

X =
(
x(1) x(2) · · · x(M)

)
∈ Rd×M , Y =

(
y(1) y(2) · · · y(M)

)
∈ Rd×M . (1.2)

Advances in measurement technologies have significantly enhanced our ability to collect
detailed multimodal and multi-fidelity snapshot data. Data could be collected from one
long trajectory or multiple shorter trajectories. It can come from experimental observations
or numerical simulations. The question becomes how to use this data to meaningfully study
the dynamical system in (1.1).

The advent of big data (Hey et al. 2009), coupled with strides in modern statistical learning (Hastie
et al. 2009) and machine learning (Mohri et al. 2018), has heralded a new era of data-driven algo-
rithms to address these issues. This review will focus on one of the most prominent of these
algorithms, Dynamic Mode Decomposition (DMD), closely connected with Koopman operators.

Koopman Operators — In 1931, Koopman introduced his operator-theoretic approach to dy-
namical systems, initially to describe Hamiltonian systems (Koopman 1931). This theory was
further expanded by Koopman & von Neumann (1932) to include systems with continuous spec-
tra. Koopman operators offer a powerful alternative to the classical geometric view of dynamical
systems by addressing the fundamental issue of nonlinearity. We lift a nonlinear system (1.1) into
an infinite-dimensional space of observable functions g : Ω → C using a Koopman operator K:

[Kg](x) = g(F(x)), so that [Kg](xn) = g(xn+1).
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Through this approach, the evolution dynamics become linear, enabling the use of generic solu-
tion techniques based on spectral decompositions. Initially, the primary application of Koopman
operators was in ergodic theory (Eisner et al. 2015), notably playing a pivotal role in proving the
ergodic theorem by von Neumann (Neumann 1932) and Birkhoff (Birkhoff 1931, Birkhoff & Koop-
man 1932). More recently, they have been extensively used in data-driven methods for studying
dynamical systems.

Dynamic Mode Decomposition — A significant objective of modern Koopman operator theory
is to identify a coordinate transformation under which even strongly nonlinear dynamics may
be approximated by a linear system. This coordinate system is related to the spectrum of the
Koopman operator. DMD was initially developed by Schmid (2009, 2010) (see also (Schmid &
Sesterhenn 2008)) in the context of fluid dynamics. Mezić (2005) introduced the Koopman mode
decomposition, providing a theoretical basis for Rowley et al. (2009) to connect DMD with Koop-
man operators. This connection validated DMD’s application in nonlinear systems and offered a
powerful yet straightforward, data-driven approach for approximating Koopman operators. The
fusion of contemporary Koopman theory with an efficient numerical algorithm has led to signifi-
cant advancements and a surge in research. DMD is now the central algorithm for computational
approximations of Koopman operators with applications in various fields beyond fluid mechan-
ics, such as neuroscience, disease modeling, robotics, video processing, power grids, financial
markets, and plasma physics. The simplicity and effectiveness of DMD have led to numerous
innovations, giving rise to a diverse array of DMD methods, playfully described here as a “multi-
verse”, aimed at addressing specific challenges.

This Review — We provide a comprehensive tour of this “multiverse” of DMD methods. Our
primary focus is on the interplay between DMD, the spectral properties of Koopman operators,
and their numerical computations. At the time of writing, these methods can be broadly catego-
rized into three main areas:

• DMD methods based on linear regression;

• DMD methods utilizing Galerkin approximations;

• DMD methods aimed at preserving structures or symmetries of (1.1).

These distinctions are not rigid, and some methods encompass multiple flavors. This review nav-
igates these key areas and variants, summarized in Table 1, where we also highlight the unique
challenges each algorithm addresses (see also Section 2.4). We provide detailed summaries and
examples of these algorithms in action. Accompanying this review is a MATLAB package:

https://github.com/MColbrook/DMD-Multiverse

featuring user-friendly implementations and examples from the paper, most of which are new. We
aim for readers to utilize this paper as a practical manual for various DMD methods. Although
extensive, the review is structured modularly, enabling readers to selectively engage with DMD
versions and topics that interest them most.

Differentiating itself from prior reviews, this review specifically focuses on the theory and
practice of DMD algorithms for computing spectral properties of Koopman operators, comple-
menting other reviews on the subject. Mezić (2013) and the more recent review of Schmid (2022)
(see also (Taira et al. 2017, 2020)) focus on developments associated with applications in fluid
dynamics. While the initial applications of Koopman and DMD techniques were in fluid prob-
lems, their utility has been demonstrated in a broader range of fields. We also briefly explore the
applications of DMD in control theory, and readers seeking further exploration in this area are
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encouraged to read Otto & Rowley (2021). An excellent early review of “Applied Koopmanism”
is presented by Budišić et al. (2012). More recently, Brunton et al. (2022) have provided a broad
overview of Koopman operators and their applications, with connections to other fields.

This review is organized into several sections. In Section 2, we introduce the basic DMD algo-
rithm, offering a concise introduction to Koopman operators and their spectral properties, before
delving into the fundamental DMD algorithm and its two key interpretations: regression and
projection. We discuss three canonical examples, followed by an examination of the goals and
challenges of DMD. Section 3 focuses on variants from the regression viewpoint, including noise
reduction, compression, randomized linear algebra, multiscale dynamics, and control. The con-
nection with Koopman operators is further explored in Section 4, where we discuss nonlinear ob-
servables, time-delay embedding methods, and methods for controlling the infinite-dimensional
projection error of DMD. In Section 5, we review recent methods that preserve the structures of dy-
namical systems. These methods often lead to greater noise resistance, improved generalization,
and reduced data demands for training. We conclude in Section 6 by discussing further connec-
tions and open problems. I hope the reader enjoys this tour of the DMD multiverse as much as I
have enjoyed writing it!

Due to the sheer breadth and thousands of papers written on DMD, it is impossible for this
review to cover every version of DMD in great detail. Significant DMD algorithms that are not
discussed in their own sections are still discussed in some detail. If the reader searches this paper,
they will find dozens of DMD algorithms. I have included all significant references I am aware of,
but many others may not have been included. I apologize for that in advance and encourage all
readers to inform the author about results that deserve more discussion.

2 The Basics of DMD

To understand the DMD “multiverse”, we must first study the basic DMD algorithm. We begin
with Koopman operator theory, the theoretical underpinning of DMD, before moving on to the
fundamental DMD algorithm and two important viewpoints. We then provide three canonical
examples and discuss the goals and challenges of DMD.

2.1 The underlying theory: Koopman operators and spectra

In this section, we recall the definition of Koopman operators and equip the reader with a crash
course on their relevant spectral properties. At its core, DMD is an algorithm that uses the snap-
shot data in (1.2) to approximate the spectral properties of Koopman operators.

2.1.1 What is a Koopman operator?

To define a Koopman operator, we begin with a space F of functions g : Ω → C, where Ω is the
state space of our dynamical system. The functions g, referred to as observables, serve as tools for
indirectly measuring the state of the system described in (1.1). Specifically, g(xn) indirectly mea-
sures the state xn. Koopman operators enable us to capture the time evolution of these observables
through a linear operator framework. For a suitable domain D(K) ⊂ F , we define the Koopman
operator via the composition formula:

[Kg](x) = [g ◦ F](x) = g(F(x)), g ∈ D(K). (2.1)

In this context, [Kg](xn) = g(F(xn)) = g(xn+1) represents the measurement of the state one time
step ahead of g(xn). This process effectively captures the dynamic progression of the system. The
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Linear

Nonlinear Finite-dimensional

Infinite-Dimensional

Figure 1: Summary of the idea of Koopman operators. By lifting to a space of observables, we
trade a nonlinear finite-dimensional system for a linear infinite-dimensional system.

overarching concept is summarized in Fig. 1.
The key property of the Koopman operator K is its linearity. This linearity holds irrespective of

whether the system’s dynamics, as represented in (1.1), are linear or nonlinear. Consequently, the
spectral properties of K become a powerful tool in analyzing the dynamical system’s behavior. To
study spectra, we assume that F is a Banach space.1 For the spectrum of K to be meaningful and
nontrivial, we assume that its domain, D(K), is dense in F and that K itself is a closed operator.2

If these conditions are not met, the spectrum would encompass the entirety of C. It is crucial to
recognize that the Koopman operator is not uniquely defined by the dynamical system in (1.1);
rather, it is fundamentally dependent on the choice of the space of observables F . In this review,
we focus on cases where F is defined as the following Hilbert space:

F = L2(Ω, ω) with inner product ⟨g1, g2⟩ =
∫

Ω
g1(x)g2(x) dω(x) and norm ∥g∥ =

√
⟨g, g⟩,

for some positive measure ω.3 In going from a pointwise definition in (2.1) to the space L2(Ω, ω),
a little care is needed since L2(Ω, ω) consists of equivalence classes of functions. We assume that
the map F is nonsingular with respect to ω, meaning that

ω(E) = 0 implies that ω({x : F(x) ∈ E}) = 0.

This ensures that the Koopman operator is well-defined since g1(x) = g2(x) for ω-almost every x
implies that g1(F(x)) = g2(F(x)) for ω-almost every x. The above Hilbert space setting is standard

1A Banach space is a normed vector space that is complete, i.e., every Cauchy sequence converges. Thus, a Banach
space has no ‘holes’ in it. We have deliberately kept the background functional analysis to a minimum in this review.

2An operator being ’closed’ means that its graph {(g,Kg) : g ∈ D(K)} is a closed subset within the product space F×F .
3We do not assume that this measure is invariant. For Hamiltonian systems, a common choice of ω is the standard
Lebesgue measure, for which the Koopman operator is unitary on L2(Ω, ω). For other systems, we can select ω ac-
cording to the region where we wish to study the dynamics, such as a Gaussian measure. In many applications, ω
corresponds to an unknown ergodic measure on an attractor.
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in most of the Koopman literature for two reasons. First, it is a reasonable assumption for many
dynamical systems, particularly if we study the dynamics on an attractor. Second, working with
operators in a Hilbert space is much easier computationally than in a Banach space. For Koopman
operators on more general spaces, see (Mezić 2020). Practical algorithms for Koopman operators
on more general Banach spaces remain a largely open problem (see Section 6.4).

Since K acts on an infinite-dimensional function space, we have exchanged the nonlinearity in
(1.1) for an infinite-dimensional linear system. This means that the spectral properties of K can
be significantly more complex than those of a finite matrix, making them more challenging to
compute. While this might seem disheartening, as we will explore in Section 4, methodologies
exist that enable the analysis of infinite-dimensional spectral properties through a series of finite-
dimensional approximations.

2.1.2 Crash course on spectral properties of Koopman operators

We will now review the relevant spectral properties of K. Readers primarily interested in apply-
ing DMD algorithms will still find the dynamical interpretations of these properties insightful.
The sole assumption made throughout this paper is that K is a closed and densely defined op-
erator. Specifically, unless stated otherwise, we do not presuppose that K possesses a nontrivial4

finite-dimensional invariant subspace, nor do we assume it has an eigenvector basis. These two
assumptions are often implicitly (and sometimes wrongly) assumed in DMD papers and can lead
to confusion if care is not taken.

Koopman spectra

If g ∈ L2(Ω, ω) is an eigenfunction of K with eigenvalue λ, then g exhibits perfect coherence5 with

g(xn) = [Kng](x0) = λng(x0) ∀n ∈ N. (2.2)

The oscillation and decay/growth of the observable g are dictated by the complex argument and
absolute value of the eigenvalue λ, respectively. In infinite dimensions, the appropriate general-
ization of the set of eigenvalues of K is the spectrum, denoted by Sp(K), and defined as

Sp(K) =
{
z ∈ C : (K − zI)−1 does not exist as a bounded operator

}
⊂ C.

Here, I denotes the identity operator. The spectrum Sp(K) includes the set of eigenvalues of K,
but in general, Sp(K) contains points that are not eigenvalues. This is because there are more
ways for (K− zI)−1 to not exist in infinite dimensions than in finite dimensions. For example, we
may have continuous spectra. The standard Lorenz system on the Lorenz attractor gives rise to a
Koopman operator that has no nontrivial eigenvalues, yet the spectrum is the whole unit circle!

In general, we cannot numerically approximate an eigenfunction perfectly. Moreover, the op-
erator K may not have any nontrivial eigenfunctions, for instance, if the system is weakly mixing.
Instead, the so-called approximate point spectrum is the following subset of Sp(K):

Spap(K) =
{
λ ∈ C : ∃{gn}n∈N ⊂ L2(Ω, ω) such that ∥gn∥ = 1, lim

n→∞
∥(K − λI)gn∥ = 0

}
⊂ C.

4If the measure ω is finite, then the constant function g(x) = 1 is a trivial eigenfunction with eigenvalue 1. It is deemed
trivial because the dynamics of a constant observable lack informative content.

5In the setting of dynamical systems, coherent sets or structures are subsets of the phase space where elements (e.g.,
particles, agents, etc.) exhibit similar behavior over some time interval. This behavior remains relatively consistent
despite potential perturbations or the chaotic nature of the system.
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An observable g with ∥g∥ = 1 and ∥(K − λI)g∥ ≤ ϵ for λ ∈ C is known as ϵ-pseudoeigenfunction.
Such observables are important for the dynamical system (1.1) since

∥Kng − λng∥ ≲ O(nϵ) ∀n ∈ N.

In other words, λ describes an approximate coherent oscillation and decay/growth of the ob-
servable g with time. The pseudoeigenfunctions and Spap(K) encode information about the un-
derlying dynamical system (Mezić 2021). For example, the level sets of certain eigenfunctions
determine the invariant manifolds (Mezić 2015) and isostables (Mauroy et al. 2013), and the global
stability of equilibria (Mauroy & Mezić 2016) and ergodic partitions (Budišić et al. 2012, Mezić &
Wiggins 1999) can be characterized by pseudoeigenfunctions and Spap(K).

Koopman pseudospectra

Approximate point spectra and pseudoeigenfunctions are related to the notion of pseudospectra
(Trefethen & Embree 2005). For a finite matrix A ∈ Cn×n and ϵ > 0, the ϵ-pseudospectrum of A is
the set6

Spϵ(A) =
{
λ ∈ C : ∥(A− λI)−1∥ ≥ 1/ϵ

}
=

⋃

B∈Cn×n,∥B∥≤ϵ

Sp(A+B).

The ϵ-pseudospectra of A are regions in the complex plane enclosing the eigenvalues of A. These
regions tell us how far an ϵ-sized perturbation can perturb an eigenvalue. Pseudospectra of Koop-
man operators must be defined with some care because K may be an unbounded operator and
hence the resolvent norm ∥(K − λI)−1∥ can be constant on open subsets of C\Sp(K) (Shargorod-
sky 2008). We define the ϵ-pseudospectrum of K as (Roch & Silbermann 1996, Prop. 4.15):7

Spϵ(K) = Cl
(
{λ ∈ C : ∥(K − λI)−1∥ > 1/ϵ}

)
= Cl


 ⋃

∥B∥<ϵ

Sp(K + B)


 , (2.3)

where Cl denotes the closure of a set. To see the connection with Spap(K), note that if ∥(K−λI)g∥ ≤
ϵ for an observable g with ∥g∥ = 1, then ∥(K − λI)−1∥ ≥ 1/ϵ. We care about pseudospectra for
several reasons, but two stand out as the most important:

• Pseudospectra allow us to determine which regions of computed spectra are accurate and
trustworthy. This could be in terms of the numerical stability, but also pseudospectra aid
in detecting so-called spectral pollution (see Figs. 7 and 9). These are spurious eigenvalues
arising from discretization that are unrelated to the underlying Koopman operator. The term
spectral pollution refers to the accumulation of these spurious eigenvalues at points outside
the spectrum of K as the discretization size increases (Lewin & Séré 2010). This occurs even
when K is a normal operator (see Fig. 8). It is essential to realize that spectral pollution leads
to spurious modes that are not linked to stability issues but are a consequence of discretizing
the infinite-dimensional operator K to a finite matrix.

• If the Koopman operator is nonnormal, the system’s transient behavior can differ signifi-
cantly from the asymptotic behavior captured by Sp(K). Pseudospectra can be employed to
detect and quantify transients not represented by the spectrum (Trefethen et al. 1993)(Tre-
fethen & Embree 2005, Section IV).

6Some authors use a strict inequality in the definition of ϵ-pseudospectra. We prefer the given definition since then the
pseudospectrum is a closed subset of C.

7While (Roch & Silbermann 1996, Prop. 4.15) considers bounded operators, it can be adjusted to cover unbounded
operators (Trefethen & Embree 2005, Thm. 4.3).
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Pseudospectra also provide a means of computing spectra since limϵ↓0 Spϵ(K) = Sp(K). This
convergence occurs in the so-called Attouch–Wets metric space (Beer 1993), which roughly means
that we obtain uniform convergence on any compact region of C. This observation goes beyond
Koopman operators and has been behind some recent breakthroughs in the computation of spec-
tra in infinite dimensions (Ben-Artzi et al. 2020, Colbrook 2020, 2022, Colbrook & Hansen 2022,
Colbrook et al. 2019).

Koopman mode decompositions and spectral theorems beyond eigenvalues

One of the most useful features of Koopman operators is the Koopman Mode Decomposition (KMD)
(Mezić 2005). The KMD expresses the state x or an observable g(x) as a linear combination of
dominant coherent structures. It can be considered a diagonalization of the Koopman operator.
As a result, the KMD is invaluable for tasks such as dimensionality and model reduction. It gen-
eralizes the space-time separation of variables typically achieved through the Fourier transform
or singular value decomposition (SVD). It is crucial to realize that an exact KMD is rigorously
justified only if K possesses some form of spectral theorem, which extends the concept of diag-
onalization to infinite dimensions. Nevertheless, obtaining an approximate KMD is still possible
even without a spectral theorem.

For example, suppose that the system (1.1) is measure-preserving with respect to the positive
measure ω. This means that ω(E) = ω({x : F(x) ∈ E}) for any measurable set E ⊂ Ω. In other
words, the dynamical system preserves a volume. Measure-preserving systems encompass many
systems of interest such as Hamiltonian flows (Arnold 1989), geodesic flows (Dubrovin et al. 1984),
Bernoulli schemes (Shields 1973), physical systems in equilibrium (Hill 1986), and ergodic systems
(Walters 2000). Furthermore, many dynamical systems either admit invariant measures (Kryloff
& Bogoliouboff 1937) or exhibit measure-preserving post-transient behavior (Mezić 2005). In fact,
if Ω is a compact metric space and F is continuous, then there is an invariant measure (Mañé
1987, Prop. 8.1).8 For a measure-preserving system, the Koopman operator K is an isometry, i.e.,
∥Kg∥ = ∥g∥ for all observables g ∈ D(K) = L2(Ω, ω). For simplicity, we further assume that K is
unitary, implying that it is normal (it commutes with its adjoint).9

Under these conditions, the spectral theorem (Conway 2007, Thm. X.4.11) allows us to diag-
onalize the Koopman operator K. There is a projection-valued measure E supported on Sp(K). For
readers unfamiliar with the spectral theorem, Halmos (1963) provides an excellent and readable
introduction. In our example, K is unitary, which implies that Sp(K) lies within the unit circle
T. The measure E associates an orthogonal projector with each Borel measurable subset of T.
For such a subset S ⊂ T, E(S) is a projection onto the spectral elements of K inside S. For any
observable g ∈ L2(Ω, ω),

g =

(∫

T
dE(λ)

)
g and Kg =

(∫

T
λ dE(λ)

)
g.

The essence of this formula is the decomposition of g according to the spectral content of K. The
projection-valued measure E simultaneously decomposes the space L2(Ω, ω) and diagonalizes the
Koopman operator. For example, we have

g(xn) = [Kng](x0) =

[(∫

T
λn dE(λ)

)
g

]
(x0). (2.4)

8Of course, whether or not this is useful or whether our chosen ω is invariant is another matter.
9A Koopman operator that is an isometry need not be unitary, e.g., the Koopman operator associated with the tent
map. However, an isometry can always be extended to a unitary operator, and the spectral measures associated with
forward-time dynamics are independent of the chosen extension (Colbrook 2023).
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This directly extends (2.2). The spectral theorem can be perceived as offering a custom Fourier-
type transform specifically for the operator K that extracts coherent features. Of particular interest
are scalar-valued spectral measures. Given a normalized observable g ∈ L2(Ω, ω) with ∥g∥ = 1, the
scalar-valued spectral measure of K with respect to g is a probability measure defined as

µg(S) = ⟨E(S)g, g⟩.

These measures can be further refined using Lebesgue’s decomposition into a pure point part,
supported on the eigenvalues of K, and a continuous part. The continuous part can further be
decomposed into an absolutely continuous part with a density function and a singular continuous
part. The moments of the measure µg are the correlations

⟨Kng, g⟩ =
∫

T
λn dµg(λ), n ∈ Z.

For example, if our system corresponds to the dynamics on an attractor, these statistical properties
allow comparison of complex dynamics (Mezić & Banaszuk 2004). More generally, the spectral
measure of K with respect to g ∈ L2(Ω, ω) is a signature for the forward-time dynamics of (1.1).

Going one step further, E leads to a decomposition of L2(Ω, ω) into parts associated with
quasiperiodic evolution and weak-mixing dynamics. Namely, we have the following orthogonal
decomposition into two K-invariant subspaces (Halmos 2017)

L2(Ω, ω) = Hpp ⊕Hc.

Here, the subspace Hpp consists of the closure of the linear span of eigenvectors and admits an
orthonormal basis of eigenvectors {ϕj} of K with eigenvalues {λj}. This means that we can write

Kng =
∑

j

λnj ⟨g, ϕj⟩ϕj ∀g ∈ Hpp, n ∈ N. (2.5)

The spectrum of K ↾Hpp need not be a discrete subset of T. For example, an ergodic rotation on
the circle has eigenvalues that densely fill T. In contrast to (2.5), observables in the continuous
part Hc exhibit a decay of correlations that is typical of chaotic systems. Namely, for any ϵ > 0
(Katznelson 2004, p.45),

lim
n→∞

1

n

n∑

j=1

∣∣⟨Kjg, f⟩
∣∣ϵ = 0 ∀g ∈ Hc, f ∈ L2(Ω, ω).

This result says that |⟨Kjg, f⟩| converges to zero in density, that is, for any δ > 0, the proportion in
all sufficiently large intervals of integers j such that

∣∣⟨Kjg, f⟩
∣∣ > δ is arbitrarily small.

The above dichotomy is an example of how the decomposition of E into atomic and continuous
parts often characterizes a dynamical system. For example, suppose that F is measure-preserving
and bijective, and ω is a probability measure. Then, the dynamical system is (Halmos 2017)

• Ergodic if and only if λ = 1 is a simple eigenvalue of K,

• Weakly mixing if and only if λ = 1 is a simple eigenvalue of K and there are no other
eigenvalues,

• Mixing if λ = 1 is a simple eigenvalue of K, and K has absolutely continuous spectrum on
span{1}⊥.
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Different spectral types find interpretations across various applications, including fluid mechan-
ics (Mezić 2013), anomalous transport (Zaslavsky 2002), and the analysis of invariants/exponents
related to trajectories (Kantz & Schreiber 2006). The approximation of E is critical in many appli-
cations. For example, the approximate spectral projections provide reduced-order models (Mezić
& Banaszuk 2004, Mezić 2005).

2.2 The fundamental DMD algorithm

With the definition of a Koopman operator in hand, we can now present the fundamental DMD
algorithm and two interpretations. The first interpretation of DMD is as a linear regression. The
second is as a projection method. Both interpretations are instrumental, and understanding their
interplay is often key to unlocking the power of DMD.

2.2.1 The linear regression interpretation

The simplest and historically first interpretation of DMD is as a linear regression. Given the snap-
shot matrices X,Y ∈ Cd×M in (1.2), we seek a matrix KDMD such that Y ≈ KDMDX. We can think
of this as constructing a linear and approximate dynamical system. To find a suitable matrix KDMD,
we consider the minimization problem

min
KDMD∈Cd×d

∥Y −KDMDX∥F , (2.6)

where ∥ · ∥F denotes the Frobenius norm. Similar optimization problems will be at the heart of the
various DMD-type algorithms we consider in this review. A solution to the problem in (2.6) is

KDMD = YX† ∈ Cd×d,

where † denotes the Moore–Penrose pseudoinverse. Often, the matrices X and Y are tall and
skinny, meaning that d ≫ M . In this scenario, we typically first project onto a low-dimensional
subspace to reconstruct the leading nonzero eigenvalues and eigenvectors of the matrix KDMD

without explicitly computing it. The standard DMD algorithm does this using an SVD and is
summarized in Algorithm 1, where we have assumed that the projected DMD matrix is diagonal-
izable.10 Algorithm 1 is known as exact DMD (H. Tu et al. 2014) and often the modes are further
scaled by Λ−1. There are several remarks about this algorithm that are worth mentioning:

• The rank r is usually chosen based on the decay of singular values of X. If low-dimensional
structure is present in the data (Udell & Townsend 2019), the singular values decrease rapidly,
and small r captures the dominant modes. Moreover, the lowest energy modes may be cor-
rupted by noise, and low-dimensional projection is a form of spectral filtering which has
the positive effect of dampening the influence of noise (Hansen et al. 2006).11 The question
of how best to truncate is difficult to answer and is often performed heuristically. If the
measurement error is additive white noise, there are algorithmic choices (Gavish & Donoho
2014). In the context of Koopman operators, r is equivalent to the size of the space spanned

10We make this assumption about various matrices throughout. Mathematically, a Jordan decomposition may be sub-
stituted for an eigendecomposition, and the modes corresponding to a single Jordan block can be considered as
interacting modes. However, computing a Jordan block should be avoided. A stable alternative is a Schur decom-
position that provides an orthogonal set of interacting modes (in sharp contrast with what is typically considered a
DMD mode) or a block-diagonal Schur decomposition with nearly confluent eigenvalues grouped together.

11Low-energy modes can be important though, for example, in optimized control (Rowley 2005, Rowley et al. 2006).
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Algorithm 1 The exact DMD algorithm (H. Tu et al. 2014), which has become the workhorse DMD
algorithm.

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , rank r ∈ N.

1: Compute a truncated SVD of the data matrix X ≈ UΣV∗, U ∈ Cd×r, Σ ∈ Rr×r,V ∈ CM×r.
The columns of U and V are orthonormal and Σ is diagonal.

2: Compute the compression K̃DMD = U∗YVΣ−1 ∈ Cr×r.
3: Compute the eigendecomposition K̃DMDW = WΛ.

The columns of W are eigenvectors and Λ is a diagonal matrix of eigenvalues.
4: Compute the modes Φ = YVΣ−1W.

Output: The eigenvalues Λ and modes Φ ∈ Cd×r.

by basis functions, and a good choice depends on the chosen observables. For example, we
shall see below that Algorithm 1 corresponds to a linear set of basis functions, which may
not capture the relevant nonlinear dynamics. Hence, a larger r may be suitable for other
basis choices. Often, the choice of r is modest, meaning that randomized methods (Halko
et al. 2011) for computing the SVD can significantly reduce the computational cost. We will
explore this and other compression methods in Section 3.2.

• We can interpret the algorithm as constructing a linear model of the dynamical system on
projected coordinates x̃ = U∗x. Namely, x̃n+1 ≈ K̃DMDx̃n. The left singular vectors U are
known as proper orthogonal decomposition (POD) modes (Berkooz et al. 1993).

• If the SVD is exact, so that X = UΣV∗, then

KDMD = YVΣ−1U∗.

Using this relation, we have

KDMD[YVΣ−1W] = YVΣ−1U∗YVΣ−1
︸ ︷︷ ︸

K̃DMD

W = [YVΣ−1W]Λ,

and hence Algorithm 1 computes exact eigenvalues and eigenvectors of KDMD. Moreover,
one can show that this process identifies all of the nonzero eigenvalues of KDMD (H. Tu et al.
2014, Thm. 1). It is common to call YVΣ−1W exact modes and UW projected modes.

• Originally, DMD was developed in connection with Krylov subspaces and the Arnoldi algo-
rithm. In this version, it is assumed that data is gathered along a single trajectory. The SVD
version, on the other hand, is capable of handling more general trajectory data. Strategies
for using this flexibility to reduce computational cost and average snapshot data noise are
given in (H. Tu et al. 2014). The SVD version is also more numerically stable. Drmač has
carefully analyzed the stability of DMD (Drmač et al. 2018, 2019, Drmač 2020, Drmač et al.
2020).

• Centering the data before applying DMD can be helpful if the mean-subtracted data have
linearly dependent columns, especially if the dynamics are perturbations about an equilib-
rium (Hirsh et al. 2020). This is equivalent to including an affine term in the linear regression.
However, computing the DMD of centered data can be restrictive and have undesirable con-
sequences (Chen et al. 2012).
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The above interpretation of DMD is simple and intuitive. However, using DMD to analyze
nonlinear dynamics globally seems dubious, as there is an underlying assumption of approxi-
mately linear dynamics in (2.6). Nevertheless, we shall now demonstrate that DMD can be in-
terpreted as an approximation to Koopman spectral analysis. This provides a solid theoretical
foundation for applying DMD in analyzing nonlinear dynamics, which will be further elaborated
upon in Section 4.

2.2.2 The Galerkin interpretation: Connecting to Koopman operators

The connection between Algorithm 1 and Koopman operators is revealed once we interpret DMD
as a Galerkin method. Consider the two correlation matrices

G =
1

M
U∗X(U∗X)⊤, A =

1

M
U∗X(U∗Y)⊤.

We can think of the jth row of the POD matrix U∗X as an affine function uj on the statespace Ω
evaluated at the snapshot data:

uj(x) = [U:,j ]
∗x, uj(x

(m)) = [U∗X]jm.

It follows that G can be interpreted as a Gram matrix with respect to the positive semi-definite
Hermitian form induced by the probability measure with equal point masses at the {x(m)}. Namely,

Gjk =
1

M

M∑

m=1

uj(x(m))uk(x
(m)) =

∫

Ω
uj(x)uk(x) dωM (x), ωM =

1

M

M∑

m=1

δx(m) .

Writing ⟨·, ·⟩M for the form induced by ωM , we can argue similarly for A and succinctly write

Gjk = ⟨uk, uj⟩M , Ajk =
1

M

M∑

m=1

uj(x(m))uk(y
(m)) =

∫

Ω
uj(x)uk(F(x)) dωM (x) = ⟨Kuk, uj⟩M .

Assuming that the matrix U∗X is of rank r, and using U∗X = ΣV∗, we can write

K̃⊤
DMD = Σ−1V⊤Y⊤U = (X⊤U)†Y⊤U = G−1A.

The matrix G−1A is an approximation of the action of K on the subspace spanned by the functions
{uj}rj=1. Namely, if g is an observable that can be expressed as the linear combination

g(x) =
r∑

j=1

uj(x)gj , for some g ∈ Cr,

then

[Kg](x) ≈
r∑

j=1

uj(x)(G
−1Ag)j =

r∑

j=1

uj(x)(K̃
⊤
DMDg)j .

In other words, K̃⊤
DMD is a matrix that approximates the action of the Koopman operator on ex-

pansion coefficients. More precisely, it is a Galerkin method corresponding to K and the form
⟨·, ·⟩M . This connection is explored more deeply in Section 4.1.

If ⟨·, ·⟩M converges to ⟨·, ·⟩ in the large data limit M → ∞, then DMD can be considered to
be a numerical approximation to Koopman spectral analysis. The terms DMD mode and Koopman
mode are often used interchangeably in the literature. It is important to note that the Koopman
modes and eigenfunctions are distinct mathematical objects, requiring different approaches for
approximation. The right eigenvectors of K̃DMD give rise to time-invariant directions in the state
space x, whereas the left-eigenvectors give rise to Koopman eigenfunctions, which are similarly
time-invariant directions in the space of observables.
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2.2.3 The Koopman mode decomposition

We can now connect DMD with the spectral expansions discussed in Section 2.1.2. First, we ap-
proximate an initial condition x0 in the eigenvector coordinates via

x0 ≈ Φb, b = Φ†x0.

This is not the only choice, but it is the simplest. The KMD then provides an approximation of the
dynamics by

xn ≈ Kn
DMDx0 ≈ Kn

DMDΦb = ΦΛnb, (2.7)

which echoes (2.4). Since zero eigenvalues do not contribute to the dynamics, this decomposi-
tion further justifies the compression in Algorithm 1. The KMD has also been related to other
decompositions in various situations, particularly those that have arisen in the fluid dynamics
community (Taira et al. 2017, 2020). These include POD (Towne et al. 2018), optimal mode de-
composition (Wynn et al. 2013), and resolvent analysis (Sharma et al. 2016, Herrmann et al. 2021).
Under suitable conditions, the KMD converges as we increase the dimension of the projected
Koopman operator (see Section 4.1.3 and Section 5.2.2).

2.3 Three canonical examples

Having grasped the notion of Koopman operators and the basic DMD algorithm, it is time for
some examples. As a warm-up for the reader, we consider three canonical well-studied examples
of Algorithm 1, each with a unitary Koopman operator:

• The flow past a cylinder wake atRe = 100 with a state space dimension d = 160, 000 that cor-
responds to the number of spatial measurement points in the flow. The associated Koopman
operator has a pure point spectrum consisting of powers of a fundamental eigenvalue.

• The Lorenz system on the Lorenz attractor with a state space dimension d = 3. The associ-
ated Koopman operator possesses no eigenvalues, except for the simple eigenvalue λ = 1
whose eigenfunction is the constant function. The rest of the spectrum is continuous.

• The Duffing oscillator with a state space dimension d = 2. The associated Koopman operator
possesses no eigenvalues, except for λ = 1, whose eigenspace now corresponds to the con-
served Hamiltonian energy of the system and indicator functions associated with invariant
sets of positive area.

Despite its large ambient space dimension, the first example is the easiest to address using Algo-
rithm 1. This is because the cylinder wake exhibits an attracting limit cycle, and the Koopman
operator has a basic spectrum. The other two examples demonstrate three difficulties of DMD:
noise, projection error (which can lead to spurious modes and missing parts of the spectrum), and
continuous spectra. These and further challenges are discussed in Section 2.4.

2.3.1 Flow past a cylinder wake

We first consider the classic DMD example of low Reynolds number flow past a circular cylinder.
Due to its simplicity and relevance in engineering, this is one of the most studied examples in
modal-analysis techniques (Rowley & Dawson 2017, Table 3)(Chen et al. 2012, Taira et al. 2020).
Re = 100 is chosen so that it is larger than the critical Reynolds number at which the flow under-
goes a supercritical Hopf bifurcation, resulting in laminar vortex shedding (Jackson 1987, Zebib
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Figure 2: Output of Algorithm 1 for the flow past a cylinder wake. Left: The DMD eigenval-
ues. Middle: The total relative prediction error of (2.7). Right: Example modes of the horizontal
component of the velocity field. The magenta disc corresponds to the cylinder. The zeroth mode
corresponds to the time-averaged flow.

1987). This limit cycle is stable and is representative of the three-dimensional flow (Noack & Eck-
elmann 1994, Noack et al. 2003). The Koopman operator of the post-transient flow has a pure point
spectrum with a lattice structure on the unit circle (Bagheri 2013).

To collect snapshot data, we numerically compute the velocity field of a flow around a circular
cylinder of diameter D = 1 using an incompressible, two-dimensional lattice-Boltzmann solver
(Józsa et al. 2016, Szőke et al. 2017). The temporal resolution of the flow is chosen so that approxi-
mately 24 snapshots of the flow field correspond to the period of vortex shedding. The computa-
tional domain size is 18D in length and 5D in height, with a 800×200 grid resolution. The cylinder
is positioned 2D downstream of the inlet at the mid-height of the domain. The cylinder side walls
are defined as bounce-back and no-slip walls, and a parabolic velocity profile is given at the inlet
of the domain. The outlet is defined as a non-reflecting outflow. After simulations converge to
steady-state vortex shedding, we collect M = 120 snapshots for the DMD algorithm and a further
880 snapshots to test the prediction of the KMD. One should think of this as training data and
test data, respectively. Letting Vx(t) denote the vectorized horizontal velocity field at time t, our
snapshot matrices have the form

X =
(
Vx(0) Vx(∆t) · · · Vx(119∆t)

)
, Y =

(
Vx(∆t) Vx(2∆t) · · · Vx(120∆t)

)
.

We use a rank of r = 47 to recover the trivial mode corresponding to λ = 1 and 24 conjugate pairs
of modes up to the timescale of vortex shedding. The eigenvalues come in conjugate pairs due to
processing real-valued data X and Y.

Fig. 2 shows the output of Algorithm 1. In the left panel, we see the lattice structure of the
DMD modes correctly identified by Algorithm 1. In the middle plot, we show the predictive error
of (2.7). The relative error is computed by taking the 2-norm of the error in the velocity field
Vx and normalizing it by the 2-norm of the mean-subtracted flow at each time step. Due to the
periodic nature of the flow, there is excellent agreement between the KMD and flow, with slow
algebraic growth of the error beyond the snapshot data time window. The right panel of Fig. 2
shows the real part of some of the Koopman modes for the horizontal velocity field.
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2.3.2 Lorenz system

The Lorenz (63) system (Lorenz 1963) is the following three coupled ordinary differential equa-
tions:

ẋ = 10 (y − x) , ẏ = x (28− z)− y, ż = xy − 8z/3.

We consider the dynamics of x = (x, y, z) on the Lorenz attractor. The system is chaotic and
strongly mixing (Luzzatto et al. 2005). It follows that λ = 1 is the only eigenvalue of K, corre-
sponding to a constant eigenfunction, and that this eigenvalue is simple. We consider a discrete-
time dynamical system by sampling with a time-step ∆t = 0.001. We use time-delay embedding,
which is a popular method for DMD-type algorithms (Susuki & Mezić 2015, Arbabi & Mezić 2017a,
Brunton et al. 2017, Das & Giannakis 2019, Kamb et al. 2020, Pan & Duraisamy 2020a) and corre-
sponds to building a Krylov subspace. This technique is justified through Takens’ embedding
theorem (Takens 2006), which says that under certain technical conditions, delay embedding a
signal coordinate of the system can reconstruct the attractor of the original system up to a diffeo-
morphism. In this example, we augment x by N − 1 further time-delays of length ∆t′ = 0.2 and
consider M = 5× 105 snapshots along a single trajectory. Specifically, our snapshot matrices have
the form

X =




x(0) x(∆t) · · · x((M−1)∆t)
x(∆t′) x(∆t′+∆t) · · · x(∆t′+(M−1)∆t)

...
...

...
...

x((N−1)∆t′) x((N−1)∆t′+∆t) · · · x((N−1)∆t′+(M−1)∆t)


 ∈ R3N×M ,

Y =




x(∆t) x(2∆t) · · · x(M∆t)
x(∆t′+∆t) x(∆t′+2∆t) · · · x(∆t′+M∆t)

...
...

...
...

x((N−1)∆t′+∆t) x((N−1)∆t′+2∆t) · · · x((N−1)∆t′+M∆t)


 ∈ R3N×M .

We use the ode45 command in MATLAB to collect the data after an initial burn-in time to ensure
that the initial point x(0) is (approximately) on the Lorenz attractor. The system is chaotic, so we
cannot hope to integrate for long periods accurately numerically. However, convergence is still
obtained in the large data limit M → ∞ due to an effect known as shadowing.

In addition to a discrete time-step ∆t, we can consider Koopman operators associated with
continuous-time dynamical systems. The continuous-time infinitesimal generator is defined by

Lg = lim
∆t↓0

K∆tg − g

∆t
, (2.8)

where K∆t is the Koopman operator corresponding to a time-step ∆t. The generator satisfies

K∆t = exp(∆tL),

which can be made precise through the theory of semigroups (Pazy 2010). Hence, in this example,
we consider the following time-scaled logarithms of the eigenvalues:

log(λ)/∆t = log(|λ|)/∆t+ iarg(λ)/∆t.

Fig. 3 shows the DMD eigenvalues for various choices of N . The horizontal line corresponds to
a portion of the spectrum of the Koopman operator. The DMD eigenvalues fall below this line,
corresponding to a dampening effect in the dynamics encapsulated by DMD. For these choices of
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Figure 3: DMD eigenvalues for the Lorenz system and different choices of N (the number of
eigenvalues is 3N ). The logarithm of the eigenvalues is plotted to align with the continuous-time
system. As N increases, the eigenvalues cluster to approximate the continuous spectrum.

parameters, this error is due to the finite amount of trajectory data and noise in the data matrices
from the numerical solver. In Section 3.1.5, we shall see that this effect can be reduced using DMD
methods designed to be robust to noise and by increasing M . For other parameter choices, DMD
approximations for the Lorenz system (and other systems) can also suffer from projection errors.
Another interesting feature of Fig. 3 is the clustering of the DMD eigenvalues with increasing N
as they attempt to approximate the continuous spectrum. Recall from above that the Koopman
operator for this example has no eigenvalues except the trivial eigenvalue λ = 1. In Section 5.2, we
shall see that Measure-Preserving Extended DMD (Colbrook 2023) can deal with continuous spectra
(see also the discussion in Section 6.2 for further methods).

We next show DMD eigenfunctions but associated with the matrix X†Y. The discussion in
Section 2.2.2 shows that these correspond to pseudoeigenfunctions of K. Note that these pseu-
doeigenfunctions do not approximate true eigenfunctions - since eigenfunctions do not exist for
this system! For visualization over the attractor, we plot function values along the trajectory of
snapshot data. In Fig. 3 there are DMD eigenvalues close to the horizontal line with log(λ)/(i∆t) ≈
±8.2 rad/s. These correspond to an apparent singularity in the spectral measure detected in (Ko-
rda et al. 2020). Fig. 4 shows the corresponding pseudoeigenfunctions. These bear a striking
resemblance to the local spectral projections in (Korda et al. 2020, Figure 13), which the authors
attributed to an almost-periodic motion of the z component during the time that the state resides
in either of the two lobes of the Lorenz attractor. In Fig. 5, we plot the pseudoeigenfunctions
corresponding to the DMD eigenvalue with log(λ)/(i∆t) closest to 6 rad/s. In this case, we see
increasing oscillations as N gets larger, and the pseudoeigenfunctions resemble unstable periodic
orbits, which in a sense, form a backbone of the attractor (Eckmann & Ruelle 1985, Tufillaro et al.
1993). For further examples of these kinds of pseudoeigenfunctions, see (Colbrook & Townsend
2023).

2.3.3 Duffing oscillator

We now consider the Hamiltonian system

ẋ = y, ẏ = x− x3,

18



Figure 4: DMD eigenfunctions corresponding to log(λ)/(i∆t) ≈ ±8.2 rad/s. These are similar to
the singularity in spectral measures detected in (Korda et al. 2020).

Figure 5: DMD eigenfunctions corresponding to log(λ)/(i∆t) ≈ 6 rad/s. We see increasing oscilla-
tions asN gets larger and the eigenfunctions resemble unstable periodic orbits, see also (Colbrook
& Townsend 2023).

known as the (undamped nonlinear) Duffing oscillator with state x = (x, y) ∈ Ω = R2. This
dynamical system has three fixed points at x = (0, 0) (a saddle), and x = (±1, 0) (centers). The
Hamiltonian for this system isH = y2−x2/2+x4/2. We consider the corresponding discrete-time
dynamical system by sampling with a time-step ∆t = 0.25. Instead of using the statespace x or
time-delay embedding to form our snapshot matrices, we consider an example of Extended DMD
(Williams et al. 2015), discussed in more detail in Section 4.1. Specifically, we consider 103 random
points sampled uniformly in [−2, 2]2, and then the trajectory of these points for 50 times steps.
This leads to M = 5 × 104 snapshots {x(m),y(m)}Mm=1. We then partition these into N clusters
using k-means, and use these as centers cj for N radial basis functions of the form

ψj(x) = exp(−γ∥x− cj∥),
where γ is the squared reciprocal of the average ℓ2-norm of the snapshot data after it is shifted to
mean zero. Our snapshot matrices are then given by

X =




ψ1(x
(1)) ψ1(x

(2)) · · · ψ1(x
(M))

ψ2(x
(1)) ψ2(x

(2)) · · · ψ2(x
(M))

...
...

...
...

ψN (x(1)) ψN (x(2)) · · · ψN (x(M))


 , Y =




ψ1(y
(1)) ψ1(y

(2)) · · · ψ1(y
(M))

ψ2(y
(1)) ψ2(y

(2)) · · · ψ2(y
(M))

...
...

...
...

ψN (y(1)) ψN (y(2)) · · · ψN (y(M))


 .

Fig. 6 shows some of the Koopman eigenfunctions corresponding to λ = 1 and computed
using N = 1000. For visualization, the values of the functions are plotted at the data points.
We see that the level sets of the eigenfunctions correspond to trajectories, as expected. However,
moving away from λ = 1 in the spectral plane becomes more challenging. Fig. 7 shows the
DMD eigenvalues for various choices of N , along with the unit circle, which is the spectrum of
the Koopman operator. Most of the DMD eigenvalues are spurious and correspond to spectral
pollution. This occurs because we have approximated the infinite-dimensional Koopman operator
K, by a finite matrix. These errors persist, even as we increase N .

To measure the errors, we can use Residual DMD (ResDMD) (Colbrook & Townsend 2023,
Colbrook, Ayton & Szőke 2023) to compute the error ∥(K− λjI)gj∥ associated with a DMD eigen-
function gj and eigenvalue λj . In other words, we can compute the projection error of DMD. This
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Figure 6: Some examples of computed eigenfunctions of the Duffing oscillator corresponding to
λ = 1. The black lines show trajectory orbits and correspond to level sets of the eigenfunctions,
which are invariant in time.
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Figure 7: DMD eigenvalues (red dots) computed for various choices of N . The spectrum is the
unit circle (green); hence, most eigenvalues are spurious. This occurs because a projection error
occurs when the Koopman operator K is approximated by a finite DMD matrix.

is detailed in Section 4.3. Fig. 8 shows the histograms of these projection errors. Only a small pro-
portion of reliable DMD eigenvalues persist as N increases. Finally, we can also use ResDMD to
compute pseudospectra. Algorithm 12 converges to the pseudospectrum asN → ∞. The output is
shown in Fig. 9, where we visualize pseudospectra by plotting several contour plots of ϵ on a log-
arithmic scale. For this example, the pseudospectra are the annuli Spϵ(K) = {λ ∈ C : ||λ|−1| ≤ ϵ}.
The projection errors are computed using the same snapshot data and dictionary used for Figs. 6
to 8. ResDMD allows us to compute and minimize projection errors directly in infinite dimensions
to avoid spectral pollution and spurious modes.

In summary, DMD can suffer from closure issues (projection errors) associated with approx-
imating the infinite-dimensional Koopman operator by a finite-dimensional matrix. This phe-
nomenon is well-known (Brunton, Brunton, Proctor & Kutz 2016, Kaiser et al. 2021). Neverthe-
less, by computing projection errors, we can avoid difficulties (such as spurious modes) associated
with the infinite-dimensional nature of the Koopman operator.
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Figure 8: Histograms of the errors of the DMD eigenpairs. The errors are computed using Res-
DMD in Algorithm 11 and show the persistence of heavy spectral pollution as N increases.

Figure 9: Pseudospectra (see (2.3)) computed using ResDMD (see Algorithm 12) and visualized
by plotting several contour plots of ϵ on a logarithmic scale. The pseudospectra demonstrate the
heavy spectral pollution present in Fig. 7. Note also that these pseudospectra are computed using
the same snapshot data and dictionary used for Figs. 6 to 8. As N → ∞, the algorithm converges
to the pseudospectra.

2.4 The goals and challenges of DMD

The core goal of DMD is to apply linear algebra and spectral techniques to the analysis, prediction,
and control of nonlinear dynamical systems. However, DMD often faces several challenges (Kutz,
Brunton, Brunton & Proctor 2016), many of which are discussed in Table 1. These challenges have
been a driving force for the many versions of the DMD algorithm that have appeared.

For example, the KMD in (2.7) highlights the potential usefulness of DMD in forecasting. In
instances where DMD is applied to noise-free data, such as in generating reduced-order mod-
els from high-fidelity numerical simulations (Kutz, Fu & Brunton 2016, Alla & Kutz 2017, Lu &
Tartakovsky 2020b), DMD proves effective for both reconstruction and accurate forecasting of the
solutions. However, practitioners familiar with DMD’s performance in noisy conditions recog-
nize its shortcomings; the algorithm often fails to forecast and reconstruct even the time series
it was trained on. In particular, the prediction error in Fig. 2 is somewhat misleading of what
a user might expect in the general case. Even after over a decade, the application of DMD for
forecasting or reconstructing time-series data remains limited, typically restricted to high-quality,
low-noise scenarios. In Section 3.1, we will focus on methods that mitigate the effect of noise in
snapshot data. Many of the structure-preserving methods we discuss in Section 5 have an in-built
robustness to noise.
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Generally speaking, the error of DMD and its approximate KMD can be split into three types:

• The projection error is due to projecting/truncating the Koopman operator onto a finite-
dimensional space of observables. This is linked to the issue of closure and lack of (or lack
of knowledge of) non-trivial finite-dimensional Koopman invariant subspaces.

• The estimation error is due to estimating the matrices that represent the projected Koopman
operator from a finite set of potentially noisy trajectory data.

• Numerical errors (e.g., roundoff, stability, further compression, etc.) incurred when process-
ing the finite DMD matrix.

In particular, Wu et al. (2021) highlight the issues of robustness to noise and closure/projection er-
rors as the two fundamental challenges for DMD methods. In Section 4 we will consider methods
that directly connect DMD with Koopman operators through the Galerkin perspective. Ways of
controlling and measuring the projection error are discussed in Section 4.3.

DMD’s primary value has been as a diagnostic tool, and the interpretability of DMD modes
and frequencies is crucial to this role. Most DMD papers focus on analyzing DMD modes and
eigenvalues. This emphasis shapes much of this review. The KMD approximated by DMD modes
and eigenvalues facilitates dimensionality reduction and model simplification, analogous to clas-
sical methods like the Fourier transform or SVD (Brunton & Kutz 2022). There are numerous
software packages for DMD methods, including https://github.com/dynamicslab/pykoopman,
https://github.com/mathLab/PyDMD, and https://github.com/decargroup/pykoop. Moreover,
there are numerous repositories connected to the papers cited below. Drmač has implemented the
DMD algorithm and extensions in LAPACK (Drmač 2022a,b).

3 Variants from the Regression Perspective

This section gives the reader a flavor of DMD variants from the regression perspective.12 We focus
on four key aspects that have proved influential over the last decade or so:

• Noise reduction;

• Compression and randomized linear algebra;

• Multiscale dynamics; and

• Control.

The methods we discuss are only some of the variants - it is impossible to do justice to the breadth
of techniques! Notable omissions include the following. Bayesian DMD (Takeishi, Kawahara,
Tabei & Yairi 2017) transfers the Bayesian formulation into DMD. Higher order DMD (Le Clainche
& Vega 2017) applies time-delay embedding to build a larger state space after projecting onto POD
modes. Parametric DMD (Huhn et al. 2023) performs DMD independently per parameter realiza-
tion and interpolates the resulting Koopman operators. See also (Andreuzzi et al. 2023). Refined
Rayleigh–Ritz data driven modal decomposition (Drmač et al. 2018) produces refined Ritz pairs of

12As we shall see, there is less convergence theory (e.g., in the large data limit M → ∞ or as the number of observables
increases) for DMD methods based on this viewpoint than for those based on the Galerkin viewpoint in Section 4.
This is due to a looser connection with Koopman operators.
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finite DMD matrix KDMD. Spatio-temporal Koopman decomposition (Vega & Le Clainche 2021) ap-
proximates spatio-temporal data as a linear combination of (possibly growing or decaying expo-
nentially) standing or traveling waves. Klus, Gelß, Peitz & Schütte (2018), Klus & Schütte (2016)
develop tensor-based DMD methods for computing eigenfunctions of the Koopman operator. For
example, tensor-based DMD exploits low-rank tensor decompositions of the data matrices to im-
prove efficiency and memory use. There are extensions of this approach based on reproducing
kernel Hilbert spaces (RKHSs) (Fujii & Kawahara 2019) and EDMD (Nüske et al. 2021). Recent
work has also explored connections between DMD and tensor factorizations (Redman 2021).

3.1 Increasing robustness to noise

A challenge of DMD is that the computed eigenvalues are biased in the presence of sensor noise.
Noise typically dampens the eigenvalues, meaning that for discrete-time systems, the absolute
values of the eigenvalues are decreased, and the Koopman modes become distorted. For studies
of this effect in various physical systems, see (Duke et al. 2012, Bagheri 2014, Pan et al. 2015). Daw-
son et al. (2016) provide an exceptionally clear discussion of this topic. The bias occurs because
standard algorithms treat the data “snapshot to snapshot” rather than as a whole and favor one
direction (forward in time). Several variants of DMD aim to address this bias. In addition to the
methods presented below, other techniques include utilizing Kalman filters (Nonomura et al. 2018,
2019, Jiang & Liu 2022), adapting DMD to online data (Hemati et al. 2014, 2016), robust principal
component analysis (Scherl et al. 2020), and using a second set of noisy observables that meet some
independence requirements (Wanner & Mezić 2022). Moreover, the structure-preserving methods
we discuss in Section 5 often have an inbuilt robustness to noise. Finally, in Section 6.3, we discuss
the stochastic Koopman operator, which can handle both system and sensor noise.

3.1.1 The problem of noise

We can understand the bias often encountered in DMD as follows. Assume that the snapshots
come with additive sensor noise that affects only our measurements of a given system and does
not interact with the true dynamics. This means that we have access to noisy data matrices

Xs = X+NX , Ys = Y +NY ,

where NX and NY are random matrices representing sensor noise, and X and Y are the noise-free
snapshots. We then represent the data in a truncated POD mode basis so that

X̃s = X̃+ ÑX , Ỹs = Ỹ + ÑY ,

and assume that a subset of POD modes has been selected so that X̃sX̃
∗
s is invertible. Assuming

the noise is sufficiently small, the DMD matrix can be expanded as

K̃DMD = ỸsX̃
†
s = ỸsX̃

∗
s(X̃sX̃

∗
s)

−1

= (Ỹ + ÑY )(X̃+ ÑX)∗
[
(X̃+ ÑX)(X̃+ ÑX)∗

]−1

= (Ỹ + ÑY )(X̃+ ÑX)∗(X̃X̃∗)−1
[
I− (ÑXX̃∗ + X̃Ñ∗

X + ÑXÑ∗
X)(X̃X̃∗)−1 + · · ·

]
.

Dawson et al. (2016) discard high-order terms in the expectation of this expansion to arrive at

E(K̃DMD) ≈ ỸX̃−1(I− E(ÑXÑ∗
X)(X̃X̃∗)−1). (3.1)
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Algorithm 2 Forward-backward DMD (Dawson et al. 2016).

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , rank r ∈ N.

1: Compute a truncated SVD X ≈ UΣV∗,U ∈ Cd×r,Σ ∈ Rr×r,V ∈ CM×r.
2: Compute the projected data matrices X̃ = U∗X, Ỹ = U∗Y and their economized SVDs X̃ =

UXΣXV∗
X , Ỹ = UY ΣY V

∗
Y .

3: Compute the forward and backward matrices K̃f = U∗
XỸVXΣ−1

X , K̃b = U∗
Y X̃VY Σ

−1
Y .

4: Compute the matrices Sf = ỸVXΣ−1
X ,Sb = X̃VY Σ

−1
Y , and Kf = SfK̃fS

†
f ,Kb = SbK̃bS

†
b.

5: Compute the DMD matrix K̃ =
(
KfK

−1
b

)1/2 and its eigendecomposition K̃W = WΛ.
6: Compute the modes Φ = YVΣ−1W.

Output: The eigenvalues Λ and modes Φ ∈ Cd×r.

This indicates that DMD has an inherent bias due to sensor noise, causing a dampening effect.
Interestingly, this bias depends only on ÑX and not ÑY . The reason is that the least squares prob-
lem in (2.6) is optimal only when assuming that all of the noise is in Ỹ, but not in X̃. Another way
of seeing this is that the expression ỸX̃−1 is linear in Ỹ, but not in X̃, which is why perturbations
to X̃ do not have to propagate through the equation in an unbiased manner.

If the noise structure is known, DMD can be adjusted using a method called noise-corrected
DMD (ncDMD) (Dawson et al. 2016). However, it is preferable to have methods that correct for
noise without requiring explicit knowledge of its structure. We will now outline three popular
DMD variants that address this bias without specific assumptions about the noise. The first two
can be executed directly using SVDs. The final method requires an iterative method for solving
an optimization problem and is more expensive yet more robust.

3.1.2 Forward-Backward Dynamic Mode Decomposition (fbDMD)

Forward-Backward DMD (fbDMD) can be considered a correction to the unidirectional bias of Al-
gorithm 1 (Dawson et al. 2016). Let X = UXΣXV∗

X and Y = UY ΣY V
∗
Y be truncated SVDs of the

matrices X and Y, respectively. We define

K̃f = U∗
XYVXΣ−1

X , K̃b = U∗
Y XVY Σ

−1
Y ,

which represent forward and backward propagators for the data, analogous to Algorithm 1. As-
suming the system’s dynamics are invertible and K̃b is also invertible, the matrix

K̃ =
(
K̃fK̃

−1
b

)1/2

provides a debiased estimate of the forward propagator. The method is presented in Algorithm 2.
Nonetheless, caution is required due to the nonuniqueness of the matrix square root (Higham
2008). Dawson et al. (2016) suggest selecting the square root that is closest to K̃f in norm, although
this can be computationally costly. A more economical alternative involves measuring closeness
in the computed eigencoordinates. Sometimes, the nonuniqueness can be avoided. For instance, if
the samples are snapshots from a continuous system whose signal has a bandwidth of λB and the
time-step satisfies ∆t < π/(2λB), then the discrete eigenvalues expected to be recovered will have
a positive real part, which resolves the ambiguity mentioned previously. The square root issue is
further analyzed in (Drmač et al. 2018, Section 5.4). Finally, Askham & Kutz (2018) recommend
first projecting onto r POD modes before applying fbDMD, an alteration that has demonstrated
superior performance in practice. For a variational problem involving forward and backward
dynamics, see Consistent DMD (Azencot et al. 2019).

24



Algorithm 3 Total least-squares DMD (Dawson et al. 2016, Hemati et al. 2017).

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , rank r ∈ N.

1: Compute a truncated SVD X ≈ UΣV∗,U ∈ Cd×r,Σ ∈ Rr×r,V ∈ CM×r.
2: Compute the projected data matrices X̃ = U∗X, Ỹ = U∗Y.
3: Form the matrix Z =

(
X̃⊤ Ỹ⊤)⊤ and compute its reduced SVD Z = UZΣZV

∗
Z .

4: Set U1 = UZ(1 : r, 1 : r), U2 = UZ(r + 1 : 2r, 1 : r).
5: Compute the DMD matrix K̃ = U2U

−1
1 and its eigendecomposition K̃W = WΛ.

6: Compute the modes Φ = YVΣ−1W.

Output: The eigenvalues Λ and modes Φ ∈ Cd×r.

3.1.3 Total Least-Squares Dynamic Mode Decomposition (tlsDMD)

Total Least-Squares DMD (tlsDMD) addresses the asymmetric treatment of noise in X and Y by
Algorithm 1. The least-squares problem in (2.6) can be formulated as

min
K

∥EY ∥F such that Y +EY = KX.

Considering the reverse time direction, as in fbDMD, leads to the problem

min
K

∥EX∥F such that Y = K(X+EX).

While fbDMD accounts for both directions of error, a more direct approach utilizes the total least-
squares problem (Van Huffel & Vandewalle 1991):

min
K

∥∥∥∥
(
EX

EY

)∥∥∥∥
F

such that Y +EY = K(X+EX).

This problem can be solved via an SVD, and we follow the version presented by Dawson et al.
(2016), which is similar in spirit to that of Hemati et al. (2017). First, we project X and Y onto
r < M/2 POD modes to obtain X̃ and Ỹ. We then define

Z =

(
X̃

Ỹ

)

and compute its reduced SVD Z = UZΣZV
∗
Z . The matrix K̃ = UZ(r + 1 : 2r, 1 : r)UZ(1 : r, 1 :

r)−1 then provides a debiased estimate of the forward propagator. The method is summarized in
Algorithm 3.

3.1.4 Optimized Dynamic Mode Decomposition (optDMD)

Optimized DMD (optDMD) is a variation of DMD that processes all data snapshots collectively
(Chen et al. 2012). This approach reduces much of the bias associated with exact DMD. Nonethe-
less, it necessitates solving a nonlinear optimization problem, initially thought to hinder its prac-
tical application. However, Askham & Kutz (2018) demonstrated that an approximate solution to
the optimization problem can be efficiently computed using the variable projection method (Golub
& Pereyra 1973). In this framework, DMD is reformulated as an exponential data fitting problem
(Pereyra & Scherer 2010), which brings an additional advantage: the data snapshots do not have
to be equidistant in time. For further DMD methodologies tailored for data with irregular time
intervals, see (Tu et al. 2014, Guéniat et al. 2015, Leroux & Cordier 2016).
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Algorithm 4 Optimized DMD, algorithmic details are given in (Askham & Kutz 2018).

Input: Snapshot data X ∈ Cd×(M+1), rank r ∈ N, initial guess for α.

1: Compute a truncated SVD X ≈ UΣV∗,U ∈ Cd×r,Σ ∈ Rr×r,V ∈ C(M+1)×r.
2: Compute the projected data matrix X̃ = U∗X.
3: Solve the problem

min
α∈Cr,B∈Cr×r

∥∥∥X̃⊤ −Φ(α)B
∥∥∥
F

using a variable projection algorithm.
4: Set λj = αj and Φ(:, i) = (∥UB⊤(:, i)∥ℓ2)−1UB⊤(:, i).

Output: The eigenvalues Λ and modes Φ ∈ Cd×r.

Initially, we project onto r POD modes to construct the data matrix X̃ = [z0 z1 · · · zM ], which
corresponds to the projected data at times t0, t1, . . . , tM . Depending on the data structure, the
projected matrix Y may also be incorporated into this matrix. We posit that the data represents
the solution to a linear system of differential equations, expressed as

z(t) ≈ SeΛtS†z0 ,

where S ∈ Cr×r and Λ ∈ Cr×r. This representation can be reformulated to

X̃⊤ ≈ Φ(α)B, Bi,j = Sj,i

(
S†z0

)
i
,

where Φ(α) ∈ C(m+1)×r, whose elements are Φ(α)i,j = exp(αjti). From this, we arrive at an
exponential fitting problem:

min
α∈Cr,B∈Cr×r

∥∥∥X̃⊤ −Φ(α)B
∥∥∥
F
.

The optimized DMD eigenvalues are determined by λj = αj . This optimization problem is solved
using the variable projection method, which exploits the specific structure of the exponential data
fitting problem to eliminate many of the variables from the optimization process. A summary is
provided in Algorithm 4, with practical details given in (Askham & Kutz 2018), including strate-
gies for selecting the initial guess (e.g., employing an alternate DMD algorithm).

While this nonlinear, nonconvex optimization problem is not guaranteed to be solved globally,
and the method may be computationally intensive due to its iterative nature, optDMD has been
proven to yield significant enhancements over traditional DMD approaches. Moreover, optDMD’s
efficacy can be further heightened by employing Breiman’s statistical bagging sampling strategy
(Breiman et al. 2017), which assembles a collection of models to reduce model variance, mitigate
overfitting, and facilitate uncertainty quantification. This augmented method is referred to as
bagging optimized DMD (bopDMD) (Sashidhar & Kutz 2022).

3.1.5 Examples

For simplicity, we focus on the error associated with the approximated eigenvalues. Other error
metrics related to the modes or the accuracy of the decomposition in fitting the data or forecasting
are also frequently considered in the literature, often yielding similar results.
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Figure 10: Left: Mean error (error bars correspond to the standard deviation across noise realiza-
tions) in the first 11 eigenvalues of the cylinder example. Right: Mean value of | log(|λ|)/∆t| for
the DMD eigenvalues for the Lorenz system. We have not shown the results for fbDMD since they
are almost identical to tlsDMD.

Noisy cylinder wake

We revisit the example of flow past a cylinder from Section 2.3.1. We center and normalize the data
grid-wise before adding 40% Gaussian random noise to the measurements. Fig. 10 (left) shows
the mean relative ℓ2 error of the first 11 eigenvalues (see Fig. 2), averaged over 100 realizations of
random noise. The errors are calculated by comparison with eigenvalues computed from noise-
free snapshots that have converged in terms of both the size of the truncated SVD and the number
of snapshots. The error bars represent one standard deviation from the mean. All methods exhibit
a decreasing error as M increases, which is largely attributable to the truncation in the SVD used
in DMD. As often noted in the literature, the fbDMD and tlsDMD methods perform comparably.
However, optDMD demonstrates a significantly smaller error.

Lorenz system

We revisit the Lorenz system example from Section 2.3.2. Since the spectrum is continuous (apart
from the trivial eigenvalue λ = 1), measuring the error of individual DMD eigenvalues is mean-
ingless unless methods such as the residual in Section 4.3 are used. However, | log(|λ|)/∆t| van-
ishes on the spectrum of the Koopman operator. Therefore, we select N = 10 and compute the
mean value of | log(|λ|)/∆t| over the DMD eigenvalues. Fig. 10 (right) shows the results, aver-
aged over 50 randomly selected initial conditions on the attractor for the initial value x(0). For
exact DMD, this error metric plateaus as M increases. Generally, the eigenvalues computed using
DMD with delay embedding are damped and lie strictly within the unit disk (Korda et al. 2020,
Corollary 2). Consequently, their logarithms are in the left-half plane, corresponding to positions
below the horizontal line in Fig. 3. Conversely, the eigenvalues computed by tlsDMD and opt-
DMD approach the unit disk with increasing M and exhibit greater robustness to noise in the
measurements.

3.2 Compression and randomized linear algebra

With ever-increasing volumes of measurement data from simulations and experiments, modal
extraction algorithms such as DMD can become prohibitively expensive, particularly for online or
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real-time analysis. Dynamics often evolve on low-dimensional attractors, indicating sparsity in a
suitable coordinate system or an intrinsic low rankness. However, the SVD used in Algorithm 1
scales with the dimension of the measurements, not with the intrinsic dimension of the data. This
section explores two principles aimed at mitigating this computational cost:

• Compressed sensing (Donoho 2006, Candes et al. 2006) facilitates the reconstruction of
sparse signals from a limited number of measurements, allowing for undersampling below
traditional Shannon–Nyquist limits (Nyquist 1928, Shannon 1948). Applying compressed
sensing to DMD can substantially improve computational efficiency, particularly during the
SVD step of the algorithm. Acquiring high-resolution, time-resolved measurements can be
challenging. Nevertheless, temporally and spatially sparse signals may be sampled less fre-
quently than traditionally expected, which is crucial if data acquisition is costly.

• Randomized numerical linear algebra (Martinsson & Tropp 2020) offers a way to solve cer-
tain linear algebra problems much faster than classical methods. The randomized SVD is
a fast and straightforward technique for computing an approximate low-rank SVD (Halko
et al. 2011). It is robust and amenable to parallelization and can benefit from GPU architec-
tures. When coupled with randomized SVD, DMD scales with the intrinsic rank of the data
matrices rather than the measurement dimension. The approximation error is manageable
through oversampling and power iterations, providing a balance between computational
speed and accuracy. Moreover, it can accommodate large datasets that exceed the capacity
of fast memory by using a blocked matrix approach.

Beyond the methods detailed here, several DMD variants are based on related principles. For
instance, due to the non-orthogonality of DMD modes, choosing an appropriate low-rank rep-
resentation can be difficult (Kou & Zhang 2017). Sparsity-Promoting DMD (Jovanović et al. 2014)
aims to strike a balance between accuracy and the number of modes by identifying a sparse sub-
set of modes. Other techniques for selecting dominant modes include ranking each DMD mode’s
importance by time integration (Kou & Zhang 2017) or by assessing the time-averaged modal en-
ergy contribution (Tissot et al. 2014). Furthermore, one can apply DMD recursively to achieve
orthogonality (Noack et al. 2016), a method termed Recursive DMD, which blends the principles
of POD and DMD. Additionally, regularization terms can be imposed to encourage sparsity in the
Koopman matrix (Sinha et al. 2019).

Finally, it is crucial to recognize that the usefulness of the methods in this section presumes the
dynamics are evolving on a low-dimensional subspace characterized by a quickly decaying sin-
gular value spectrum. While not a fundamental limitation of DMD, this is a common underlying
assumption which may not hold for all dynamical systems. Erichson, Mathelin, Kutz & Brunton
(2019) provide a turbulent flow example that demonstrates the limits of the approaches in this
section when this assumption does not hold.

3.2.1 Compressed Sensing meets DMD (cDMD and csDMD)

A full description of the extensive field of compressed sensing is beyond the scope of this review.
We outline the key points to understand its interplay with DMD. The reader is encouraged to con-
sult the excellent textbooks (Foucart & Rauhut 2013, Adcock & Hansen 2021) for a comprehensive
understanding or (Candes & Wakin 2008) for a concise introductory tutorial. Compressed sens-
ing is founded on two central principles: sparsity, which pertains to the signals of interest, and
incoherence, which relates to the sensing methodology.

Consider a signal x ∈ Cd that is approximately sparse in some basis B ∈ Cd×d, meaning that
x = Bz, where the vector z can be well approximated by a sparse vector. Many natural signals,
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Algorithm 5 Compressed DMD (Brunton, Proctor, Tu & Kutz 2016), suitable when given access to
the full snapshots.

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , rank r ∈ N, and measurement matrix C ∈ Cp×d.

1: Compress X and Y to Xc = CX and Yc = CY.
2: Apply Algorithm 1 with input Xc and Yc and outputs Λc, Wc, Vc and Σc.
3: Reconstruct full-state modes via Φ = YVcΣ

−1
c Wc.

Output: The eigenvalues Λc and DMD modes Φ ∈ Cd×r.

Algorithm 6 Compressed sensing DMD (Brunton, Proctor, Tu & Kutz 2016), suitable when given
access to only compressed data. The ℓ1-minimization can be replaced with a plethora of similar
minimization problems from the compressed sensing literature.

Input: Compressed snapshot data Xc ∈ Cp×M and Yc ∈ Cp×M , measurement matrix C ∈ Cp×d,
and basis B ∈ Cd×d.

1: Apply Algorithm 1 with input Xc and Yc and outputs Λc and Φc.
2: Apply ℓ1-minimization (3.2) columnwise to reconstruct modes Φs ∈ Cd×r.
3: Recover full-state modes via Φ = BΦs.

Output: The eigenvalues Λc and DMD modes Φ ∈ Cd×r.

such as images and audio, are approximately sparse in specific bases like the Fourier or wavelet
bases. When we transform an image using Fourier or wavelet transformations, most coefficients
are small and can be disregarded while still retaining the quality of the image. We assume that we
have access to measurements:

xc = Cx = CBz,

where C ∈ Cp×d is a measurement matrix with p < d. Compressed sensing theory implies that,
under suitable conditions, we can recover an accurate approximation of z (and hence x) from the
subsampled measurements xc. For example, consider the ℓ1-minimization problem

min ∥z∥ℓ1 subject to xc = CBz. (3.2)

Specifically, the measurement matrix C must be incoherent with respect to the sparse basis B,
meaning that the rows of C are uncorrelated with the columns of B. If the matrix CB satisfies a
restricted isometry property (RIP):13

(1− δk)∥z∥2ℓ2 ≤ ∥CBz∥2ℓ2 ≤ (1 + δk)∥z∥2ℓ2 for k-sparse vectors z,

then we can prove results about how close solutions of (3.2) are to the true z, how issues such
as only approximately numerically solving (3.2) affect the solution, robustness to noise, and so
forth. Beyond the above ℓ1-minimization problem, many successful optimization problems and
algorithms approximate their solutions in compressed sensing.

Tu et al. (2014) combine temporal compressed sensing with ideas from DMD to recover POD
modes. For the remainder of this section, we focus instead on spatial compressed sensing, follow-
ing the methods of Brunton, Proctor, Tu & Kutz (2016). In essence, Brunton, Proctor, Tu & Kutz

13There are no known large matrices with bounded restricted isometry constants since computing these constants is
NP-hard and hard to approximate. Typically, one builds random matrices so that the RIP holds with overwhelming
probability. For example, Bernoulli and Gaussian random measurement matrices satisfy the RIP for a generic basis B
with high probability (Candes & Tao 2006).
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Algorithm 7 Randomized range finder. Other choices of random test matrices may be employed
for computational efficiency. The QR algorithm is written using MATLAB notation.

Input: Snapshot data X ∈ Cd×M , target rank r ∈ N, oversampling factor p ∈ N, and power
iteration factor q ∈ N ∪ {0}.

1: Generate a random Gaussian matrix Ω ∈ RM×(r+p) and form the matrix Z = XΩ.
2: for j = 1, . . . , q do
3: [Q,∼] = qr(Z, ’econ’)
4: [C,∼] = qr(X∗Q, ’econ’)
5: Z = XC
6: end for
7: [Q,∼] = qr(Z, ’econ’).

Output: Range matrix Q ∈ Cd×(r+p).

Algorithm 8 Randomized DMD (Erichson, Mathelin, Kutz & Brunton 2019).

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , target rank r ∈ N, oversampling factor p ∈ N,
and power iteration factor q ∈ N ∪ {0}.

1: Run Algorithm 7 to generate the matrix Q.
2: Compress X and Y to Xc = Q∗X and Yc = Q∗Y.
3: Apply Algorithm 1 with input Xc and Yc and outputs Λc and Φc.
4: Reconstruct full-state modes via Φ = QΦc.

Output: The eigenvalues Λc and DMD modes Φ ∈ Cd×r.

(2016) demonstrated that the unitary invariance of the DMD algorithm can be extended to approx-
imate invariance under transformations satisfying a RIP, provided that the data is sparse in a basis
that is incoherent with respect to the measurements. For compressed data matrices

Xc = CX, Yc = CY,

there are essentially two approaches, depending on whether one has access to the matrix Y or
not. Algorithm 5 illustrates compressed DMD (cDMD) (see also (Erichson, Brunton & Kutz 2019)),
where one performs the standard DMD algorithm on the compressed data matrices, and then
reconstructs the full-state modes using Y. If access to Y is not available, we can use an opti-
mization problem such as (3.2) to recover the modes in the sparse basis Φs, and then reconstruct
the full-state modes. This approach, known as compressed sensing DMD (csDMD), is outlined in
Algorithm 6.

3.2.2 Randomized Dynamic Mode Decomposition (rDMD)

Early uses of DMD with randomized SVD include (Erichson & Donovan 2016), who utilized it
to expedite DMD applications in video background subtraction, and (Bistrian & Navon 2017),
who applied it as a component of a reduced-order model for two-dimensional fluid flows. Al-
though this method is reliable and robust to noise, it only accelerates the computation of the SVD,
with subsequent computational steps in the DMD algorithm remaining costly. Instead, Erichson,
Mathelin, Kutz & Brunton (2019) developed a randomized DMD (rDMD) algorithm. This algorithm
relies on sketching the range of X and executing the entire DMD process in a reduced-dimensional
space, ultimately recovering the DMD of the original system at the end.
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Figure 11: Left: Errors of cDMD (Algorithm 5) for the first 6 eigenvalues and DMD modes. Middle:
Errors of rDMD (Algorithm 8) for the first six eigenvalues and DMD modes. Right: Computational
times vs eigenvalue error.

The idea is to use randomness as a computational strategy to find a smaller representation,
known as a sketch. This smaller matrix sketch can be used to compute an approximate low-rank
factorization for the high-dimensional data matrix. rDMD utilizes the off-the-shelf probabilistic
framework proposed in the seminal work of Halko et al. (2011). Given a target rank r, the aim is
to compute a near-optimal basis Q ∈ Cd×r for the input matrix X such that X ≈ QQ∗X. A test
matrix Ω ∈ RM×r is drawn from a normal Gaussian distribution to sample the range of X via

Z = XΩ.

To mitigate the O(dMr) cost of dense matrix multiplication, more sophisticated random test ma-
trices, such as the subsampled randomized Hadamard transform, can also be used, leading to a
complexity of O(dM log(r)). The orthonormal basis Q is then obtained via QR decomposition of
Z. In practice, we slightly oversample the desired rank r by a constant factor (typically, ten suf-
fices). A second strategy to improve performance involves power iterations (Rokhlin et al. 2010,
Gu 2015). Particularly, a slowly decaying singular value spectrum of the input matrix can signif-
icantly affect the quality of the approximated basis matrix Q. Power iterations are employed to
preprocess the input matrix to promote a more rapidly decaying spectrum. The sampling matrix
obtained is

Z = (XX∗)qXΩ,

and as few as q = 2 power iterations can considerably improve the approximation quality, even
when the singular values of the input matrix decay slowly. This procedure is outlined in Algo-
rithm 7, and we direct the reader to (Martinsson & Tropp 2020, Section 11) for probabilistic error
bounds. With the matrix Q in hand, we can perform DMD on the lower-dimensional space, as
summarized in Algorithm 8. One can also simultaneously sketch the range and corange of X.
This method, known as sketchy DMD, was proposed by Ahmed et al. (2022).

3.2.3 Examples

Cylinder wake

We return to the cylinder wake discussed in Section 2.3.1 as an illustrative example. For cDMD
and csDMD, we use the (inverse) two-dimensional discrete Fourier transform as our basis B and
Gaussian random measurements C. Fig. 11 shows the results for cDMD and csDMD when re-
covering the first six modes plotted in Fig. 2. In the left and middle panels, we have shown the
mean eigenvalue error and the DMD mode error (computed as a subspace angle) averaged over
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Figure 12: DMD modes constructed using csDMD (Algorithm 6) with a 99.5% compression in the
dimension of the measurements.

20 random realizations. The errors quickly become negligible for p, r = O(10). In the right panel,
we have displayed the mean execution times on a standard laptop (without GPU) against the
eigenvalue error. Even for this simple example with rapidly decreasing singular values, cDMD
performs better than exact DMD, while rDMD is the clear winner.

Fig. 12 shows the modes computed by csDMD with p = 800, which corresponds to a 99.5%
compression in the dimension of the snapshot matrices. We employ the CoSaMP algorithm (Needell
& Tropp 2009) to perform the ℓ1-minimization step. When only compressed measurements are
available, it is still possible to reconstruct full-state modes using compressed sensing. However,
this typically requires more measurements and computational resources than cDMD or rDMD.

Sea surface data

We now consider high-resolution sea surface temperature (SST) data. SST data are widely stud-
ied in climate science for climate monitoring and prediction (Reynolds et al. 2007, 2002, Smith &
Reynolds 2005), and measurements are constructed by combining infrared satellite data with ob-
servations provided by ships and buoys. The data are available from the National Oceanic and
Atmospheric Administration at https://www.esrl.noaa.gov/psd/ for the years 1981 to 2023, with
a grid resolution of 0.25◦. Omitting data over land results in d = 691, 150 spatial grid points. The
following experiments, similar in spirit to (Erichson, Mathelin, Kutz & Brunton 2019), were per-
formed using a system with Intel(R) Xeon(R) Gold 6126 CPU at 2.60GHz (48 cores) and 767GiB
system memory.

We first consider a temporal resolution of one day and a data matrix X ∈ R691150×15097. Fig. 13
shows the eigenvalues and dynamic modes computed using exact DMD and rDMD (with r = 10),
demonstrating the accuracy of rDMD. The bottom left mode is reminiscent of an El Niño mode
generated from the El Niño-Southern Oscillation (ENSO). El Niño is the warm phase of the ENSO
cycle. It is associated with a band of warm ocean water that develops in the central and east-central
equatorial Pacific, including off the Pacific coast of South America (see also Fig. 15).

Next, we compare the accuracy and computational times for a temporal resolution of one
week and a data matrix X ∈ R691150×2156 of weekly averages. Fig. 14 shows the relative error
in the Frobenius norm of the reconstructed data matrix and time taken for exact DMD, rDMD,
and blocked rDMD (using four blocks). We observe substantial gains in computational time when
using rDMD while maintaining an accuracy similar to the full deterministic exact DMD.
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Figure 13: Eigenvalues and dynamic modes of the SST data set computed using exact DMD and
rDMD. The eigenvalue plot shows the unit circle as a black line.
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Figure 14: Left: Accuracy of exact DMD, rDMD, and batched rDMD for the SST data set. Middle:
the computational ties of each method. Right: the speedup of rDMD and batched rDMD com-
pared to exact DMD. All plots show the mean of 10 independent runs.

3.3 Multiresolution Dynamic Mode Decomposition (mrDMD)

Multiscale systems are widespread across various scientific disciplines. Modeling the interactions
between microscale and macroscale phenomena, which may differ by orders of magnitude either
spatially or temporally, poses a considerable challenge. Wavelet-based methods and windowed
Fourier transforms are well-suited for multiresolution analysis (MRA), as they systematically iso-
late temporal or spatial features through recursive refinement when sampling from the targeted
data (Daubechies 1992). Typically, MRA is employed separately in either space or time, but it is
seldom applied to both simultaneously.

Multiresolution DMD (mrDMD) (Kutz, Fu & Brunton 2016) integrates DMD with core princi-
ples from wavelet theory and MRA. It adjusts the sampling window of the data collection pro-
cess in line with wavelet theory, filtering information across various scales. The process is iter-
atively refined through progressively shorter snapshot sampling windows, leading to the recur-
sive extraction of DMD modes from slow to rapidly changing timescales. The benefits of this
approach include enhanced prediction of the near-future state of the system, which is vital for
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control; effective management of transient phenomena; and improved handling of moving (trans-
lating/rotating) structures within the data. The latter two points underscore significant challenges
inherent in standard DMD methods. The mrDMD algorithm has led to practical applications such
as determining optimal sensor placement (Manohar et al. 2019).

3.3.1 The algorithm

When using mrDMD, it is typical to work withM such that a full-rank approximation with r =M
in Algorithm 1 is feasible and such that high- and low-frequency content is present. We assume
that data is collected along a single time trajectory with time-step ∆t and express the eigenvalues
in terms of their time-scaled logarithms η = log(λ)/∆t. In the first pass, mrDMD separates the
approximation in (2.7) into slow modes and fast modes:

x(t) ≈
∑

|ηk|≤τ

ϕϕϕ
(1)
k exp(ηkt)b(k)

︸ ︷︷ ︸
slow modes

+
∑

|ηk|>τ

ϕϕϕ
(1)
k exp(ηkt)b(k)

︸ ︷︷ ︸
fast modes

, (3.3)

where ϕϕϕ(1)k = Φ(:, k), and the superscript (1) indicates the level. The first sum in the expression
(3.3) represents the slow-mode dynamics, whereas the second sum is everything else. How to
choose the slow modes is important in the practical implementation. In the original mrDMD
paper, it is suggested to set the threshold τ to select eigenvalues whose temporal behavior allows
for at most one wavelength to fit within the sampling window.

The fast modes in (3.3) can be collected into a data matrix XM/2, where we let m1 denote
the number of slow modes in (3.3). The matrix XM/2 is now split into two matrices, where the
first matrix contains the first M/2 snapshots, and the second matrix contains the remaining M/2
snapshots. The process is now repeated, where m2 slow modes are collected at the second level
and computed separately in the first and second intervals of snapshots. This process is repeated
to obtain the decomposition

x(t) ≈
m1∑

k=1

b
(1)
k ϕϕϕ

(1)
k exp(η

(1)
k t) +

m2∑

k=1

b
(2)
k ϕϕϕ

(2)
k exp(η

(2)
k t) +

m3∑

k=1

b
(3)
k ϕϕϕ

(3)
k exp(η

(3)
k t) + · · · ,

where the ϕϕϕ(ℓ)k and η(ℓ)k are the DMD modes and eigenvalues at the ℓth level of the decomposition,
the b(ℓ)k are the initial projections of the data onto the time interval of interest, and the mℓ are
the number of slow modes retained at each level. The idea is that different spatiotemporal DMD
modes are used to represent key multiresolution features. Thus, no single set of modes dominates
the SVD and potentially marginalizes features at other time scales.

We can make the mrDMD more precise, letting L denote the number of levels of the decom-
position. The solution is a sum with ℓ indexing the level, j = 1, . . . , 2(ℓ−1) indexing the time bins
[t
(ℓ)
j , t

(ℓ)
j+1] in each level and k = 1, . . . ,mℓ indexing the modes extracted at each level. To simplify

the sum, define the following indicator function

fℓ,j(t) =

{
1, if t ∈ [t

(ℓ)
j , t

(ℓ)
j+1]

0, otherwise
, so that xmrDMD(t) =

L∑

ℓ=1

2ℓ−1∑

j=1

mℓ∑

k=1

fℓ,j(t)b
(ℓ,j)
k ϕϕϕ

(ℓ,j)
k exp(η

(ℓ,j)
k t).

In particular, each mode is represented in its respective time bin and level. Alternatively, this
solution can be interpreted as yielding the least-squares fit to the dynamics within a given time
bin at each level of the decomposition.
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Numerous innovations enhance the practical implementation of mrDMD. Since only slow
modes matter within a window, we can limit sampling to a fixed number of points per window,
reducing the data matrix size for more manageable SVD computations. The sampling window lo-
cations are flexible, and smoothing their edges can prevent the Gibbs phenomenon due to abrupt
data cutoffs. One can also employ wavelet functions, like Haar, Daubechies, or Mexican Hat,
for the sifting function fℓ,j(t). Finally, overlapping windows prevent data loss during sampling.
A sliding window approach can robustly track data features, enabling pattern correlation across
windows akin to a Gabor transform-generated spectrogram.

3.3.2 Example

The following example is from (Kutz, Fu & Brunton 2016). We consider the global sea surface
temperature (see Section 3.2.3) with data that spans 20 years from 1990 to 2010. Fig. 15 illustrates
the outcomes of employing a 4-level mrDMD decomposition. At the first level, mrDMD identifies
two modes: the mean ocean temperature, denoted as ϕϕϕ(1,1)1 , and an annual cycle, represented
by ϕϕϕ(1,1)2 . Intriguingly, at the fourth level, the approximate zero mode of the sampling window
uncovers noteworthy phenomena; specifically, it isolates the 1997 El Niño event. In contrast, when
the same sampling window is applied to the year 1999, the El Niño mode is absent, aligning with
the recognized oceanic patterns of that year. These insights would not have been obtainable using
traditional DMD without pre-selecting the correct sampling windows. Moreover, even if such a
step were taken, the slow modes identified at the first level, as shown in Fig. 15 (a) and (b), would
pollute the data at the level of investigation. For additional techniques identifying approximate
eigenfunctions that provide a rectified representation of the ENSO and function as (approximate)
semi-conjugacies or factor maps with circle rotations, see (Froyland et al. 2021).

3.3.3 Nonautonomous systems

The use of mrDMD to detect transient behavior is tantalizing! Most DMD methods are designed
for autonomous dynamical systems, where the function F on the right-hand side of (1.1) has no
time dependence. However, there has been some recent initial work on nonautonomous systems,
and we expect this area to grow significantly over the next few years. Mezić & Surana (2016)
were the first to extend the Koopman operator framework to nonautonomous dynamical systems,
applying the methodology to linear-periodic and quasi-periodic nonautonomous systems. Gi-
annakis (2019) developed a strategy inspired by time-changed dynamical systems that involves
rescaling the generator; this can be applied to a class of time-changed mixing systems. Further
development of this approach, using delay-coordinate maps for recovering the dynamical sys-
tem on tori with multiple time scales, is presented in (Das & Giannakis 2019). The extraction of
spatiotemporal patterns using an extension of approximation techniques developed in (Giannakis
2019) on the space-time manifold defined as a skew-product structure is considered in (Giannakis
& Das 2020, Giannakis et al. 2019). For the online computation of windowed DMD using rank-
one updates, see Online DMD (Zhang et al. 2019). Maćešić et al. (2018) provides an error analysis
for DMD with moving stencils. For extensions to actuated systems, see (Williams et al. 2016, Bai
et al. 2020). Redman et al. (2023) develop an episodic memory approach that saves spectral ob-
jects associated with temporally local approximations of the Koopman operator, and utilizes this
information to make new predictions. Nonautonomous systems have also been studied using
transfer operators, which are the dual of Koopman operators (see the discussion in Section 6.1),
and space-time manifolds (Froyland & Koltai 2023).
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Figure 15: Application of mrDMD on sea surface temperature data from 1990 to 2010. The left
panel illustrates the process for a 4-level decomposition. At each level, the slowest modes are
extracted. Mode (c) clearly shows the El Niño mode of interest that develops in the central and
east-central equatorial Pacific. The El Niño mode was absent in 1999, as is clear from mode (d).
Reproduced with permission from (Kutz, Fu & Brunton 2016), copyright © 2016 Society for Indus-
trial and Applied Mathematics, all rights reserved.

3.4 Control

One of the most successful applications of the Koopman operator framework lies in control (Mau-
roy et al. 2020, Otto & Rowley 2021), with demonstrated successes in various challenging appli-
cations. These include fluid dynamics (Arbabi et al. 2018, Peitz & Klus 2020), robotics (Abraham
et al. 2017, Bruder et al. 2019, Mamakoukas et al. 2019, Haggerty et al. 2023), power grids (Korda
et al. 2018, Netto & Mili 2018), biology (Hasnain et al. 2020), and chemical processes (Narasingam
& Kwon 2019). The key point is that Koopman operators represent nonlinear dynamics within a
globally linear framework. This approach leads to tractable convex optimization problems and
circumvents theoretical and computational limitations associated with nonlinearity. Moreover, it
is amenable to data-driven, model-free approaches (Proctor et al. 2016, Williams et al. 2016, Korda
& Mezić 2018a, Proctor et al. 2018, Surana 2016, Kaiser et al. 2021, 2018a, Peitz & Klus 2019, Abra-
ham & Murphey 2019). The resulting models reveal insights into global stability properties (Sootla
& Mauroy 2016, Mauroy & Mezić 2016), observability/controllability (Vaidya 2007, Goswami &
Paley 2017, Yeung et al. 2018), and sensor/actuator placement (Sinha et al. 2016, Sharma et al.
2019) for the underlying nonlinear systems.

Koopman operator theory was first extended to actuated systems by Mezić & Banaszuk (2004),
with stochastic forcing interpreted as actuation. Proctor et al. (2016) developed the first control
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Algorithm 9 DMD with control (Proctor et al. 2016).

Input: Snapshot data X ∈ Cd×M , Y ∈ Cd×M and Υ ∈ Cq×M , ranks r, p ∈ N.

1: Compute a truncated SVD of the input matrix
(
X
Υ

)
≈ ŨΣ̃Ṽ∗, Ũ ∈ C(d+q)×p, Σ̃ ∈ Rp×p,

Ṽ ∈ CM×p. Break up the matrix Ũ into Ũ∗ = [Ũ∗
1 Ũ

∗
2] where Ũ1 ∈ Cd×p and Ũ2 ∈ Cq×p.

2: Compute a truncated SVD of Y ≈ ÛΣ̂V̂∗, Û ∈ Cd×r, Σ̂ ∈ Rr×r, V̂ ∈ CM×r.

3: Compute the compressions Ã = Û∗YṼΣ̃−1Ũ∗
1Û ∈ Cr×r and B̃ = Û∗YṼΣ̃−1Ũ∗

2 ∈ Cr×q.
4: Compute the eigendecomposition ÃW = WΛ. The columns of W are eigenvectors and Λ is

a diagonal matrix of eigenvalues.
5: Compute the modes Φ = YṼΣ̃−1Ũ∗

1ÛW.

Output: The eigenvalues Λ and modes Φ ∈ Cd×r.

schemes based on DMD. A significant strength of DMD is the ability to describe complex and
high-dimensional dynamical systems with a few dominant modes. Reducing the system’s dimen-
sionality enables faster and lower-latency prediction and estimation, leading to high-performance,
robust controllers.

3.4.1 Dynamic Mode Decomposition with Control (DMDc)

We will focus on the DMD with control (DMDc) algorithm (Proctor et al. 2016). DMDc extends
DMD to disambiguate between unforced dynamics and the effect of actuation. The DMD regres-
sion of Section 2.2.1 is generalized to

xn+1 = F(xn,un) ≈ Axn +Bun,

where un ∈ Cq is a vector of control inputs for each time-step. Here A ∈ Cd×d and B ∈ Cd×q are
unknown matrices. Snapshot triplets of the form {x(m),y(m),u(m)}Mm=1 are collected, where we
assume that

y(m) ≈ F(x(m),u(m)), m = 1, . . . ,M.

The control portion of the snapshots is arranged into the matrix Υ =
(
u(1) u(2) · · · u(M)

)
∈ Cq×M .

The optimization problem in (2.6) is replaced by

min
(A B)

∥Y − (A B)Ω∥2F , where Ω =

(
X
Υ

)
∈ C(d+q)×M .

A solution is given as (A B) = YΩ†. In practice, we seek a reduced-order model by performing
a truncated SVD on both the input and output space. The full algorithm is summarized in Algo-
rithm 9 and is an extension of Algorithm 1. DMDc has been used with Model-Predictive Control
(MPC) for enhanced control of nonlinear systems in (Korda & Mezić 2018a, Kaiser et al. 2018b),
with the DMDc method performing surprisingly well, even for strongly nonlinear systems. Ex-
tensions are discussed in Section 3.4.3.

3.4.2 Example

We illustrate DMDc for system identification on a high-dimensional, linear system with spec-
tral sparsity following (Proctor et al. 2016, Section 4.3). We consider a two-dimensional torus
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Figure 16: True eigenvalues of the torus example and those computed by DMDc and exact DMD.
The logarithm of the eigenvalues are plotted to align with the continuous-time system.

discretized by a 128 × 128 equispaced grid such that x ∈ R128×128 ∼= R16384. Taking the two-
dimensional discrete Fourier transform of x, we obtain x̂. The system evolves according to

x̂n+1 = Âx̂n + B̂ûn.

Here, Â is a diagonal matrix with five non-zero entries representing the modes, each with a ran-
domly chosen frequency and small damping. The random input signal, û, is one-dimensional
and directly influences the sparse modes, resulting in a localized negative control input when
transformed back to the spatial domain. This back-transformation yields our dynamical system
in physical space. The system is constructed by sampling a continuous-time system at time steps
of ∆t = 0.01. We collect M = 400 snapshots of the data for our analysis. Further details of this
system can be found in (Brunton, Proctor, Tu & Kutz 2016).

Fig. 16 displays the true eigenvalues alongside those computed by DMDc and exact DMD.
Ten eigenvalues are present in conjugate pairs due to processing real-valued data. DMDc demon-
strates greater accuracy than exact DMD, which inaccurately estimates some eigenvalues and gen-
erates unstable modes. The true DMD modes for this system appear at the top Fig. 17. The DMDc
modes in the middle row align almost perfectly with the true modes. The subspace angle between
the true modes and the DMDc-computed modes is on the order of machine precision. In contrast,
the modes produced by exact DMD show significant distortion.

3.4.3 Extensions and connection with Koopman operators

Koopman theory has been used in combination with the Linear Quadratic Regulator (LQR) (Brun-
ton, Brunton, Proctor & Kutz 2016, Mamakoukas et al. 2019, 2021), state-dependent LQR (Kaiser
et al. 2021), and MPC (Korda & Mezić 2018a, Kaiser et al. 2018b). Other noteworthy directions in-
clude optimal control for switching control problems (Peitz & Klus 2019, 2020), Lyapunov-based
stabilization (Huang et al. 2018, 2020), eigenstructure assignment (Hemati & Yao 2017), and ac-
tive learning (Abraham & Murphey 2019). Additionally, deep learning architectures have been
employed to represent the nonlinear observables in combination with MPC (Li et al. 2019), see
also (Liu et al. 2018, Han et al. 2020), and (Peitz & Klus 2019, Peitz et al. 2020, Klus, Nüske, Peitz,
Niemann, Clementi & Schütte 2020) for parametrized models.

Koopman theory is closely related to Carleman linearization (Carleman 1932), which embeds
finite-dimensional dynamics into infinite-dimensional linear systems using a polynomial basis.
Carleman linearization has been used for decades to obtain truncated linear (and bilinear) state
estimators (Krener 1974, Brockett 1976) and to examine stability, observability, and controllability
of the underlying nonlinear system (Loparo & Blankenship 1978).

38



Tr
u

e 
M

o
d

e
D

M
D

c
ex

ac
tD

M
D

Figure 17: The true DMD modes for the torus example, alongside those computed by DMDc and
exact DMD. The modes obtained from DMDc are accurate to machine precision, whereas those
computed using exact DMD are significantly distorted.

The DMDc framework may be extended to nonlinear observables using EDMD (see Section 4),
an approach called eDMDc (Williams et al. 2016). Korda & Mezić (2018a) integrated eDMDc into
MPC. Here, the Koopman operator is characterized as an autonomous operator on the extended
state vector (x⊤,u⊤)⊤, with observables that may be nonlinear functions of both the state and
the input. In practical applications, simplifications are employed to ensure the control problem
remains convex (Korda & Mezić 2018a, Proctor et al. 2018). This method has been applied for
control in the coordinates of Koopman eigenfunctions (Kaiser et al. 2021, 2018a, Folkestad et al.
2020) and in interpolated Koopman models (Peitz 2018, Peitz et al. 2020). Convergence can be
established under the assumption of an infinite amount of data and an infinite number of basis
functions. Koopman Lyapunov-based MPC guarantees closed-loop stability and controller fea-
sibility (Narasingam & Kwon 2019, Son et al. 2020). However, general guarantees regarding the
optimality, stability, and robustness of the controlled dynamical system are still limited.

The Koopman operator’s eigenfunctions (or approximate eigenfunctions) are a natural choice
of observables due to their simple temporal behavior. It is crucial to validate computed eigen-
functions to ensure that their evolution is consistent with the predictions of their associated eigen-
values, particularly for prediction tasks. They have been used for observer design within the
Koopman canonical transform (Surana 2016, Surana & Banaszuk 2016) and within the Koopman
reduced-order nonlinear identification and control framework (Kaiser et al. 2021), which both
typically yield a global bilinear representation of the underlying system. Subsequent research has
focused on directly identifying Koopman eigenfunctions (Korda & Mezić 2020, Pan et al. 2021)
and approximate invariant subspaces (Haseli & Cortés 2023).

The efficacy of Koopman-based MPC is currently at odds with the difficulties of approximat-
ing the Koopman operator and its spectra. Only a limited number of systems with a known
Koopman-invariant subspace and verifiable eigenfunctions exist for model analysis and evalua-
tion. Furthermore, the linearity of Koopman eigenfunctions is seldom validated. Nevertheless,
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Koopman-based MPC demonstrates remarkable resilience with models of marginal predictive
ability. Despite notable successes, understanding how well the Koopman operator is actually
approximated and producing error bounds remains largely incomplete.

4 Variants from the Galerkin Perspective

We now explore variants of DMD from the Galerkin (or projection) perspective, building on the
connection established in Section 2.2.2. This approach particularly focuses on addressing the
infinite-dimensional nature of Koopman operators. Given that a Koopman operator transforms a
finite-dimensional nonlinear system into an infinite-dimensional linear one, a significant part of
this section will address nonlinear observables. We will concentrate on three methods designed to
tackle these challenges:

• Extended DMD: This represents a fundamental extension of DMD that treats it as a Galerkin
method.14 In particular, it introduces nonlinear observables to form a dictionary, which gen-
erates a subspace within L2(Ω, ω). Adopting the Galerkin perspective enables the applica-
tion of numerical tools for addressing infinite-dimensional spectral problems. However, the
well-studied challenges of infinite-dimensional spectral computations are significant. Gen-
erally, EDMD will not converge to the spectral properties of the Koopman operator, either
theoretically or practically (see Section 4.1.3 and common pitfalls in Section 4.3).

• Time-delay Embedding: This technique is commonly used to construct a dictionary of ob-
servables for EDMD and generates a Krylov subspace. Our focus will be on two methods:
Hankel-DMD, which is a widely used technique suitable for ergodic systems that have a
low-dimensional attractor, and HAVOK (Hankel Alternative View Of Koopman) analysis,
which produces a linear model using the leading delay coordinates and includes forcing
terms represented by low-energy delay coordinates.

• Residual DMD: This algorithm computes verified spectral properties of Koopman opera-
tors via an infinite-dimensional residual corresponding to the projection error of (E)DMD.
This residual is computed from the snapshot data by augmenting EDMD with an additional
matrix. This leads to the computation of spectra and pseudospectra without spectral pollu-
tion (general systems) and can be used to compute spectral measures (measure-preserving
systems). Since the algorithms have error control, ResDMD allows aposteri verification of
spectral quantities, Koopman mode decompositions, and learned dictionaries.

4.1 Nonlinear observables: Extended Dynamic Mode Decomposition (EDMD)

The standard DMD algorithm can accurately characterize periodic and quasi-periodic behaviors
in nonlinear systems. However, DMD models based on linear observables generally fail to capture
truly nonlinear phenomena. To address this limitation, Williams et al. (2015) introduced Extended
DMD (EDMD), which also elucidated the interpretation of DMD as a Galerkin method. Specif-
ically, they demonstrated that EDMD converges to the numerical approximation obtained by a
Galerkin method in the limit of large data sets. Prior research in a similar vein includes (H. Tu
et al. 2014). Moreover, the connection between EDMD and the earlier variational approach of con-
formation dynamics (Noé & Nüske 2013, Nüske et al. 2014) from molecular dynamics is explored
in (Wu et al. 2017, Klus, Nüske, Koltai, Wu, Kevrekidis, Schütte & Noé 2018).

14Though once nonlinear observables have been chosen, one can also apply the regression interpretation of Section 3.
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4.1.1 The algorithm

Following the discussion of Koopman operators in Section 2.1, the objective of EDMD is to ap-
proximate the Koopman operator with a matrix. For the sake of simplicity, the initial formulation
of EDMD assumes that the columns of the snapshot matrix X are independently sampled from the
distribution ω. In our discussion, we extend EDMD to accommodate any given snapshot matrices

X =
(
x(1) x(1) · · · x(M)

)
and Y =

(
y(1) y(1) · · · y(M)

)
,

and consider the x(m) as quadrature nodes used for integration with respect to ω. This adaptability
permits the application of various quadrature weights tailored to the specific scenario. It will be
shown that EDMD generalizes the setup of Section 2.2.2.

One first chooses a dictionary {ψ1, . . . , ψN}, i.e., a list of observables, in the space L2(Ω, ω).
These observables form a finite-dimensional subspace VN = span{ψ1, . . . , ψN}. EDMD selects a
matrix K ∈ CN×N that approximates the action of K confined to this subspace. We desire that

[Kψj ](x) = ψj(F(x)) ≈
N∑

i=1

Kijψi(x), 1 ≤ j ≤ N.

Define the vector-valued feature map

Ω ∋ x 7→ Ψ(x) =
[
ψ1(x) · · · ψN (x)

]
∈ C1×N .

Any g ∈ VN can be written as g(x) =
∑N

j=1 ψj(x)gj = Ψ(x)g for some vector g ∈ CN . Hence

[Kg](x) = Ψ(F(x))g = Ψ(x)(Kg) +




N∑

j=1

ψj(F(x))gj −Ψ(x)(Kg)




︸ ︷︷ ︸
=:R(g,x)

.

Typically, VN is not an invariant subspace of K. Hence, there is no choice of K that makes R(g,x)
zero for all g ∈ VN and ω-almost every x ∈ Ω. Instead, it is natural to select K as a solution of

min
K∈CN×N

{∫

Ω
max

g∈CN ,∥Cg∥ℓ2=1
|R(g,x)|2 dω(x) =

∫

Ω

∥∥Ψ(F(x))C−1 −Ψ(x)KC−1
∥∥2
ℓ2

dω(x)

}
. (4.1)

Here, ∥·∥ℓ2 denotes the standard Euclidean norm of a vector, and C is a positive self-adjoint matrix
that controls the size of g = Ψg. One should think of this C as choosing an appropriate norm.
This is important since not all norms on an infinite-dimensional vector space are equivalent (for
an example in DMD analysis of fluid flow, see (Colbrook 2023, Figure 7)).

In practical, data-driven contexts, it is not possible to directly evaluate the integral in (4.1).
Instead, we approximate it via a quadrature rule with nodes {x(m)}Mm=1 and weights {wm}Mm=1.
For notational convenience, let D = diag(w1, . . . , wM ) and

ΨX =




Ψ(x(1))
...

Ψ(x(M))


 ∈ CM×N , ΨY =




Ψ(y(1))
...

Ψ(y(M))


 ∈ CM×N . (4.2)
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The discretized version of (4.1) is the following weighted least-squares problem:

min
K∈CN×N

{
M∑

m=1

wm

∥∥∥Ψ(y(m))C−1 −Ψ(x(m))KC−1
∥∥∥
2

ℓ2
=

∥∥∥D1/2ΨY C
−1 −D1/2ΨXKC−1

∥∥∥
2

F

}
,

(4.3)
where we remind the reader that ∥ · ∥F denotes the Frobenius norm. By reducing the size of
the dictionary if necessary, we may assume without loss of generality that D1/2ΨX has rank N .
For example, we can do this in DMD by projecting onto POD modes. Regularization through a
truncated singular value decomposition may also be considered. A solution to (4.3) is

K = (D1/2ΨX)†D1/2ΨY = (Ψ∗
XDΨX)†Ψ∗

XDΨY ,

where ‘†’ denotes the pseudoinverse. The second equality follows since D1/2ΨX has linearly
independent columns. Note that this solution is independent of the matrix C. However, a suitable
choice of C is vital once we add constraints to the optimization problem in (4.1), see Section 5.2.1.
As observed in Section 2.2.2, if the quadrature weights are equal and Ψ =

[
u1 · · · ur

]
constitutes

an appropriate linear dictionary, then K is the transpose of the DMD matrix. Conceptually, DMD
can be regarded as a particular instance of EDMD employing a set of linear basis functions.

We now generalize Section 2.2.2 by defining the two correlation matrices

G = Ψ∗
XDΨX =

M∑

m=1

wmΨ(x(m))∗Ψ(x(m)), A = Ψ∗
XDΨY =

M∑

m=1

wmΨ(x(m))∗Ψ(y(m)). (4.4)

If we consider the discrete measure ωM =
∑M

m=1wmδx(m) , then

Gjk =

∫

Ω
ψj(x)ψk(x) dωM (x), Ajk =

∫

Ω
ψj(x)ψk(F(x)) dωM (x).

If the quadrature converges, then

lim
M→∞

Gjk = ⟨ψk, ψj⟩ and lim
M→∞

Ajk = ⟨Kψk, ψj⟩, (4.5)

where ⟨·, ·⟩ is the inner product associated with L2(Ω, ω). Hence, in the large data limit, K = G†A
approaches a matrix representation of PVN

KP∗
VN

, where PVN
denotes the orthogonal projection

onto VN . In essence, EDMD is a Galerkin method. The EDMD eigenvalues thus approach the
spectrum of PVN

KP∗
VN

, and EDMD is an example of the so-called finite section method (Böttcher &
Silbermann 1983)(Mezić 2022, Section 4). Since the finite section method can suffer from spectral
pollution (spurious modes), spectral pollution is a concern for EDMD (Williams et al. 2015). We
saw an explicit example in Section 2.3.3. See also (Mezić 2022, Example 2) for the worked example
F(x) = x2 on the circle.

Algorithm 10 summarizes the procedure for computing eigenvalues and eigenvectors. We can
also use EDMD to compute Koopman modes. Given an observable g = Ψg ∈ VN , we may expand
g in terms of the eigenvectors of K as

g = Ψg = ΨV
[
V−1g

]
, (4.6)

where V is the matrix of eigenvectors of K with eigenvalues {λj}Nj=1. Similarly, for general g ∈
L2(Ω, ω)\VN , we obtain an approximate expansion

g ≈ ΨV

[
V−1(D1/2ΨX)†D1/2

(
g(x(1)), . . . , g(x(M))

)⊤
]
. (4.7)
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Algorithm 10 The EDMD algorithm (Williams et al. 2015).

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , quadrature weights {wm}Mm=1, and a dictionary
of functions {ψj}Nj=1.

1: Compute the matrices ΨX and ΨY defined in (4.2) and D = diag(w1, . . . , wM ).
2: Compute the EDMD matrix K = (D1/2ΨX)†D1/2ΨY ∈ CN×N .
3: Compute the eigendecomposition KV = VΛ.

The columns of V are eigenvector coefficients and Λ is a diagonal matrix of eigenvalues.
Output: The eigenvalues Λ and eigenvector coefficients V ∈ CN×N .

This expansion is called the KMD of g.15 With an abuse of notation, if g /∈ VN , we set

g = (D1/2ΨX)†D1/2
(
g(x(1)), . . . , g(x(M))

)⊤
.

As M → ∞, assuming that the quadrature rule underlying EDMD converges, the approximation
g ≈ Ψg converges to the projected observable PVN

g. As a particular case, we can vectorize and
obtain

x ≈ Ψ(x)V

[
V−1(D1/2ΨX)†D1/2

(
x(1), . . . ,x(M)

)⊤
]
.

The jth row of the matrix in square brackets is known as the jth Koopman mode, which we denote
as ξξξj ∈ C1×d. Generalizing (2.7), the KMD provides an approximation of the dynamics by

xn ≈ Ψ(x0)K
nV



ξξξ1
...
ξξξN


 = Ψ(x0)VΛn



ξξξ1
...
ξξξN


 =

N∑

j=1

Ψ(x0)V(:, j)λnj ξξξj .

Similarly, for general g, we obtain

g(xn) ≈ Ψ(x0)K
nVV−1g = Ψ(x0)Vλ

nV−1g =
N∑

j=1

Ψ(x0)V(:, j)λnj [V
−1g]j ,

which includes the triple of Koopman eigenvectors, eigenvalues, and modes.

4.1.2 Choices of dictionary

We have already met two examples of EDMD in this review: the Lorenz system discussed in Sec-
tion 2.3.2, where a dictionary was constructed from delay embedding, and the Duffing oscillator
discussed in Section 2.3.3, where we utilized a dictionary of radial basis functions. The selection
of the dictionary significantly affects the efficacy of EDMD. In their original formulation, Williams
et al. (2015) suggest various dictionary choices, such as polynomials, Fourier modes, spectral el-
ements, and radial basis functions. Subsequent extensions have primarily focused on addressing
the challenges of large state-space dimensions and mitigating the curse of dimensionality.

Kernelized EDMD (O. Williams et al. 2015) (developed in parallel in (Kawahara 2016)) uses the
kernel trick (Scholkopf 2001) to perform EDMD with a choice of dictionary determined implicitly

15Unfortunately, there are numerous meanings of the term KMD in the literature. There is the KMD of Mezić (2005),
which we discussed in Section 2.1.2 and is based on the spectral theorem for unitary Koopman operators. There is
also the (typically approximate) KMD produced by DMD and EDMD.
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by a choice of a kernel function. This approach can help circumvent the curse of dimensional-
ity and can be very effective when the state-space dimension d is large. Numerous papers have
been written on the approximation of Koopman operators in a RKHS (Klus, Bittracher, Schuster
& Schütte 2018, Fujii & Kawahara 2019, DeGennaro & Urban 2019, Alexander & Giannakis 2020,
Das & Giannakis 2020, Klus, Schuster & Muandet 2020, Klus, Nüske & Hamzi 2020, Mezić 2020,
Burov et al. 2021, Baddoo et al. 2022, Kostic et al. 2022, Khosravi 2023, Philipp et al. 2023). This also
includes methods for continuous-time dynamical systems (Das et al. 2021, Rosenfeld et al. 2022).
A challenge associated with RKHS techniques is that a general RKHS does not exhibit invariance
under the action of the Koopman operator. This situation renders the selection of a reproducing
kernel a delicate task. Ideally, one should choose the kernel so that the Koopman operator on the
RKHS is not only densely defined but also closable. Finding such a kernel is generally non-trivial,
as indicated in (Ikeda et al. 2022).

Kernel analog forecasting (KAF) (Zhao & Giannakis 2016) is a kernel method used for non-
parametric statistical forecasting of dynamically generated time series data. Under measure-
preserving and ergodic dynamics, KAF consistently approximates the conditional expectation of
observables that are acted upon by the Koopman operator of the dynamical system and are con-
ditioned on the observed data at forecast initialization (Alexander & Giannakis 2020). KAF yields
optimal predictions in the sense of minimal root mean square error with respect to the invariant
measure in the asymptotic limit of large data. This connection facilitates the analysis of general-
ization error and uncertainty quantification. KAF has been used with streaming kernel regression
(Giannakis et al. 2023) and for multiscale systems (Burov et al. 2021).

Diffusion forecasting (Berry et al. 2015) uses the diffusion maps algorithm (Coifman & Lafon
2006) to construct a data-driven basis. Leveraging spectral convergence results for kernel inte-
gral operators (Garcı́a Trillos et al. 2020, von Luxburg et al. 2008), this approach produces a well-
conditioned and consistent approximation as both the amount of training data and the number
of basis functions increase. Giannakis et al. (2015), Giannakis (2019) use the diffusion forecast-
ing technique in a framework that approximates the generator L of measure-preserving ergodic
flows on manifolds by an advection-diffusion operator Lτ = L − τ∆, where τ is a regularization
parameter, and ∆ is a Laplace-type diffusion operator. A Galerkin method was developed for
the eigenvalue problem of Lτ , which was observed to perform efficiently for systems with a pure
point spectrum, such as ergodic rotations on tori. The most straightforward case for analyzing
the spectral properties of diffusion-regularized generators arises when the regularizing operator
∆ commutes with L. Das & Giannakis (2019), Giannakis (2019) demonstrated that a commuting
operator ∆ can be derived from the infinite-delay limit of a family of kernel integral operators
constructed using time-delay embedding.

Another prevalent method involves training neural networks as a suitable dictionary to con-
struct Koopman forecasts, as demonstrated in several studies (Li et al. 2017, Takeishi, Kawahara
& Yairi 2017a, Wehmeyer & Noé 2018, Yeung et al. 2019, Azencot et al. 2020, Eivazi et al. 2021,
Li & Jiang 2021, Alford-Lago et al. 2022). This approach is typically implemented in two ways:
by identifying a few key latent variables or by lifting to a higher-dimensional input space. Varia-
tional autoencoders (VAMPnets) have been employed for stochastic dynamical systems such as in
molecular dynamics (Mardt et al. 2018, Wehmeyer & Noé 2018), wherein the mapping back to the
physical configuration space from the latent variables is probabilistic. The integration of Koop-
man analysis with graph convolutional neural networks has been explored to learn the dynamics
of atoms within materials (Xie et al. 2019). Lusch et al. (2018) employ an auxiliary network to pa-
rameterize the continuously varying spectral parameter, enabling a network structure that offers
both parsimony and interpretability. A notable challenge when incorporating EDMD with neural
networks is the trade-off between representing data accurately and the potential for overfitting,
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particularly with limited data. To address this issue, Otto & Rowley (2019) proposed an architec-
ture that combines an autoencoder with linear recurrent dynamics in the encoded space. Beyond
employing neural networks for learning Koopman embeddings, Koopman theory has also been
applied to understand the behavior of neural networks themselves (Manojlović et al. 2020, Dogra
& Redman 2020) and algorithms more broadly (Dietrich et al. 2020, Redman et al. 2022).

4.1.3 Convergence theory

We now outline the convergence theory for EDMD. Unfortunately, the type of convergence (in
the strong operator topology) is too weak to ensure the convergence of spectral properties. To
take into account the snapshot data and dictionary, we let KN,M denote the EDMD matrix. When
considering the convergence of EDMD and related methods, there are two limits of interest:

• The large-data limit which corresponds to M → ∞;

• The large-subspace limit which corresponds to N → ∞.

To compute the spectral properties of K, a double limit

lim
N→∞

lim
M→∞

KN,M

must be considered. Generally, these limits do not commute. More broadly, the use of succes-
sive limits is a common occurrence in spectral problems and other areas of scientific computation
and cannot be overcome regardless of the choice of algorithm (Colbrook 2020, 2022, Colbrook &
Hansen 2022, Ben-Artzi et al. 2020).

We saw above that if the quadrature rule converges, i.e., (4.5) holds, then limM→∞KN,M = KN

is a Galerkin matrix. There are essentially three options for the quadrature rule:

• Random sampling: We may draw x(m) at random according to a probability measure that
is absolutely continuous with respect to ω, and select the quadrature weights according to
the corresponding Radon–Nikodym derivative. This was essentially observed in (Williams
et al. 2015). Convergence holds with probability one (Klus et al. 2016, Section 3.4) provided
that ω is not supported on a zero level set that is a linear combination of the dictionary (Ko-
rda & Mezić 2018b, Section 4). The convergence rate is typically O(M−1/2) (Caflisch 1998),
but is a practical approach if the state-space dimension is large. One could also consider
quasi-Monte Carlo integration, which can achieve a faster rate of O(M−1) (up to logarithmic
factors) under suitable conditions (Caflisch 1998).

• Ergodic sampling: If the system is ergodic, then we can replace the strong law of large
numbers with Birkhoff’s Ergodic theorem (Birkhoff 1931):

lim
n→∞

1

n

n−1∑

j=0

[Kjg](x0) = lim
n→∞

1

n

n−1∑

j=0

g(xj) =

∫

Ω
g(x) dω(x) ∀g ∈ L1(Ω, ω). (4.8)

We may select x(m) = xm−1 from a single trajectory starting at ω-almost any initial condition
x0 and wm = 1/M . Often, the measures are ‘physical,’ meaning that the set of initial points
with convergence has a positive Lebesgue measure.16 For example, taking g = [Kψk] · ψj in

16There is also the notion of SRB measure, which often coincides. For a survey of these measures and their definitions,
see (Young 2002).
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(4.8), we obtain

lim
M→∞

1

M

M−1∑

n=0

ψk(xn+1)ψj(xn)

︸ ︷︷ ︸
=Ajk

= ⟨Kψk, ψj⟩.

Convergence in this scenario is analyzed in (Arbabi & Mezić 2017a, Korda & Mezić 2018b).
The convergence rate in M is problem dependent (Kachurovskii 1996, Mezić & Sotiropou-
los 2002). For periodic and quasi-periodic attractors, the error of approximating the inner
products is generally O(M−1). For strongly mixing systems, the rate of convergence slows
down to O(M−1/2). However, convergence rates cannot be established for the general class
of ergodic systems. For convergence rates of von Neumann’s ergodic theorem in the context
of Koopman operators, see (Aloisio et al. 2022).

• High-order quadrature: If the statespace dimension d is not too large and Ω is sufficiently
simple, it can be effective to choose {(x(m), wm)} according to a high-order quadrature rule.
Even changing the weights {wm} for a fixed set of sample points {x(m)} can lead to a con-
siderable acceleration of the convergence (Colbrook & Townsend 2023).

Colbrook, Li, Raut & Townsend (2023) provide concentration bounds on the error of the finite
M EDMD matrix. Mollenhauer et al. (2022) provide a rigorous analysis of kernel autocovariance
operators, including nonasymptotic error bounds under classical ergodic and mixing assump-
tions. Nüske et al. (2023) presented the first rigorously derived probabilistic bounds on the finite-
data approximation error for the truncated Koopman generator of stochastic differential equations
(SDEs) and nonlinear control systems. Two settings were analyzed: independent and identically
distributed sampling and ergodic sampling, where it was assumed that the Koopman semigroup
is exponentially stable for the latter. Lu & Tartakovsky (2020b) provide bounds for parabolic PDEs.

Suppose the quadrature rule converges and we have passed to the limit M → ∞. Korda &
Mezić (2018b) show that under a natural density assumption of VN as N → ∞, KN converges
strongly to K for bounded Koopman operators. This means that

lim
N→∞

∥Kg −ΨKNPVN
g∥L2(Ω,ω) = 0 ∀g ∈ L2(Ω, ω), (4.9)

where, with an abuse of notation, PVN
g denotes the vector of coefficients of PVN

g. It is straightfor-
ward to drop the assumption that K is bounded by making natural assumptions on the dictionary
and considering g in the domain of K (Colbrook & Townsend 2023). Unfortunately, strong con-
vergence is insufficient to ensure that the spectral properties of KN converge to that of K - Mezić
(2022) provides an explicit example. We also saw an example of this effect in Section 2.3.3. In
Section 4.3, we will show how Residual DMD provides convergence and error control in the final
limit N → ∞.

4.1.4 Infinitesimal generators

Several methods have also been proposed for continuous-time systems and approximating the
Koopman infinitesimal generator defined in (2.8). For example, generator EDMD (gEDMD) (Klus,
Nüske, Peitz, Niemann, Clementi & Schütte 2020) uses time derivatives of the dictionary to extend
EDMD to compute the generator, see also (Klus, Nüske & Hamzi 2020, Rosenfeld et al. 2022).
Other methods include computing the matrix logarithm of the Koopman operator (Mauroy &
Goncalves 2020, Drmač et al. 2021), approximating the Koopman operator family, and using finite-
differences to compute the Lie derivative of the Koopman operator (Giannakis 2021, Sechi et al.
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Figure 18: Left: EDMD eigenvalues computed over the entire state space. Middle: Eigenfunction
that parametrizes the basins of attraction. Right: EDMD eigenvalues obtained after restricting the
process to one basin of attraction. The powers of the dominant damped mode are shown in blue.

2021). Finally, Das & Giannakis (2019), Giannakis (2019), Giannakis & Das (2020) approach the
problem of approximating both the Koopman and its generator as a manifold-learning problem on
a space-time manifold. This challenge was successfully addressed for ergodic dynamical systems,
such as those evolving on a chaotic attractor.

4.1.5 Example

As an example of EDMD, we revisit the Duffing oscillator from Section 2.3.3 but follow the exper-
iment of Williams et al. (2015) closely. Namely, we consider the damped system:

ẋ = y, ẏ = −0.5y + x− x3.

In this regime, there are two stable spirals at (±1, 0) and a saddle at the origin. Almost every
initial condition, except those on the stable manifold of the saddle, is drawn to one of the spirals.
We collect trajectory data and form the dictionary of observables {ψj}Nj=1 in the same manner as
before. Fig. 18 (left) shows the eigenvalues computed using EDMD with N = 2000. The system
is now damped, and there is a lattice structure of dominant but damped modes, {λn1 , λ1

n
: n ∈

N, λ1 ≈ 0.8831 + 0.3203i} shown in blue. The lattice structure can be understood as follows: if
g and f are eigenfunctions of K corresponding to eigenvalues λ and µ, respectively, and if the
product fg is within the function space that forms the domain of K, then

[K(fg)](x) = f(F(x))g(F(x)) = [Kf ](x)[Kg](x) = λµf(x)g(x).

Namely, further eigenvalues and eigenfunctions can be constructed by taking products.
For this system, the eigenspace corresponding to λ = 1 is spanned by the constant function

and the indicator function of the invariant set corresponding to the two basins of attraction. This
is illustrated in the middle of Fig. 18. Utilizing the level sets of this eigenfunction, we limit the
data to the basin of (−1, 0) and rerun the process to compute a new dictionary. The resulting
EDMD eigenvalues are displayed on the right side of Fig. 18, where the eigenvalue λ31 is now
more distinctly observable. In Fig. 19, we plot the eigenfunctions corresponding to the powers λ1,
λ21, λ31, and λ41 of the fundamental eigenvalue. Note that the eigenfunctions are successive powers
of one another. Furthermore, the amplitude and phase of a Koopman eigenfunction are analogous
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Figure 19: Top row: Absolute value of eigenfunction. Bottom row: Complex argument of eigen-
function. Left to write: Eigenfunctions corresponding to powers λ1, λ21, λ31 and λ41 of the funda-
mental eigenvalue λ1.

to an ’action–angle’ parametrization of the basin of attraction. The level sets of the absolute val-
ues of the eigenfunctions are the so-called isostables, while the level sets of the arguments of the
eigenfunctions are termed isochrons (Mauroy et al. 2013).

4.2 Time-delay embedding

In many applications, only partial observations of the system are available, leading to hidden or
latent variables. Additionally, the explicit construction of a robust nonlinear dictionary can be
challenging, particularly when the system evolves on a low-dimensional attractor that may be
unknown or fractal. Nevertheless, it is often feasible to utilize time-delayed measurements of the
system to construct an augmented state vector. This approach yields an intrinsic coordinate sys-
tem that is hoped to form an approximate invariant subspace. This technique was discussed in
Section 2.3.2, where it was justified by Takens’ embedding theorem (Takens 2006). Mezić & Ba-
naszuk (2004) established the connection between delay embeddings and the Koopman operator
via a statistical Takens’ embedding theorem.

Employing the same time step for both the delay interval and the frequency of measurements
results in a data matrix with a Hankel structure. Hankel matrices have been used in system iden-
tification for decades, as seen in the eigensystem realization algorithm (Juang & Pappa 1985) and
singular spectrum analysis (Broomhead & Jones 1989). Although these early algorithms were
initially developed for linear systems, they have frequently been applied to weakly nonlinear sys-
tems as well. The practice of computing DMD on a Hankel matrix was introduced by H. Tu et al.
(2014) and subsequently utilized in the field of neuroscience (Brunton, Johnson, Ojemann & Kutz
2016). In this section, we focus on two prevalent methods: Hankel-DMD, which is essentially
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EDMD applied to a dictionary created from time-delay embedding, and the Hankel Alternative
View of Koopman (HAVOK) framework, which enhances the DMD model by incorporating a
forcing term.

4.2.1 Hankel Dynamic Mode Decomposition (Hankel-DMD)

Hankel-DMD, introduced by Arbabi & Mezić (2017a) and closely related to the Prony approxima-
tion of the KMD (Susuki & Mezić 2015), represents a specialized instance of EDMD where the
dictionary is constructed through time-delay embedding. This approach is particularly effective
for ergodic systems that exhibit low-dimensional attractors. We saw a slightly generalized variant
of this algorithm in Section 2.3.2, where we employed distinct time steps for sampling trajectories
and the lengths of the time delays. Typically, Hankel-DMD utilizes the same time steps for delay
embedding and trajectory data collection.

Suppose the map F in (1.1) is ergodic. We can construct a dictionary by starting with an
observable g and forming the Krylov subspace

VN = span{g,Kg,K2g, . . . ,KN−1g}.

Given a single trajectory of the observable, {g(x0), g(x1), . . . , g(xM+N−1)}, the matrices ΨX and
ΨY in (4.2) are given explicitly by the Hankel matrices

ΨX =




g(x0) g(x1) · · · g(xN−1)
g(x1) g(x2) · · · g(xN )

...
...

...
...

g(xM−1) g(xM ) · · · g(xM+N−2)


 , ΨY =




g(x1) g(x2) · · · g(xN )
g(x2) g(x3) · · · g(xN+1)

...
...

...
...

g(xM ) g(xM+1) · · · g(xM+N−1)


 .

(4.10)
Applying Birkhoff’s ergodic theorem (4.8), we obtain the convergence specified in (4.5). A com-
mon simplifying assumption in Hankel-DMD is the existence of a finite-dimensional K-invariant
subspace V of L2(Ω, ω) generated by g. K-invariance means that KV ⊂ V and allows us to study
a portion of the spectral properties of K by restricting to the finite-dimensional subspace V . Sup-
pose such a subspace exists and has dimension k, then Vk = V . We can identify this invariant
subspace as M → ∞ by selecting N = k and employing the aforementioned dictionary. This is
proven in (Arbabi & Mezić 2017a) and is derived from the ergodic theorem in conjunction with the
quadrature interpretation of EDMD. These findings also apply when constructing a Krylov sub-
space from multiple initial observables g1, . . . , gp. Nonetheless, the existence of such a subspace is
not guaranteed, and even if it is, the dimension k is typically unknown. Practically, one postulates
an approximate invariant subspace and truncates to r ≤ N modes for the basis by executing an SVD.

As an example, we revisit the cylinder wake discussed in Section 2.3.1. For the observable
g, we choose the horizontal velocity at a single point in the middle of the channel, situated 4D
downstream from the center of the cylinder. Initially setting N = 100 and M = 120, we plot
the singular values of the data matrix ΨX on the left side of Fig. 20. It is crucial to recognize
that although the spectrum is pure point in this example, g does not generate a finite-dimensional
invariant subspace since g projects non-trivially onto each eigenspace. Guided by these singular
values, we apply Algorithm 1 with r = 39, using the transposes of ΨX and ΨY as the snapshot
matrices. The eigenvalues are illustrated in the middle of Fig. 20 and should be compared with a
subset of the eigenvalues from Fig. 2. On the right side of Fig. 20, we present the relative ℓ2 error
for the first 11 eigenvalues as a function of M . The convergence is remarkable. Nonetheless, we
must stress that this example is rather straightforward. Systems such as the Lorenz system, as
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Figure 20: Left: Singular values of ΨX for the Hankel-DMD algorithm applied to the cylinder
wake with N = 100 and M = 120. In essence, we are building a Krylov subspace by measuring
the horizontal component of the velocity field at a single point. Middle: Eigenvalues computed
using Hankel-DMD. Right: Convergence to the first 11 eigenvalues with increasing amount of
data M .

discussed in Section 2.3.2 and tackled in (Arbabi & Mezić 2017a, Section 4.1), pose a substantially
more significant challenge. This is further exemplified by a slow decay of singular values in the
data matrices.

4.2.2 Hankel Alternative View of Koopman (HAVOK)

Consider the (truncated) SVD of the transpose of the matrix ΨX in (4.10),

Ψ⊤
X ≈ UΣV∗, U ∈ CN×r, Σ ∈ Rr×r, V ∈ CM×r.

We can view the columns of the matrix V as coordinates for a state v = [v1 v2 · · · vr]. If our
discrete-time dynamical system corresponds to sampling a continuous-time dynamical system,
DMD/EDMD results in a linear regression model

dv

dt
= K̂v, for some matrix K̂ ∈ Cr×r.

This can be very effective for weakly nonlinear systems (Champion et al. 2019) and if r is suffi-
ciently large to capture an almost invariant subspace (Arbabi & Mezić 2017a). However, it can be
challenging to identify a small (approximately) closed linear model for chaotic systems.

An alternative, known as the Hankel Alternative View of Koopman (HAVOK) framework, pro-
posed by Brunton et al. (2017), is to build a linear model on the first r−1 variables ṽ = [v1 v2 · · · vr−1]
variables and impose the last variable, vr, as a forcing term:

dṽ

dt
= K̃ṽ +Bvr, for some matrices K̃ ∈ Cr−1×r−1,B ∈ Cr−1×1.

Here, vr acts as an input forcing to the linear dynamics of the model, which approximates the
nonlinear dynamics of the original system. Typically, the statistics of vr are non-Gaussian. For
instance, in Fig. 21, we summarize the results for the Lorenz system. The long tails in the statistics
of vr correspond to rare-event forcing that drives lobe switching. For strategies on using HAVOK
in systems with multiple time scales, see (Champion et al. 2019). Hirsh et al. (2021) established
connections between HAVOK and the Frenet–Serret frame from differential geometry, motivating
a more accurate computational modeling approach.
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Figure 21: Decomposition of chaos into a linear system with forcing. A time series x(t) is stacked
into a Hankel matrix, the SVD of which yields a hierarchy of eigen time series that produce a delay-
embedded attractor. A best-fit linear regression model is obtained on the delay coordinates; the
linear fit for the first r − 1 variables is excellent, but the last coordinate vr is not well-modeled as
linear. Instead, vr is an input that forces the first r − 1 variables. Rare forcing events correspond to
lobe switching in the chaotic dynamics. Reproduced with permission from (Brunton et al. 2022),
copyright © 2022 Society for Industrial and Applied Mathematics, all rights reserved.

4.3 Controlling projection errors: Residual Dynamic Mode Decomposition (ResDMD)

We saw in Section 4.1 that EDMD builds a finite matrix approximation of the Koopman oper-
ator. In particular, for a dictionary {ψ1, . . . , ψN} forming a finite-dimensional subspace VN =
span{ψ1, . . . , ψN}, the EDMD matrix corresponds to the projected operator PVN

KP∗
VN

. Care must
be taken when discretizing or truncating an infinite-dimensional operator to a finite matrix to
compute spectral properties. In general, several well-studied pitfalls include:

• Spectral Pollution: This term describes false eigenvalues that accumulate at points not in
the spectrum as the discretization size increases.

• Spectral Invisibility: Discretizing an operator can cause us to miss parts of its spectrum,
even as the size of the discretization increases.

• Lack of Verification: Even if a method converges as the discretization parameter grows, how
much of the output can we trust for a finite discretization size?

• Continuous Spectra: Discretizing to a finite matrix results in a discrete set of eigenvalues.
How can we recover continuous spectra?

We have already encountered these effects in this review (e.g., spectral pollution as discussed in
Fig. 7), and they are well-known throughout the Koopman literature. In the following section,
we will delve into strategies to mitigate these issues, focusing on controlling projection errors
when transitioning from K to PVN

KP∗
VN

. The algorithm that does this is Residual DMD (ResDMD),
introduced by Colbrook & Townsend (2023).
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4.3.1 The algorithm

The main idea behind ResDMD is to compute an infinite-dimensional residual. We follow the
notation of Section 4.1 that described EDMD. Consider an observable g = Ψg ∈ VN , which we
aim to be an approximate eigenfunction of K with an approximate eigenvalue λ. For now, the
method of determining the pair (λ, g) is left unspecified. In connection with pseudospectra and
the approximate point spectrum discussed in Section 2.1.2, a way to measure the suitability of the
candidate pair (λ, g) is through the relative residual

∥(K − λI)g∥
∥g∥ =

√∫
Ω |[Kg](x)− λg(x)|2 dω(x)∫

Ω |g(x)|2 dω(x) =

√
⟨Kg,Kg⟩ − λ⟨g,Kg⟩ − λ⟨Kg, g⟩+ |λ|2⟨g, g⟩

⟨g, g⟩ .

(4.11)
For instance, if K is a normal operator (one that commutes with its adjoint), then

dist(λ,Sp(K)) = inf
f

∥(K − λI)f∥
∥f∥ ≤ ∥(K − λI)g∥

∥g∥ .

In the case of a non-normal K, the residual in (4.11) is closely related to the concept of pseudospec-
tra. Adopting the quadrature interpretation of EDMD, we can define a finite data approximation
of the relative residual as:

res(λ, g) = ∥(D1/2ΨY − λD1/2ΨX)g∥ℓ2/∥D1/2ΨXg∥ℓ2 .

We then have

[res(λ, g)]2 =
g∗ [Ψ∗

Y DΨY − λΨ∗
Y DΨX − λΨ∗

XDΨY + |λ|2Ψ∗
XDΨX

]
g

g∗Ψ∗
XDΨXg

=
g
[
Ψ∗

Y DΨY − λA∗ − λA+ |λ|2G
]
g

g∗Gg
, (4.12)

where G and A are the same matrices from (4.4). The right-hand side of (4.12) has an additional
matrix L := Ψ∗

Y DΨY . Under the assumption that the quadrature rule converges, this matrix
approximates K∗K:

lim
M→∞

Ljk = ⟨Kψk,Kψj⟩. (4.13)

Comparing (4.11) and the square-root of (4.12), we observe that

lim
M→∞

res(λ, g) = ∥(K − λI)g∥/∥g∥.

Note that there is no approximation or projection on the right-hand side of this equation. Con-
sequently, we can compute an infinite-dimensional residual directly using finite matrices, achieving
exactness in the limit of large data sets. ResDMD leverages this residual in a suite of algorithms to
compute various spectral properties of K, two of which are the focus of the subsequent discussion.

As a first approach, we can implement the EDMD algorithm (Algorithm 10) to generate candi-
date eigenpairs (λ, g), followed by the computation of residuals. This process is outlined in Algo-
rithm 11. Importantly, this approach is not more computationally demanding than EDMD itself.
Additionally, it is worth noting that one is not restricted to using EDMD exclusively for selecting
candidate eigenpairs; any suitable method can be employed. We can avoid spectral pollution by
setting a threshold to discard residuals that exceed a certain tolerance. This also serves as a val-
idation mechanism for the computations. However, it is crucial to recognize that Algorithm 11,
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Algorithm 11 ResDMD for computing residuals (Colbrook & Townsend 2023).

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , quadrature weights {wm}Mm=1, and a dictionary
of functions {ψj}Nj=1.

1: Compute the matrices ΨX and ΨY defined in (4.2) and D = diag(w1, . . . , wM ).
2: Compute the EDMD matrix K = (D1/2ΨX)†D1/2ΨY ∈ CN×N .
3: Compute the eigendecomposition KV = VΛ. The columns of V = [v1 · · ·vn] are eigenvector

coefficients and Λ is a diagonal matrix of eigenvalues λ1, . . . , λn.
4: For each eigenpair (λj ,vj) compute res(λj ,Ψvj)=∥(D1/2ΨY −λjD1/2ΨX)vj∥ℓ2/∥D1/2ΨXvj∥ℓ2 .

Output: The eigenvalues Λ, eigenvector coefficients V ∈ CN×N and residuals {res(λj ,Ψvj)}.

when relying on EDMD for computing candidate eigenpairs, does not inherently circumvent the
issue of spectral invisibility. To address this, we need to consider approaches that approximate the
pseudospectrum.

For computing pseudospectra, working in the standard ℓ2 norm is beneficial instead of the
norm induced by the matrix G. We compute an economy QR decomposition of the data matrix

D1/2ΨX = QR, Q ∈ CM×N ,R ∈ CN×N ,

where Q has orthonormal columns and R is upper triangular with positive diagonals. Letting
w = Rg, we have

∥D1/2ΨXg∥2ℓ2 = g∗R∗Q∗QRg = g∗R∗Rg = w∗w = ∥w∥2ℓ2 .

Consequently, the residual can be expressed as:

res(z, g) = ∥(D1/2ΨY R
−1 − zQ)w∥ℓ2/∥w∥ℓ2 . (4.14)

For a given z ∈ C, our objective is to minimize this residual, which corresponds to finding the
smallest singular value of the matrix (D1/2ΨY R

−1−zQ) ∈ CM×N . Denoting the smallest singular
value by σinf , we must do this for various values of z. Given that M > N , a computational
advantage is gained by considering the N × N matrix (D1/2ΨY R

−1 − zQ)∗(D1/2ΨY R
−1 − zQ)

and computing
√
σinf((D1/2ΨY R−1 − zQ)∗(D1/2ΨY R−1 − zQ)) = σinf(D

1/2ΨY R
−1 − zQ).

Typically, computing singular values in this manner is not recommended due to the potential loss
of precision owing to the square root. However, in most applications, the resulting error is signif-
icantly smaller than the errors inherent in the data matrices or the quadrature approximation of
inner products. If precision becomes a concern, σinf(D1/2ΨY R

−1 − λQ) can be computed directly
in subsequent algorithms. Since Q∗Q = I, we have

(D1/2ΨY R
−1 − zQ)∗(D1/2ΨY R

−1 − zQ)

= (R∗)−1Ψ∗
Y DΨY R

−1 − z(R∗)−1Ψ∗
Y D

1/2Q− zQ∗D1/2ΨY R
−1 + |z|2I.

The minimum singular values of this matrix are then computed across a grid of z values. This pro-
cedure is detailed in Algorithm 12, where the approximation of the ϵ-pseudospectrum is defined
as the set of grid points where the minimized residual falls below ϵ. If required, the algorithm can
also be extended to compute ϵ-pseudoeigenfunctions (discussed in Section 2.1.2).
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Algorithm 12 ResDMD for computing pseudospectra (Colbrook & Townsend 2023). One can also
compute the singular values directly (of a CM×N matrix) without the square root.

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , quadrature weights {wm}Mm=1, dictionary of
functions {ψj}Nj=1, accuracy goal ϵ > 0, and grid of points {zℓ}kℓ=1 ⊂ C.

1: Compute the matrices ΨX and ΨY defined in (4.2) and D = diag(w1, . . . , wM ).
2: Compute an economy QR decomposition D1/2ΨX = QR, where Q ∈ CM×N ,R ∈ CN×N .
3: Compute C2 = (R∗)−1Ψ∗

Y DΨY R
−1 and C1 = Q∗D1/2ΨY R

−1.
4: Compute τℓ = σinf(C2 − zℓC

∗
1 − zℓC1 + |zℓ|2I) for ℓ = 1, . . . , k (σinf is smallest singular value).

(If wanted, compute the corresponding right-singular vectors wℓ and set vj = R−1wj .)
Output: Estimate of the pseudospectrum {zℓ : τℓ < ϵ} (if wanted, corresponding pseudoeigen-
functions {Ψvℓ : τℓ < ϵ}).

4.3.2 Convergence theory

Colbrook & Townsend (2023) present several convergence results concerning ResDMD. We have
already discussed that if the quadrature rule underlying EDMD converges,

lim
M→∞

res(λ, g) = ∥(K − λI)g∥/∥g∥.

Therefore, we can avoid spectral pollution in the large data limit by selecting eigenpairs with small
residuals (as computed in Algorithm 11). Let Γϵ

N,M be the output {zℓ : τℓ < ϵ} of Algorithm 12.
With a minor modification for the boundary case where τ = ϵ,

lim
M→∞

Γϵ
N,M =: Γϵ

N ⊂ Spϵ(K).

In other words, ResDMD provides verified approximations of pseudospectra. Moreover, under
mild conditions on the dictionary and an N -dependent grid {zℓ}kℓ=1,

lim
N→∞

Γϵ
N = Cl

({
λ ∈ C : ∃g ∈ L2(Ω, ω) such that ∥g∥ = 1, ∥(K − λI)g∥ < ϵ

})
.

As ϵ ↓ 0, the set on the right-hand side converges to the approximate point spectrum Spap(K).
Thus, ResDMD allows us to compute Spap(K) via a convergent algorithm. Colbrook & Townsend
(2023) further discuss alterations that allow the computation of the full pseudospectrum Spϵ(K),
and consequently the complete spectrum Sp(K). In summary, ResDMD addresses the challenges
of spectral pollution and spectral invisibility, providing a method for verified spectral computa-
tions of general Koopman operators.

A careful reader will note that a few of these algorithms require us to take several parameters
successively to infinity. This was also the case for EDMD, as discussed in Section 4.1.3. These limits
do not generally commute, and it may be impossible to rewrite them with fewer limits or develop a
different algorithm that uses fewer limits. This is a generic feature of infinite-dimensional spectral
problems (Colbrook 2020) and has given rise to the Solvability Complexity Index (Hansen 2011, Ben-
Artzi et al. 2020, Colbrook 2022, Colbrook & Hansen 2022). We do not go into the details, but
there are many open questions on the foundations of computing spectral properties of Koopman
operators. In particular, lower bounds on the number of successive limits needed to compute
spectra of Koopman operators is an ongoing research problem (see Section 6.4).

We have yet to discuss continuous spectra, the final pitfall mentioned in the bullet point list
at the start of this section. Using ResDMD, Colbrook & Townsend (2023) also provide an algo-
rithm that computes spectral measures of Koopman operators associated with generic measure-
preserving systems. This approach and others for spectral measures are discussed in Section 6.2.
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Figure 22: Left: Large-scale wall-resolved turbulent flow past a periodic cascade of aerofoils.
Right: Comparison of computed Koopman modes using ResDMD and DMD across various fre-
quencies. ResDMD highlights stronger acoustic waves between cascades and larger-scale turbu-
lent fluctuations past the trailing edge, which is crucial for understanding acoustic interactions
with engine turbines and nearby structures. The residuals in ResDMD underscore its capability
to capture nonlinear dynamics accurately and verifiably. Reproduced with permission from (Col-
brook & Townsend 2023).

4.3.3 Examples

We have already seen an example of ResDMD in action in Section 2.3.3. Here, we present some
examples from (Colbrook & Townsend 2023, Colbrook, Ayton & Szőke 2023).

The first example we consider is a large-scale wall-resolved turbulent flow past a periodic
cascade of aerofoils depicted on the left in Fig. 22. This setup is motivated by ongoing efforts to
mitigate noise sources from aerial vehicles. The data is collected from a high-fidelity simulation
solving the fully nonlinear Navier–Stokes equations (Koch et al. 2021), with a Reynolds number of
3.88× 105 and a Mach number of 0.07. A two-dimensional slice of the pressure field is recorded at
295, 122 points across trajectories of length 798 and sampled every 2×10−5 seconds. ResDMD can
be used with kernelized EDMD, and we use N = 250 functions in our dictionary. Fig. 22 (right)
shows the computed Koopman modes for a range of representative frequencies. We also show
the corresponding Koopman modes computed using DMD. For the first column, ResDMD shows
stronger acoustic waves between the cascades. Detecting these vibrations is essential as they can
damage engine turbines (Parker 1984). ResDMD shows larger-scale turbulent fluctuations past
the trailing edge for the second and third columns. This can be crucial for understanding acoustic
interactions with nearby structures such as subsequent blade rows (Woodley & Peake 1999). The
residuals for ResDMD are small, particularly given the enormous state-space dimension. This ex-
ample demonstrates two benefits of ResDMD compared with DMD: (1) ResDMD can capture the
nonlinear dynamics (just like EDMD), and (2) it computes residuals, thus providing an accuracy
certificate.

With its capability to verifiably compute spectra, ResDMD can be employed for validating
dictionaries in methods like EDMD and verifying the efficacy of KMD itself. We present two
illustrative examples in Fig. 23, adapted from (Colbrook, Ayton & Szőke 2023). The comparison
of two dictionaries used for analyzing turbulent boundary layer flow is shown on the left. Here,
the nonlinear dictionary demonstrates smaller residuals, leading to the identification of verified
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Figure 23: ResDMD applications in validating EDMD and KMD. Left: Comparison of two dictio-
naries for turbulent boundary layer flow analysis, with the nonlinear dictionary showing smaller
residuals and revealing verified transient modes (bottom of the figure). Right: Demonstration of
KMD’s ability to capture a highly nonlinear shockwave, where ordering modes by residual values
enables efficient data compression and precise shockwave prediction. Reproduced with permis-
sion from (Colbrook, Ayton & Szőke 2023).

transient modes, as depicted at the bottom of the figure. On the right, the figure illustrates the
proficiency of KMD in capturing a highly nonlinear shockwave. By ordering modes based on their
residual values, we achieve efficient data compression and accurate prediction of the shockwave
dynamics.

5 Variants that Preserve Structure

One of the most exciting recent developments in DMD is the introduction of methods that pre-
serve the structures of the underlying dynamical system in (1.1). When studying a system from a
data-driven perspective, it is often the case that one possesses partial knowledge of the system’s
underlying physics. Methods that leverage this structure typically exhibit a greater resistance to
noise, better generalization, and demand less data for training. Structure-preserving algorithms
have a deep-rooted history in geometric integration (Hairer et al. 2010) and have recently gained
traction in data-driven methods (Celledoni et al. 2021, Greydanus et al. 2019, Hernández et al.
2021, Hesthaven et al. 2022, Karniadakis et al. 2021, Loiseau & Brunton 2018, Otto, Zolman, Kutz
& Brunton 2023). In the context of DMD, this area is burgeoning. We will concentrate on three
methods:

• Physics-Informed DMD: This provides a framework for incorporating symmetries into
DMD through additional constraints in the least-squares problem (2.6). The original pa-
per focused on five fundamental physical principles: conservation, self-adjointness, local-
ization, causality, and shift-equivariance. The idea is far more general and has ushered in a
new wave of DMD methods.
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• Measure-Preserving EDMD: This enforces measure-preserving EDMD truncations, lead-
ing to a Galerkin method whose eigendecomposition converges to the spectral quantities
of Koopman operators (including spectral measures and continuous spectra) for general
measure-preserving dynamical systems. Like EDMD, it can be used with any dictionary of
observables and with different data types. Preserving the measure is crucial for convergence,
recovering the correct dynamical behavior, stability, robustness to noise, and improved qual-
itative and long-time behavior.

• Compactification: These methods for continuous-time measure-preserving systems are based
on the compactification of the Koopman generator or its resolvent. They automatically lead
to skew-adjoint approximations whose spectral properties converge to that of the Koopman
generator. Additionally, approximations are expressed in a well-conditioned basis of kernel
eigenvectors computed from trajectory data.

Subsequently, we will discuss additional DMD methods based on preserving structure. The meth-
ods we discuss open the door to future extensions to more general structure-preserving methods
for Koopman operators and data-driven dynamical systems.

5.1 Physics-Informed Dynamic Mode Decomposition (piDMD)

5.1.1 The framework

Physics-Informed DMD (piDMD), introduced by Baddoo et al. (2023), provides an overarching
framework for integrating physical principles – such as symmetries, invariances and conserva-
tion laws – into DMD. The idea is to replace the optimization problem in (2.6) by a constrained
optimization problem

min
KpiDMD∈M

∥Y −KpiDMDX∥F . (5.1)

The matrix manifold M is dictated by the known physics of the system in (1.1). One selects M
so that its members satisfy certain symmetries of the system. The optimization problem in (5.1)
is known as a Procrustes problem17, which comprises of finding the optimal transformation be-
tween two matrices subject to certain constraints. Numerous exact solutions exist for Procrustes
problems, including the notable cases of orthogonal matrices (Schönemann 1966), and symmetric
matrices (Higham 1988). When exact solutions are not possible, algorithmic solutions can be ef-
fective (Boumal et al. 2014). Procrustes analysis finds relevance in many fields, as detailed in the
monograph of Gower & Dijksterhuis (2004).

To apply piDMD, we first identify the system’s known or suspected physical properties. Once
the physical principles we wish to enforce are determined, these laws must be translated into
the matrix manifold where the linear model will be constrained. With a defined target matrix
manifold, we numerically solve the relevant Procrustes problem in (5.1). The concluding step
encompasses extracting physical information from the refined model. For instance, one might
analyze the spectrum, DMD modes, and the related KMD.

Baddoo et al. (2023) focus on five fundamental physical principles: conservation, self-adjointness,
localization, causality, and shift-equivariance. Several closed-form solutions and efficient algo-
rithms for the corresponding piDMD optimizations are derived. With fewer degrees of freedom,
piDMD models are typically less prone to overfitting, require less training data, and are often less

17In Greek mythology, Procrustes was a bandit who would stretch or amputate the limbs of his victims to force them to
fit onto his bed. Herein, X plays the role of Procrustes’ victim, Y is the bed, and KpiDMD is the ‘treatment’ (stretching
or amputation).
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Figure 24: A comparison of the models learned by exact DMD (Algorithm 1) and piDMD for a
range of applications. The structure of the model matrices is also illustrated. In the spectrum sub-
plots, the true eigenvalues are shown as , the DMD eigenvalues as , and the piDMD eigenvalues
as . In each case, the eigenvalues of piDMD are more accurate than exact DMD. Reproduced with
permission from (Baddoo et al. 2023).

computationally expensive to build than standard DMD models. This reduction in the size of
required training data is connected with the problem of matrix recovery from matrix-vector prod-
ucts, whereby enforcing structures reduces the number of queries needed (Halikias & Townsend
2023). A fundamental issue related to the DMD algorithm is the fact that low-rank matrices are
not provably recoverable from snapshot pairs (without access to adjoints) until there are at least
as many pairs as state dimensions (Otto, Padovan & Rowley 2023, Thm. 2.5).

5.1.2 Examples

To showcase the breadth of piDMD, Fig. 24 shows six physical examples. Baddoo et al. (2023)
provide full experimental details for each example. Each row corresponds to a different system,
and the corresponding constraint is listed in the second column. Exact DMD (Algorithm 1) is com-
pared to piDMD in terms of the computed matrix K and the eigenvalues. In general, constraining
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the matrix K to lie on the appropriate manifold M leads to more accurate approximations of the
eigenvalues. The advantage of preserving structure is striking!

5.1.3 Future work

We have only started to tap the potential of adding constraints in the optimization problem in
(2.6). This idea will likely be an active research area over the next few years. With that in mind, it
is worth mentioning several challenges and directions of future work pointed out by Baddoo et al.
(2023):

• Knowing the physics: In some scenarios where the physics is poorly understood, determin-
ing suitable physical laws to impose on the model can be challenging. Is it possible to learn
symmetries and then incorporate them as constraints?

• Complicated manifolds: For problems with intricate geometries and multiple dimensions,
interpreting the physical principle as a matrix manifold can be a roadblock, as the manifold
can become exceedingly complicated.

• Regularizers: In many applications, such as when the data are very noisy or the physical
laws and constraints are only approximately understood, it may be more appropriate to
merely encourage K towards M, e.g., through a regularizer.

• Nonlinear observables: It is not always clear how to extend the approach of piDMD to non-
linear observables and EDMD. Such an approach is crucial for strongly nonlinear systems
to maintain the connection with Koopman operators. For example, if the dictionary consists
of the state vector x, an upper triangular matrix K can have a clear meaning in terms of
causality. But how should one incorporate causality into other choices of dictionaries? The
manifold can depend on the chosen dictionary in a highly complex manner.

• Convergence: In connection with the previous point in this list, proving the convergence of
piDMD in the large data limit or large dictionary limit typically requires a Galerkin interpre-
tation as in Section 4. This connection is not always immediate.

We expect these last two points, in particular, to lead to many exciting future works.

5.2 Measure-Preserving Extended Dynamic Mode Decomposition (mpEDMD)

Measure-Preserving EDMD (mpEDMD), introduced by Colbrook (2023), enforces that the EDMD
approximation is measure-preserving. The system being measure-preserving is equivalent to the
Koopman operator K being an isometry. Namely, ∥Kg∥ = ∥g∥ for any observable g ∈ L2(Ω, ω).
The mpEDMD algorithm is simple and robust, with no tuning parameters. We outline the method,
discuss its convergence properties, and end with two examples. Note that we do not need to
assume the system is ergodic or invertible.

5.2.1 The algorithm

We follow the notation of Section 4.1 that described EDMD. Recall that we have a dictionary
{ψ1, . . . , ψN}, i.e., a list of observables, in the space L2(Ω, ω). These observables form a finite-
dimensional subspace VN = span{ψ1, . . . , ψN}. Our starting point is the observation that the Gram
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matrix G = Ψ∗
XDΨX in (4.4) provides an approximation of the inner product ⟨·, ·⟩ on L2(Ω, ω).

Namely, we have the following inner product induced by G:

h∗Gg =
N∑

j,k=1

hjgkGj,k ≈
N∑

j,k=1

hjgk⟨ψk, ψj⟩ = ⟨Ψg,Ψh⟩. (5.2)

If the convergence in (4.5) holds, then the left-hand side of (5.2) converges to the right-hand side
as M → ∞. Hence, if g = Ψg ∈ VN and we approximate the action of K on VN by a matrix K,

∥g∥2 ≈ g∗Gg, ∥Kg∥2 ≈ ∥ΨKg∥2 ≈ g∗K∗GKg.

Since K is an isometry, ∥g∥2 = ∥Kg∥2. Therefore, it is natural to enforce

g∗Gg = g∗K∗GKg ∀g ∈ CN .

This condition holds if and only if K∗GK = G. Returning to the optimization problem in (4.1),
we now make two changes. First, we set C = G1/2 so that ∥Cg∥ℓ2 =

√
g∗Gg ≈ ∥g∥. Second, we

enforce the additional constraint K∗GK = G. This leads us to the optimization problem

min
K∈CN×N

K∗GK=G

∫

Ω

∥∥∥Ψ(F(x))G−1/2 −Ψ(x)KG−1/2
∥∥∥
2

ℓ2
dω(x). (5.3)

In a nutshell, we enforce that our Galerkin approximation is an isometry with respect to the
learned, data-driven inner product induced by G. After applying the quadrature rule we used
for EDMD, the discretized version of (5.3) is

min
K∈CN×N

K∗GK=G

M∑

m=1

wm

∥∥∥Ψ(y(m))G−1/2 −Ψ(x(m))KG−1/2
∥∥∥
2

ℓ2
. (5.4)

Letting K = G−1/2BG1/2 for some matrix B, the problem in (5.4) is equivalent to

min
B∈CN×N

B∗B=I

∥∥∥D1/2ΨXG−1/2B−D1/2ΨY G
−1/2

∥∥∥
2

F
, (5.5)

where I denotes the identity matrix. The optimization problem in (5.5) is known as the orthogonal
Procrustes problem (Schönemann 1966, Arun 1992). The predominant method for computing a
solution is via an SVD. First, we compute an SVD of

G−1/2Ψ∗
Y DΨXG−1/2 = G−1/2A∗G−1/2 = U1ΣU∗

2,

where A = Ψ∗
XDΨY is the matrix from (4.4). A solution of (5.5) is then B = U2U

∗
1 and we take

K = G−1/2U2U
∗
1G

1/2.
Since K is similar to a unitary matrix, its eigenvalues lie along the unit circle. For stability

purposes, the best way to compute the eigendecomposition of K is to do so for the unitary matrix
U2U

∗
1. To numerically ensure an orthonormal basis of eigenvectors, we use MATLAB’s schur

command in the examples of this paper. It is also beneficial to replace the square root G1/2 with a
suitable upper triangular matrix R such that G = R∗R. Such an upper triangular matrix can be
computed using an economy QR decomposition of the data matrix as

D1/2ΨX = QR, Q ∈ CM×N ,R ∈ CN×N ,
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Algorithm 13 The mpEDMD algorithm (Colbrook 2023).

Input: Snapshot data X ∈ Cd×M and Y ∈ Cd×M , quadrature weights {wm}Mm=1, and a dictionary
of functions {ψj}Nj=1.

1: Compute the matrices ΨX and ΨY defined in (4.2) and D = diag(w1, . . . , wM ).
2: Compute an economy QR decomposition D1/2ΨX = QR, where Q ∈ CM×N ,R ∈ CN×N .
3: Compute an SVD of (R−1)∗Ψ∗

Y D
1/2Q = U1ΣU∗

2.
4: Compute the eigendecomposition U2U

∗
1 = V̂ΛV̂∗ (via a Schur decomposition).

5: Compute K = R−1U2U
∗
1R and V = R−1V̂.

Output: Koopman matrix K, with eigenvectors V and eigenvalues Λ.

where Q has orthonormal columns and R is upper triangular with positive diagonals. This leads
to a mathematically equivalent algorithm but is faster and more numerically robust in practice.18

The computation of K and its eigendecomposition is summarized in Algorithm 13. Arguing as
we did for EDMD, we obtain a KMD via

g ≈ ΨV

[
V−1(D1/2ΨX)†D1/2

(
g(x(1)), . . . , g(x(M))

)⊤
]
, g ∈ L2(Ω, ω).

Explicitly applied to the state vector x, we have (transposed) Koopman modes

Φ⊤ = V−1(D1/2ΨX)†D1/2
(
x(1), . . . ,x(M)

)⊤
∈ CN×d.

Note that mpEDMD can be used with generic choices of dictionary that generate G and A.
Finally, the relationship between mpEDMD and piDMD is worth commenting on. For con-

servative systems, piDMD enforces the DMD matrix in (2.6) to be orthogonal and uses linear
observables. This implicitly assumes that these linear observables (and the coordinates used) are
orthonormal in L2(Ω, ω), an assumption that typically does not hold. In contrast, mpEDMD works
in a data-driven inner product space induced by G. The resulting Gram matrix of the observables
must be included in a measure-preserving discretization; otherwise, the wrong measure may be
preserved (see the example of turbulent flow in (Colbrook 2023) where mpEDMD and piDMD
are contrasted). Thus, we can think of the relationship between mpEDMD and piDMD as akin to
the relationship between EDMD and DMD (see the discussion in Sections 2.2.2 and 4.1.1), with an
additional difference arising from the use of the inner product arising from the Gram matrix G.

5.2.2 Convergence theory

Several convergence results for mpEDMD are proven in (Colbrook 2023). First, echoing Sec-
tion 4.1.3, we can consider the two limitsM → ∞ andN → ∞. Assuming that the quadrature rule
underlying EDMD converges, i.e., (4.5) holds, the EDMD matrix corresponds to PVN

KP∗
VN

. In con-
trast, the mpEDMD matrix corresponds to the unitary part of a polar decomposition of PVN

KP∗
VN

.
Call this matrix KN . Under a natural density assumption of VN asN → ∞, KN converges strongly
to K, meaning that (4.9) holds.

We can consider the spectral measures from Section 2.1.2 for a measure-preserving system.
These spectral measures provide a diagonalization of the Koopman operator K and form the

18I am indebted to Zlatko Drmač for pointing this out.
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foundation of the KMD. As the dictionary {ψ1, . . . , ψN} used in EDMD becomes richer, the spec-
tral measures computed by EDMD do not typically converge in any sense to that of K.19 This
contrasts the spectral measures of mpEDMD (Colbrook 2023). The critical step in making this
convergence work is that mpEDMD provides a unitary Galerkin approximation of K.

The mpEDMD algorithm leads to the following approximations of spectral measures, where
K, V = [v1 · · · vN ] and Λ = diag(λ1, . . . , λN ) are the outputs of Algorithm 13. To approximate the
spectral measure E , we consider the spectral measure, EN,M , of the matrix K on the Hilbert space
CN with the inner product in (5.2) induced by G:

dEN,M (λ) =
N∑

j=1

vjv
∗
jGδ(λ− λj) dλ.

Let g ∈ L2(Ω, ω) with ∥g∥ = 1. We approximate µg by µ(N,M)
g , where

dµ
(N,M)
g (λ) =

N∑

j=1

δ(λ− λj)|v∗
jGg|2dλ

and g is normalized so that g∗Gg = 1. Since {G1/2vj}Nj=1 is an orthonormal basis for CN , µ(N,M)
g

is a probability measure on the unit circle T.
The most natural way for measures to converge is in a weak sense. We say that a sequence of

measures µn converges weakly to a measure µ on T if for any continuous function ϕ : T → C,

lim
n→∞

∫

T
ϕ(λ) dµn(λ) =

∫

T
ϕ(λ) dµ(λ).

This convergence is captured by the so-called Wasserstein 1 metric between probability measures:

W1(µ, ν) := sup

{∫

T
ϕ(λ) d(µ− ν)(λ) : ϕ : T → R Lip. cts., Lip. constant ≤ 1

}
.

Under mild conditions on the dictionary as N → ∞, mpEDMD has the following convergence
properties. If limN→∞ΨgN = g and ϕ : T → C is continuous, then

lim
N→∞

lim sup
M→∞

∥∥∥∥
∫

T
ϕ(λ) dE(λ)g −Ψ

∫

T
ϕ(λ) dEN,M (λ)gN

∥∥∥∥ = 0.

Moreover, for the scalar-valued spectral measures,

lim
N→∞

lim sup
M→∞

W1 (µg, µ
(N,M)
g ) = 0. (5.6)

Furthermore, if {g,Kg, . . . ,KLN−1g} ⊂ VN (time-delay embedding), then

lim sup
M→∞

W1 (µg, µ
(N,M)
g ) ≲ log(LN )/LN . (5.7)

The bound in (5.7) provides an explicit convergence rate in the number of delays used.

19Even more fundamentally, the eigenvalues of EDMD typically lie within and accumulate within the unit disk. So, the
measures are not even on the same space.
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Further properties of mpEDMD proven in (Colbrook 2023) include respecting invariance sub-
space properties of K, well-conditioning of the matrix K and its eigendecomposition (these do not
hold for EDMD in general), convergence of KMDs, and

lim
N→∞

lim sup
M→∞

sup
λ∈Spap(K)

dist(λ, {λ1, . . . , λN}) = 0.

In other words, we avoid spectral invisibility and do not miss parts of the spectrum. We can
also combine with the techniques of Section 4.3 to avoid spectral pollution. Finally, in connection
with Section 3.1, the solution to the orthogonal Procrustes problem (5.5) is also the solution to
the corresponding constrained total least squares problem (Arun 1992). Hence, in a similar vein to
tlsDMD in Section 3.1.3, mpEDMD is optimally robust when noise is present in both data matrices
in (5.5) (Van Huffel & Vandewalle 1991).

5.2.3 Examples

We consider two examples of mpEDMD. The first shows the convergence to spectral measures for
a system with continuous spectra. The second shows the conservation of energy and statistics for
a turbulent boundary layer flow, where the snapshots are collected experimentally.

Convergence to continuous spectra

We first revisit the Lorenz system from Section 2.3.2, but now with a discrete time step of ∆t = 0.1.
An arbitrary observable is chosen as

g(x) = g(x, y, z) = c tanh((xy − 3z)/5),

where c is a normalization constant ensuring ∥g∥ = 1. We employ delay-embedding to construct
a Krylov subspace VN = {g,Kg, . . . ,KN−1g}. The matrices ΨX and ΨY are computed by evalu-
ating g pointwise at the snapshot matrices of x. A set of M = 104 snapshots is collected along a
single trajectory following an initial burn-in period. It is important to recall that the spectrum of
the Koopman operator is continuous, featuring an embedded trivial eigenvalue at λ = 1. There-
fore, we demonstrate the convergence of the mpEDMD approximation of µg. For visualization
purposes, we transition from variables in T to complex-arguments in the interval [−π, π). For a
probability measure µ on T, its cumulative distribution function (cdf) on [−π, π) is defined as

Fµ(θ) = µ ({exp(it) : π ≤ t ≤ θ}) .

One can express the metric W1 in terms of these cdfs (Hundrieser et al. 2022).
Fig. 25 displays the cdfs of µ(N)

g = µ
(N,104)
g for various choices of N , illustrating the conver-

gence of spectral measures. Notably, there is a discontinuity in the cdfs at θ = 0, corresponding to
the eigenvalue at λ = 1. Away from this value, the cdfs show pointwise convergence. The error
measured in the Wasserstein 1 metric is depicted on the far right of the plot. Consistent with (5.7),
this error decreases as O(1/N). For similar analyses and examples regarding the projection-valued
spectral measures, see (Colbrook 2023).

Conservation of energy and statistics for turbulent boundary layer flow

We now examine the boundary layer formed by a thin jet injecting air onto a smooth, flat wall, as
depicted in panel (a) of Fig. 26. The experiments are conducted in the wind tunnel at Virginia Tech
(Szőke et al. 2021). We utilize a two-component, time-resolved particle image velocimetry system
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Figure 25: First three subplots: The cdfs computed by mpEDMD for various values of N . Far-
right: TheW1 metric between the spectral measure computed by mpEDMD, µ(N)

g , and the spectral
measure of the Koopman operator, µg. The W1 distance to µg is computed by comparing to an
approximation with largerN selected large enough to have a negligible effect on the shown errors.
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Figure 26: (a) Experimental wall-jet boundary layer flow setup with Reynolds number 6.4 × 104.
(b) Horizontal averages of the forecasts for turbulent kinetic energy, which show the stability of
mpEDMD. (c) Wavenumber spectra measure the energy content of various turbulent structures as
a function of their size, thus providing an efficient measure of a flow reconstruction method’s per-
formance over various spatial scales. This demonstrates the importance of structure-preserving
discretizations (mpEDMD). Reproduced with permission from (Colbrook 2023), copyright © 2023
Society for Industrial and Applied Mathematics, all rights reserved.

to capture 103 snapshots of the two-dimensional velocity field of the wall-jet flow. These snapshots
are taken over a spatial grid and a period of 1 second. The jet velocity is set at Ujet = 50m/s,
corresponding to a jet Reynolds number of 6.4 × 104. The field-of-view spans approximately
75mm by 40mm, with a spatial resolution of approximately ∆x = ∆y ≈ 0.24mm. This setup
leads to a dimension d = 102, 300 in (1.1). A full SVD of the data matrix is employed to create
a dictionary. The flow exhibits zero pressure gradient turbulent boundary layer characteristics
within the region between the wall and the velocity profile peak at approximately y = 15.5mm.
Above this region, the flow is dominated by a two-dimensional shear layer characterized by large,
energetic flow structures. This scenario presents a significant challenge for conventional DMD
approaches due to the multiple turbulent scales within the boundary layer.

We investigate the conservation of energy and flow statistics using the KMD for future state
predictions. We consider the velocity profiles predicted by mpEDMD and EDMD over 5 seconds,
five times the observation window, starting from an initial state x0 randomly selected from the
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trajectory data. The results are averaged over 100 such random initializations. Panel (b) of Fig. 26
shows the turbulent kinetic energy (TKE) of the predictions, averaged in the homogenous horizon-
tal direction and normalized by U2

jet. The instability of EDMD is evident. In contrast, mpEDMD
preserves the inner product associated with the TKE.

To examine the statistics of the predictions, panel (c) of Fig. 26 presents the wavenumber spec-
trum. This spectrum is computed by applying the Fourier transform to the spatial autocorrelations
of the predictions in the horizontal direction, as detailed in (Glegg & Devenport 2017, Chapter 8).
The wavenumber spectrum provides insights into the energy content of various turbulent struc-
tures based on their size. It also serves as an efficient measure of a flow-reconstruction method’s
performance across different spatial scales. The wavenumber spectrum derived from mpEDMD
shows remarkable alignment with the actual flow, demonstrating its efficacy. In contrast, EDMD
completely fails to capture the correct turbulent statistics.

5.3 Compactification methods for continuous-time systems

For continuous-time invertible measure-preserving systems, the Koopman generator L, as defined
in (2.8), is skew-adjoint. A sophisticated suite of methods exists aimed at approximating such gen-
erators through compactification. Working in continuous time presents at least two advantages.
First, the generator L is skew-adjoint, while the Koopman operators K∆t are unitary. Developing
projection methods that preserve skew-adjointness is generally much more straightforward than
preserving unitarity (although we have seen that mpEDMD leads to an appropriate unitary dis-
cretization). Second, by computing the spectral properties of the generator L, we are no longer
constrained by the need to select a specific discrete time step. We gain comprehensive spectral
information for the entire family of Koopman operators {K∆t : ∆t > 0}.

Das et al. (2021) developed an approach based on a one-parameter family of reproducing ker-
nels, {pτ : τ > 0}, satisfying mild regularity assumptions. This method utilizes corresponding
integral operators to perturb the Koopman generator L to a compact operator on the correspond-
ing RKHS, Hτ . Assuming ergodic flow, Das et al. (2021) constructed a one-parameter family of
skew-adjoint compact operators, Wτ : Hτ → Hτ , where Wτ = PτLP ∗

τ and Pτ : L2(Ω, ω) → Hτ is
the integral operator defined by

[Pτg](x
′) =

∫

Ω
pτ (x

′,x)g(x) dω(x).

The operatorsWτ are unitarily equivalent to Lτ = G
1/2
τ LG1/2

τ acting on L2(Ω, ω), withGτ = P ∗
τ Pτ .

The operators Lτ are compact, skew-adjoint, and converge in the strong resolvent sense to the
generator L as τ → 0. Since each Lτ is compact, its spectrum can be computed by projection onto
finite-dimensional subspaces without spectral pollution and without missing parts of the spec-
trum in the limit of infinite discretization size (Ben-Artzi et al. 2020). This procedure yields approx-
imate Koopman eigenvalues and eigenfunctions, which have been demonstrated to lie within the
ϵ-pseudospectrum of the Koopman operator, with the value of ϵ dependent on an RKHS-induced
Dirichlet energy functional. In particular, approximate eigenfunctions with small Dirichlet energy
as τ → 0 are approximately cyclical, slowly decorrelating observables under potentially mixing
dynamics. It is important to note that two limits are implicitly involved here: the first concerns
the parameter that controls the projection size used to approximate spectra of Lτ , and the second
is as τ approaches zero. Another potential limitation of this method is its use of finite-difference
schemes on time-ordered data. Although the error from these approximations can be controlled
in the limit of a vanishing sampling interval via RKHS regularity, finite differencing generally
reduces noise robustness.
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Figure 27: Approximate eigenfunctions of the Rössler system computed using the method of
(Valva & Giannakis 2023). On the right, we show the trajectories of these functions. A trajec-
tory on the unit circle corresponds to coherent periodic behavior. The bottom row displays an
approximate eigenfunction with radial variability and larger deviations from the unit circle.

Another approach involves the resolvent of the generator, (L − zI)−1, where z ∈ C\iR. By
taking the Laplace transform of the Koopman semigroup, we can observe that (Susuki et al. 2021)

(L − zI)−1 = −
∫ ∞

0
e−ztK∆t dt, Re(z) > 0. (5.8)

Valva & Giannakis (2023) combine the compactification approach from (Das et al. 2021) and the in-
tegral representation of the resolvent used in (Susuki et al. 2021) to construct a compact operator
that acts as the resolvent of a skew-adjoint operator. The result is a family of skew-adjoint un-
bounded operators with compact resolvents, whose spectral measures converge weakly to those
of L. This method not only preserves skew-adjointness but also eliminates the need for finite-
difference approximations of the generator by using a quadrature approximation for the integral
in (5.8). It offers a flexible framework that allows for the control of approximation accuracy by
varying z in relation to the sampling interval and the timespan of the training data. Additionally,
the finite-rank operators are expressed in a well-conditioned basis of kernel eigenvectors, com-
puted from trajectory data with convergence assurances in the large-data limit (Das et al. 2021).
These basis vectors are particularly well-suited to invariant measures supported on sets with com-
plex geometries (e.g., fractal attractors) that are embedded in high-dimensional ambient spaces.
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5.3.1 Example

The Rössler system (Rössler 1976) consists of the following three coupled ordinary differential
equations:

ẋ = −y − z, ẏ = x+ 0.1y, ż = 0.1 + z(x− 14).

We consider the dynamics of x = (x, y, z) on the Rössler attractor. The Rössler system is often
viewed as a simplified analog of the Lorenz (63) system. However, despite the simplicity of its
governing equations, it exhibits complex dynamical characteristics. Theorems on the existence
and measure-theoretic mixing properties of the Rössler system analogous to those for the Lorenz
system have not been established. Nevertheless, the system has been studied extensively through
analytical and numerical techniques, supporting the hypothesis that the Rössler system is mixing
(Peifer et al. 2005). Assuming this, it follows that zero is the only eigenvalue of L, corresponding
to a constant eigenfunction and is simple. The integral in (5.8) is approximated by truncating the
domain of integration (taking advantage of the exponential decay in the integrand) and Simpson’s
quadrature rule. Full algorithmic details of the method are given in (Valva & Giannakis 2023,
Algorithm 1). Data is collected along a single trajectory of length 64, 000 with time-step ∆t = 0.04.
We use MATLAB’s ode45 command to collect the data after an initial burn-in time to ensure that
the initial point is (approximately) on the attractor. The dictionary consists of 2,001 data-driven
kernel eigenfunctions, and the smoothing parameter is set as τ = 2× 10−6.

Fig. 27 shows three approximate eigenfunctions along with the corresponding values of σ, so
that iσ lies in the spectrum of L. To the figure’s right, we illustrate the trajectory of these approx-
imate eigenfunctions. The chaotic behavior of the Rössler system predominantly occurs in the
(r =

√
x2 + y2, z) coordinates, while the evolution of the azimuthal angle θ in the z = 0 plane pro-

ceeds at a near-constant angular frequency, approximately equal to one in natural time units. We
suspect this distinction contributes to the challenge of capturing the approximate eigenfunctions
in Fig. 27. The first two approximate eigenfunctions are highly coherent, predominantly functions
of the azimuthal phase angle, and evolve near-periodically over several Lyapunov times. The
third approximate eigenfunction (bottom row) exhibits manifest radial variability in state space
and amplitude-modulated time series. Additionally, resolving the radial direction may be more
challenging in a data-driven basis, as most variability in the input data occurs in the azimuthal or
vertical directions.

We have also presented the Dirichlet energies, indicative of the function’s variability or rough-
ness. The approximate eigenfunction corresponding to a frequency of σ = 0.3785 demonstrates
relatively low variability than the others. Furthermore, the increase in energy from the eigen-
function with frequency 1.0261 to its harmonic with frequency 2.0516 also mirrors this variability
increase. Denoting each approximate eigenfunction’s trajectory by ϕ(t), Fig. 28 displays the rela-
tive residual ∥ϕ(t) − exp(iσt)ϕ(0)∥/∥ϕ∥. These residuals steadily increase up to the characteristic
Lyapunov time of the system and exhibit a larger residual for the third approximate eigenfunc-
tion. To summarize, as an a posteriori metric, Dirichlet energy is generally independent from
pseudospectral residuals. The information it provides can be useful in supervised learning tasks,
e.g., when performing out-of-sample evaluation of the eigenfunctions in prediction problems. In
practice, eigenfunctions with small Dirichlet energy also tend to have small pseudospectral resid-
uals, though the precise ordering obtained from the two approaches may differ.

5.4 Further methods

Huang & Vaidya (2018) were among the first to enforce structure in DMD by introducing Naturally
Structured DMD. This variant ensures positivity and offers the added option of the Markov prop-
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Figure 28: Relative residuals of the approximate eigenfunctions in Fig. 27 plotted as a function of
time. The residuals increase steadily up to the characteristic Lyapunov timescale.

erty. In another early paper, Salova et al. (2019) investigated dynamical systems with symmetries
characterized by a finite group. Utilizing representation theory, the authors demonstrated that the
Koopman operator and its EDMD approximations can be block diagonalized using a symmetry
basis. This basis respects the isotypic component structure related to the underlying symmetry
group and the actions of its elements, providing insights into suitable dictionaries. However, the
data must align with the system’s symmetries to achieve an exact block-diagonal approximation
matrix. In an earlier work, Sharma et al. (2016) connected the spatiotemporal symmetries of the
Navier–Stokes equation with its spatial and temporal Koopman operators. Kaiser et al. (2018a)
presented a method to detect conservation laws using Koopman operator approximations, which
can subsequently be employed to control Hamiltonian systems.

We saw that mpEDMD and compactification methods are well-suited to measure-preserving
systems. Govindarajan et al. (2019, 2021) provide another approach that is similar to the Ulam
approximation of the Perron–Frobenius operator (Ulam 1960, Li 1976). They proposed periodic
approximations for Koopman operators under conditions where Ω is compact, ω is absolutely con-
tinuous with respect to the Lebesgue measure, and the system is both measure-preserving and
invertible (Govindarajan et al. 2019). This framework was developed into an algorithm for sys-
tems on tori and extended to continuous-time systems in (Govindarajan et al. 2021). The technique
hinges on constructing a periodic approximation of the dynamics via a state-space partition, thus
enabling the approximation of the Koopman operator’s action through a permutation. The con-
cept of periodic approximations has roots in the works of Halmos (1944) and Lax (1971). This
method yields measures that converge weakly to the spectral measures of the Koopman opera-
tor. Furthermore, periodic approximations are positive operators and uphold the multiplicative
structure of the Koopman operator, i.e., K(fg) = (Kf)(Kg). A significant unresolved question
is how these results can be generalized to handle systems that are not necessarily invariant with
respect to a Lebesgue absolutely continuous measure, such as those defined on intricate domains
like chaotic attractors, and how to develop efficient schemes in high dimension.

DMD fails in translational problems, such as wave-like phenomena, moving interfaces, and
moving shocks (Kutz, Brunton, Brunton & Proctor 2016). This limitation can be attributed to
the dominant advection behavior propagating through the entire high-dimensional domain. This
propagation makes establishing a global spatiotemporal basis challenging within a low-dimensional
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subspace. Drawing inspiration from Lagrangian POD (Mojgani & Balajewicz 2017), Lu & Tar-
takovsky (2020a) introduced Lagrangian DMD that constructs a reduced-order model within the
Lagrangian framework. Temporally evolving characteristic lines are selected as a central observ-
able, and a low-dimensional structure in the Lagrangian framework is identified. Port-Hamiltonian
DMD (Morandin et al. 2023) adapts the DMD within the port-Hamiltonian systems framework to
ensure the system satisfies a dissipation inequality. Symmetric DMD (Cohen et al. 2020) mandates
the dynamics matrix to be symmetric. Constrained DMD (Krake et al. 2022) ensures the presence
of specific frequencies by incorporating constraints into DMD.

On the transfer operator side, Mehta et al. (2006) addresses symmetries of the Perron–Frobenius
operator in relation to the admissible symmetry properties of attractors. Constrained Ulam DMD
(Goswami et al. 2018) uses a minimization problem with constraints that guarantee a positive
operator with a row sum equal to one. Beyond DMD, Mardt et al. (2020) developed deep learn-
ing Markov and Koopman models with physical constraints. Pan & Duraisamy (2020b) learn
continuous-time Koopman operators with deep neural networks and enforce stability by ensuring
that eigenvalues have non-positive real parts. Hirsh et al. (2021) presented a theoretical connection
between time-delay embedding models and the Frenet–Serret frame (intrinsic coordinates formed
by applying the Gram–Schmidt procedure to the derivatives of the trajectory) from differential
geometry. This was used to develop structured HAVOK models.

6 Further Topics and Open Problems

We conclude this review of DMD with further topics that are connected with DMD and Koopman
operators, followed by outlining some future challenges in the field.

6.1 Transfer operators

Perron–Frobenius operators, also known as Ruelle (Ruelle 1968) or transfer operators, act on mea-
sures through pullbacks. When considering appropriately chosen spaces of observables and mea-
sures, the Koopman and Perron–Frobenius operators emerge as dual pairs, thereby offering equiv-
alent information. In the context of ergodic dynamical systems, natural spaces of observables are
typically L2 spaces of complex-valued scalar functions associated with invariant probability mea-
sures, while natural spaces of measures involve complex measures with L2 densities. The opera-
tional distinction between Koopman and Perron–Frobenius operators has led to the development
of two distinct families of approximation techniques. However, recent works, such as (Klus et al.
2016), have started to bridge this gap. For a comprehensive introduction to Perron–Frobenius
operators, see the textbook of Bollt & Santitissadeekorn (2013).

Data-driven techniques employing Perron–Frobenius operators began with the seminal work
of Dellnitz & Junge (1999). A prevalent approach in these methods involves approximating the
Perron–Frobenius operator’s spectrum using Ulam’s method (Ulam 1960, Li 1976). This method
involves partitioning the state space into a finite set of disjoint subsets. The transition proba-
bilities between these subsets are then estimated by counting transitions observed in extensive
simulations or experimental data. The derived transition probability matrix essentially serves as
a Galerkin projection of a smoothed compact transfer operator, slightly perturbed by noise. The
matrix’s eigenvectors, corresponding to eigenvalues at or near the unit circle, are instrumental
in identifying coherent sets. Subsequent research by Dellnitz, Froyland, and colleagues (Dell-
nitz et al. 2000, Froyland & Dellnitz 2003, Froyland 2007, 2008, Froyland, González-Tokman &
Quas 2014) focused on specific system classes with quasi-compact Perron–Frobenius operators.
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Their work rigorously demonstrated Ulam’s method’s efficacy in accurately approximating iso-
lated Perron–Frobenius eigenvalues and their associated eigenfunctions.

The Perron–Frobenius operator has been used to analyze the global behavior of dynamical
systems across various fields. Its applications span molecular dynamics (Schütte & Sarich 2013,
Schütte et al. 2023), fluid dynamics (Froyland, Stuart & van Sebille 2014, Froyland et al. 2016),
meteorology and atmospheric sciences (Tantet et al. 2015, 2018, Froyland et al. 2021), as well as
engineering (Vaidya et al. 2010, Ober-Blöbaum & Padberg-Gehle 2015). Various toolboxes, such
as GAIO (Dellnitz et al. 2001), can compute almost invariant sets or metastable states. These tool-
boxes utilize adaptive box discretizations of the state space to approximate the system’s behavior
efficiently. However, it is important to note that this approach is generally more suited to low-
dimensional problems.

6.2 Continuous spectra and spectral measures

In Section 2.1.2, we saw how Koopman operators associated with measure-preserving systems
have spectral measures that provide a KMD. In the course of this review, we have met several
methods that converge to spectral measures: mpEDMD in Section 5.2 (see Fig. 25 for an exam-
ple), methods based on compactification in Section 5.3, and partitioning of statespace to obtain
periodic approximations in Section 5.4. There are other methods that are not based on the eigen-
values of a finite matrix. Korda et al. (2020) approximate the moments of spectral measures of
ergodic systems using (4.8), and then use the Christoffel–Darboux kernel to analyze the atomic
and absolutely continuous parts of the spectrum. They also compute the spectral projection on a
given segment of the unit circle. See also (Arbabi & Mezić 2017b), who use harmonic averaging
and Welch’s method (Welch 1967) to compute the discrete and continuous spectrum of the Koop-
man operator for post-transient flows. Using the resolvent operator and ResDMD, Colbrook &
Townsend (2023) compute smoothed approximations of spectral measures associated with general
measure-preserving dynamical systems. They prove explicit high-order convergence theorems for
the computation of spectral measures in various senses, including computing the density of the
continuous spectrum, spectral projections of subsets of the unit circle, and the discrete spectrum.
These smoothing techniques can also be used for self-adjoint operators (Colbrook et al. 2021).

However, we end this discussion with the following warning to the reader about recovering
atomic parts of spectral measures that should be kept in mind for all of the above methods. As
soon as the spectral measure µg has atoms (i.e., K has eigenvalues, and g is not orthogonal to all the
eigenspaces), the map λ 7→ µg({λ}) is discontinuous. One can prove that, in general, separating
the point spectrum from the rest of the spectrum, either in terms of spectral measures or spectral
sets, is impossible for any algorithm. This holds even for simple classes of operators (Colbrook
2021), unless we know apriori that the spectrum is discrete in a region of interest (Colbrook et al.
2021, Section 7.3). An excellent example and discussion of this point is provided on the second
page of (Govindarajan et al. 2019). This is one reason the above methods can only compute spectral
measures in a weak or setwise sense. It also helps explain why many of these techniques involve
some form of smoothing.

6.3 Stochastic dynamical systems

Stochastic dynamical systems are widely used to model and study systems that evolve under the
influence of both deterministic and random effects. It is common to replace (1.1) with a discrete-
time Markov process

xn+1 = F(xn, τn), n = 0, 1, 2, . . . , (6.1)
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where {τn} ∈ Ωs are independent and identically distributed random variables with distribution
ρ supported on Ωs, and F : Ω × Ωs → Ω is a function. The stochastic Koopman operator (also
called the Kolmogorov operator) is the expectation:

[Kg](x) =
∫

Ωs

g(F(x, τ)) dρ(τ). (6.2)

In contrast to the deterministic case, stochastic Koopman operators typically have discrete spec-
tra due to diffusion. A primary focus has been the challenge of noisy observables in EDMD-type
methods (Takeishi, Kawahara & Yairi 2017b, Wanner & Mezić 2022), and debiasing DMD (Hemati
et al. 2017, Dawson et al. 2016, Takeishi, Kawahara & Yairi 2017b). Črnjarić-Žic et al. (2020) devel-
oped a stochastic Hankel-DMD algorithm for numerical approximations of the stochastic Koop-
man operator. Klus, Nüske, Peitz, Niemann, Clementi & Schütte (2020) used gEDMD to derive
models for SDEs with applications in control. Sinha et al. (2020) provided an explicit optimization-
based approximation of stochastic Koopman operators. Wu & Noé (2020) developed a variational
approach for Markov processes that finds optimal feature mappings and optimal Markovian mod-
els of the dynamics from the top singular components of the Koopman operator. The definition
in (6.2) involves an expectation. Colbrook, Li, Raut & Townsend (2023) demonstrated the bene-
fits and necessity of going beyond expectations of trajectories. They incorporated the concept of
variance into the Koopman framework, establishing its relationship with batched Koopman op-
erators. This led to an extension of ResDMD, resulting in convergence to the spectral properties
of stochastic Koopman operators, a Koopman analog of a variance-bias decomposition, and the
concept of variance-pseudospectra as a measure of statistical coherency.

6.4 Some open problems

There has been substantial interest in Koopmanism over the last decade, and we expect this in-
terest only to grow. This is an exciting time to be working in this field, which is at the crossroads
of dynamical systems theory, data analysis, spectral theory, and computational analysis. We end
with some open problems that the author believes will lead to important breakthroughs in the
coming years:

• Banach spaces: We have focused on Koopman operators defined on the Hilbert spaceL2(Ω, ω).
In some cases, it is more appropriate to consider function spaces that are Banach spaces
(Mohr & Mezić 2014, Mezić 2020). Computational tools for infinite-dimensional spectral
problems on Banach spaces are less developed than those for Hilbert spaces. An exception is
the transfer operator community, which has developed methods for quasi-compact Perron–
Frobenius operators (see Section 6.1). Another challenge is the development of the theory of
the KMD in the absence of spectral theorems. These issues are expected to be particularly
significant in applying the Koopman framework and DMD to transient and off-attractor dy-
namics.

For some chaotic systems under appropriate conditions, the eigenvalues in the large sub-
space limit of EDMD correspond to the eigenvalues of transfer operators in suitable function
spaces, as discussed in (Slipantschuk et al. 2020, Wormell 2023, Bandtlow et al. 2023). Rec-
onciling these generalized eigenfunctions, the L2 flavor of DMD methods, and appropriate
Banach spaces is a key open problem. These questions could be crucial for understanding
and improving the effectiveness of EDMD, including guidance on the choice of dictionary.

• Choice of dictionary: One of the most significant open problems in EDMD is the selection
of observables or dictionaries. At present, this process can be considered more of an art than
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a science. While well-conditioned bases can be constructed for some systems, as outlined
in Section 5.3, this task often presents a substantial challenge. This is also true for methods
based on delay-embedding, where the choice of delay itself is a classical problem with many
available heuristics.

• Foundations: All of the convergence results for DMD and Koopman operators rely on algo-
rithms that depend on several parameters, with successive limits of these parameters taken
to achieve convergence. This is not accidental and occurs generically in infinite-dimensional
spectral computations (Ben-Artzi et al. 2020). It is possible to classify the difficulty of com-
putational problems, including data-driven ones. To date, the Koopman community has
only provided upper bounds, i.e., algorithms that converge for specific classes of problems.
A significant open problem is the development of lower bounds, i.e., universal impossibil-
ity results that indicate an intrinsic difficulty in a problem that cannot be overcome by any
algorithm. Such results are beginning to emerge in the world of deep learning, particularly
regarding the existence vs. trainability of neural networks (Colbrook et al. 2022). We expect
them to be equally fruitful in the Koopman context.

Lower bounds are essential for several reasons. First, they prevent futile searches for non-
existent algorithms. Second, they often elucidate why certain algorithms cannot exist. When
combined with upper bounds, this knowledge can lead to natural assumptions about the
dynamical systems or the data required to achieve our computational goals.

• Further structure-preserving methods: We have already outlined several open problems
stimulated by piDMD in Section 5.1.3. Understanding the relationships between structures
or symmetries in dynamical systems and their manifestation in the Koopman spectrum lies
at the forefront of current knowledge. A crucial challenge is extending constraints applicable
to DMD with linear observables to EDMD with nonlinear observables, which will be instru-
mental in applying structure-preserving methods to nonlinear systems effectively. Another
related open problem is establishing the convergence of constrained DMD methods to the
spectral properties of Koopman operators and the convergence of KMDs.

• Verified control: An exciting development area in modern Koopman theory is its use for
controlling nonlinear systems. In Section 3.4.3, we discussed how the practice of Koopman
control currently surpasses the theoretical understanding. Only a limited number of sys-
tems with a known Koopman-invariant subspace and verifiable eigenfunctions exist. Thus,
developing methods to validate Koopman models for control purposes is a crucial problem.
Successfully addressing this issue will likely lead to further insights and enhancements in
the practice of Koopman control.
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Mezić, for our discussions regarding spectral theory and computation. Thank you Benjamin Erichson, for
running the numerical experiments behind Figs. 13 and 14 and discussing rDMD with me. Thank you
Claire Valva and Dimitrios Giannakis, for discussing compactification methods with me, and thank you
Claire for running the numerical experiments behind Fig. 27. Thank you Zlatko Drmač, for our discus-
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Klus, S., Nüske, F. & Hamzi, B. (2020), ‘Kernel-based approximation of the Koopman generator and
Schrödinger operator’, Entropy 22(7), 722.
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Mauroy, A. & Mezić, I. (2016), ‘Global stability analysis using the eigenfunctions of the Koopman operator’,
IEEE Transactions on Automatic Control 61(11), 3356–3369.
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Mezić, I. & Sotiropoulos, F. (2002), ‘Ergodic theory and experimental visualization of invariant sets in chaot-
ically advected flows’, Physics of Fluids 14(7), 2235–2243.
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Wu, H. & Noé, F. (2020), ‘Variational approach for learning Markov processes from time series data’, Journal
of Nonlinear Science 30(1), 23–66.
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