
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-024-09673-8

Restarts Subject to Approximate Sharpness: A
Parameter-Free and Optimal Scheme For First-Order
Methods

Ben Adcock1 ·Matthew J. Colbrook2 ·Maksym Neyra-Nesterenko1

Received: 20 January 2023 / Revised: 26 January 2024 / Accepted: 17 June 2024
© The Author(s) 2025

Abstract
Sharpness is an almost generic assumption in continuous optimization that bounds
the distance from minima by objective function suboptimality. It facilitates the
acceleration of first-order methods through restarts. However, sharpness involves
problem-specific constants that are typically unknown, and restart schemes typically
reduce convergence rates. Moreover, these schemes are challenging to apply in the
presence of noise or with approximate model classes (e.g., in compressive imaging
or learning problems), and they generally assume that the first-order method used
produces feasible iterates. We consider the assumption of approximate sharpness, a
generalization of sharpness that incorporates an unknown constant perturbation to the
objective function error. This constant offers greater robustness (e.g., with respect to
noise or relaxation of model classes) for finding approximate minimizers. By employ-
ing a new type of search over the unknown constants, we design a restart scheme that
applies to general first-order methods and does not require the first-order method to
produce feasible iterates. Our scheme maintains the same convergence rate as when
the constants are known. The convergence rates we achieve for various first-order
methods match the optimal rates or improve on previously established rates for a wide
range of problems. We showcase our restart scheme in several examples and highlight
potential future applications and developments of our framework and theory.

Keywords First-order methods · Restarting and acceleration · Approximate
sharpness · Convex optimization · Convergence rates · Inverse problems

Mathematics Subject Classification 65K05 · 65B99 · 68Q25 · 90C25 · 90C60

Communicated by Jim Renegar.

B Matthew J. Colbrook
m.colbrook@damtp.cam.ac.uk

1 Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada

2 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-024-09673-8&domain=pdf

Foundations of Computational Mathematics

1 Introduction

First-order methods are the workhorse of much of modern continuous optimization
[6, 10, 24, 59]. These methods are widely used to solve large-scale problems due to
their excellent scalability and ease of implementation. However, standard first-order
methods often converge slowly, for instance, when applied to non-smooth objective
functions or functions lacking strong convexity.This limitationhasmotivated extensive
research aimed at speeding up these methods [11, 30, 48, 55, 60, 65, 66].

Recently, there has been significant interest in using restarts to accelerate the con-
vergence of first-order methods [1, 13, 27, 33, 34, 37, 39, 44, 46, 47, 49, 52, 57, 62, 63,
67, 69, 70, 72]. A restart scheme involves repeatedly using the output of an optimiza-
tion algorithm as the initial point for a new instance, or “restart”. Before executing
this new instance, the scheme may also adjust the algorithm’s parameters. Under the
right conditions, the objective function error and the feasibility gap decay faster with
the restarted scheme than with the standard (non-restarted) first-order method.

In thiswork,we relax previous assumptions and introduce a new restart schemewith
optimal rates. This scheme applies to a broad class of convex optimization problems,
generalizes and improves upon various existing schemes, and achieves optimal com-
plexity bounds for a wide range of problems. Moreover, our scheme is parameter-free,
up to the parameters used by the first-order method employed in our scheme.

1.1 The Problem

We consider the general convex optimization problem

min
x∈Q f (x), (1.1)

where f : D → R is a proper, closed convex function with non-empty effective
domain D ⊆ C

n , and Q ⊆ C
n is a closed, convex set with Q ⊂ D. Let f̂ denote

the optimal value of (1.1) and ̂X denote the set of minimizers of f over Q, where we
assume that ̂X is non-empty.

Our key assumption is that f satisfies the following approximate sharpness condi-
tion

d(x, ̂X) ≤
(

f (x) − f̂ + gQ(x) + η

α

)1/β

∀x ∈ D, (1.2)

for a metric d on C
n and some constants α > 0, β ≥ 1, η ≥ 0. We slightly abuse

notation by defining d(x, S) := inf z∈S d(x, z) for a set S ⊆ C
n . Here, gQ : D → R+

is a function with

gQ(x) = 0 ⇐⇒ x ∈ Q

such that if a sequence {xm} ⊂ D has limm→∞ d(xm, Q) = 0, then limm→∞ gQ(xm) =
0. We assume that the function gQ is known but that suitable constants η, α, and β

123

Foundations of Computational Mathematics

(or a subset thereof) are unknown. We refer to gQ as the feasibility gap function and
f − f̂ as the objective (function) error.
To develop a restart scheme that accelerates an optimization algorithm for solving

(1.1), we assume that f satisfies (1.2). We also assume access to an optimization
algorithm, � : R++ × R++ × D → D, which maps (δ, ε, x0) to x such that

d(x0, ̂X) ≤ δ �⇒ f (x) − f̂ + gQ(x) ≤ ε, where x = �(δ, ε, x0). (1.3)

In essence, if the initial value x0 is within a distance δ of an optimal solution, the
algorithm outputs an x that is ε-suboptimal, meaning f (x) − f̂ ≤ ε, and ε-feasible,
meaning gQ(x) ≤ ε, for (1.1). The assumption (1.3) is a standard condition found in
typical convergence analyses of first-order methods. The algorithms � considered in
this paper are iterative. We define the cost function

C� : R++ × R++ → N,

where C�(δ, ε) represents an upper bound on the number of iterations required by
� to compute x = �(δ, ε, x0) for any initial value x0 satisfying d(x0, ̂X) ≤ δ. This
framework can be extended to include cost in terms of floating-point operations or
other measures of time complexity. It is assumed that C� is non-decreasing in its first
argument and non-increasing with respect to its second. In Sect. 4, we describe various
examples of first-order optimizationmethods that satisfy Eq. 1.3 and analyze their cost
functions. See also [67].

Our restart scheme decreases the sum of the objective and feasibility gap functions
after each restart. Moreover, we only use (1.2) in our analysis each time we restart.
As a result, (1.2) can be relaxed and we only need (1.2) to hold within the sublevel set
{x ∈ D : f (x) + gQ(x) ≤ f (x0) + gQ(x0)} for a starting vector x0 ∈ D.

1.2 Motivations

The assumption (1.2) is considerablyweaker than typical assumptions for acceleration,
such as strong convexity. It can be considered an approximate version of the sharpness
condition considered in [70] (see (1.9)). We discuss its connections to other error
bounds in Sect. 1.6. There are two principal distinctions between (1.2) and sharpness.
First, we do not assume that the sharpness condition is exact; instead, we include an
additional term η ≥ 0 that controls the approximation. This adjustment is crucial in
many applications and dealing with noisy data. It also provides greater robustness of
our results. For instance, in the context of sparse recovery, (1.2) covers both noisy
measurements and approximately sparse vectors [27], which is more realistic than
exact sparse recovery from noiseless measurements. We further discuss this problem
in Sect. 1.3. Second, our approach does not require that the iterates of our algorithm
be feasible, thanks to the additional feasibility gap function gQ . This provides added
flexibility and efficiency in selecting the first-order method for the restart scheme, such
as the primal–dual algorithm considered in Sect. 4.5.

123

Foundations of Computational Mathematics

The other key motivation for this work is that we do not assume prior knowledge
of the constants α, β, and η. When these parameters are known, deriving a restart
scheme is relatively straightforward. However, these constants are rarely known in
practice. For instance, although sharpness is established for general subanalytic convex
functions [17], the proof relies on topological arguments that are not constructive.
Another example can be seen in the sparse recovery problem, which we will discuss
next. In some cases, approximate bounds for one or more of these constants may be
available. However, if these bounds are loose—particularly global ones, which can be
overly pessimistic near minimizers—they can lead to inefficient schemes. Our method
eliminates the necessity for such precise bounds but still accommodates the inclusion
of prior information about the constants (e.g., exact values or ranges) if available.

1.3 Example: Sparse Recovery

To illustrate thesemotivations, consider the classical sparse recovery problemof recon-
structing an approximately sparse vector x ∈ R

n from a small collection of noisy linear
measurements y = Ax+e ∈ R

m , wherem n. As discussed in Sect. 1.2, in practice,
x is not exactly sparse, but approximately sparse. This is usually quantified by the best
s-term approximation error

σs(x)	1 = min{‖u − x‖	1 : u ∈ R
n, u s-sparse},

where 1 ≤ s ≤ n is the sparsity. It is also typical to consider noisy measurements,
where the noise vector e satisfies ‖e‖	2 ≤ ς for some noise level ς . In this practical
setting of approximate sparsity and noisy measurements, it is generally impossible to
recover x exactly from its measurements y. Rather, the goal is to recovery x accurately
and stably, i.e., up to an error scaling linearly in σs(x)	1 and ς [4, 35]. A standard
means to do this involves solving theQuadratically-Constrained Basis Pursuit (QCBP)
problem

min
z∈Rn

‖z‖	1 subject to ‖Az − y‖	2 ≤ ς. (1.4)

The objective of compressed sensing theory is then to derive conditions on A (in terms
of m and s) that ensure any minimizer x̂ of (1.4) recovers x accurately and stably.
One such condition is the robust Null Space Property (rNSP) in Definition 5.1 (this
condition is implied by, and is, therefore, weaker than, the well-known Restricted
Isometry Property (RIP)). Later, in Proposition 5.2, we show that the rNSP implies
accurate and stable recovery and approximate sharpness for (1.4). If A has the rNSP
of order s with constants 0 < ρ < 1 and γ > 0, then, firstly, any minimizer x̂ of (1.4)
satisfies

∥

∥x − x̂
∥

∥

	2
≤ ĉ1

σs(x)	1√
s

+ ĉ2ς, (1.5)

123

Foundations of Computational Mathematics

(see, e.g., [4, Thm. 5.17]) and secondly, the approximate sharpness condition (1.2)
holds for (1.4) with

gQ(z) = √
smax{‖Az − y‖	2 − ς, 0},

α = ĉ3
√
s, β = 1,

η = ĉ4σs(x)	1 + ĉ5ς
√
s, (1.6)

where ĉ1, ĉ2, ĉ3, ĉ4, ĉ5 > 0 are constants depending onρ andγ only (see [27, Theorem
3.3], as well as Proposition 5.2).

This simple example illustrates the main motivations for this paper. First, (1.4)
satisfies approximate sharpness under exactly the same conditions that imply accu-
rate and stable recovery (1.5) via its minimizers. Second, the approximate sharpness
parameter η is the same (up to possible constants) as the error bound (1.5). Therefore,
it is acceptable to solve (1.4) only down to an error proportional to η. Third, and most
crucially, the approximate sharpness constants are typically unknown. In this example,
α and η depend on the rNSP constants ρ and γ , amongst other factors. However, in
general, given s and A, computing ρ and γ is well-known to be NP-hard. The constant
η also depends on σs(x)	1 , which is generally also unknown.

1.4 Contributions

Our main contribution is a restart scheme, detailed in Algorithm 2, which operates
under the approximate sharpness condition (1.2) when the constants α, β and η (or
any subset thereof) are unknown. In the most general case where all three constants
are unknown, our approach relies on several parameters: bases a, b > 1, a scale factor
r ∈ (0, 1), estimates α0 > 0, β0 ≥ 1, and a so-called schedule criterion function. The
method employs a logarithmic grid search over α and β using the bases a, b, estimates
α0, β0, and the schedule criterion function to determine the order through which the
grid is searched. The scale factor r is used to adjust the parameters of the first-order
method at each restart, ensuring rapid convergence. We will provide full details of this
scheme in Sect. 3, but now let us present our main results for it.

Theorem 1.1 Suppose that f satisfies (1.2) for some unknown constants α, β and η.
Consider Algorithm 2 for fixed a, b > 1, 0 < r < 1, α0 > 0, β0 ≥ 1 and schedule
criterion function as in Corollary 3.4 (unknown α and β), Corollary 3.5 (known α,
unknown β) or Corollary 3.6 (unknown α, known β). Then running Algorithm 2 with

t � K (ε), ε → 0+,

(total inner) iterations, where K (ε) is given in (3.9), implies that

f (x (t)) − f̂ + gQ(x (t)) ≤ max{η, ε}.
Let β∗ = b�logb(β/β0)�β0. If, in addition, C� satisfies

C�(δ, ε) ≤ Cδd1/εd2 + 1, C, d1, d2 > 0, (1.7)

123

Foundations of Computational Mathematics

for all δ, ε > 0, then

K (ε) ≤ Ĉ

{

ε
d1/β∗−d2
0 �log(ε0/ε)�, if d2 ≤ d1/β∗,

εd1/β∗−d2�log(ε0/ε)�, if d2 > d1/β∗,
(1.8)

where Ĉ is independent of ε (but depends on r , a, b, α, β∗, α0, β0, d1 and d2). Explicit
forms for Ĉ in (1.8) are given in Sect.3.

Section3.4 contains the proof of this theorem. A few comments are warranted:

• The role of ε: Note that ε is not an actual parameter of the algorithm but is used
to describe the algorithm’s behavior as the number of iterations increases.

• Non-uniqueness of constants: It is possible for a problem (1.1) to satisfy the
approximate sharpness condition (1.2) with different values for α, β, and η. This
can lead to varied convergence rates and the constant Ĉ in (1.8). In such cases,
Theorem 1.1 says that for a given accuracy threshold ε ≥ η, we can take the
best rate of convergence/iteration bound over different approximate sharpness
constants. Hence, non-uniqueness is beneficial. Furthermore, it is possible to take
advantage of local approximate sharpness near minimizers.

• Convergence to order η: Theorem 1.1 does not guarantee a decrease of the objec-
tive function error below η as ε → 0+. This is reasonable in practice. For example,
in the case of sparse recovery, η is a combination of the noise level and the best
s-term approximation error (recall Sect. 1.3). Therefore, there is little benefit in
decreasing the objective function error below η since the error in the recovered
vector will generally be at least η in magnitude.

• Assumption on convergence rates: The assumption in (1.7) is generic for con-
vergence rates of first-order methods. Examples of these rates are provided in
Sect. 4. The +1 term is included in (1.7) since we often have a bound of the form
C�(δ, ε) ≤ �Cδd1/εd2�.

• Initial estimates and scale factor: The parameters α0 > 0 and β0 ≥ 1 in Algo-
rithm 2 are estimates for the true α, β. Setting α0 = β0 = 1 is advisable if no prior
estimates are available. Regarding the scale factor r , as discussed in AppendixA.1,
a good choice is r = e−1/d2 .

As mentioned, our scheme conducts a grid search over the parameters α, β using
the bases a, b > 1 and estimates α0, β0. The order of this search is determined by a
schedule criterion function, which is detailed in Definition 3.1 and discussed subse-
quently. This new idea offers flexibility depending on which parameters are known
or unknown and facilitates a unified framework for proving convergence results (e.g.,
using Theorem 3.3). We will provide further details in Sect. 3. Notably, this frame-
work enables us to conduct searches over a nonuniform grid (see Corollary 3.4) that
searches more in iteration than parameter index space. This approach is crucial for
developing a searchmethod for unknown parameters that does not suffer from reduced
convergence rates.

123

Foundations of Computational Mathematics

Table 1 Asymptotic cost bounds (as ε ↓ 0 for η � ε) and suitable first-order methods for Algorithm 2
when applied to different classes of objective functions. Note that whenever the bound is a polynomial in
log(1/ε), we have β∗ = β

1.5 Complexity Bounds

Suppose now that η � ε. Note that this case includes η = 0, in which case sharpness
holds. When Algorithm 2 is applied with a suitable first-order method, it leads to
near-optimal1 complexity bounds for a wide range of different convex optimization
problems, without knowledge of α and β. Table1 summarizes some of these bounds,
and the following correspond to an example for each row:

• For L-smooth functions (Definition 4.2) with β = 2, a well-known lower bound
for the subclass of strongly convex smooth functions is O(

√
L/α log(1/ε)) [54].

If β > 2 then the optimal lower bound isO(
√
Lα−1/β/ε1/2−1/β) [53, page 26]. In

both cases, we achieve these optimal bounds with our algorithm (provided β∗ = β;
see below) using, for example, Nesterov’s method.

• Suppose that the objective function f is L f -Lipschitz and has linear growth. Such
functions are (1, L2

f /2)-smoothable (Definition 4.5). When β = 1, the combi-
nation of our algorithm and Nesterov’s method with smoothing has complexity
O (log(1/ε)).

1 By optimal, we mean optimal in the number of oracle calls to f , its gradient (where appropriate) or
suitable proximal maps. For the first-order methods we discuss, this number will always be bounded by a
small multiple of the number of iterations.

123

Foundations of Computational Mathematics

• For Hölder smooth functions (see Definition 4.8), the bound in Table1 matches
(again, provided β∗ = β) the optimal bound from [53, page 26].

• There is not much work on optimal rates for saddle point problems, a challenge
being that there are different measures of error (see [71]). Hence, we cannot claim
that the final two rows of Table1 yield optimal rates. Nevertheless, they yield
significantly faster convergence rates than non-restarted first-order methods for
saddle point problems.

The above optimality depends on β = β∗ (which occurs whenever β lies on the
grid). If this does not hold, then there is an additional algebraic factor in Table1,
making it slightly suboptimal. This can be overcome by a choice of b that depends
logarithmically on ε at the expense of an additional logarithmic term. This point and
its relation to other methods is discussed in Sect. 3.5.

1.6 Connections with PreviousWork

There is a large amount of recent work on adaptive first-order methods [33, 34, 37,
39, 52, 63, 72]. Adaptive methods seek to learn when to restart a first-order method by
trying various values for the method’s parameters and observing consequences over
several iterations. Nesterov provided a catalyst for this body of work in [57], where he
designed an accelerated (line search) method for L-smooth objective functions f (see
Sect. 4.1) with an optimal convergence rate O(

√
L/ε) without needing L as an input.

In the same paper, Nesterov considered strongly convex objective functions with a
grid search to approximate the strong convexity parameter. By narrowing the class
of objective functions, this led to an adaptive method with a dramatically improved
convergence rate (O(log(1/ε)), compared toO(1/

√
ε)), even without having to know

the Lipschitz constant or strong convexity parameter.
The complexity of first-order methods is usually controlled by smoothness assump-

tions on the objective function, such as Lipschitz continuity of its gradient. Additional
assumptions on the objective function, such as strong and uniform convexity, provide
respectively, linear and faster polynomial rates of convergence [55]. Restart schemes
for strongly convex or uniformly convex functions have been studied in [44, 49, 53,
57]. However, strong or uniform convexity is often too restrictive an assumption in
many applications.

An assumption more general than strong or uniform convexity is sharpness:

d(x, ̂X) ≤
(

f (x) − f̂

α

)1/β

∀x ∈ Q, (1.9)

also known as a Hölderian growth/error bound or a Łojasiewicz-type inequality. For
example, Nemirovskii and Nesterov [53] linked a “strict minimum” condition similar
to (1.9) (with known constants) with faster convergence rates using restart schemes for
smooth objective functions. For further use of Łojasiewicz-type inequalities for first-
order methods, see [7, 18, 19, 36, 45]. Hölderian error bounds were first introduced
by Hoffman [43] to study systems of linear inequalities, and extended to convex
optimization in [8, 20, 21, 51, 68]. Łojasiewicz showed that (1.9) holds generically

123

Foundations of Computational Mathematics

for real analytic and subanalytic functions [50], and Bolte, Daniilidis, and Lewis
extended this result to non-smooth subanalytic convex functions [17]. However, the
proofs of these results use non-constructive topological arguments. Hence, without
further case-by-case analysis of problems and outside of some particular cases (e.g.,
strong convexity), we cannot assume that suitable constants in (1.9) are known.

An example of (1.9) for β = 1 was considered in [69] (see also [16]), where the
authors use a restarted NESTA algorithm [12] for the exact recovery of sparse vectors
from noiseless measurements. The approximate sharpness condition (1.2) was first
considered in [27] for the case of β = 1, and known α and η, to allow the recovery of
approximately sparse vectors from noisy measurements and further related examples.
Here, the parameter η > 0 is crucial, both in practice and to allow analysis. See also [1,
62]. Though similar to the sharpness condition in (1.9), our more general assumption
in (1.2) differs in two essential ways, discussed above. First, we do not assume that
the sharpness condition is exact (η > 0), and second, we do not require iterates of our
algorithm to be feasible (the function gQ). It is also important to re-emphasize that,
in this paper, we do not assume that the approximate sharpness constants are known.

The η term in (1.2) is expected and natural, for example, in the sparse recovery
example of Sect. 1.3. In [28], it was shown that there are well-conditioned recovery
problems forwhich stable and accurate neural networks exist, but no training algorithm
can obtain them. The existence of a training algorithm depends on the amount/type of
training data and the accuracy required. However, under certain conditions, one can
train an appropriate neural network: Ref. [28] links trainability to a particular case of
(1.2), and links the accuracy possible via training to the corresponding η term. In the
setting of inexact input, the noise parameter appears as a limitation on the ability of
an algorithm [9]. These phenomena occur even if the algorithm is only expected to
work on a restricted class of inputs that are ‘nice’ or ‘natural’ for the problem under
consideration. The results of [9, 28] lead to the phenomenon of generalized hardness
of approximation, where it is possible to obtain solutions up to some threshold, but
beyond that threshold it becomes impossible. This threshold is strongly related to η in
the standard cases.

Most restart schemes are designed for a narrow family of first-order methods and
typically rely on learning approximations of the parameter values characterizing func-
tions in a particular class, e.g., learning the Lipschitz constant L when f is assumed
to be L-smooth, or the constants α and β in (1.9) (e.g., see the discussion in [67]).
Two notable exceptions related to the present paper particularly inspired us.

First, Roulet and d’Aspremont [70] consider all f possessing sharpness and having
Hölder continuous gradient with exponent 0 < ν ≤ 1. The restart schemes of [70]
result in optimal complexity bounds when particular algorithms are employed in the
schemes, assuming scheme parameters are set to appropriate values that, however, are
generally unknown in practice. The limitations of a grid search for these parameters are
explicitly discussed inAppendix C of [70] due to an additional algebraic factor, similar
in spirit to the case of β �= β∗ in Table1. A critical difference between our scheme and
that of [70] is our use of a schedule criterion function (see Sect. 3.1). For example, this
flexibility leads us to overcome these algebraic losses, as outlined in Sect. 3.5, up to a
logarithmic factor. However, for smooth f (i.e., ν = 1), [70] develops an adaptive grid
search procedure for a certain condition number and sharpness parameters within the

123

Foundations of Computational Mathematics

scheme to accurately approximate the required values, leading to an overall complexity
that is optimal up to a squared logarithmic term. Some other differences between our
scheme and that of [70] is that we deal with approximate sharpness (η > 0), allow
infeasible iterates (captured by gQ), and consider general classes of functions, some
of which are listed in Table1.

Second, Renegar andGrimmer [67] provide a simple scheme for restarting (generic)
first-order methods. Multiple instances are run that communicate their improvements
in objective value to one another, possibly triggering restarts. Their restart scheme only
depends on how much the objective value has been decreased and does not attempt to
learn parameter values. The scheme in [67] leads to nearly optimal complexity bounds
for quite general classes of functions. This method differs quite significantly from ours
in that it does not assume an underlying sharpness condition (1.9) (although such a
condition is used in the analysis to obtain explicit complexity bounds). In contrast
to [67], our method is independent of the total number of iterations, and we do not
need to specify the total number of iterations in advance. Further, we also address the
practical case of approximate sharpness and allow the case of infeasible iterates (the
convergence analysis of [67] relies on η = 0 and that iterates are feasible). In Sect. 5.4,
we compare our scheme to that of Renegar and Grimmer.

Restart schemes can also be employed for non-deterministic algorithms. For exam-
ple, Fercoq and Qu [33] study an objective function that can be written as a sum
of differentiable and separable functions under the assumption of a local quadratic
bound (β = 2 in our notation). They introduce a sequence of variable restart periods
that allows several restart periods to be tried. This allows them to force a decrease in
function value when a restart occurs. This leads to a scheme with a nearly linear rate,
even without knowledge of the local quadratic error bound.

1.7 Notation and Outline

Table 2 outlines the notation used throughout the paper for ease of reference. The
remainder of this paper is organized as follows. In Sect. 2, we introduce a restart
scheme where η is unknown, but α and β are known. This transpires to be significantly
more straightforward than the general case. Next, in Sect. 3, we introduce and analyze
the complete restart scheme when all three constants are potentially unknown. In
Sect. 4, we apply this restart scheme to different problems with various first-order
methods, leading, in particular, to the results described in Table1. Next, in Sect. 5, we
present a series of numerical experiments illustrating the restart schemes in different
applications. Finally, we end in Sect. 6 with conclusions and open problems.

2 Restart Scheme for Unknown � but Known ˛ and ˇ

To formulate a restart schemewithin the setupofSect. 1.1, observe that the approximate
sharpness condition (1.2) relates the distance d(x, ̂X) to the objective function error
f (x) − f̂ and feasibility gap gQ(x). The upper bound in the approximate sharpness
condition can be used as the input δ for the algorithm �. At the same time, ε is set as a

123

Foundations of Computational Mathematics

Table 2 Notation used throughout the paper

Notation Meaning

f Proper convex function

D Effective domain of f

Q Closed, convex subset of Rn or Cn

gQ Sharpness feasibility gap function, identically zero on Q

f̂ Minimum value of objective function over Q
̂X Set of minimizers of f

d Metric on Rn or Cn

η Sharpness gap constant

α Sharpness scaling constant

β Sharpness exponentiation constant

δ Distance bound between initial point to optimum points

ε Bound on sum of objective function error and feasibility gap

ε j Sum of objective function error and feasibility gap at j th restart initial point

� Optimization algorithm

C� Cost function that outputs the number of iterates

φ Mapping of current algorithm step to parameter subscripts (i, j, k)

h Function defining classes of maps φ as abstract execution order of restart scheme

χC Indicator function of a set C (χC (x) = 0 if x ∈ C , χC (x) = ∞ otherwise)

‖·‖ Unless otherwise stated, the Euclidean norm on Cn or the induced 2-norm on C
m×n

〈·, ·〉 Unless otherwise stated, the Euclidean inner product on C
n

〈·, ·〉R Unless otherwise stated, 〈x, y〉R = Re (〈x, y〉) for x, y ∈ C
n

R+ Non-negative real numbers

R++ Positive real numbers

N0 Non-negative integers {0} ∪ N

rescaling of the previous sum of objective error and feasibility gap f (x)− f̂ + gQ(x)
with rescaling parameter r ∈ (0, 1). However, in practical scenarios, the exact values
of the objective error f (x)− f̂ and feasibility gap gQ(x)might not be known. Instead,
it is sufficient to have upper bounds for these quantities.

As a warmup, we first consider the scenario where the constants α and β are known,
but η remains unknown. The restart scheme for this case is outlined in Algorithm 1
and is similar in spirit to other known-constant restart schemes but with the added
accommodation of any general η > 0. For instance, in [70, Sec. 2], the authors
consider a restart scheme for Hölder smooth functions (with ν = 1), which reduces
the objective function by a specific factor for functions satisfying (1.2) with η = 0. The
more straightforward case with known α and β in Algorithm 1 provides insights into
solving themore comprehensive problem addressed in Sect. 3. A significant distinction
of ourmethod in Sect. 3 fromprevious approaches is our use of a general searchmethod
over the parameters α, β, with a flexible choice of base. This method can be applied

123

Foundations of Computational Mathematics

Algorithm 1: Restart scheme for unknown η.
Input : Optimization algorithm � for (1.1), initial vector x0 ∈ D, upper bound ε0 such that

f (x0) − f̂ + gQ(x0) ≤ ε0, constants α > 0 and β ≥ 1 such that (1.2) holds (for possibly
unknown η ≥ 0), r ∈ (0, 1), and number of restart iterations t ∈ N.

Output: Final iterate xt approximating a solution to (1.1)
1 for k = 0, 1, . . . , t − 1 do
2 εk+1 ← rεk ;

3 δk+1 ←
(

2εk
α

)1/β
;

4 z ← �
(

δk+1, εk+1, xk
)

;
5 xk+1 ← argmin

{

f (x) + gQ(x) : x = xk or x = z
}

;

6 end

in any situation described by (1.2) and is compatible with any first-order method that
meets the conditions specified in Sect. 1.1.

Using the approximate sharpness condition (1.2) and the algorithm�, we see induc-
tively that for any t with εt ≥ η, Algorithm 1 produces iterates x0, x1, . . . , xt ∈ D
satisfying the following two bounds:

f (xk) − f̂ + gQ(xk) ≤ εk,

d(xk, ̂X)≤
(

f (xk)− f̂ +gQ(xk)+η

α

)1/β

≤
(

εk+η

α

)1/β

≤
(

2εk
α

)1/β

, 0≤k≤ t .

(2.1)

In addition, the total number of inner iterations used in Algorithm 1 is at most

t−1
∑

k=0

C�

(

(

2εk
α

)1/β

, εk+1

)

.

Under further assumptions about the function C� , the iterates produced by the restart
scheme yield linear (if d2 = d1β) or fast algebraic (if d2 > d1β) decay of f (xk) −
f̂ + gQ(xk) in k down to a finite tolerance proportional to η. Hence, this property
holds for both the objective error f (xk) − f̂ and feasibility gap gQ(xk). We state and
prove this in the following theorem.

Theorem 2.1 Consider Algorithm 1 and its corresponding inputs. For any ε ∈ (0, ε0),
if we run Algorithm 1 with t ≥ �log(ε0/ε)/ log(1/r)�, then

f (xt) − f̂ + gQ(xt) ≤ max{η, ε}. (2.2)

Suppose, in addition, that for all δ, ε > 0, C� satisfies

C�(δ, ε) ≤ Cδd1/εd2 + 1, C, d1, d2 > 0.

123

Foundations of Computational Mathematics

Then the total number of iterations of � needed to compute an xt with (2.2) is at most

⌈

log(ε0/ε)

log(1/r)

⌉

+ C2d1/β

αd1/βrd2
·

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1−r�log(ε0/ε)/log(1/r)�|d2−d1/β|
1−r |d2−d1/β| · 1

ε
d2−d1/β

0

, if d2 < d1/β,

⌈

log(ε0/ε)
log(1/r)

⌉

, if d2 = d1/β,

1−r�log(ε0/ε)/log(1/r)�|d2−d1/β|
1−r |d2−d1/β| · 1

εd2−d1/β , if d2 > d1/β.

(2.3)

Asymptotically as ε ↓ 0, these can be written as

∼
{

log(1/ε), if d2 ≤ d1/β,
1

εd2−d1/β , if d2 > d1/β.

Note that the cases in (2.3) match in the limit d2 − d1/β → 0.

Proof of Theorem 2.1 The theorem statement is unchanged if we assume that ε ≥
η. Hence, we may assume without loss of generality that ε ≥ η. Let s =
�log(ε0/ε)/ log(1/r)�, then εs−1 = rs−1ε0 ≥ ε ≥ η. It follows that we are in the
regime where (2.1) holds, and hence

f (xs−1) − f̂ + gQ(xs−1) ≤ εs−1, d(xs−1, ̂X) ≤
(

2εs−1

α

)1/β

.

Then by line 4 of Algorithm 1 and the choice of s, we have

f (z) − f̂ + gQ(z) ≤ εs ≤ ε, z = �(δs, εs, xs−1).

Due to the argmin taken in Algorithm 1, (2.2) follows. The total number of iterations,
T , needed to reach such an xs is bounded by

T ≤
s−1
∑

k=0

C�

(

(

2εk
α

)1/β
, εk+1

)

≤ s + C
s−1
∑

k=0

(2εk)
d1/β

αd1/βε
d2
k+1

= s + C2d1/β

αd1/βrd2

s−1
∑

k=0

1

ε
d2−d1/β
k

.

In the case that d2 = d1/β, then ε
d2−d1/β
k = 1 and we obtain

T ≤ s + C2d1/β

αd1/βrd2
s =

(

1 + C2d1/β

αd1/βrd2

)⌈

log(ε0/ε)

log(1/r)

⌉

.

If d2 �= d1/β, we use that εk = rkε0 and sum the geometric series to obtain

T ≤
⌈

log(ε0/ε)

log(1/r)

⌉

+ C2d1/β

αd1/βrd2
1 − r �log(ε0/ε)/log(1/r)�(d1/β−d2)

1 − rd1/β−d2

1

ε
d2−d1/β
0

. (2.4)

123

Foundations of Computational Mathematics

If d2 > d1/β, then since ε0 ≥ ε/rs−1, we have ε
d2−d1/β
0 ≥ εd2−d1/βrd2−d1/β/

rs(d2−d1/β). Substituting this into (2.4) and rearranging yields

T ≤
⌈

log(ε0/ε)

log(1/r)

⌉

+ C2d1/β

αd1/βrd2
1 − r �log(ε0/ε)/log(1/r)�(d2−d1/β)

1 − rd2−d1/β

1

εd2−d1/β
.

The result follows by considering the three separate cases in (2.3). ��

3 Restart Scheme for Unknown ˛, ˇ and �

In the event that the constants α, β of (1.2) are unknown, we introduce a logarith-
mic grid search for each of α and β, running multiple instances of Algorithm 1, and
aggregating results that minimize the objective error and feasibility gap. Even if suit-
able global α and β are known, the following algorithm is useful since it also takes
advantage of sharper versions of (1.2) that only hold locally around optimal points.
Moreover, an objective function can satisfy the approximate sharpness condition in
(1.2) for multiple values of α, β and η. In such scenarios, our convergence theorems
apply to the optimal values of these constants for any given ε.

3.1 Schedule Criterion Functions, h-Assignments and Grid Searches

To introduce the algorithm, suppose that α and β are both unknown and let a, b > 1
(the bases). Our algorithm employs logarithmic search grids for α and β. Specifically,
we consider the values αi = aiα0 for i ∈ Z and β j = b jβ0 for j ∈ N0, where we
assume that α0, β0 are additional inputs with α0 > 0 and β ≥ β0 ≥ 1. Note that
the lower bound β0 in the definition of the β j is to capture additional knowledge that
may be available (see, e.g., the examples in Sect. 4), and may be set to 1 if no such
knowledge is available. Similarly, the constant α0 centers the search grid for α and
can be set to 1 or a scaling factor that captures the magnitude of f .

Our algorithm applies the restart scheme described in Algorithm 1 with the values
αi and β j for each i and j . However, it does so according to a particular schedule or
order. To capture this order, we make the following definition.

Definition 3.1 Consider an infinite subset S ⊆ Z×N0×N. Let h : R+×R+×R++ →
R++ be a function that is non-decreasing in its first and second arguments, and strictly
increasing in its third argument. We call such an h a schedule criterion function, or
simply a schedule criterion. Given a schedule criterion h, an h-assignment over S is
a bijection φ : N → S satisfying

h(|i ′|, j ′, k′) ≤ h(|i |, j, k) ⇐⇒ φ−1(i ′, j ′, k′) ≤ φ−1(i, j, k), (3.1)

for all (i, j, k), (i ′, j ′, k′) ∈ S. �

The schedule criterion h and assignment φ together control the execution order of
Algorithm 1 instances for each triple (i, j, k), where k ∈ N is a counter, which is an

123

Foundations of Computational Mathematics

upper bound for the total number of iterations used by the algorithm for the parameter
values (i, j). The schedule criterion h weights the importance of the indices (i, j, k),
and the assignment φ allows us to order the triples (i, j, k) according to h. In the
general case of unknown α and β, we take

S = Z × N0 × N, (α, β unknown).

Definition 3.1 also permits the case where either α or β is known. Indeed, suppose
that β = β0 is known, but α is unknown. Then, we define the set S as

S = Z × {0} × N, (α unknown, β known) (3.2)

and let αi = aiα0 as before. In this case, we may ignore the second set and consider
the schedule criterion and h-assignment functions as mappings

h : R+ × R++ → R++, φ : N → Z × N, (α unknown, β known). (3.3)

Similarly, if α = α0 is known and β is unknown, then we let

S = {0} × N0 × N, (α known, β unknown) (3.4)

and

h : R+ × R++ → R++, φ : N → N0 × N, (α known, β unknown), (3.5)

with β j = b jβ0. Finally, if both α and β are known, then we set

S = {0} × {0} × N, (α, β known) (3.6)

and

h : R++ → R++, φ : N → N, (α, β known). (3.7)

For example, Fig. 1 shows the level curves of the function h defined by

h(x1, x2, x3) = (x1 + 1)2(x2 + 1)2x3 (α unknown, β unknown),

h(x2, x3) = (x2 + 1)2x3 (α known, β unknown),

h(x1, x3) = (x1 + 1)2x3 (α unknown, β known).

These specific choices are motivated by the theoretical results given later in Sect. 3.4.
The level curves in the figure describe the search order, and the algorithm performs
instances of Algorithm 1 according to the sublevel set of indices shown by the red
dots.

123

Foundations of Computational Mathematics

Algorithm 2: Restart scheme for unknown α, β and η in (1.2) via grid search.

Input : Optimization algorithm � for (1.1), bijection φ as in Definition 3.1, initial vector x(0) ∈ D,
upper bound ε0 such that f (x(0)) − f̂ + gQ(x(0)) ≤ ε0, constants a, b > 1, r ∈ (0, 1),
α0 > 0, β0 ≥ 1 and total number of inner iterations t ∈ N.

Output: Final iterate x(t) approximating a solution to (1.1).
1 Initialize x(0) = x0, Ui, j = 0, Vi, j = 0, εi, j ,0 = ε0 for all i ∈ Z, j ∈ N0;
2 for m = 0, 1, . . . , t − 1 do
3 (i, j, k) ← φ(m + 1) ;

4 αi ← aiα0, β j ← b jβ0, U ← Ui, j , V ← Vi, j ;
5 εi, j,U+1 ← rεi, j ,U ;
6 if 2εi, j,U > αi then

7 δi, j,U+1 ←
(2εi, j,U

αi

)min
{

b/β j ,1/β0
}

;

8 else

9 δi, j,U+1 ←
(2εi, j,U

αi

)1/β j
;

10 end
11 if V + C�

(

δi, j,U+1, εi, j ,U+1
) ≤ k then

12 z(m) ← �
(

δi, j ,U+1, εi, j ,U+1, x
(m)
)

;

13 x(m+1) ← argmin
{

f (x) + gQ(x) : x = z(m) or x = x(m)
}

;

14 Vi, j ← V + C�

(

δi, j ,U+1, εi, j ,U+1
)

;
15 Ui, j ← U + 1;
16 else
17 x(m+1) = x(m);
18 end
19 end

3.2 The Algorithm

Given a set S, our general algorithm is presented in Algorithm 2. It proceeds as
follows. At step m ∈ {0, . . . , t − 1} it first applies the bijection φ to obtain the tuple
(i, j, k) = φ(m + 1). The first two entries give the approximate sharpness parameter
valuesαi = aiα0 andβ j = b jβ0. Thefinal entry k is a counter,which is anupper bound

Fig. 1 Level curves of h = 50 for the schedule criterion functions h in Corollary 3.4 (left panel), Corol-
lary 3.5 (middle panel) and Corollary 3.6 (right panel) with c1 = c2 = 2. The level curves describe the
search order. The red dots show the corresponding indices (i, j, k) in the set defined in (3.10). The index i
indicates the parameter search value aiα0 for α. The index j indicates the parameter search value b jβ0 for
β. The height (i.e., k) indicates the total number of inner iterations for a fixed (i, j)) (Color figure online)

123

Foundations of Computational Mathematics

for the total number of iterations used by the algorithm for these parameter values.
We also have two further counters for each pair (i, j). The counter Vi, j counts the
total number of inner iterations of � used by the restart scheme with these parameters.
The second counter Ui, j counts the number of completed restarts (outer iterations)
corresponding to these parameters.

Having obtained a tuple (i, j, k) = φ(m + 1), the algorithm proceeds as follows.
First, much as in line 2 of Algorithm 1, it updates the first scaling parameter in line
5. Then, reminiscent of line 3 of Algorithm 1, it updates the other scaling parameter
in lines 6–10. This step is more involved, a complication that arises because the true
parameter β is unknown.

The following lines, lines 11–16, are similar to lines 4–5 of Algorithm 1. The
main difference is the inclusion of the if statement, which is done to control the
computational cost. It stipulates that a restart be performed (line 12) if the total cost
(including the proposed restart) does not exceed the counter k (line 11). If this is not
the case, no restart is performed, and the algorithm moves on to the next step.

Note that Algorithm 2 is sequential. However, one can readily devise a parallel
implementation that runs Algorithm 1 in parallel over each pair (i, j) and then mini-
mizes f + gQ over all instances at the end of the process.

Before analyzing the cost of the algorithm, it is worth considering the special cases
where eitherα orβ is known. Suppose first thatβ = β0 is known, butα is unknown and
let S and φ be as in (3.2)–(3.3). Then, we may eliminate the j-index from Algorithm 2
and write the algorithm more simply as Algorithm 3. The first if-else statement from
Algorithm 2 disappears in this case. Similarly, if α is known but β is unknown, then
we can employ S and φ as in (3.4)-(3.5) and eliminate the i-index from Algorithm 2.
We present the result in Algorithm 4.

Remark 3.2 (Algorithm 2 reduces to Algorithm 1 when α and β are known) Sup-
pose that α and β are both known. We may now eliminate the i- and j-indices from
Algorithm 2. Then the main for loop subsequently reduces to

1 for m = 0, 1, . . . , t − 1 do
2 k ← φ(m + 1);
3 εU+1 ← rεU ;

4 δU+1 ←
(

2εU
α

)1/β
;

5 if V + C�

(

δU+1, εU+1
) ≤ k then

6 z(m) ← �
(

δU+1, εU+1, x
(m)
)

;

7 x(m+1) ← argmin
{

f (x) + gQ(x) : x = z(m) or x = x(m)
}

;

8 V ← V + C�

(

δU+1, εU+1
)

;
9 U ← U + 1;

10 else
11 x(m+1) = x(m);
12 end
13 end

123

Foundations of Computational Mathematics

Algorithm 3: Restart scheme for unknown α and η, known β in (1.2) via grid
search.
Input : Optimization algorithm � for (1.1), bijection φ as in (3.3), initial vector x(0) ∈ D, upper

bound ε0 such that f (x(0)) − f̂ + gQ(x(0)) ≤ ε0 constants a > 1, r ∈ (0, 1), α0 > 0 and
constant β ≥ 1 such that (1.2) holds, and total number of inner iterations t ∈ N.

Output: Final iterate x(t) approximating a solution to (1.1).
1 Initialize x(0) = x0, Ui = 0, Vi = 0, εi,0 = ε0 for all i ∈ Z;
2 for m = 0, 1, . . . , t − 1 do
3 (i, k) ← φ(m + 1) ;

4 αi ← aiα0, U ← Ui , V ← Vi ;
5 εi,U+1 ← rεi,U ;

6 δi,U+1 ←
(

2εi,U
αi

)1/β
;

7 if V + C�

(

δi,U+1, εi,U+1
) ≤ k then

8 z(m) ← �
(

δi,U+1, εi,U+1, x
(m)
)

;

9 x(m+1) ← argmin
{

f (x) + gQ(x) : x = z(m) or x = x(m)
}

;

10 Vi ← V + C�

(

δi,U+1, εi,U+1
)

;
11 Ui ← U + 1;
12 else
13 x(m+1) = x(m);
14 end
15 end

We now observe that the algorithm performs a restart whenever the counter k is suffi-
ciently large (i.e., line 5). Thus, up to re-labeling, this is identical to Algorithm 1. In
particular, the choice of the h-assignment φ does not influence the algorithm in this
case. �

3.3 Cost Analysis of the Algorithm

We now present a general result on this algorithm. It relates the total number of inner
iterations of � used by Algorithm 2 (to produce a solution within a desired error) to
intrinsic properties of the schedule criterion function h. This will allow us to derive
explicit bounds for specific choices of h.

Theorem 3.3 Let S ⊆ Z × N0 × N be an infinite subset, h be a schedule criterion,
and φ an h-assignment over S. Let α, β and η be approximate sharpness constants of
f in (1.2). Consider Algorithm 2 for fixed a, b > 1. Define the (unknown) indices

I = �loga(α/α0)�, J = �logb(β/β0)�

and the corresponding constants

α∗ = aIα0 ≤ α, β∗ = bJβ0 ≥ β.

123

Foundations of Computational Mathematics

Algorithm 4: Restart scheme for known α, unknown β and η in (1.2) via grid
search.
Input : Optimization algorithm � for (1.1), bijection φ as in Definition 3.1, initial vector x(0) ∈ D,

upper bound ε0 such that f (x(0)) − f̂ + gQ(x(0)) ≤ ε0, constant α > 0 such that (1.2)
holds, constants b > 1, r ∈ (0, 1), β0 ≥ 1 and total number of inner iterations t ∈ N.

Output: Final iterate x(t) approximating a solution to (1.1).
1 Initialize x(0) = x0, Uj = 0, Vj = 0, ε j ,0 = ε0 for all j ∈ N0;
2 for m = 0, 1, . . . , t − 1 do
3 (j, k) ← φ(m + 1) ;

4 β j ← b jβ0, U ← Uj , V ← Vj ;
5 ε j,U+1 ← rε j,U ;
6 if 2ε j,U > α then

7 δ j,U+1 ←
(2ε j,U

α

)min
{

b/β j ,1/β0
}

;

8 else

9 δ j,U+1 ←
(2ε j,U

α

)1/β j
;

10 end
11 if V + C�

(

δ j,U+1, ε j ,U+1
) ≤ k then

12 z(m) ← �
(

δ j ,U+1, ε j ,U+1, x
(m)
)

;

13 x(m+1) ← argmin
{

f (x) + gQ(x) : x = z(m) or x = x(m)
}

;

14 Vj ← V + C�

(

δ j ,U+1, ε j ,U+1
)

;
15 Uj ← U + 1;
16 else
17 x(m+1) = x(m);
18 end
19 end

For q ∈ N set

δI ,J ,q =
[

max

{

1,
2rq−1ε0

α∗

}]min{b/β∗,1/β0} [
min

{

1,
2rq−1ε0

α∗

}]1/β∗
(3.8)

Now, for any ε ∈ (0, ε0), let

K (ε) := K (ε, α, β, η) =
�log(ε0/ε)/ log(1/r)�

∑

q=1

C�

(

δI ,J ,q , r
qε0
)

(3.9)

and suppose that (I , J , K (ε)) ∈ S. Then the total number of inner iterations of �

needed by Algorithm 2 to compute x (t) with

f (x (t)) − f̂ + gQ(x (t)) ≤ max{η, ε},

is bounded by the cardinality of the set

{

(i ′, j ′, k′) ∈ S : h(|i ′|, j ′, k′) ≤ h (|I |, J , K (ε))
}

. (3.10)

123

Foundations of Computational Mathematics

In addition, if C� satisfies

C�(δ, ε) ≤ Cδd1/εd2 + 1, C, d1, d2 > 0, (3.11)

for all δ, ε > 0, then

K (ε) ≤
⌈

log(ε0/ε)

log(1/r)

⌉

+ max

⎧

⎨

⎩

(

2ε0
α∗

)d1 min
{

b−1
β∗ , 1

β0
− 1

β∗
}

, 1

⎫

⎬

⎭

×

C2d1/β∗

α
d1/β∗∗ rd2

·

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1−r�log(ε0/ε)/log(1/r)�|d2−d1/β∗|
1−r |d2−d1/β∗| · 1

ε
d2−d1/β∗
0

, if d2 < d1/β∗,
⌈

log(ε0/ε)
log(1/r)

⌉

, if d2 = d1/β∗,
1−r�log(ε0/ε)/log(1/r)�|d2−d1/β∗|

1−r |d2−d1/β∗| · 1
εd2−d1/β∗ , if d2 > d1/β∗.

(3.12)

Proof Since εi, j,q−1 = rq−1ε0 for all q ∈ N, (3.8) must hold by considering the two
separate cases defining δI ,J ,q . Similar to the proof of Theorem 2.1, we may assume
without loss of generality that ε ≥ η. Note that, due to (1.2),

d(x, ̂X) ≤
(

f (x) − f̂ + gQ(x) + η

α∗

)1/β

, ∀x ∈ D. (3.13)

Now consider the following adapted version of the iterates in Algorithm 1:

1 for p = 0, 1, . . . do
2 εp+1 ← rεp ;
3 if 2εp > α∗ then

4 δp+1 ←
(

2εp
α∗
)min{b/β∗,1/β0}

;

5 else

6 δp+1 ←
(

2εp
α∗
)1/β∗

;

7 end
8 z ← �

(

δp+1, εp+1, xp
)

;
9 xp+1 ← argmin

{

f (x) + gQ(x) : x = xp or x = z
}

;

10 end

It is easy to see inductively that for any l with εl ≥ η the above produces iterates
{x0, x1, . . . , xl} ⊂ D satisfying

f (xp) − f̂ + gQ(xp) ≤ εp, d(xp, ̂X) ≤ δp+1, 0 ≤ p ≤ l.

The only difference to the previous argument for Algorithm 1 is the use of (3.13), and
the fact that

123

Foundations of Computational Mathematics

(

f (xp) − f̂ + gQ(xp) + η

α∗

)1/β

≤
(

2εp
α∗

)1/β

≤

⎧

⎪

⎨

⎪

⎩

(

2εp
α∗

)min{b/β∗,1/β0}
, if 2εp > α∗

(

2εp
α∗

)1/β∗
, otherwise.

Here, we use β ≥ β0 in the first case.
In Algorithm 2, each Ui, j plays the role of the index p in the above iterates (i.e.,

counting the number of restarts for a fixed (i, j)) and Vi, j counts the total number
of inner iterations that have been executed by the algorithm � for the approximate
sharpness constants given by the double index (i, j). The fact that we take minimizers
of f + gQ across different indices does not alter the above inductive argument since
the argument only depends on bounding the value of f − f̂ +gQ . Moreover, since h is
strictly increasing in its final argument and satisfies (3.1), the counter index k counts
successively through N for any fixed (i, j) as the for loop in Algorithm 2 proceeds. It
follows that if φ(m + 1) = (I , J , k), VI ,J + C�

(

δI ,J ,UI ,J+1, εI ,J ,UI ,J+1, x (m)
) ≤ k

and εI ,J ,UI ,J ≥ η, then

f (x (m+1)) − f̂ + gQ(x (m+1)) ≤ εI ,J ,UI ,J+1 = rUI ,J+1ε0. (3.14)

Hence, for Algorithm 2 to produce an iterate with

f (x (t)) − f̂ + gQ(x (t)) ≤ max{η, ε}, (3.15)

it is sufficient to reach an m with φ(m + 1) = (I , J , k) such that

k ≥
�log(ε0/ε)/ log(1/r)�

∑

q=1

C�

(

δI ,J ,q , εI ,J ,q
) = K (ε) (3.16)

and execute the resulting restart. To see why this is the case, notice that if k satisfies
this inequality, then the number of restart iterations performed by the algorithm for
the parameter values (I , J) is at least �log(ε0/ε)/ log(1/r)�. Plugging this into (3.14)
gives the desired bound (3.15).

Now consider the set in (3.10). Due to (3.1), we notice that this set is equivalent to

{(i ′, j ′, k′) ∈ S : φ−1(i ′, j ′, k′) ≤ m + 1},

where φ(m + 1) = (I , J , K (ε)). Notice that if a triple (i ′, j ′, k′) belongs to this
set, then (i ′, j ′, k′′) belongs to the set for every 1 ≤ k′′ ≤ k′. Thus, the number of
terms in this set corresponding to the pair (i ′, j ′) is precisely the total number of inner
iterations performed by the algorithm at the corresponding parameter values up to step
m. We immediately deduce that the cardinality of the set (3.10) is a bound for the total

123

Foundations of Computational Mathematics

number of inner iterations performed by the algorithm across all parameter values up
to step m, as required.

To finish the proof, wemust show that (3.12) holds under the additional assumption
(3.11) on C� . Suppose first that δI ,J ,q > 1, then

C�

(

δI ,J ,q , rqε0
) ≤ C

(

2rq−1ε0

α∗

)d1 min{b/β∗,1/β0}
(

rqε0
)−d2 + 1

≤ C

(

2ε0
α∗

)d1[min{b/β∗,1/β0}−1/β∗] (2rq−1ε0

α∗

)d1/β∗
(

rqε0
)−d2 + 1

= C

rd2

(

2ε0
α∗

)d1[min{b/β∗,1/β0}−1/β∗] (2

α∗

)d1/β∗ (
rq−1ε0

)−d2+d1/β∗ +1.

Similarly, if δI ,J ,q ≤ 1, then

C�

(

δI ,J ,q , r
qε0
) ≤ C

rd2

(

2

α∗

)d1/β∗ (
rq−1ε0

)−d2+d1/β∗ + 1.

From (3.16), it follows that

K (ε) ≤
⌈

log(ε0/ε)

log(1/r)

⌉

+ max

{

(

2ε0
α∗

)d1[min{b/β∗,1/β0}−1/β∗]
, 1

}

· C2d1/β∗

α
d1/β∗∗ rd2

·
� log(ε0/ε)

log(1/r) �−1
∑

k=0

1

(rkε0)d2−d1/β∗ .

We now note that the only difference between this bound for K (ε) and the bound for
T in the proof of Theorem 2.1 is the factor that maximizes over the terms in curly
brackets and the replacement of α and β by α∗ and β∗, respectively. The result follows
from the same arguments as in the proof of Theorem 2.1. ��

3.4 Choices of Schedule Criterion Functions and Assignments, and the Proof of
Theorem 1.1

As revealed by the previous theorem, the total number of inner iterations of � needed
for Algorithm 2 depends on the choice of h and φ. We examine some choices and state
them as corollaries. These choices correspond to those shown in Fig. 1. Combining
these corollaries with Theorem 3.3, we immediately obtain Theorem 1.1.

Corollary 3.4 (Unknown α and β) Suppose that S = Z × N0 × N and let

h(x1, x2, x3) = (x1 + 1)c1(x2 + 1)c2x3, c1, c2 > 1

be a schedule criterion with h-assignment φ. Then for any ε ∈ (0, ε0), running Algo-
rithm 2 with

123

Foundations of Computational Mathematics

t ≥ 2c1c2τ/[(c1 − 1)(c2 − 1)],
τ = (|�loga(α/α0)�| + 1)c1(|�logb(β/β0)�| + 1)c2K (ε),

where K (ε) is as in (3.9), implies that

f (x (t)) − f̂ + gQ(x (t)) ≤ max{η, ε}.

Proof It suffices to prove that the stated lower bound on t is an upper bound for the
cardinality of the set (3.10) fromTheorem3.3.We do this by finding an upper bound on
the number of solutions to nc11 nc22 n3 ≤ τ where n1, n2, n3 ∈ N. By directly counting,
the number of solutions is bounded by

τ 1/c1
∑

n1=1

(

τ

n
c1
1

) 1
c2

∑

n2=1

τ

nc11 nc22
≤ τ

∞
∑

n1=1

1

nc11

∞
∑

n2=1

1

nc22
.

We have that

∞
∑

n1=1

1

nc11
≤ 1 +

∫ ∞

1

dx

xc1
= c1

c1 − 1
.

It follows that the number of solutions is bounded by τc1c2/((c1 − 1)(c2 − 1)). Each
counted solution (n1, n2, n3) defines at most two tuples (i ′, j ′, k′) in the set (3.10),
namely i ′ = ±(n1 − 1), j ′ = n2 − 1, k′ = n3. In reverse, each tuple (i ′, j ′, k′) of
the set (3.10) is always associated with a single solution (n1, n2, n3), namely n1 =
|i ′| + 1, n2 = j ′ + 1, n3 = k′. It then follows that that the set (3.10) is bounded by
2τc1c2/((c1 − 1)(c2 − 1)). ��

We now consider the cases where either α or β is known.

Corollary 3.5 (Known α) Suppose that α = aiα0. Let S = {i} × N0 × N and
h(x1, x2, x3) = (x2 + 1)c2x3, c2 > 1, be a schedule criterion. Then given any h-
assignment φ and any ε ∈ (0, ε0), running Algorithm 2 with

t ≥ c2τ/(c2 − 1), τ = (|�logb(β/β0)�| + 1)c2K (ε),

where K (ε) is as in (3.9), implies that

f (x (t)) − f̂ + gQ(x (t)) ≤ max{η, ε}.

Proof The result follows after modifying the proof of Corollary 3.4. First, find an
upper bound to the number of solutions to nc22 n3 ≤ τ for n2, n3 ∈ N. Now find the
correspondence between the solutions and the triples (i ′, j ′, k′) of (3.10), where i ′ is
now fixed. ��

123

Foundations of Computational Mathematics

Corollary 3.6 (Known β) Suppose that β = β0 is known, S = Z × {0} × N and
h(x1, x2, x3) = (x1 + 1)c1x3, c1 > 1, is a schedule criterion. Then given any h-
assignment φ and any ε ∈ (0, ε0), running Algorithm 2 with

t ≥ 2c1τ/(c1 − 1), τ = (|�loga(α/α0)�| + 1)c1K (ε),

where K (ε) is as in (3.9), implies that

f (x (t)) − f̂ + gQ(x (t)) ≤ max{η, ε}.

Proof Similar to the previous proof, the result follows after modifying the proof of
Corollary 3.4. First, find an upper bound to the number of solutions to nc11 n3 ≤ τ

for n1, n3 ∈ N. Now find the correspondence between the solutions and the triples
(i ′, j ′, k′) of (3.10), where j ′ is now fixed. ��

To compute an h-assignment φ for Corollaries 3.4 to 3.6, let us first make some
observations in the most general case. From the setup of Definition 3.1, consider
the equivalence relation ∼ over S where (i1, j1, k1) ∼ (i2, j2, k2) if and only if
h(|ii |, j1, k1) = h(|i2|, j2, k2). The range of h(| · |, ·, ·) over S is countable and has a
least element since the arguments of h are non-decreasing byDefinition 3.1. Therefore,
the equivalence classes can be ordered where S/ ∼ = {[g1], [g2], [g3], . . . } where
for all i, j , if i < j , then h(|i1|, j1, k1) < h(|i2|, j2, k2) for all (i1, j1, k1) ∈ [gi],
(i2, j2, k2) ∈ [g j]. All h-assignments φ are then determined by this ordering, in the
sense that

φ(n) ∈ [gm] ⇐⇒
m−1
∑

i=1

#[gi] < n ≤
m
∑

i=1

#[gi], ∀m, n ∈ N.

We use this observation to compute an assignment function in the context of Corollary
3.4. The procedure is analogous for Corollaries 3.5 and 3.6 as they are special cases.
As in Corollary 3.4, we have S = Z × N0 × N and

h(x1, x2, x3) = (x1 + 1)c1(x2 + 1)c2x3, c1, c2 > 1.

If c1, c2 are positive integers, as in our numerical experiments, the range of h(| · |, ·, ·)
is precisely N, and the equivalence classes can be described by

[gm] = {(i, j, k) ∈ S : m = h(|i |, j, k) = (|i | + 1)c1(j + 1)c2k
}

, m ∈ N.

In this instance, every equivalence class is finite. For any m, computing [gm] (and in
turn φ) amounts to finding all (finitely many) solutions to the nonlinear equation

m = (|i | + 1)c1(j + 1)c2k, (i, j, k) ∈ S.

123

Foundations of Computational Mathematics

Using the change of variables y1 = |i | + 1, y2 = j + 1, y3 = k, we obtain the
Diophantine equation

m = yc11 yc22 y3, y1, y2, y3 ∈ N.

Our algorithmic approach tofind y1, y2, y3 is bybrute force. Sinceweknow y1 ≤ c1
√
m,

y2 ≤ c2
√
m, and y3 ≤ m, there are only m

1
c1

+ 1
c2

+1
candidate solutions to check. After

finding the solutions, one obtains the elements of [gm] by reverting the change of
variables, yielding i = ±(y1 − 1), j = y2 − 1, k = y3. The resulting solutions can be
listed in arbitrary order, which yields an instance of φ.

Finally, to emphasize the generality of our algorithm, we consider the case where α

and β are known to lie within explicit ranges. In this case, we modify the set S based
on these ranges and choose a schedule criterion function h(x1, x2, x3) depending on
x3 only. The following result is immediate.

Corollary 3.7 (Known ranges for α, β) Suppose we have integers

imin ≤ imax, 0 ≤ jmin ≤ jmax,

for which

α ∈ [aiminα0, a
imaxα0], β ∈ [b jminβ0, b

jmaxβ0].

Let

S = {imin, imin + 1, . . . , imax} × { jmin, jmin + 1, . . . , jmax} × N,

and h(x1, x2, x3) = x3 be a schedule criterion. Then given any h-assignment φ and
any ε ∈ (0, ε0), running Algorithm 2 with

t ≥ (imax − imin + 1)(jmax − jmin + 1)K (ε),

where K (ε) is as in (3.9), implies f (x (t)) − f̂ + gQ(x (t)) ≤ max{η, ε}.

3.5 Comparison with the Cost in Theorem 2.1

We compare the cost in Corollary 3.4 to that of Theorem 2.1 under the assumption
(3.11). Let K̂ (ε) be the cost in (2.3). Then

K (ε) � K̂ (ε)

{

1, if β = β∗ or d2 ≤ d1/β∗,
1

εd1(1/β−1/β∗) , otherwise.
(3.17)

It follows that if β = β∗ or d2 ≤ d1/β∗, the cost of Algorithm 2 is of the same
order as K̂ (ε). If neither of these hold, then the cost of Algorithm 2 is of the order of
ε−d1(1/β−1/β∗) times the cost of Algorithm 1. Note that the order of this extra algebraic

123

Foundations of Computational Mathematics

dependence can be made arbitrarily small by taking b close to 1, at the expense of a
factor in the term τ that grows as logb(β/β0)

c2 .
One can also remove this extra algebraic factor by letting the base b depend on

ε (in which case ε now becomes an input to the restart scheme). Specifically, let
b = 1 + 1/ log(ε−1). Corollary 3.4 implies the iteration bound

t ≥ 2c1c2τ/[(c1 − 1)(c2 − 1)],
τ = (|�loga(α/α0)�| + 1)c1(|�logb(β/β0)�| + 1)c2K (ε),

where K (ε) is as in (3.9), and in particular, if C� satisfies (3.11) then K (ε) satisfies
(3.12). We now analyze this bound in the limit ε ↓ 0. First, recall that

β ≤ β∗ ≤ bβ.

In particular, β∗ → β as ε ↓ 0. Also, observe that

logb(β/β0) ∼ log(β/β0) log(ε
−1), ε ↓ 0.

Suppose now that d2 ≥ d1/β. Since we also have d2 ≥ d1/β∗, then we may apply
(3.12) to get that

K (ε) ≤ Ĉ
(

log(ε0/ε) + (ε−1)d2−d1/β∗
)

,

for all sufficiently small ε, where the constant Ĉ depends on C, r , α0, α, β0, β, d1, d2.
Since

d2 − d1/β∗ ≤ d2 − d1/(bβ),

we obtain

(ε−1)d2−d1/β∗ ≤ (ε−1)d2−d1/(bβ)

= exp

[

log(ε−1)

(

d2 − d1
(1 + 1/ log(ε−1))β

)]

= exp

[

log(ε−1)

1 + 1/ log(ε−1)

(

d2 − d1
β

)

+ d2
1

1 + 1/ log(ε−1)

]

≤ ed2εd1/β−d2

for all sufficiently small ε. Hence

K (ε) ≤ Ĉ
(

log(ε0/ε) + εd1/β−d2
)

.

123

Foundations of Computational Mathematics

Therefore, the total iteration bound satisfies

t ≥ C̃

{

(log(ε−1))1+c2 d2 = d1/β

(log(ε−1))c2εd1/β−d2 d2 ≥ d1/β
.

for small ε, where C̃ also depends on c1, c2.
As discussed above and in Sect. 1.5, the version of our restart scheme with fixed b

may miss the optimal algebraic rate when β �= β∗. The above approach, in which ε

becomes an input and the base b is scaled accordingly, restores the optimal algebraic
rates, up to the logarithmic term (log(ε−1))c2 , where the constant c2 > 1 can be chosen
arbitrarily close to 1 (recall Corollary 3.4).

4 Examples and the Complexity Bounds of Table 1

We now present examples of first-order methods that can be used in our restart
scheme for different problem settings, including the methods that lead to the var-
ious complexity bounds in Table1. We do this by explicitly deriving an algorithm
� : R++ ×R++ × D → D that satisfies (1.3) and give an explicit bound for the cost
function C�(δ, ε, x0) of the form Cδd1/εd2 + 1 for suitable d1 and d2.

This section is organized into five subsections, each corresponding to a row of
Table1. In each subsection,wefirst define the class of functions or problems considered
and describe the first-order method considered. We then provide a standard lemma on
the convergence of the method before showing in a proposition how to convert this
method into � of the form needed for our restart scheme and deriving a suitable cost
function C� . The rates in the corresponding line of Table1 follow directly from this
proposition and Corollary 3.4.

Remark 4.1 (Optimization over C) In convex analysis and continuous optimization, it
is standard to consider function inputs lying in afinite-dimensional vector space overR.
The results described below are extended to C since some of the experiments shown
in Sect. 5 naturally consider complex numbers. For instance, Magnetic Resonance
images are usually complex-valued. To this end, we briefly describe the main facets
of optimization over C.

We are interested in the domain of f being a subset of Cn while its range is, of
course, a subset of R. Hence, we consider the natural isomorphism between C

n and
R
2n given by: if z = x + iy ∈ C

n with x, y ∈ R
n , then z !→ (x, y). We refer to z as

the complex representation and (x, y) as the real representation. Now, one proceeds
to do convex analysis and continuous optimization in the real representation, then
express the results in the equivalent complex representation. Fortunately, not much
needs to change (at least symbolically) when switching between real and complex
representations.

For example, the Euclidean inner products 〈·, ·〉 have to be substituted with their
real part, i.e., 〈·, ·〉R := "〈·, ·〉. Another example pertains to the differentiability of f .
Specifically, for x, y ∈ R

n , we say that f is differentiable at z = x + iy ∈ D ⊆ C
n if

and only if"(f) is (real) differentiable at (x, y). To define the gradient, denote∇x and

123

Foundations of Computational Mathematics

Algorithm 5: Nesterov’s method
Input : An L-smooth function f and closed, convex set Q ⊆ C

n as in (1.1), prox-function p(·; x0)
with strong convexity constant σp and unique minimizer x0 ∈ Q, sequences {γ j }∞j=0 and

{τ j }∞j=0, and number of iterations N .
Output: The vector xN , which estimates a minimizer of (1.1).

1 z0 ← x0
2 for j = 0, 1, . . . , N − 1 do
3 x j+1 ← argmin

x∈Q
L
2

∥

∥x − z j
∥

∥

2
	2 + 〈∇ f (z j), x − z j 〉R

4 v j ← argmin
x∈Q

L
σp

p(x; x0) +∑ j
i=0 γi 〈∇ f (zi), x − zi 〉R

5 z j+1 ← τ j v j + (1 − τ j)x j+1
6 end

∇y as the vector of partial derivatives corresponding to variables x and y, respectively.
Then ∇ f := ∇x"(f) + i∇y"(f), noting that because f is real-valued, we have
Im (f) ≡ 0. Other parts of convex analysis, such as convexity, functions, proximal
mappings, subgradients, also extend to a complex vector domain by applying the
definitions to the real representation of complex vectors. �

4.1 Row 1 of Table 1: Nesterov’s Method for L-Smooth Functions

For the first row of Table1, we consider Nesterov’s method [56], an accelerated
projected gradient descent algorithm for general constrained convex optimization
problems. Specifically, the algorithm aims to solve (1.1) in the special case when
f is convex and L-smooth:

Definition 4.2 A function f : Cn → R is L-smooth over Q ⊆ C
n if it is differentiable

in an open set containing Q, and for all x , y in this set, its gradient∇ f has the Lipschitz
property

‖∇ f (x) − ∇ f (y)‖	2 ≤ L‖x − y‖	2 . (�)

Nesterov’s method is given in Algorithm 5. The algorithm uses the notion of a
prox-function p. Here p : Q → R is a proper, closed, and strongly convex function
with strong convexity constant σp > 0, that, in addition, satisfies minx∈Q p(x) = 0.
Let x0 = argminx∈Q p(x) be the unique minimizer of p. To make this dependence
explicit, we write p(·) = p(·; x0). A common and simple choice of prox-function is
p(x; x0) = 1

2‖x − x0‖2	2 with σp = 1. This will be useful whenwe express Nesterov’s
method with smoothing, in terms of �. We now state Nesterov’s main result that gives
a bound for f (xk) − f (x) for any x ∈ Q.

Lemma 4.3 (Nesterov’s theorem) Let Q ⊆ C
n be nonempty, closed, and convex, f a

convex L-smooth function over Q. In addition, let p : Q → R be a proper, closed,
and strongly convex function over Q with strong convexity constant σp > 0 with

123

Foundations of Computational Mathematics

minx∈Q p(x) = 0. Then Algorithm 5 with

γ j = j + 1

2
, τ j = 2

j + 3
, x0 = argmin

x∈Q
p(x),

generates a sequence {xk}∞k=1 ⊂ Q satisfying

f (xk) − f (x) ≤ 4Lp(x; x0)
k(k + 1)σp

, ∀x ∈ Q. (4.1)

Lemma 4.3 consists of two modifications of [56, Theorem 2]. First, we do not
assume Q is bounded, as the results in the original work do not use this. Second,
we allow x ∈ Q instead of x ∈ ̂X . The proof in the original work does not use
the optimality of x and only requires x to be feasible. We utilize this property when
considering Nesterov’s method with smoothing. The following is now immediate.

Proposition 4.4 Let Q ⊆ C
n be nonempty, closed and convex, f a convex L-smooth

function over Q (Definition 4.2). Given input (δ, ε, x0) ∈ R+×R+×Q, let�(δ, ε, x0)
be the output of Algorithm 5 with

p(x; x0) = 1

2
‖x − x0‖2	2 , γ j = j + 1

2
, τ j = 2

j + 3
, N =

⌈

δ
√
2L√
ε

⌉

.

Then (1.3) holds with gQ ≡ 0. Specifically,

f (�(δ, ε, x0)) − f̂ ≤ ε, ∀x0 ∈ Q with d(x0, ̂X) ≤ δ, (4.2)

where d is the metric induced by the 	2-norm. It follows that we can take

C�(δ, ε) =
⌈

δ
√
2L√
ε

⌉

. (4.3)

Proposition 4.4 shows thatwe can take d1 = 1 and d2 = 1/2 in the cost bound (3.11)
for Nesterov’s method (without smoothing). If f is L-smooth and satisfies (1.2) with
η = 0, then β ≥ 2. It follows that we can take β0 = 2. Theorem 3.3 and Corollary 3.4
now imply the rates in the first row of Table1. Note that if L is unknown, it is standard
to employ line searches.

Several other remarks are in order. First, in Nesterov’s method, the iterates x j are
always feasible since the corresponding update step returns a point in Q. Thus, in
Proposition 4.4, we do not have to define gQ since � trivially satisfies (1.3) with
gQ ≡ 0. Finally, the requirement x0 ∈ Q can be relaxed in Nesterov’s method. For
instance,we only require f is L-smooth over the union of Q and an open neighborhood
of x0 for some L > 0 to start with x0 /∈ Q.

123

Foundations of Computational Mathematics

4.2 Row 2 of Table 1: Nesterov’s Method for (u, v)-Smoothable Functions

We can extend Nesterov’s method to solve (1.1) without assuming that f is differ-
entiable. This is done via smoothing. For this, we need the following definition from
[10, Definition 10.43] (extended to functions with complex-vector domains).

Definition 4.5 Let u, v > 0. A convex function f : C
n → R is called (u, v)-

smoothable if for anyμ > 0 there exists a convex differentiable function fμ : Cn → R

such that

1. fμ(x) ≤ f (x) ≤ fμ(x) + vμ for all x ∈ C
n

2. fμ is u
μ
-smooth over Cn

The function fμ is referred to as a 1
μ
-smooth approximation of f with parameters

(u, v), and μ is referred to as the smoothing parameter. �

Smoothing is a framework that approximates f arbitrarily closely by a family of
smooth functions, i.e., functionswithLipschitz gradients. Thismeans thatwe can apply
Nesterov’smethod to a smooth approximation of f and also analyze the objective error
in terms of f . The following provides a modified version of Lemma 4.3 for (u, v)-
smoothable f , and is proven in Appendix1.

Lemma 4.6 (Nesterov’s theorem for smoothable functions) Let f : Cn → R be a
convex (u, v)-smoothable function. Given any μ > 0, let fμ be a 1

μ
-smooth approxi-

mation of f with parameters (u, v). Then taking Q, p, γ j , τ j , x0 as in Lemma 4.3 and
applying Algorithm 5 to the function fμ produces a sequence {xk}∞k=1 satisfying

f (xk) − f (x) ≤ 4up(x; x0)
μk(k + 1)σp

+ vμ, x ∈ Q. (4.4)

The following proposition shows that Nesterov’s method with smoothing can be
formulated as an algorithm � in our framework and is proven in Appendix1.

Proposition 4.7 Let Q ⊆ C
n be nonempty, closed and convex, and f : Cn → R a

convex (u, v)-smoothable function (Definition 4.5). Given input (δ, ε, x0) ∈ R+ ×
R+ × Q, let �(δ, ε, x0) be the output of Algorithm 5 applied to function fμ with

μ = ε

2v
, p(x; x0) = 1

2
‖x − x0‖2	2 , γ j = j + 1

2
, τ j = 2

j + 3
, N =

⌈

2
√
2uv · δ

ε

⌉

.

Then

f (�(δ, ε, x0)) − f̂ ≤ ε, ∀x0 ∈ Q satisfying d(x0, ̂X) ≤ δ,

where d is the metric induced by the 	2-norm. It follows that we can set

C�(δ, ε, x0) =
⌈

2
√
2uv · δ

ε

⌉

.

123

Foundations of Computational Mathematics

Algorithm 6: Universal fast gradient method
Input : Parameters ε > 0, L0 > 0, φ0(x) = 0, y0 = x0, A0 = 0.
Output: The vector xN , which estimates a minimizer of (4.5).

1 for k = 0, 1, . . . , N do
2 vk ← proxφk ,Q (x0)

3 ik ← −1
4 do
5 ik ← ik + 1

6 Compute ak+1,ik from the equation a2k+1,ik
= 1

2ik Lk
(Ak + ak+1,ik).

7 Ak+1,ik ← Ak + ak+1,ik
8 τk,ik

← ak+1,ik /Ak+1,ik
9 xk+1,ik ← τk,ik

vk + (1 − τk,ik
)yk

10 Choose a subgradient ∇q(xk+1,ik) ∈ ∂q(xk+1,ik).

11 φ̂k+1,ik (x) ← ak+1,ik [〈∇q(xk+1,ik), x〉R + g(x)]
12 x̂k+1,ik ← prox

φ̂k+1,ik
,Q (vk)

13 yk+1,ik ← τk,ik
x̂k+1,ik + (1 − τk,ik

)yk

14 while q(yk+1,ik)>q(xk+1,ik)+〈∇q(xk+1,ik), yk+1,ik −xk+1,ik 〉R+2ik−1Lk‖yk+1,ik −xk+1,ik ‖2
	2

+ ε
2 τk,ik

15 xk+1 ← xk+1,ik , yk+1 ← yk+1,ik , ak+1 ← ak+1,ik , τk ← τk,ik
16 Ak+1 ← Ak + ak+1, Lk+1 ← 2ik−1Lk
17 φk+1(x) ← φk (x) + ak+1[q(xk+1) + 〈∇q(xk+1), x − xk+1〉R + g(x)].
18 end

This result shows that we can take d1 = 1 and d2 = 1 in (3.11) in the case of
Nesterov’s method with smoothing. Theorem 3.3 and Corollary 3.4 now imply the
rates in the second row of Table1. Note that, for example, Lipschitz functions are
smoothable [10].

4.3 Row 3 of Table 1: The Universal Fast Gradient Method

We next consider Hölder smooth functions, which are a natural way of interpolating
between non-smooth and smooth objective functions.

Definition 4.8 A convex function q : Cn → R is Hölder smooth over Q ⊆ C
n with

parameters ν ∈ [0, 1], 0 ≤ Mν < ∞ if

‖∇q(x) − ∇q(y)‖	2 ≤ Mν‖x − y‖ν
	2

,

∀ x, y ∈ Q,∇q(x) ∈ ∂q(x),∇q(y) ∈ ∂q(y).

�

We consider the universal fast gradient method [58] for the problem

min
x∈Q f (x), f (x) := q(x) + g(x), (4.5)

where q is a proper convex function that is Hölder smooth for some ν ∈ [0, 1], and g
is a closed convex function whose proximal map,

123

Foundations of Computational Mathematics

proxcg,Q(x) = argmin
y∈Q

{

c · g(y) + 1

2
‖x − y‖2

	2

}

,

is straightforward to compute. The iterates of the universal fast gradient method are
summarized in Algorithm 6.

Lemma 4.9 (Theorem 3 of [58]) Let Q ⊆ C
n be nonempty, closed and convex, q a

proper convex function that is Hölder smooth for some ν ∈ [0, 1] and 0 ≤ Mν <

∞ (Definition 4.8), and g a closed convex function. Then Algorithm 6 generates a
sequence {xk}∞k=1 ⊂ Q satisfying

f (xk) − f̂ ≤
(

22+4νM2
ν

ε1−νk1+3ν

)
1

1+ν d(x0, ̂X)2

2
+ ε

2
, ∀x ∈ Q, (4.6)

where d is the metric induced by the 	2-norm.

The following proposition is immediate when choosing k to match the two terms
on the right-hand side of (4.6).

Proposition 4.10 Let Q ⊆ C
n be nonempty, closed and convex, q a proper convex

function is Hölder smooth for some ν ∈ [0, 1] and Mν ≥ 0 (Definition 4.8), and g a
closed convex function. Given input (δ, ε, x0) ∈ R+ ×R+ × Q, let �(δ, ε, x0) be the
output of Algorithm 6 with

N =
⎡

⎢

⎢

⎢

2
2+4ν
1+3ν M

2
1+3ν
ν δ

2+2ν
1+3ν

ε
2

1+3ν

⎤

⎥

⎥

⎥

.

Then

f (�(δ, ε, x0)) − f̂ ≤ ε, ∀x0 ∈ Q satisfying d(x0, ̂X) ≤ δ,

where d is the metric induced by the 	2-norm. It follows that we can set

C�(δ, ε, x0) =
⎡

⎢

⎢

⎢

2
2+4ν
1+3ν M

2
1+3ν
ν δ

2+2ν
1+3ν

ε
2

1+3ν

⎤

⎥

⎥

⎥

.

Proposition 4.10 shows thatwe can take d1 = (2+2ν)/(1+3ν) and d2 = 2/(1+3ν)

for the universal fast gradient method. Note that if q satisfies both (1.2) for η = 0 and
Definition 4.8, then β ≥ 1+ ν [70]. Therefore, we take β0 = 1+ ν. Theorem 3.3 and
Corollary 3.4 now imply the rates in the third row of Table1.

123

Foundations of Computational Mathematics

Algorithm 7: Primal–dual algorithm for the problem (4.7).
Input : Initial vectors x0 ∈ C

n and y0 ∈ C
m , proximal step sizes τ, σ > 0, number of iterations N ,

matrix B ∈ C
m×n , and routines for appropriate proximal maps.

Output: Final ergodic average XN approximating a solution to (4.7).

1 Initiate with x(0) = x0, y
(0)
1 = y0, X0 = 0, and Y0 = 0.

2 for j = 0, . . . , N − 1 do

3 x(j+1) ← proxτg

(

x(j) − τ B∗y(j) − τ∇q(x(j))
)

;

4 y(j+1) ← proxσh∗
(

y(j) + σ B(2x(j+1) − x(j))
)

;

5 X j+1 ← 1
j+1

(

j X j + x(j+1)
)

;

6 Y j+1 ← 1
j+1

(

jY j + y(j+1)
)

;

7 end

4.4 Row 4 of Table 1: The Primal–Dual Iteration for Unconstrained Problems

We now consider Chambolle and Pock’s primal–dual algorithm [23, 25]. The primal–
dual hybrid gradient (PDHG) algorithm is a popular method to solve saddle point
problems [22, 31, 64]. Consider the problem

min
x∈Cn

f (x), f (x) := q(x) + g(x) + h(Bx), (4.7)

where: B ∈ C
m×n with ‖B‖ ≤ LB ; q is a proper, lower semicontinuous, convex

function, and is Lq -smooth; and g, h are proper, lower semicontinuous, convex func-
tions whose proximal maps are straightforward to compute. We also use the standard
Euclidean metric for d in (1.2) and write the primal–dual iterates in their simplified
form accordingly.

The saddle-point problem associated with (4.7) is

min
x∈Cn

max
y∈Cm

L(x, y) := 〈Bx, y〉R + q(x) + g(x) − h∗(y). (4.8)

The primal–dual iterates are summarized in Algorithm 7, where the output is the
ergodic average of the primal–dual iterates. Note that the primal–dual algorithm allows
us to dealwith thematrix B easily,which can be difficultwith other first-ordermethods.
If τ(σ L2

B + Lq) ≤ 1, then [25, Theorem 1] shows that for any x ∈ C
n and y ∈ C

m ,

L (Xk, y) − L (x,Yk) ≤ 1

k

(

‖x − x (0)‖2
τ

+ ‖y − y(0)‖2
σ

)

. (4.9)

The following lemma is a simple consequence of this bound and is proven in
Appendix1.

123

Foundations of Computational Mathematics

Lemma 4.11 Consider the primal–dual iterates in Algorithm 7. If τ(σ L2
B + Lq) ≤ 1,

then

f (Xk) − f (x) ≤ 1

k

(

‖x − x (0)‖2
τ

+ ‖y − y(0)‖2
σ

)

, ∀x ∈ C
n, y ∈ ∂h(BXk).

(4.10)

We can take the infimum over y ∈ ∂h(BXk) on the right-hand side of (4.10) to
obtain for all x ∈ C

n :

f (Xk)− f (x) ≤ 1

k

(

‖x−x (0)‖2
τ

+ supz∈dom(h) inf y∈∂h(z) ‖y−y(0)‖2
σ

)

, (4.11)

To bound the right-hand side, we take y(0) = 0 and consider the case where h is such
that there always exist points y in the subdifferential of h for which ‖y‖ is not too
large. Note that this always holds if, for example, h is Lipschitz continuous, and its
domain is open [10, Theorem 3.61]. The following proposition now shows how this
falls into the framework of our restart scheme and is proven in Appendix1.

Proposition 4.12 Suppose that

sup
z∈dom(h)

inf
y∈∂h(z)

‖y‖ ≤ Lh < ∞. (4.12)

Given input (δ, ε, x0) ∈ R+ × R+ × C
n, let �(δ, ε, x0) be the output of Algorithm 7

with

y0 = 0, τ = δ

LBLh + δLq
, σ = Lh

δLB
, N =

⌈

δ

ε

(

2LBLh + δLq
)

⌉

.

Then

f (�(δ, ε, x0)) − f̂ ≤ ε, ∀x0 with d(x0, ̂X) ≤ δ. (4.13)

It follows that we can take

C�(δ, ε, x0) =
⌈

δ

ε

(

2LBLh + δLq
)

⌉

. (4.14)

Assuming that δ is bounded, Proposition 4.12 showswe can take d1 = 1 and d2 = 1
for the primal–dual algorithm. Theorem 3.3 and Corollary 3.4 now imply the rates in
the fourth row of Table1. Note, however, that it is not immediately clear how to employ
line searches in the case that Lq is unknown.

123

Foundations of Computational Mathematics

Algorithm 8: Primal–dual algorithm for the constrained problem (4.15).

Input : Initial vectors x0 ∈ C
n , [y0]1 ∈ C

m and [y0]2 ∈ C
m′
, proximal step sizes τ, σ1, σ2 > 0,

number of iterations N , matrices B ∈ C
m×n and A ∈ C

m′×n , and routines for appropriate
proximal maps.

Output: Final ergodic average XN approximating a solution to (4.15).

1 Initiate with x(0) = x0, y
(0)
1 = [y0]1, y(0)

2 = [y0]2, X0 = 0, [Y0]1 = 0, and [Y0]2 = 0.
2 for j = 0, . . . , N − 1 do

3 x(j+1) ← proxτg

(

x(j) − τ B∗y(j)
1 − τ A∗y(j)

2 − τ∇q(x(j))
)

;

4 y(j+1)
1 ← proxσ1h∗

(

y(j)
1 + σ1B(2x(j+1) − x(j))

)

;

5 y(j+1)
2 ← y(j)

2 + σ2A(2x(j+1) − x(j)) − σ2PC

(

y(j)
2 /σ2 + A(2x(j+1) − x(j))

)

;

6 X j+1 ← 1
j+1

(

j X j + x(j+1)
)

;

7 [Y j+1]1 ← 1
j+1

(

j[Y j]1 + y(j+1)
1

)

;

8 [Y j+1]2 ← 1
j+1

(

j[Y j]2 + y(j+1)
2

)

;

9 end

4.5 Row 5 of Table 1: The Primal–Dual Iterations for Constrained Problems

We now consider primal–dual iterations, but for the constrained problem

min
x∈Cn

f (x) + χC (Ax), f (x) := q(x) + g(x) + h(Bx), (4.15)

with the same assumptions on q, g, h and B as in Sect. 4.4, but nowwith the additional
term χC (Ax). Here, C is a closed and non-empty convex set, χC is its indicator
function, and A ∈ C

m′×n with ‖A‖ ≤ L A. This fits into our framework with the
choice

Q = {x ∈ C
n : Ax ∈ C}, gQ(x) = gQ(κ; x) = κ · inf

z∈C ‖Ax − z‖,

for κ > 0. Note that κ is an additional parameter that can be chosen to balance the
reduction rate in the feasibility gap versus the objective function error. It is possi-
ble to formulate a projected version of the primal–dual iteration. However, like with
Nesterov’s method, this is only possible when the projection onto Q can be easily
computed. This section considers a primal–dual iteration for (4.15) that only involves
computing the projection onto the set C at the price of producing non-feasible itera-
tions.

The saddle-point problem associated with (4.15) is

min
x∈Cn

max
y1∈Cm

max
y2∈Cm′ LC (x, y1, y2) := 〈Bx, y1〉R + q(x) + g(x) − h∗(y1)

+〈Ax, y2〉R − sup
z∈C

〈z, y2〉R. (4.16)

123

Foundations of Computational Mathematics

The primal–dual iterates are summarized in Algorithm 8, where the output is the
ergodic average of the primal–dual iterates. We have included three proximal step
sizes: τ , σ1, and σ2, corresponding to the primal and two dual variables. To compute
the proximal map associated with the second dual variable, we use Moreau’s identity
to write

proxσ2χ
∗
C
(y) = y − σ2PC (y/σ2),

wherePC denotes the projection ontoC (with respect to the standard Euclidean norm).
If τ(σ1L2

B + σ2L2
A + Lq) ≤ 1, then a straightforward adaption of [25, Theorem 1]

shows that for any x ∈ C
n , y1 ∈ C

m and y2 ∈ C
m′
,

LC (Xk, y1, y2) − LC (x, [Yk]1, [Yk]2)

≤1

k

⎛

⎝

‖x−x (0)‖2
τ

+‖y1−y(0)
1 ‖2

σ1
+‖y2−y(0)

2 ‖2
σ2

⎞

⎠ .

(4.17)

We now have the following lemma and resulting proposition, both proven in
Appendix1.

Lemma 4.13 Consider the primal–dual algorithm in Algorithm 8 with y(0)
2 = 0. If

τ(σ1L2
B + σ2L2

A + Lq) ≤ 1, then for any κ > 0

f (Xk) − f (x) + gQ(κ; Xk) ≤ 1

k

⎛

⎝

‖x − x (0)‖2
τ

+ ‖y1 − y(0)
1 ‖2

σ1
+ κ2

σ2

⎞

⎠ ,

∀x ∈ Q, y1 ∈ ∂h(BXk). (4.18)

Proposition 4.14 Suppose that

sup
z∈dom(h)

inf
y∈∂h(z)

‖y‖ ≤ Lh < ∞. (4.19)

Given input (δ, ε, x0) ∈ R+ × R+ × C
n, let �(δ, ε, x0) be the output of Algorithm 8

with

[y0]1 = 0, [y0]2 = 0, τ = δ

κL A + LhLB + δLq
, σ1 = Lh

δLB
, σ2 = κ

δL A
,

N =
⌈

δ
(

2κLA + 2LhLB + δLq
)

ε

⌉

.

Then

f (�(δ, ε, x0)) − f̂ + gQ(κ; x̂) ≤ ε, ∀x0 with d(x0, ̂X) ≤ δ. (4.20)

123

Foundations of Computational Mathematics

It follows that we can take

C�(δ, ε, x0) =
⌈

δ
(

2κL A + 2LhLB + δLq
)

ε

⌉

. (4.21)

Proposition 4.14 shows we can take d1 = 1 and d2 = 1 for the primal–dual
algorithm. Theorem 3.3 and Corollary 3.4 now imply the rates in the final row of
Table1.

5 Numerical Experiments

We implement several numerical experiments for the general restart scheme (Algo-
rithm 2) applied to three different problems. The first is a simple sparse recovery
problem modeled as QCBP, which is solved using the primal–dual iteration for con-
strained problems (Algorithm 8). Second, we consider image reconstruction from
Fourier measurements via TV minimization. The reconstruction is computed using
NESTA [12], where NESTA is an accelerated projected gradient descent algorithm
derived from Nesterov’s method (Algorithm 5) with smoothing. Third, we perform
feature selection on three real-world datasets. This selection is made by solving a SR-
LASSO problem on the data with unconstrained primal–dual iterations (Algorithm 7).
The experiments are implemented inMATLAB, and code is available at https://github.
com/mneyrane/restart-schemes.

Before discussing the examples, we will make general remarks about the imple-
mentation. First, we use the schedule criteria from Sect. 3.4, and for parameters we
always set c1 = c2 = 2, b = e, r = e−1, and a = ec1β/d1 for unknown α but known β

(Corollary 3.6), otherwise a = ec1/d1 if both are unknown (Corollary 3.4). The choice
of r is motivated by AppendixA.1 and the choice of a by Appendix A.2. The choice
of c1 and c2 were arbitrary, intending to be sensible defaults, and otherwise can be
tuned to improve performance. Second, when using the restart scheme for primal–dual
iterations, we store and perform restarts on the dual variables for each instance indexed
by (i, j). Third, we use a simple workaround to handle finite precision arithmetic. In
the grid search for the restart scheme, the sharpness parameter αi can be arbitrarily
large or small, and β j can be arbitrarily large. Also, the adaptive restart parameters
δ = δi, j,U and ε = εi, j,U can become arbitrarily small. Regarding the grid indices,
we limit i and j so that

|i | ≤ �loga(1/εmach)�, j ≤ �logb(1/εmach)�,

where εmach is machine epsilon. Regarding the adaptive parameters, after the assign-
ments of δi, j,U+1 and εi, j,U+1 in Algorithm 2, we insert the updates δi, j,U+1 :=
max(δi, j,U+1, 10εmach) and εi, j,U+1 := max(εi, j,U+1, 10εmach) to avoid setting them
to zero. Fourth, we slightly modify the primal–dual algorithm to improve overall per-
formance. For each j ≥ 1, we track a separate iterate ˜X j defined by

˜X j = argmini=1,..., j f (Xi) + κgQ(Xi), j ≥ 1.

123

https://github.com/mneyrane/restart-schemes
https://github.com/mneyrane/restart-schemes

Foundations of Computational Mathematics

The iterates {˜X j } j≥1 are not used in the primal–dual algorithm but are instead used
to evaluate the reconstruction or objective error in our experiments. In addition, the
algorithm returns ˜XN as its final iterate. We similarly track a separate iterate for the
dual variables, selecting them based on evaluating the Lagrangian (4.16) with ˜X j .
Note that choosing to output ˜XN instead of XN is theoretically justified, since if (1.3)
holds, then ourmodification would still satisfy (1.3) for the same parameters (δ, ε, x0).
Fifth, in each example below, we can take f (x0) + gQ(x0) as a suitable value of ε0
since the objective considered in these applications are always non-negative.We found
that the method was not sensitive to this starting value, as predicted by its logarithmic
appearance in our convergence bounds.

5.1 Sparse Recovery via QCBP

We now consider the sparse recovery problem previously introduced in Sect. 1.3. We
consider reconstructing a vector x ∈ R

n from noisy measurements y = Ax+e ∈ R
m ,

where A ∈ R
m×n is a matrix whose entries are i.i.d. Gaussian random variables with

mean zero and variance 1/m, and e ∈ R
m is a noise vector satisfying ‖e‖	2 ≤ ς for

some noise level ς > 0. For a positive integer n, we write [n] = {1, 2, . . . , n}. Given
a vector z = (zi)ni=1 ∈ C

n and S ⊆ [n], the vector zS has i th entry zi if i ∈ S, and is
zero otherwise. The best s-term approximation error of z is once more defined as

σs(z)	1 = min{‖uS − z‖	1 : u ∈ R
n, S ⊆ [n], |S| ≤ s}.

We assume that x is approximately s-sparse, in the sense that its best s-term approx-
imation error σs(x)	1 is small. The recovery of x is formulated as solving the QCBP
problem

min
z∈Rn

‖z‖	1 subject to ‖Az − y‖	2 ≤ ς. (5.1)

We use the following condition on the matrix A to ensure that approximate sharpness
holds.

Definition 5.1 (Robust null space property, e.g., Definition 5.14 of [4]) The matrix
A ∈ C

m×n satisfies the robust Null Space Property (rNSP) of order s with constants
0 < ρ < 1 and γ > 0 if

‖vS‖	2 ≤ ρ√
s
‖vS�‖	1

+ γ ‖Av‖	2 ,

for all v ∈ C
n and S ⊆ [n] with |S| ≤ s. �

In [27, Theorem 3.3], it was shown that the robust null space property (rNSP)
implies approximate sharpness. We restate the result in the notation of this paper for
completeness.

Proposition 5.2 (Approximate sharpness of 	1-norm for QCBP sparse recovery) Let
ς > 0. Suppose A ∈ C

m×n has the rNSP of order s with constants 0 < ρ < 1, γ > 0.

123

Foundations of Computational Mathematics

Let y ∈ C
m, D = C

n, Q = {x ∈ C
n : ‖Ax − y‖	2 ≤ ς} and f (x) = ‖x‖	1 . Then the

approximate sharpness condition (1.2) holds with

gQ(z;√
s) = √

smax{‖Az − y‖	2 − ς, 0},
α = ĉ1

√
s, β = 1,

η = ĉ2σs(x)	1 + ĉ3ς
√
s, (5.2)

for constants ĉ1, ĉ2, ĉ3 > 0 depending only on ρ and γ .

The theory of compressed sensing [4, 35] aims to construct (random) matrices
satisfying the rNSP, which is itself implied by the better-known Restricted Isometry
Property (RIP). For example, if A is a Gaussian random matrix, then it satisfies the
rNSP with probability at least 1 − ε, provided m ≥ C · (s · log(eN/s) + log(2/ε))
(see, e.g., [4, Theorem 5.22]). However, a sharp value of the constant C and the rNSP
constants ρ and γ are unknown. This implies that the approximate sharpness constants
α and η are also unknown. This motivates using the restart scheme (Algorithm 2),
which does not require knowledge of α or η, to solve (5.1).

5.1.1 Experimental Setup

We use the primal–dual iteration for constrained problems (Algorithm 8) to solve the
sparse recovery problem. This can be done by expressing QCBP in (5.1) as (4.15)
with

q ≡ 0, h ≡ 0, B = 0, g(x) = ‖x‖	1, C = {z ∈ C
N : ‖z − y‖	2 ≤ ς}.

Given these choices, the proximal map of τg is the shrinkage-thresholding operator,
and the projection map is straightforward to compute since C is a shifted 	2-ball.
Moreover, we have h∗(z) = +∞ whenever z �= 0, and is zero otherwise. Therefore
the proximal map proxσ1h∗(x) = ‖x‖2

	2
/2, and thus y(j)

1 = 0 for all j > 0 if the

initial data y(0)
1 = 0. In essence, we can ignore the parameter σ1 and update of the

iterates y(j)
1 in the primal–dual iterations (Algorithm 8). The error bound derived in

Lemma 4.13 holds with the σ1 term omitted.
Unless stated otherwise, the parameters used are ambient dimension n = 128,

sparsity level s = 10, measurements m = 60, noise level ς = 10−6. The ground
truth vector x is sparse with s of its entries (randomly selected) corresponding to i.i.d.
standard normal entries. The noise vector e is selected uniformly random on the 	2-
ball of radius ς and thus ‖e‖	2 = ς . The objective function is f (x) = ‖x‖	1 and the
feasibility gap is given by gQ(x; κ) = κ · max{‖Ax − y‖	2 − ς, 0}, which is derived
from Sect. 4.5. The feasibility gap weight is set to κ = √

m from Proposition 5.2,
noting that s ≤ m in general. In addition, α0 = √

m, β0 = 1. The choice of α0 is also
motivated by Proposition 5.2.

123

Foundations of Computational Mathematics

Fig. 2 Reconstruction error of restarted primal–dual iteration for QCBP with ς = 10−6. Left: The restart
scheme with fixed sharpness constants β = 1 and various α. Right: Various different schemes (including
restarted and non-restarted schemes)

5.1.2 Results

Figure2 shows the performance of the restart scheme in Algorithm 1 for various
fixed values of α and β = 1. For smaller α, the error decreases linearly down to
the noise level ς = 10−6. This agrees with Theorem 2.1. Increasing α leads to fast
linear convergence up to a threshold (between 101 and 101.2). After this point, the
performance of the restart scheme abruptly breaks down since large α violates the
approximate sharpness condition (1.2).

We use Algorithm 2 to overcome such parameter sensitivity. Figure2 also com-
pares the performance of the restart scheme with fixed (α, β) = (

√
m, 1) with restart

schemes that (i) perform a grid search over α, for fixed β = 1, and (ii) perform a
grid search over both α and β. Both grid search schemes exhibit linear convergence,
in agreement with Theorem 1.1. They converge less rapidly than the scheme with
fixed (α, β) but require no empirical parameter tuning. Note that all restart schemes
significantly outperform the non-restarted primal–dual iteration (“no restarts”).

Next, we consider two cases of grid searching over exactly one sharpness constant
and leaving the other fixed. Figure3 shows the results for fixedα withβ grid search and
fixed β with α grid search. Both yield linear decay, although at a slightly worse rate. A
key point to note is the potential benefit of grid searching. Compare the reconstruction
error with those for the fixed restart schemes in Fig. 2 with log10(α) ≥ 1.2 and β = 1.
In the fixed constant scheme, these parameter choices stall the error. However, β grid
search overcomes this and reconstructs x within a tolerance proportional to ς after
sufficiently many restarts.

Finally, Fig. 4 considers the effect on the restart schemes when changing the noise
level ς . In all cases, the restart schemes linearly decay to a tolerance proportional to
ς , outperforming the non-restarted primal–dual iterations.

5.2 Image Reconstruction via TVMinimization

In this experiment, we consider image reconstruction with Fourier measurements –
a sensing modality with applications notably in Magnetic Resonance Imaging (MRI)

123

Foundations of Computational Mathematics

Fig. 3 Reconstruction error of restarted primal–dual iteration for QCBP with ς = 10−6. Left: The restart
scheme with grid search over α and various fixed β. Right: The restart scheme with grid search over β and
various fixed α

Fig. 4 Reconstruction error of restarted primal–dual iteration for QCBP with ς = 10−2k for k =
1, 2, . . . , 6. Each plot includes the various (restarted and non-restarted) schemes

[4]. Specifically, we consider the recovery of a vector x ∈ R
n from noisy Fourier

measurements y = Ax + e ∈ C
m , where A ∈ C

m×n corresponds to a subsampled
Fourier matrix and e ∈ C

m models noise or perturbations. The vector x is a vectorized
complex 2-D image X ∈ C

R×R , where n = R2 for some positive power-of-two
integer R. The matrix A has the form A = m−1/2P�F , where F ∈ C

n×n is the 2-D
discrete Fourier transform and � ⊆ n is a sampling mask with |�| = m. Here, �

defines the matrix P� ∈ C
m×n , which selects the rows of F by index according to the

indices in �. Lastly, ‖e‖	2 ≤ ς for some noise level ς > 0. A widely used tool for
reconstructing x from y is the total variation (TV) minimization problem

min
z∈Cn

‖V z‖	1 subject to ‖Az − y‖	2 ≤ ς,

123

Foundations of Computational Mathematics

where V is the 2-D (anisotropic) discrete gradient transform with periodic boundary
conditions [3].

Similar to the sparse recovery problem described in the previous section, the TV-
Fourier image reconstruction problem can be shown to have the approximate sharpness
condition (1.2) with high probability under a suitable random sampling pattern �.
Stating and proving this is more involved but can be done by carefully adapting the
analysis within [3, Sec. 7.4].

5.2.1 Experimental Setup

The first-order solver we use is NESTA (NESTerov’s Algorithm), an accelerated pro-
jected gradient descent algorithm used to solve problems of the form

min
z∈Cn

‖W ∗z‖	1 subject to ‖Az − y‖	2 ≤ ς, W ∈ C
n×m′

,

where TV minimization is a special case with W = V%. NESTA is derived from
Nesterov’s method with smoothing, where the objective function f (z) = ‖W ∗z‖	1

is smoothed by replacing the 	1-norm with its Moreau envelope. This yields a 1/μ-
smooth approximation fμ(z) = ‖W ∗z‖	1,μ of f with parameters (‖W ∗‖2

	2
,m′/2).

Here ‖w‖	1,μ =∑m′
i=1 |wi |μ forw = (wi)

m′
i=1 and | · |μ is the complex Huber function

(see, e.g., [62]). In particular, we have ‖V ‖	2 = 2
√
2 for TV minimization in 2-D.

The second part of the derivation of NESTA is finding closed-form expressions
for the update steps. In general, this is only possible to do in special cases. However,
NESTA considers Awith orthonormal rows up to a constant factor, i.e., AA∗ = ν I for
some ν > 0. Such an assumption yields a closed form for the update formulas and is not
unreasonable sincemany forward operators in compressive imaging have orthonormal
rows. For example, with the subsampled Fourier matrix, we have AA∗ = (N/m)I ;
hence, the desired property holds with ν = N/m.

We reconstruct an R × R GPLU phantom image [42] with R = 512 so that the
ambient dimension is n = 5122. The noise e is uniformly sampled from an 	2-ball
of radius ς = 10−5, and so ‖e‖	2 = ς . Two sampling masks are considered for
the subsampled Fourier matrix A and are shown in Fig. 5. The first is a near-optimal
sampling scheme [3, Sec. 4.2], and the second is a radial sampling scheme, where the
latter is common in practice. Each mask yields approximately a 12.5% sampling rate.
For the restart scheme, the objective function is f (z) = ‖V x‖	1 and the feasibility gap
gQ ≡ 0 since NESTA always produces feasible iterates. The smoothing parameters μ

are handled directly by the restarting procedure and explicitly depend on εi, j,U (see
Proposition 4.7). The two main experiments were done for each of the two sampling
masks. Lastly, we choose α0 = √

m, β0 = 1. The choice of α0 is motivated by [27,
Theorem 6.3] which generalizes Proposition 5.2.

5.2.2 Results

First, we run the restart scheme with fixed sharpness constants (no grid search) cor-
responding to pairs (α, β) with β = 1 and various α values. The reconstruction error

123

Foundations of Computational Mathematics

Fig. 5 Sampling patterns for the Fourier measurements used in the image reconstruction experiments

Fig. 6 Reconstruction error of restarted NESTA for TV minimization with ς = 10−5, and with the near-
optimal and radial sampling masks, respectively. The restart scheme uses fixed sharpness constants β = 1
and various α

versus total inner iterations is plotted in Fig. 6 with near-optimal sampling (left) and
radial sampling (right). The results are very similar to the first sparse recovery via
QCBP experiment. Again, the decay rate corresponds to linear decay as anticipated
from Theorem 3.3. The convergence rate improves as α increases, up to a threshold
(about α = 630 for near-optimal sampling, and about α = 446 for radial sampling),
where afterward the limiting tolerance increases steadily, yielding poor reconstruction
results. This phenomenon is discussed in the first experiment of sparse recovery via
QCBP. A key observation is how changing the sampling mask changes the threshold α

value. This motivates using a grid search to avoid tuning α as a parameter for different
sampling masks.

In the second experiment, we compare the reconstruction errors of several restart
schemes and standalone NESTA (i.e., no restarts) with various smoothing parameters.
This is shown in Fig. 7 with near-optimal sampling (left) and radial sampling (right).

123

Foundations of Computational Mathematics

Fig. 7 Reconstruction error of restarted NESTA for TV minimization with ς = 10−5, and with the near-
optimal and radial sampling masks, respectively. Various restarted and non-restarted schemes are used

The smoothing parameters used are μ = 10iς , i ∈ {−2, 1, 0, 1}. The results are anal-
ogous to the fourth experiment with sparse recovery via QCBP. The radial sampling
mask produces marginally slower convergence rates than the near-optimal scheme.
Moreover, we observe that converging to the limiting tolerance of NESTA is sensitive
to the choice of smoothing parameter μ. By making μ smaller, we better approximate
the original problem and thus the reconstruction, but require more iterations to achieve
a better approximation. In contrast, restartingNESTA viaAlgorithm 2 does not require
any tuning of the smoothing parameter and outperforms the non-restarted algorithm.

5.3 Feature Selection via SR-LASSO

Our third experiment considers feature selection via the Square Root LASSO (SR-
LASSO) problem [2, 14, 15, 73]. Let X ∈ R

m×n be a data matrix, where each row
corresponds to a data point, and each column corresponds to a feature, and y ∈ R

m

the label vector for the data points. Since we wish to learn an affinemapping from data
points to labels, we augment X by appending a new column consisting of ones, with
the augmentation denoted by A ∈ R

m×(n+1). Now fix λ > 0. Then we seek a vector
x ∈ R

n+1 that solves the SR-LASSO problem

min
z∈Rn+1

‖Az − y‖	2 + λ‖z‖	1 .

An advantage of this problem over the classical LASSO is that it requires less tuning of
the parameter λ as the problem instance or noise level changes. See [73] for discussion
and recovery conditions for this problem. Feature selection is performed by identifying
the indices of close-to-zero entries of x , which are the features to discard. This reduces
the number of columns of X for future processing or analysis.

The SR-LASSO is a well-known tool in high-dimensional statistics. It can also
be used for sparse recovery problems, in which case approximate sharpness follows
(like it did with QCBP) from the rNSP (Definition 5.1) [27]. However, in the feature
selection problem, properties such as the rNSP are unlikely to hold. In this case, more

123

Foundations of Computational Mathematics

Fig. 8 Objective error versus the total inner iteration of various (restarted and non-restarted) schemes of
primal–dual iteration for SR-LASSO. The plots correspond to three different datasets

general recovery conditions for SR-LASSO (and LASSO), such as the compatibility
condition [73], are more useful. Under these conditions, one also has approximate
sharpness with unknown constants.

5.3.1 Setup

We use the unconstrained primal–dual iterations (Algorithm 7) to solve SR-LASSO.
We can express SR-LASSO as (4.15) by

q ≡ 0, g(x) = λ‖x‖	1 , h(Bx) = ‖Bx − y‖	2 , B = A.

From this, the primal–dual updates can be computed explicitly. The proximalmap τg is
the shrinkage-thresholding operator, and the proximal map of σh∗ is a projection map
onto the 	2-ball. In either case, the proximal maps are straightforward to compute.
We compare the SR-LASSO objective error of various non-restarted and restarted
schemes for three different datasets. The minimum of SR-LASSO for each dataset is
computed using CVX [40, 41] with high precision and the SDPT3 solver and is used
to compute the objective errors in Figs. 8 and 9.

We use three datasets: wine quality (wine) [29] withm = 6497 points and n = 11
features, colon cancer (cc) [26] with m = 62 points and n = 2000 features, and
leukemia (leu) [26] with m = 38 points and n = 7129 features. The wine data
corresponds to a regression task of predicting wine quality, cc and leu are two-class
classification tasks of diagnosing illness based on data features. We use λ = 3, 2, and
4 for the wine, cc, and leu datasets, respectively. We measure sparsity s of x̂ by
interpreting an entry as non-zero if its absolute value is greater than 10−5. The values
α0 and β0 are chosen empirically as estimates of the true sharpness constants α and
β, respectively.

5.3.2 Results

Figure8 shows the performance of various restart schemes for this problemon the three
datasets. In all cases, the restarted schemes outperform the non-restarted scheme. The
suitable values of α and β differ significantly across the datasets, indicating that the
optimal sharpness parameters are problem-dependent. This is further demonstrated in

123

Foundations of Computational Mathematics

0 5000 10000 15000

10 -15

10 -10

10 -5

Fig. 9 Objective error versus the total inner iteration of restarted primal–dual iteration for SR-LASSO. The
plots correspond to a grid search over α with various fixed β for three different datasets

Fig. 9, where we show the restart scheme for various fixed β and grid search over α

- the restart schemes with choices of β > 1 outperform the schemes that use β = 1.
This contrasts the sparse recovery example, where theory and experiment suggest
β = 1 as a good choice. This phenomenon is unsurprising since the approximate
sharpness condition (see (1.2)) for this problem is expected to depend highly on the
data. Nonetheless, using our grid search scheme, we obviate the need to estimate or
tune these parameters.

5.4 Comparison with the Restart Scheme of [67]

Finally, we compare our restart schemes with the scheme introduced in [67]. Specifi-
cally, we consider their scheme Sync||FOMwhere every first-order method instance
broadcasts its current iterate to other instances. The variant produces the best numer-
ical results in [67]. The comparison is drawn using the sparse recovery problem of
Sect. 5.1. However, Sync||FOM and other restart schemes in [67] are limited to first-
order methods that can only produce feasible iterates, so they cannot be used with the
primal–dual iteration, as was done in Sect. 5.1. To proceed, we slightly modify the
sparse recovery problem so that NESTA, as in Sect. 5.2, can be used instead.

Consider the sparse recovery problem from Sect. 5.1, but where the measurement
matrix A ∈ C

m×n is now a subsampled Fourier matrix. Specifically, A has the form
A = m−1/2P�F where F ∈ C

n×n is the 1-D discrete Fourier transform and � ⊆ [n]
is a sampling mask with |�| = m. We construct the mask � by including each row
as an i.i.d. Bernoulli random variable with probability of success equal to m/n. The
expected value of |�| ism. Thematrix A can then be shown to have the rNSPwith high
probability (see, for instance, [61, Lem. 3.2.1]). In turn, the approximate sharpness
condition (1.2) holds for the modified sparse recovery problem with high probability.

5.4.1 Experimental Setup

Using NESTA from Sect. 5.2 to solve QCBP (Sect. 5.1), we set W = I . The sub-
sampled Fourier matrix A ∈ C

m×n satisfies the orthonormal row condition with
AA∗ = (

√
n/m)I . This is enough for NESTA to be applicable. The parameters used

are ambient dimension n = 128, sparsity level s = 15, number of measurements
m = 60, and noise level ς = 10−6. The ground truth vector x is sparse with s of

123

Foundations of Computational Mathematics

Fig. 10 Reconstruction error (left) and objective error (right) of restartedNESTA forQCBPwith ς = 10−6.
Various restart schemes are used to compare with Renegar and Grimmer’s Sync||FOM restart scheme

its entries randomly selected as i.i.d. standard normal entries. The noise vector e is
selected uniformly random on the 	2-ball of radius ς and so ‖e‖	2 = ς .

In terms of restart schemes developed in this paper, the objective function is
f (x) = ‖x‖	1 and the feasibility gap can be set as gQ ≡ 0 since NESTA always
produces feasible iterates. Again, the smoothing parametersμ are changed directly by
the restarting procedure and explicitly depend on εi, j,U . Lastly, α0 = √

m, β0 = 1.
The choice of α0 is motivated by Proposition 5.2 as before.

Regarding Sync||FOM, the code was transcribed from the Julia implementa-
tion in [67] into MATLAB. The objective error tolerance ε is a parameter in this
scheme, specifically for the number of parallel instances created, equal to N =
max(2, log2(1/ε)). The smoothing parameters {μk} corresponding to k = 1, . . . , N
instances depend on each instance’s tolerance εk , where μk = εk/n so that instance
k can achieve an objective error within εk . The specific choice of μk is informed
by Proposition 4.7. Moreover, we track reconstruction and objective errors using the
first-order method’s iterations. Specifically, each time Sync||FOM calls the first-
order method, the iterate returned is kept (and the errors are computed) if it produces a
lower objective function value than the previously kept iterate. Otherwise, the previous
iterate is used to compute the errors.

5.4.2 Results

Figure10 shows the results of the experiment, where we compare the performance of
several of our restart schemes and Sync||FOM with tolerance levels ε = 10−i , i ∈
{2, 3, 4, 5, 6}. Performance is measured in terms of reconstruction error and objective
error versus total iteration.

As is evident from this figure, our restart schemes with fixed (optimized) (α, β)

and with a grid search over α (with β = 1, following the theory of Sect. 5.1) both
outperform Sync||FOM in reconstruction speed and achieving reconstruction up to
the tolerance η, a quantity proportional to the noise level ς . The grid search over α and
β also achieves this tolerance and manages to do so more quickly than Sync||FOM
instances that achieve the same tolerance. Sync||FOM decreases in performance but
achieves a smaller limiting tolerance as ε is made smaller. This indicates an optimal

123

Foundations of Computational Mathematics

Fig. 11 Number of inner
iterations needed to reach ε

objective error using restarted
NESTA for QCBP with
ς = 10−6. Various restart
schemes and Renegar and
Grimmer’s Sync||FOM are
compared

choice of ε depending on the toleranceη, which is generally unknown.Akey advantage
of our restart schemes is that they do not require knowledge of η. Note that similar
remarks can be made when examining objective error. In addition, we expect that after
enough iterations Sync||FOM with parameter ε achieves an objective error within
ε. This is precisely what is observed in Fig. 10 (right).

Lastly, Fig. 11 compares how many inner iterations are needed for each restart
scheme to achieve an objective error of ε. The QCBP problem falls within row 2 of
Table1withβ = 1.Hence, our scheme should achieve an error of ε usingO (log(1/ε))
iterations.We see exactly this behavior for all three versions of our scheme.Conversely,
for Sync||FOM, the number of iterations scales like log2(1/ε). This is exactly as
shown in [67] (see Corollary 5 and the following discussion), which is worse than the
performance of our schemes.

6 Conclusion

We have developed a framework that accelerates first-order methods under approx-
imate sharpness conditions. These conditions generalize traditional sharpness defi-
nitions by incorporating an unknown constant perturbation into the objective error,
offering greater robustness (e.g., to noise or model classes). Our scheme achieves
optimal convergence rates for a wide variety of problems without requiring prior
knowledge of the constants appearing in (1.2). Additionally, our method does not
necessitate that the first-order methods produce feasible iterates, adding a layer of
flexibility beneficial for techniques such as primal–dual iterations. Our numerical
experiments demonstrate that our schemes are practical and often result in significant
performance enhancements compared to non-restarted schemes or restart schemes
with suboptimal parameter selections.

There are numerous possible avenues for future research and extensions of our
framework. One potential area involves adapting the metric in (1.2) to a Bregman
distance and acceleration for convex optimization problems within Banach spaces.
Another exciting direction is the application of our methods to non-convex bilevel

123

Foundations of Computational Mathematics

optimization schemes. Additionally, developing a generic framework that utilizes
sharpness-type bounds for saddle point problems presents an interesting challenge.
For instance, in saddle-point problems such as (4.8) and (4.16), it might be feasible to
design restart schemes that use primal–dual gaps instead of f (x)− f̂ in (1.2)—see [5]
and [32] for primal–dual gap sharpness and restart schemes in the cases of β = 1 and
β = 2, respectively. See also [46, 47] for recent work on restarts based on gap func-
tions for Frank-Wolfe algorithms. Another promising research area involves linking d1
and d2 to rates and condition numbers in scenarios of approximate sharpness, a topic
previously explored for sharpness in [70]. Lastly, we envision extending our restart
schemes to accommodate stochastic first-order methods, which could significantly
impact larger-scale machine-learning problems.

A Further Optimal Choices of Parameters

In this appendix, we derive optimal choices of parameters for our algorithms.

A.1 The Optimal Choice of r in Algorithm 1

Suppose that d2 = d1/β and

⌈

log(ε0/ε)

log(1/r)

⌉

≤ 2
log(ε0/ε)

log(1/r)
.

Using this new bound instead, the total number of iterations T performed by � is
bounded by

T ≤
⌈

log(ε0/ε)

log(1/r)

⌉

+ C2d1/β+1

αd1/β
log(ε0/ε)

r−d2

log(1/r)
.

Hence T is bounded by an ε-dependent constant times r−d2/ log(1/r), which can be
minimized analytically by choosing r = e−1/d2 . The optimal r here does not depend
on the approximate sharpness constants. Therefore, one has

T ≤ �d2 log(ε0/ε)� + Ced22d1/β+1

αd1/β
log(ε0/ε)

This is meaningful in choosing one less parameter, namely r for Algorithm 1.
An optimal value of r can also be found for the case d2 > d1/β. However, this

optimal value depends on ε in a somewhat complicated manner. In the limit ε ↓ 0, the
optimal choice is

r =
(

d2
2d2 − d1/β

) 1
d2−d1/β

,

123

Foundations of Computational Mathematics

which does depend on the sharpness constant β. As d2 − d1/β ↓ 0, this choice
converges to the choice r = e−1/d2 , that is obtained when d2 = d1/β. Similarly,
if d2 < d1/β, then the optimal choice depends on ε in a complicated manner but
converges to the choice r = e−1/d2 as d2 − d1/β ↑ 0.

In any of these cases, the same argument for optimal r applies to the algorithms in
Sect. 3. In the case that β is unknown, we recommend the choice r = e−1/d2 .

A.2 How to Choose a, b

In the case of Corollary 3.6 and assuming (3.11), we can select an optimal value of
a. From Corollary 3.6 and α∗ ≥ α/a, the part of τ that depends on a is bounded
byO((|�loga(α/α0)�| + 1)c1ad1/β). We can upper bound this further by dropping the
floor function and, then, dropping the +1 in brackets. We are then led to minimizing

| loga(α/α0)|c1ad1/β = | log(α/α0)|c1ad1/β/ log(a)c1 .

Under these assumptions, the optimal value of a is ec1β/d1 . In the case of Corollary 3.5,
there is no clear optimal choice for b since the optimal choice is ε-dependent.

A.3 How to Choose c1, c2

For Corollaries 3.6 and 3.4, an optimal choice of c1 > 1 exists, but it depends on the
unknownparameterα. To see this,minimize the lower boundof t in the aforementioned
corollaries with respect to c1, noting that the only term in τ that depends on c1 is
(|�loga(α/α0)�|+1)c1 . Hence, we must minimize (|�loga(α/α0)�|+1)c1c1/(c1 −1).
Assuming α0 �= α, differentiating and finding a minima gives

c1 =
1 +

√

1 + 4
log(|�loga(α/α0)�|+1)

2
.

By the same reasoning, for Corollaries 3.4 and 3.5 and β0 �= β, the optimal choice of
c2 > 1 depends on the unknown parameter β and is given by

c2 =
1 +

√

1 + 4
log(|�logb(β/β0)�|+1)

2
.

Intuitively, if α0 is far from α then c1 should be closer to 1, and similarly for β0 and
β regarding c2. Without prior knowledge, we recommend a sensible default such as
c1 = c2 = 2.

BMiscellaneous Proofs

In this appendix, we prove several results that were stated in Sect. 4.

123

Foundations of Computational Mathematics

B.1 Nesterov’s Method with Smoothing

Proof of Lemma 4.6 Applying Lemma 4.3 with the function fμ and using the second
part of Definition 4.5 gives

fμ(xk) − fμ(x) ≤ 4up(x; x0)
μk(k + 1)σp

.

Now, using both inequalities in the first part of Definition 4.5 gives the result. ��
Proof of Proposition 4.7 Suppose that x0 ∈ Q with d(x0, ̂X) ≤ δ. Then by Lemma 4.6
with x̂ ∈ ̂X ⊆ Q, we have

f (xN) − f̂ ≤ 4up(x̂; x0)
μN (N + 1)σp

+ vμ.

Using 1
N (N+1) ≤ 1

N2 , σp = 1 and p(x̂) ≤ 1
2δ

2 by choice of p, we get

f (xN) − f̂ ≤ 2uδ2

μN 2 + vμ.

Substituting μ = ε
2v and using that N ≥ 2

√
2uv · δ

ε
gives the result. ��

B.2 Primal–Dual Iterations for Unconstrained Problems

Proof of Lemma 4.11 We use (4.9) and prove bounds on each of the terms on the left-
hand side. First, we have

L (Xk, y) = 〈BXk, y〉R + q(Xk) + g(Xk) − h∗(y).

Since h is convex and lower semicontinuous, h∗∗ = h. It follows that

h(BXk) = max
y∈Cm

〈BXk, y〉R − h∗(y) = − min
y∈Cm

(h∗(y) − 〈BXk, y〉R).

The objective function is convex and lower semicontinuous, and the set of minimizers
is y such that

0 ∈ ∂
(

h∗(·) − 〈·, BXk〉
)

(y) = ∂h∗(y) − BXk .

Rearranging and using the Legendre–Fenchel identity, we deduce that this set of min-
imizers is precisely ∂h(BXk). It follows that

L (Xk, y) = f (Xk), ∀y ∈ ∂h(BXk). (B.1)

123

Foundations of Computational Mathematics

Second, we have

L (x,Yk) = 〈Bx,Yk〉R + q(x) + g(x) − h∗(Yk).

The above argument shows that

h(Bx) = max
y∈Cm

〈Bx, y〉R − h∗(y) ≥ 〈Bx,Yk〉R − h∗(Yk).

It follows that

L (x,Yk) ≤ f (x). (B.2)

The bound (4.10) now follows by combining (B.1) and (B.2). ��
Proof of Proposition 4.12 First, consider general τ, σ > 0 with τ(σ L2

B + Lq) = 1. For
input x0 with d(x0, ̂X) ≤ δ, (4.12) and (4.11) imply that for x ∈ ̂X ,

f (XN) − f̂ ≤ 1

N

(

δ2

τ
+ L2

h

σ

)

= 1

N

(

σδ2L2
B + L2

h

σ
+ δ2Lq

)

.

Choosing the step size σ > 0 to minimize the right-hand side leads to

σ = Lh

δLB
, τ = δ

LBLh + δLq
, f (XN) − f̂ ≤ δ

N

(

2LBLh + δLq
)

.

Equations (4.13) and (4.14) now follow by taking N = ⌈ δ
ε

(

2LBLh + δLq
)⌉

. ��

B.3 Primal–Dual Iterations for Constrained Problems

Proof of Lemma 4.13 Our proof is similar to the technique in [38]. Using the same
arguments as the proof of Lemma 4.11, (4.17) implies that for y(0)

2 = 0,

f (Xk) − f (x) + 〈AXk , y2〉R − sup
z∈C

〈z, y2〉R − 〈Ax, [Yk]2〉R + sup
z∈C

〈z, [Yk]2〉R

≤ 1

k

⎛

⎝

‖x − x(0)‖2
τ

+ ‖y1 − y(0)
1 ‖2

σ1
+ ‖y2‖2

σ2

⎞

⎠ ,

∀x ∈ C
n, y1 ∈ ∂h(BXk), y2 ∈ C

m′
.

If x ∈ Q, then

−〈Ax, [Yk]2〉R + sup
z∈C

〈z, [Yk]2〉R ≥ 0.

123

Foundations of Computational Mathematics

Let ẑ ∈ C be of minimal distance to AXk and let y2 be a multiple of AXk − ẑ such
that y2 has norm κ . Since C is convex, the following holds [10, Theorem 6.41]

〈z, y2〉R ≤ 〈ẑ, y2〉R, ∀z ∈ C .

It follows that

〈AXk, y2〉R − sup
z∈C

〈z, y2〉R ≥ 〈AXk − ẑ, y2〉R = κ · inf
z∈C ‖AXk − z‖ = gQ(κ; Xk).

Combining the inequalities yields (4.18). ��

Proof of Proposition 4.14 First, consider general τ, σ1, σ2 > 0 with τ(σ1L2
B +σ2L2

A+
Lq) = 1. For input x0 with d(x0, ̂X) ≤ δ, we argue as in the proof of Proposition 4.12
(but now using Lemma 4.13) to obtain

f (XN) − f̂ + gQ(κ; XN)

≤ 1

N

(

δ2

τ
+ L2

h

σ1
+ κ2

σ2

)

= 1

N

(

σ1δ
2L2

B + L2
h

σ1
+ σ2δ

2L2
A + κ2

σ2
+ δ2Lq

)

. (B.3)

Optimizing the proximal step sizes leads to

τ = δ

κL A + LhLB + δLq
, σ1 = Lh

δLB
, σ2 = κ

δL A
.

Substituting these values into (B.3) leads to

f (XN) − f̂ + gQ(XN) ≤ δ

N

(

2κL A + 2LhLB + δLq
)

.

The rest of the proof follows the same argument as the proof of Proposition 4.12. ��

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Foundations of Computational Mathematics

References

1. B. Adcock, S. Brugiapaglia, N. Dexter, and S. Moraga.On efficient algorithms for computing near best
polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples.Mem.
Eur. Math. Soc., Vol 13. EMS Press, 2024

2. B.Adcock, S.Brugiapaglia, andC.G.Webster.SparsePolynomialApproximationofHigh-Dimensional
Functions. Comput. Sci. Eng. Society for Industrial and AppliedMathematics, Philadelphia, PA, 2022.

3. B. Adcock, N. Dexter, and Q. Xu. Improved recovery guarantees and sampling strategies for TV
minimization in compressive imaging. SIAM J. Imaging Sci., 14(3):1149–1183, 2021.

4. B. Adcock and A. Hansen. Compressive Imaging: Structure, Sampling, Learning. CUP, 2021.
5. D. Applegate, O. Hinder, H. Lu, and M. Lubin. Faster first-order primal-dual methods for linear

programming using restarts and sharpness. Mathematical Programming, pages 1–52, 2022.
6. R. C. Aster, B. Borchers, and C. H. Thurber. Parameter estimation and inverse problems. Elsevier,

2018.
7. H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection

methods for nonconvex problems: An approach based on the Kurdyka–Łojasiewicz inequality. Math.
Oper. Res., 35(2):438–457, 2010.

8. A. Auslender and J.-P. Crouzeix. Global regularity theorems.Math. Oper. Res., 13(2):243–253, 1988.
9. A. Bastounis, A. C. Hansen, and V. Vlačić. The extended Smale’s 9th problem – On computational

barriers and paradoxes in estimation, regularisation, computer-assisted proofs and learning. arXiv
preprint arXiv:2110.15734, 2021.

10. A. Beck. First-order methods in optimization. SIAM, 2017.
11. A. Beck andM. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Imaging Sci., 2(1):183–202, 2009.
12. S. Becker, J. Bobin, and E. J. Candès. NESTA: A fast and accurate first-order method for sparse

recovery. SIAM J. Imaging Sci., 4(1):1–39, 2011.
13. S. Becker, E. J. Candès, and M. C. Grant. Templates for convex cone problems with applications to

sparse signal recovery.Math. Program. Comput., 3(3):165, 2011.
14. A. Belloni, V. Chernozhukov, and L. Wang. Square-root LASSO: pivotal recovery of sparse signals

via conic programming. Biometrika, 98(4):791–806, 2011.
15. A.Belloni, V.Chernozhukov, andL.Wang. Pivotal estimation via square-root LASSO in nonparametric

regression. Ann. Statist., 42(2):757–788, 2014.
16. A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization. 2020/2021.
17. J. Bolte, A. Daniilidis, and A. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic functions

with applications to subgradient dynamical systems. SIAM J. Optim., 17(4):1205–1223, 2007.
18. J. Bolte, T. P.Nguyen, J. Peypouquet, andB.W. Suter. Fromerror bounds to the complexity of first-order

descent methods for convex functions. Math. Program., 165(2):471–507, 2017.
19. J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and

nonsmooth problems. Math. Program., 146(1):459–494, 2014.
20. J. Burke and S. Deng.Weak sharpminima revisited Part I: basic theory.Control Cybernet., 31:439–469,

2002.
21. J. V. Burke and M. C. Ferris. Weak sharp minima in mathematical programming. SIAM J. Control

Optim., 31(5):1340–1359, 1993.
22. A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C. Schonlieb. Stochastic primal–dual hybrid gradient

algorithm with arbitrary sampling and imaging applications. SIAM J. Optim., 28(4), 2018.
23. A. Chambolle and T. Pock. A first-order primal–dual algorithm for convex problems with applications

to imaging. J. Math. Imaging Vision, 40(1):120–145, 2011.
24. A. Chambolle and T. Pock. An introduction to continuous optimization for imaging. Acta Numerica,

25:161–319, 2016.
25. A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual algorithm.

Math. Program., 159(1-2):253–287, 2016.
26. C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM Trans. Intell. Syst.

Technol.,2,2011.
27. M. J. Colbrook. WARPd: A linearly convergent first-order primal–dual algorithm for inverse problems

with approximate sharpness conditions. SIAM J. Imag. Sci., 15(3):1539–1575, 2022.

123

http://arxiv.org/abs/2110.15734

Foundations of Computational Mathematics

28. M. J. Colbrook, V. Antun, and A. C. Hansen. The difficulty of computing stable and accurate neu-
ral networks: On the barriers of deep learning and Smale’s 18th problem. Proc. Natl. Acad. Sci.,
119(12):e2107151119, 2022.

29. P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning
Repository, 2009.

30. A. d’Aspremont,D. Scieur,A. Taylor, et al. Accelerationmethods.Found. TrendsOptim., 5(1-2):1–245,
2021.

31. E. Esser, X. Zhang, andT. F. Chan.A general framework for a class of first order primal–dual algorithms
for convex optimization in imaging science. SIAM J. Imaging Sci., 3(4), 2010.

32. O. Fercoq. Quadratic error bound of the smoothed gap and the restarted averaged primal–dual hybrid
gradient. Open J. Math. Optim. 4:6, 2023

33. O. Fercoq and Z. Qu. Restarting accelerated gradient methods with a rough strong convexity estimate.
arXiv:1609.07358, 2016.

34. O. Fercoq and Z. Qu. Adaptive restart of accelerated gradient methods under local quadratic growth
condition. IMA J. Numer. Anal., 39(4):2069–2095, 2019.

35. S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Springer, 2013.
36. P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for Kurdyka–

łojasiewicz functions and general convergence rates. J. Optim. Theory Appl., 165(3):874–900, 2015.
37. R. M. Freund and H. Lu. New computational guarantees for solving convex optimization problems

with first order methods, via a function growth condition measure. Math. Program., 170(2):445–477,
2018.

38. X. Gao, Y.-Y. Xu, and S.-Z. Zhang. Randomized primal–dual proximal block coordinate updates. J.
Oper. Res. Soc. China, 7(2):205–250, 2019.

39. P. Giselsson and S. Boyd. Monotonicity and restart in fast gradient methods. In IEEE Conf Decis
Control, pages 5058–5063. IEEE, 2014.

40. M.Grant and S. Boyd.Graph implementations for nonsmooth convex programs. InV.Blondel, S. Boyd,
and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in Control and Infor-
mation Sciences, pages 95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.
html.

41. M. Grant and S. Boyd. CVX:Matlab software for disciplined convex programming, version 2.1. http://
cvxr.com/cvx, Mar. 2014.

42. M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and M. Unser. Realistic analytical phantoms for
parallel Magnetic Resonance Imaging. IEEE Trans. Med. Imag., 31(3):626–636, 2012.

43. A. J. Hoffman. On approximate solutions of systems of linear inequalities. J. Research Nat. Bur.
Standards, 49(4), 1952.

44. A. Iouditski and Y. Nesterov. Primal-dual subgradient methods for minimizing uniformly convex
functions. arXiv preprint arXiv:1401.1792, 2014.

45. H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods
under the Polyak-Łojasiewicz condition. In Mach Learn Knowl Discov Databases, pages 795–811.
Springer, 2016.

46. T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank–Wolfe. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1275–1283. PMLR, 2019.

47. T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank–Wolfe: Faster rates under Hölderian
error bounds. J. Optim. Theory Appl., 192(3):799–829, 2022.

48. D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization. Math.
Program., 159(1):81–107, 2016.

49. Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy continuation
for sparse optimization. In International Conference onMachine Learning, pages 73–81. PMLR, 2014.

50. S. Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. Les équations aux
dérivées partielles, 117:87–89, 1963.

51. O. L. Mangasarian. A condition number for differentiable convex inequalities. Math. Oper. Res.,
10(2):175–179, 1985.

52. I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for non-strongly
convex optimization.Math. Program., 175(1):69–107, 2019.

53. A. S.Nemirovskii andY.E.Nesterov.Optimalmethods of smooth convexminimization.USSRComput.
Math. Math. Phys., 25(2):21–30, 1985.

54. A. S. Nemirovskij and D. B. Yudin. Problem complexity and method efficiency in optimization. 1983.

123

http://arxiv.org/abs/1609.07358
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx
http://cvxr.com/cvx
http://arxiv.org/abs/1401.1792

Foundations of Computational Mathematics

55. Y.Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

56. Y. Nesterov. Smooth minimization of non-smooth functions.Math. Program., 103(1):127–152, 2005.
57. Y. Nesterov. Gradient methods for minimizing composite functions.Math. Program., 140(1):125–161,

2013.
58. Y. Nesterov. Universal gradient methods for convex optimization problems. Math. Program.,,

152(1):381–404, 2015.
59. Y. Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.
60. Y. E.Nesterov.Amethod for solving the convex programming problemwith convergence rate O(1/k2).

In Dokl. Akad. Nauk SSSR,, volume 269, pages 543–547, 1983.
61. M. Neyra-Nesterenko. Unrolled NESTA: constructing stable, accurate and efficient neural networks

for gradient-sparse imaging problems . Master’s thesis, Simon Fraser University, 2023.
62. M. Neyra-Nesterenko and B. Adcock. NESTANets: Stable, accurate and efficient neural networks for

analysis-sparse inverse problems. Sampl. Theory Signal Process. Data Anal. 21:4, 2023.
63. B. O’Donoghue and E. Candès. Adaptive restart for accelerated gradient schemes. Found. Comput.

Math., 15(3):715–732, 2015.
64. T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for minimizing the Mumford–Shah

functional. In IEEE Int Conf Comput Vis, pages 1133–1140. IEEE, 2009.
65. J. Renegar. “Efficient” subgradient methods for general convex optimization. SIAM J. Optim.,

26(4):2649–2676, 2016.
66. J. Renegar. Accelerated first-order methods for hyperbolic programming. Math. Program., 173(1):1–

35, 2019.
67. J. Renegar andB.Grimmer. A simple nearly optimal restart scheme for speeding up first-ordermethods.

Found. Comput. Math., pages 1–46, 2021.
68. S. M. Robinson. An application of error bounds for convex programming in a linear space. SIAM J.

Control, 13(2):271–273, 1975.
69. V. Roulet, N. Boumal, and A. d’Aspremont. Computational complexity versus statistical performance

on sparse recovery problems. Inf. Inference, 9(1):1–32, 2020.
70. V. Roulet and A. d’Aspremont. Sharpness, restart, and acceleration. SIAM J. Optim., 30(1):262–289,

2020.
71. O. Rynkiewicz. Lower bounds and primal–dual methods for affinely constrained convex optimization

under metric subregularity, 2020.
72. W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s accelerated gradient

method: theory and insights. Adv. Neural Inf. Process Syst., 27, 2014.
73. S. van de Geer. Estimation and Testing Under Sparsity: École d’Été de Probabilités de Saint-Flour

XLV—2015, volume 2159 of Lecture Notes in Math. Springer, Cham, Switzerland, 2016.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Restarts Subject to Approximate Sharpness: A Parameter-Free and Optimal Scheme For First-Order Methods
	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Motivations
	1.3 Example: Sparse Recovery
	1.4 Contributions
	1.5 Complexity Bounds
	1.6 Connections with Previous Work
	1.7 Notation and Outline

	2 Restart Scheme for Unknown Lg
	3 Restart Scheme for Unknown α, β and η
	3.1 Schedule Criterion Functions, h-Assignments and Grid Searches
	3.2 The Algorithm
	3.3 Cost Analysis of the Algorithm
	3.4 Choices of Schedule Criterion Functions and Assignments, and the Proof of Theorem 1.1
	3.5 Comparison with the Cost in Theorem 2.1

	4 Examples and the Complexity Bounds of Table1
	4.1 Row 1 of Table1: Nesterov's Method for Lg
	4.2 Row 2 of Table1: Nesterov's Method for Lg
	4.3 Row 3 of Table1: The Universal Fast Gradient Method
	4.4 Row 4 of Table1: The Primal–Dual Iteration for Unconstrained Problems
	4.5 Row 5 of Table1: The Primal–Dual Iterations for Constrained Problems

	5 Numerical Experiments
	5.1 Sparse Recovery via QCBP
	5.1.1 Experimental Setup
	5.1.2 Results

	5.2 Image Reconstruction via TV Minimization
	5.2.1 Experimental Setup
	5.2.2 Results

	5.3 Feature Selection via SR-LASSO
	5.3.1 Setup
	5.3.2 Results

	5.4 Comparison with the Restart Scheme of renegar2021simple
	5.4.1 Experimental Setup
	5.4.2 Results

	6 Conclusion
	A Further Optimal Choices of Parameters
	A.1 The Optimal Choice of r in Algorithm 1
	A.2 How to Choose a, b
	A.3 How to Choose c1, c2

	B Miscellaneous Proofs
	B.1 Nesterov's Method with Smoothing
	B.2 Primal–Dual Iterations for Unconstrained Problems
	B.3 Primal–Dual Iterations for Constrained Problems

	References

