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Systems with Koopman: An Infinite-
dimensional Numerical Analysis
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By Steven L. Brunton and Matthew J. Colbrook

Dynamical systems, which describe the evolution of systems in time, are ubiquitous in modern
science and engineering. They find use in a wide variety of applications, from mechanics and

circuits to climatology, neuroscience, and epidemiology. Consider a discrete-time dynamical
system with state  in a state space  that is governed by an unknown and typically

nonlinear function :

The classical, geometric way to analyze such systems—which dates back to the seminal work

of Henri Poincaré—is based on the local analysis of fixed points, periodic orbits, stable or
unstable manifolds, and so forth. Although Poincaré’s framework has revolutionized our

understanding of dynamical systems, this approach has at least two challenges in many
modern applications: (i) Obtaining a global understanding of the nonlinear dynamics and (ii)

handling systems that are either too complex to analyze or offer incomplete information about
the evolution (i.e., unknown, high-dimensional, and highly nonlinear ).

Koopman operator theory, which originated with Bernard Koopman and John von Neumann [6,
7], provides a powerful alternative to the classical geometric view of dynamical systems

because it addresses nonlinearity: the fundamental issue that underlies the aforementioned
challenges. We lift the nonlinear system  into an infinite-dimensional space of observable

functions  via a Koopman operator :

The evolution dynamics thus become linear, allowing us to utilize generic solution techniques

that are based on spectral decompositions. In recent decades, Koopman operators have
captivated researchers because of emerging data-driven and numerical implementations that

coincide with the rise of machine learning and high-performance computing [2].

One major goal of modern Koopman operator theory is to find a coordinate transformation

with which a linear system may approximate even strongly nonlinear dynamics; this coordinate
system relates to the spectrum of the Koopman operator. In 2005, Igor Mezić introduced the

Koopman mode decomposition [8], which provided a theoretical basis for connecting the
dynamic mode decomposition (DMD) with the Koopman operator [9, 10]. DMD quickly became
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the workhorse algorithm for computational approximations of the Koopman operator due to its

simple and highly extensible formulation in terms of linear algebra, and the fact that it applies
equally well to data-driven modeling when no governing equations are available. However,

researchers soon realized that simply building linear models in terms of the primitive
measured variables cannot sufficiently capture nonlinear dynamics beyond periodic and

quasi-periodic phenomena. A major breakthrough occurred with the introduction of extended
DMD (EDMD), which generalizes DMD to a broader class of basis functions in which to expand

eigenfunctions of the Koopman operator [11]. One may think of EDMD as a Galerkin method to
approximate the Koopman operator by a finite matrix .

However, practical realities have tempered much of the promise of Koopman theory — infinite-
dimensional spectral problems are difficult! So difficult, in fact, that sometimes a computer

cannot even approximately solve them. Two of the biggest challenges that currently face data-
driven Koopman theory are as follows [2]:

(i) Spectral pollution (i.e., spurious modes) that results from the approximation of infinite-
dimensional dynamics in a chosen finite-dimensional computational basis

(ii) Systems with continuous eigenvalue spectrums, such as a simple pendulum that
oscillates at a continuous range of frequencies for different energies. 

Moreover, if  preserves a key structure (e.g., a measure), can we ensure that  does so as
well? Here, we summarize these significant challenges and describe new advances that offer

resilient solutions that are based on rigorous, infinite-dimensional numerical analysis [3-5].

Addressing Spectral Pollution: The Power of Residuals
We want to approximate functions  in terms of a finite set of basis functions ,

. In turn, EDMD approximates  by a finite matrix . Due to this
truncation, eigenvalues of  may be spurious and have no relationship to the spectrum of

. Consider trajectory data  and define the matrices

where . The parameters , which we interpret as quadrature

weights, measure the relative importance of each snapshot  and
. How can we assess the accuracy of a candidate eigenfunction
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 of  with  and a corresponding candidate eigenvalue ? (Note

that we may compute such approximate eigenpairs from  or some other means). One

solution is to approximate relative residuals via the equation

Under generic conditions, this approximation becomes exact in the large data limit

. Using the additional matrix  provides access to an infinite-dimensional
residual, even with finite matrices. We can therefore turn this idea into an algorithm—residual

DMD (ResDMD) [5]—at no extra computational or data cost beyond that of EDMD. By either
discarding eigenpairs of  with large residuals or using the residual itself to search for local

minima, we can compute spectra of  without spectral pollution. For example, Figure 1
illustrates Koopman modes that are computed for a turbulent flow; ResDMD provides error

bounds and hence allows us to compute a picture that is physically correct. Because ResDMD
verifies spectral computations, we can also verify Koopman mode decompositions and

learned choices of .

Figure 1. Koopman modes of a turbulent flow (Reynolds number ) past a cascade of airfoils that are

computed from trajectory data . Koopman modes are projections of the physical field onto

eigenfunctions of ; they provide the collective motion of the fluid that occurs at the same spatial frequency, growth,

or decay rate according to an approximate eigenvalue . 1a. Koopman modes that were computed via existing state-

of-the-art techniques. Note the lack of error bounds. 1b. Koopman modes that were computed using residual dynamic

mode decomposition (ResDMD). The physical picture in 1b is different from 1a, but we know that it is correct because

of the guaranteed relative error bounds (green text). This outcome illustrates the importance of verification. Figure

courtesy of Matthew Colbrook.
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Computing Continuous Spectra: Smoothing with
Rational Kernels
Many operators in infinite dimensions can have continuous spectra and thus may not be

diagonalized by eigenfunctions alone. However, truncating to a finite matrix  destroys
continuous spectra. We wish to compute so-called spectral measures, as doing so allows us to

provide a diagonalization of . If the dynamical system preserves a measure, we can expand
a function  in terms of eigenfunctions  and generalized eigenfunctions  of

 [8]:

This decomposition is characterized by spectral measures  that are supported on the unit

circle. Just as a prism splits white light into its different frequencies (see Figure 2a),  splits
the signal  into simpler parts with corresponding spectral frequencies:

We can compute smoothed approximations  that correspond to the convolution of  with a
smoothing kernel of smoothing parameter  [5]. A judicious choice of rational kernels leads to

an exact representation of  in terms of the resolvent operator, i.e., solutions of linear
systems . We must adaptively select the truncation size  to compute

the solutions of these systems for a given smoothing parameter . This action yields an
algorithm that computes spectral measures of generic Koopman operators [5] with explicit

convergence rates as , which allows us to compute continuous spectra of Koopman
operators. Figure 2 depicts this algorithm in action for the nonlinear pendulum, which is readily

analyzable via Poincaré’s geometric approach but remained a canonical open problem in
Koopman analysis for several years.

Figure 2. Spectral measures (supported on the unit circle) that are computed from trajectory data for the fully

nonlinear pendulum. 2a. Spectral measures decompose a system into simpler parts, just like a prism splits up light. 2b.

The outcome when the selected  is not large enough. 2c. The consequence of over-smoothing. 2d. The adaptive

method, which converges, demonstrates that we can now compute spectral measures and continuous spectra. Figure

courtesy of the authors.
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Structure-preserving Discretizations
We can also enforce structure preservation in approximations of Koopman operators. For

example, if the system in  is measure preserving, then  is an isometry. When
, , which becomes exact in the large

data limit. Measure-preserving EDMD (mpEDMD) [3] enforces  and leads to an
orthogonal Procrustes problem:

Using the singular value decomposition, we can compute a solution; this solution combines a
Galerkin projection with a polar decomposition. For information about incorporating other

types of constraints in DMD via Procrustes problems, see [1]. Figure 3 shows key benefits of
mpEDMD when capturing the behavior of a turbulent boundary-layer flow. Moreover, mpEDMD

utilizes a discretization matrix that is normal in a suitable Hilbert space, thus allowing us to
tackle the two aforementioned challenges and causing the convergence of key spectral

properties and even convergence rates in system sizes . The problem in  is also
equivalent to the corresponding constrained total least-squares problem and hence provides

a strongly consistent estimation that is robust to noise in  and .

Figure 3. The advantage of structure-preserving discretizations, such as the measure-preserving extended dynamic

mode decomposition (mpEDMD). 3a. Experimental setup of wall-jet boundary layer flow with Reynolds number

. 3b. Horizontal averages of the forecasts for turbulent kinetic energy, which show stability of mpEDMD. 3c.

Wavenumber spectra measure the energy content of various turbulent structures as a function of their size, thus

providing an efficient measure of a flow reconstruction method’s performance over various spatial scales. Figure

courtesy of Matthew Colbrook.

The Need for Infinite-dimensional Numerical Analysis
These examples demonstrate the way in which an infinite-dimensional numerical analysis view
of spectral computations led to breakthroughs in the use of Koopman operators. But this is by

no means the end of the story, as future directions involve establishing connections to infinite-
dimensional control theory and optimizing feature spaces based on measures of a subspace’s

invariance. However, any theory that seeks to understand the convergence of algorithms for
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Koopman operators—and any algorithm that is based on finite-dimensional approximations

and seeks to be robust—must be aware of the infinite-dimensional nature of Koopman
operators and the associated pitfalls.

Given the rich history of spectral computations, it is natural to turn to infinite-dimensional
numerical analysis for methods and solutions. However, we cannot solve all infinite-

dimensional spectral problems computationally, and the same is undoubtedly true for data-
driven dynamical systems. The establishment of methodological boundaries—i.e., proving

impossibility results that shine a light on limitations and guide us in feasible directions—will be
a key future direction in this field. A formidable question is, “What are the foundations of data-

driven dynamical systems and computing spectral properties of Koopman operators?” The
answer will help us realize Koopman’s 90-year-old perspective as a powerful tool in the 21st

century.
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