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Recently a new transform method, called the Unified Transform or the Fokas method, 
for solving boundary value problems (BVPs) for linear and integrable nonlinear partial 
differential equations (PDEs) has received a lot of attention. For linear elliptic PDEs, 
this method yields two equations, known as the global relations, coupling the Dirichlet 
and Neumann boundary values. These equations can be used in a collocation method 
to determine the Dirichlet to Neumann map. This involves expanding the unknown 
functions in terms of a suitable basis, and choosing a set of collocation points at 
which to evaluate the global relations. Here, using these methods for the Helmholtz and 
modified Helmholtz equations and following the earlier results of [15], we determine 
eigenvalues of the Laplacian in a convex polygon. Eigenvalues are characterised by the 
points where the generalised Dirichlet to Neumann map becomes singular. We find that 
the method yields spectral convergence for eigenfunctions smooth on the boundary and 
for non-smooth boundary values, the rate of convergence is determined by the rate of 
convergence of expansions in the chosen Legendre basis. Extensions to the case of oblique 
derivative boundary conditions and constant coefficient elliptic PDEs are also discussed and 
demonstrated.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In the late nineties, a new method for analysing boundary-value problems (BVP) for linear and for integrable nonlinear 
partial differential equations (PDEs) was introduced by the second author [16–18]. This method, which has become known 
as the unified transform or the Fokas method, has been applied to a variety of linear elliptic PDEs formulated in the interior 
(and exterior) of a polygon. One can think of the method as a generalised Fourier transform, each transform being tailored 
to the PDE at hand. For the Laplace, modified Helmholtz and Helmholtz equations, the method expresses the solution in 
terms of integrals in the complex Fourier plane. However, these integrals contain integral transforms of both the Dirichlet 
and Neumann boundary values. These representations are analogous to the classical Green’s representations, but they are 
formulated in the Fourier space as opposed to physical space. The transforms of the Dirichlet and Neumann boundary values 
are coupled via two algebraic equations – the global relations. This method has been used to obtain solutions where classical 
methods fail [21,43] and has been put on a rigorous footing by Ashton [1,2].
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There has been considerable interest in using the global relations to evaluate numerically the generalised Dirichlet to 
Neumann map [20,22,15,23,37–40,42,27]. The general approach can be summed up in two steps. First, one expands the 
unknown boundary values in some suitable basis. The choice of the basis can significantly improve the convergence proper-
ties of the method. We will chose Legendre polynomials since their Fourier transform can be expressed via modified Bessel 
functions and they have been demonstrated to have good convergence properties for the method. Next, one evaluates the 
approximate global relation using these expansions at suitable collocation points. This gives a finite linear system of equa-
tions which, assuming the generalised Dirichlet to Neumann map is not singular, can be inverted for an approximation of 
the unknown boundary values. It is found that over-determining the system yields smaller condition numbers. Here, we 
take advantage of recent developments in this area [42,27] in our choice of collocation points. The method can also be 
adopted to form a Galerkin scheme by integrating the global relations [2,6].

In this paper, we use the above method to study the generalised Dirichlet to Neumann map when it becomes singular. 
It is shown that the points where the map becomes singular correspond precisely to eigenvalues. A scheme for computing 
these eigenvalues and eigenfunctions is introduced and its effectiveness is demonstrated on a range of examples with differ-
ent boundary conditions. We find that the method yields spectral convergence, analogous to the convergence demonstrated 
for this method when inverting the Dirichlet to Neumann map. The eigenvalue/eigenfunction problem has many applications 
in engineering and physics [14,8,34] and in data analysis [36]. In two dimensions it is known as the ‘drum’ problem [29,24,
31,44]. There are only a handful of domains for which the solution is known analytically and hence a numerical approach is 
needed. Indeed, there is a vast literature on numerical methods for this problem [10,31]. In general, obtaining eigenvalues 
of elliptic PDEs with standard methods, such as finite element or finite difference, is problematic, yielding only algebraic 
convergence and becoming impractical for large eigenvalues. The method presented here yields a diagonally dominant ma-
trix, which is much smaller than standard discretisation methods, and its size in general grows linearly with the number of 
basis functions used. Furthermore, the method avoids completely the issue of evaluating singular integrals, which appear in 
boundary-integral equation methods and corresponding boundary-based discretisation methods. An apparent deficiency of 
the new method is the need to analyse a non linear eigenvalue problem. In practice, this is not an issue since the method 
is very easily parallelisable. We also find that very small system sizes are needed to obtain high accuracy in spectral data. 
The idea of using the Fokas method to compute eigenvalues was first presented in [15] in the case of a trapezium. Here, 
we implement this idea to a variety of examples, compute eigenfunctions and demonstrate that the convergence rate is 
determined by the convergence rate of the Legendre basis expansion.

The paper is organised as follows: in Section 2 we introduce the global relation and show that non trivial solutions 
correspond precisely to eigenvalues and eigenfunctions. Section 3 introduces the discretisation method, the choice of col-
location points and reviews other methods found in the literature. In Section 4, we demonstrate the method on examples 
with known spectral data, compare to the finite element method and also demonstrate how eigenvalue multiplicities and 
eigenspaces can be computed. Section 5 analyses examples with unknown spectrum where we demonstrate convergence 
rates expected from the asymptotics of corner singularities, whereas Section 6 uses the modified Helmholtz equation to 
deal with negative eigenvalues. In Section 7, we extend the method to more general constant coefficient elliptic PDEs, and 
Section 8 discusses further the results presented in this paper.

2. Global relation

Our aim is to solve the eigenvalue problem

−uxx − u yy = λu, (x, y) ∈ �, (1)

δ ju
N
j − γ ju j = 0 δ j =

√
1 − γ 2

j , γ j ∈ [−1,1], j = 1, ...,n, (2)

for some bounded convex polygon � with sides {� j}n
j=1, where uN

j denotes the normal derivative along side j. The con-
stants {γ j} prescribe Robin boundary conditions along each side, which can be made precise in a trace sense. It is known, 
that these boundary conditions give rise to a self-adjoint operator, bounded below with compact resolvent whose eigen-
functions from a complete basis of L2(�) (see [33] Theorem 4.12). The sign of the eigenvalues depends on the sign of γ j . 
Dirichlet, Neumann or negative γ j give rise to non-negative eigenvalues (formally justified by integration by parts). We shall 
be predominantly interested in this case, but we will demonstrate that our method also works for negative eigenvalues 
by using the modified Helmholtz equation. For non-negative eigenvalues we may write λ = k2 and recast the eigenvalue 
problem as a non-zero solution to the Helmholtz equation

uxx + u yy + k2u = 0, (x, y) ∈ �, (3)

δ ju
N
j − γ ju j = 0, j = 1, ...,n. (4)

We briefly recall the unified transform method used to solve the Helmholtz equation [20,5]. Letting z = x + iy and z = x − iy

we have that V = exp
(
(−ik/2)[λz + z/λ]

)
is a solution of the Helmholtz equation for all λ ∈ C\{0}. This allows us to write 

the PDE in divergence form,
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[
V

(∂u

∂z
+ i

kuλ

2

)]
z
−

[
V

(∂u

∂z
+ i

ku

2λ

)]
z
= 0. (5)

Then, Green’s theorem and simple algebraic manipulation yield the global relation∮

∂�

exp
(
(−k/2)[λz + z/λ]

)(
uN ds + ku

2

(
λdz − 1

λ
dz

)) = 0, λ ∈C\{0}. (6)

If u is real then we obtain a second global relation via Schwartz conjugation (i.e. via taking the complex conjugate and then 
replacing λ with λ). In our case we can assume without loss of generality that our eigenfunctions are real valued and will 
do so unless otherwise stated.

For the case of a convex polygon, we denote the corners in anticlockwise order as {z j}n
1. We can parametrise the side 

� j , joining z j to z j+1 (with the convention that zn+1 = z1) by

z = m j + th j, t ∈ [−1,1], (7)

with m j = (z j + z j+1)/2 the midpoint and h j = (z j+1 − z j)/2 the relevant direction. Noting that ds = |h|dt , this means that 
we can write the global relation as

n∑
j=1

exp
(
(−ik/2)[m j/λ + λm j]

) 1∫

−1

exp
(
(−ikt/2)[h j/λ + λh j]

)(
uN

j

∣∣h j
∣∣ + ku j

2

(
λh j − h j

λ

))
dt = 0. (8)

If we write the unknown boundary values as v j = γ juN
j + δ ju j along each side � j then (8) becomes

n∑
j=1

exp
(
(−ik/2)[m j/λ + λm j]

) 1∫

−1

exp
(
(−ikt/2)[h j/λ + λh j]

)
v j

(
γ j

∣∣h j
∣∣ + δ j

k

2

(
λh j − h j

λ

))
dt = 0. (9)

Our aim will be to estimate k such that the above is satisfied for a non-zero v ∈ L2(∂�). Suppose k2 is not an eigenvalue 
and that v ∈ L2(∂�) satisfies (9), then it can be shown that such a v corresponds to the relevant boundary data of a solution 
of the Helmholtz equation with the homogenous Robin conditions (see [1] and the generalisations therein). But then such a 
v must be zero otherwise we would have an eigenfunction. Conversely, suppose that k2 is an eigenvalue with eigenfunction 
u. It can be shown that for the boundary problem considered here on a convex polygon, u and its normal derivatives1 lie 
in L2(∂�) [48]. Furthermore, Green’s theorem holds [26] and v must be a non-zero function which satisfies (9). Hence we 
are essentially looking for k such that the generalised Dirichlet to Neumann map

δ ju
N
j − γ ju j ↪→ γ ju

N
j + δ ju j, j = 1, ...,n, (10)

becomes singular by estimating a pair (v, k) that satisfy (9) with non-zero v ∈ L2(∂�). Our strategy is to form an appro-
priate discretisation of (9) and of the second global relation, and to use these equations in order to construct approximate 
eigenvalues and eigenfunctions. Eigenvalues of multiplicity greater than one will also be discussed.

Remark 1. In the case of the Dirichlet problem, it can be shown that an eigenfunction actually lies in H2(�) (see [26]
Theorem 3.2.1.2) and hence the trace theorem for curvilinear polygons (see [26] Theorem 1.5.2.1) implies that uN

j ∈ H1/2(� j)

for j = 1, ..., n. In fact, the smoothness depends crucially on the angle of the corners of the polygon. In any neighbourhood
where ∂� is analytic, the eigenfunction can be analytically continued across the boundary [44,31]. By multiple reflections, 
it can also be continued across any corner of angle π/m with m ∈ Z. For general angle π/α, the singularity at the corner is 
described in polar coordinates between θ = 0 and θ = π/α by the expression

u = Crα sin(αθ) + o(rα).

We refer the reader to [32] for this result and also to [13] for an explicit form of the singularities. Incorporating these as 
basis functions in our method is currently under investigation. In Section 5 we shall comment on the expected convergence 
rate of our method in light of these smoothness results.

In the case that all δ j > 0, we can use the trace theorem to show that u j ∈ H1/2(� j) and hence uN
j ∈ H1/2(� j) for 

j = 1, ..., n. In particular, these cases include the Neumann and Dirichlet as well as most boundary problems of interest. In 
general, there exists some ε0 > 0, depending on � and the boundary conditions, such that for 0 < ε < ε0, u j ∈ H3/2+ε(� j)

and uN
j ∈ Hε(� j). This is the best possible estimate [25] and it depends crucially on the convexity of the polygon.

1 The normal derivative is defined almost everywhere, being undefined at the corners.
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3. Approximate global relation and the numerical method

3.1. The method

The typical approach using the uniform transform to evaluate the Dirichlet to Neumann maps for the Laplace, Helmholtz 
and modified Helmholtz equations, involves the expansion of the unknown boundary values in some basis. If we truncate 
this expansion, and then evaluate the global relations at appropriate points in the complex plane, we obtain a finite linear 
algebra problem. Various choices of basis and collocation points can be found in [23,38,20,42,22,37,27]. It appears that 
the best choice of basis is Legendre polynomials. Indeed, using a Fourier or sine basis can give a linear system in block 
diagonal form, but these bases only give quadratic convergence for the evaluation of the Dirichlet to Neumann map. If 
the unknown boundary data are sufficiently smooth, then Chebyshev or Legendre polynomial expansions give faster than 
algebraic convergence. Furthermore, Legendre polynomials appear to give spectral convergence even in the case of irregular 
polygons, they give rise to closed form expressions for the relevant integrals and maintain small condition numbers for 
the algebraic system. Note that the finite bases of Chebyshev or Legendre polynomial expansions are the same, but the 
conditioning can vary.

We first expand the unknown boundary values in the Legendre polynomial basis on each side and truncate:

v j(t) ≈
N−1∑
l=0

a j
l Pl(t), (11)

where Pm denotes the m th Legendre polynomial (normalised so that Pm(1) = 1). We then let

P̂ l(λ) =
1∫

−1

exp(−iλt)Pm(t)dt, (12)

denote the Fourier transform of Pl . This can be written down explicitly in terms of modified Bessel functions as

P̂ l(iα) =
√

2πα

α
Il+1/2(α). (13)

We then obtain the approximate global relation

n∑
j=1

N−1∑
l=0

exp
(
(−ik/2)[m j/λ + λm j]

)(
γ j

∣∣h j
∣∣ + δ j

k

2

(
λh j − h j

λ

))
P̂ l

(k

2
[h j/λ + λh j]

)
a j

l = 0. (14)

Evaluating at different λ, this can be written in matrix form as

A(k)x = 0, (15)

where x denotes the coefficients of unknown boundary values. Our strategy will be to choose these collocation points such 
that away from eigenvalues the condition number of A(k) is small, but this condition number blows up as we approach 
an eigenvalue. We can then extract an approximation to an element in the eigenspace by computing the left singular 
vector corresponding to the smallest singular value of A(k) and expanding with the corresponding coefficients. After we 
have computed the unknown boundary values, then we can use either the representation in the uniform transform method 
[19,43] or the Green’s function representation to generate the solution at any interior point of �. In the former case, the 
contours of integration can be deformed to gain rapid convergence.

It is appropriate at this point to mention some standard approximation results about Legendre polynomials since these 
will play a role in our numerical examples. For s ≥ 0, let H s((−1, 1)) denote the Sobolev space defined in the usual way for 
s ∈ Z (derivatives of order up to s lie in L2((−1, 1))) and defined by complex interpolation for non integer s (see [9]). Let 
P N denote the orthogonal projection onto the first N Legendre polynomials. It was shown in [11] that for any s ≥ 0, there 
exists a constant C such that

‖ f − P N f ‖2 ≤ C N−s ‖ f ‖Hs , ∀ f ∈ Hs((−1,1)). (16)

Similar bounds for the uniform norm can be found in [47], along with a proof that the error (in the uniform or L2 norm) 
decays exponentially fast if f can be extended to an analytic function on a neighbourhood of I = (−1, 1) in the complex 
plane. We will see that this exponential convergence is captured by our method, for smooth enough unknown boundary 
values v . However, in Section 5 we explore the case when v is singular and for this we will need a refinement of (16).
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3.2. Choice of collocation points

Various choices of λ for evaluating the global relation(s) have been proposed in the literature, including Halton nodes 
[22] or certain rays in the complex plane [27]. Careful choice in the Fourier basis gives a block diagonal system, but this 
cannot be achieved for our choice of basis. Given a side j, we wish to chose λ such that the terms corresponding to this 
side are dominant in (14). It was shown in [20] (a similar argument holds for the Helmholtz equation) that for a convex 
polygon this can be achieved by choosing

k

2
[h j/λ + λh j] = − (17)

for some positive real . After evaluating the system at this point, and multiplying the resulting system by eik/2[m j/λ+λm j ] , 
we find that the exponential contributions from adjacent sides decay linearly for large , whereas the contributions from 
other sides further from side j decay exponentially as l → ∞. We also want our system to have similar condition numbers 
as we vary k, hence we choose to evaluate the global relation at the points

λ = −2/k +
√

(2/k)2 − 4
∣∣h j

∣∣2

2h j
. (18)

This is done for each side j = 1, ..., n and  on M evenly spaces points in the interval [R1, R2], evaluating the real and 
imaginary parts to form a matrix A(k) ∈ R

2nM×nN . This corresponds to evaluating the second global relation at points λ. 
We take 2M > N to ensure the system is overdetermined. For a given choice of N, R1, R2 we have found that there exists a 
threshold above which condition numbers are not reduced by increasing M . We also note that condition numbers depend 
on R1, R2 but we have not attempted to determine the best possible values of R1, R2. The majority of choices produces 
qualitatively similar results.

In the cited references, the above method used for the evaluation of the generalised Dirichlet to Neumann map (for non 
homogeneous boundary conditions) away from the eigenvalues of the Laplacian, appears to yield spectral convergence. In 
other words, the error decreases as O(e−cN ) for some constant c > 0. Clearly, we cannot hope for such convergence when 
the boundary data of the eigenfunctions are not smooth on each side with bounded derivatives, however we will demon-
strate that for smooth enough data we can also obtain spectral convergence in estimating eigenvalues and eigenfunctions. 
Furthermore, for the cases of known solutions we find that the error decays like the error in truncating the Legendre ex-
pansions of the data. This suggests that other basis choices may be appropriate to incorporate corner singularities. This has 
been pursued in [22] for the inversion of the Dirichlet to Neumann map but is beyond the scope of this paper.

3.3. Remarks on other methods

There are other methods used to compute eigenvalues/eigenfunctions. The classical boundary integral formulation is 
based on the Green’s function representation of the solution in � (understood as a principal value integral on the boundary). 
Typically, an expansion in terms of Legendre polynomials along the same line will yield spectral convergence (see [35] for 
a survey of the method and [22] for comparisons with the unified transform for solving Laplace’s equation). However, this 
method suffers from the drawback of the need to evaluate singular integrals. This is possible in closed form for the solution 
of Laplace’s equation [22] but in general can be very difficult. For our problem, the Green’s function can be written in terms 
of a Hankel function and hence the singularity is only logarithmic. Quadrature rules for evaluating such integrals have been 
proposed [41,30] but can be hard to implement with known error estimates and have been studied extensively in numerical 
analysis [12]. Hence, it is common to discretise the boundary into a large number of boundary elements which generally 
leads to only algebraic convergence [45].

Another common method is the finite element method, which yields algebraic convergence rates for the eigenvalues and 
eigenfunctions (depending on their smoothness) [10]. This method becomes unpractical for large k. Essentially one expects 
that the mesh width needs to be on order 1/k to resolve the eigenfunctions leading to huge system sizes and accuracy is 
rapidly lost. We shall use this method for comparison with our method for the case of small eigenvalues for polygons where 
the spectrum is not known analytically.

Finally, we note that a similar idea to our method has been proposed for the Dirichlet problem in [6]. The method in 
[6] differs in that the global relation is integrated along rays in the complex plane, rather than a collocation method. This 
allows one to use a Galerkin scheme and it was proven that this gives convergence to the the eigenvalues and eigenspaces. 
However, the condition numbers of the systems grows with k and no numerical convergence analysis is performed in [6]
for the eigenvalue problem. Also, each entry of the corresponding matrix must be computed by an integral which can take 
considerable computing time, (however, in contrast to the integrals appearing in boundary integral methods, the above 
integrals can be deformed in the complex plane yielding rapid convergence).
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Fig. 1. The rectangle and triangle used for testing the new method. In both cases we can compare explicitly known eigenvalues and eigenfunctions with 
the numerical results obtained by the new method. The labeling shown will be consistent with later figures.

Fig. 2. Left: Condition number plotted against k2/π2 for N = 20. The analytic eigenvalues are shown as the vertical dashed lines. Right: The same, but for 
N = 50. Note that increasing N helps capture the eigenvalues corresponding to larger wavenumbers.

4. Numerical results for examples with analytic spectrum

In this section we will investigate numerically the proposed method of finding eigenvalues/eigenfunctions for two ana-
lytically solvable examples – the rectangle and isosceles right angled triangle. These examples are shown in Fig. 1, where we 
use scalings so that all vertices lie on the unit circle. We have also tested the method on parallelograms, on the equilateral 
triangle and on a triangle with angles π/2, π/3, π/6 and have obtained similar results.

4.1. Rectangle

We begin with the Dirichlet problem corresponding to γ j = 1. Following [27] we choose M = 2nN and set R1 = 1, R2 =
5N/2. If one is only interested in a small interval of eigenvalues, then different choices may be more suitable, but we have 
made the above choices in order to study all eigenvalues simultaneously up to k2/π2 = 100. The eigenfunctions/eigenvalues 
are given by the expressions

sin
(mπ

L1
(x − L1/2)

)
sin

(nπ

L2
(y − L2/2)

)
, λm,n = π2(m2

L2
1

+ n2

L2
2

)
, m,n ∈ N. (19)

L2
1 and L2

2 are incommensurable hence all the eigenvalues are simple. The condition number of the linear system as a 
function of k is shown in Fig. 2 for N = 20 and N = 50. We have found that small values of N are sufficient to achieve 
spikes in the condition number for small wavenumbers. The eigenvalues that have not spiked for N = 20 correspond to 
large m or n, which, due to the two lengths L1, L2, may not physically be the largest eigenvalues. This is expected due to 
the increasingly oscillatory nature of the Neumann boundary conditions as λm,n increases.

Fig. 2 suggests the following strategy for finding eigenvalues. A local search routine is used to find the maximum of the 
condition number in the vicinity of a sharp spike. We can also estimate the unknown Neumann boundary value along each 
side by computing the singular vector corresponding to the smallest singular value. The absolute error of k2/π2 and the 
L2(∂�) error of the approximate eigenfunction are shown in Fig. 3 for both large and small eigenvalues. We stress that we 
chose k according to the eigenvalue estimates – we did not use the analytically known values. We measure the error in the 
eigenfunctions by first normalising to ‖v‖L2(∂�) = 1 and then computing the quantity
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Fig. 3. Left: The error in approximating a representative selection of eigenvalues. Right: The corresponding L2(∂�) error in re-constructing the unknown 
boundary values v .

Fig. 4. The same as in Fig. 2 but for the Neumann problem.

inf
g∈E

‖v − g‖L2(∂�) , (20)

where E is the corresponding eigenspace. This computation is straightforward once we normalise our Legendre polynomials 
to an orthonormal basis.

It is clear that the method has spectral convergence. The approximation quickly yields machine precision with a larger 
minimum error for approximating larger eigenvalues. The slopes corresponding to the L2 error have exactly the same gra-
dient as the error obtained from truncating the Legendre basis series, indicating that the spectral convergence is inherited 
from the spectral convergence of Legendre polynomial expansions. The staircase effect can be understood via the parity of 
the Legendre unctions and Neumann boundary values.

Figs. 4 and 5 depict the corresponding plots for the Neumann boundary conditions. Here the spectral data are

cos
(mπ

L1
(x − L1/2)

)
cos

(nπ

L2
(y − L2/2)

)
, λm,n = π2(m2

L2
1

+ n2

L2
2

)
, m,n ∈N. (21)

The same conclusions can be drawn: for larger wavenumbers spectral accuracy is achieved but larger N is needed. Finally, 
note that an L2(∂�) bound on the approximated eigenfunctions can easily be converted to an L∞(�) bound using integral 
representations such as the Green’s function representation. Hence, the method can be used to achieve spectral accuracy in 
the L∞(�) norm.
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Fig. 5. The same as in Fig. 3 but for the Neumann problem.

4.2. Comparison with FEM

Here we briefly compare the above method to the finite element method (FEM). Other methods such as boundary inte-
gral methods without interior discretisations may also be possible (see [22] for an example with the Laplacian) but we stick 
to FEM for simplicity and since it is arguably the most common method. Fig. 6 shows the relative error in approximating 
eigenvalues and the L2(�) error in approximating eigenfunctions against the mesh diameter h for the Dirichlet problem.2

We have used quadratic elements and have found that the eigenvalue error decays like O(h4) and the eigenfunction er-
ror decays like O(h3), consistent with [10]. Most standard methods, such as finite difference, finite elements, boundary 
elements or their relatives, will at best produce algebraic convergence.3 Furthermore, the size of the system in two dimen-
sions grows as O(1/h2) (or O(1/h) for boundary elements), with very small h needed to compute eigenvalues with larger 
wavenumbers. For our rectangle, a 598199 × 598199 system was needed for h = 0.002, making such methods impractical 
for large eigenvalues. The sparsity pattern of the matrix is shown in Fig. 6, demonstrating that it is far from banded. The 
difficulties described above mean that it is very hard to estimate eigenvalues with wavenumbers larger than those shown 
in the plot.

On the other hand, the system sizes obtained via our method grow linearly with N , with all system sizes considered 
in this paper at most of order 1000. The apparent disadvantage of the proposed method is its reduction to a non linear 
eigenvalue problem. This means that one has to adopt a local search routine for eigenvalues/eigenfunctions. However, in 
practice we have found that this was outweighed by the small system sizes used, particularly for larger eigenvalues and 
improved rate of convergence compared to FEM. Another advantage of the new method is that it is easily parallelisable – 
one simply splits up the domain of interest and performs local searches separately. This is particularly useful if one wants 
to study a selection of very large eigenvalues. One may also adapt the method by changing the number of basis functions 
in the expansion truncation on each side separately – it is entirely straightforward to have adaptive refinement.

4.3. Isosceles right angled triangle

Next we test the method on a right-angled triangle with vertices at 1, i, −i. Up to a re-orientation of the triangle, the 
Dirichlet spectral data can be written in the form

sin
(mπ√

2
x
)

sin
( nπ√

2
y
) − sin

( nπ√
2

x
)

sin
(mπ√

2
y
)
, λm,n = π2

2
(m2 + n2), m,n ∈ N,1 ≤ m < n. (22)

The Neumann spectral data are similar with cosines replacing sines, a change of sign and m, n ∈ Z≥0, 1 ≤ m ≤ n. For brevity, 
here we will only consider the Dirichlet problem and postpone the discussion of the Neumann problem until the section on 
detecting multiplicities. Note that we can also get eigenvalues of multiplicity greater than 1. This is easily seen by finding 
numbers that factorise as m2 +n2 in two different ways, for instance 65 = 12 + 82 = 42 + 72. Fig. 7 shows the corresponding 
global plot of the condition number for M = 6N, R2 = 4N, R1 = 1. Note that there are no longer two competing length 
scales for listing the eigenvalues and hence it seems that eigenvalues best approximated for smaller N correspond to small 
eigenvalues in a monotonic fashion. Fig. 8 shows the error in approximating the eigenvalues and eigenfunctions for some 
representative (m, n) (avoiding degeneracies). We see the same spectral convergence as before.

2 We have found analogous results for the Neumann problem.
3 Notable exceptions are the hp-FEM and hp-BEM methods.
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Fig. 6. Left: Sparsity pattern for a typical FEM matrix. Right: The error in approximating eigenvalues and eigenfunctions using the finite elements method. 
Note that the convergence is algebraic and it requires small h.

Fig. 7. Condition numbers for N = 20 and N = 50 for the Dirichlet problem on the triangle. The eigenvalues are well approximated and are monotonic in 
the parameter N .

Fig. 8. Left: The error in approximating a representative selection of eigenvalues. Right: The corresponding L2(∂�) error in re-constructing the unknown 
boundary values v . These results are both for the Dirichlet problem on the triangle.
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Fig. 9. σnN (A(k))/σp(A(k)) plotted against k2/π2 for the Neumann problem on the triangle. The eigenvalues with multiplicity ≥ 2 are shown as vertical 
dashed lines.

4.4. Multiplicities

In this section we demonstrate that the method can be used to compute eigenvalues of multiplicity greater than one 
and to approximate the eigenspace. For this we need a distance measure between subspaces. Suppose that E ⊂ L2(∂�) is 
the eigenspace of unknown boundary values which we approximate via a space F ⊂ L2(∂�). Define

δ(E, F ) = sup
x∈E,‖x‖=1

inf
y∈F

‖x − y‖ , (23)

and

δ̂(E, F ) = max{δ(E, F ), δ(F , E)}. (24)

This notion of distance between subspaces is standard in the literature and is used even in the Banach space case. We will 
abuse notation and denote the corresponding orthogonal projections of our subspaces by E, F also. In this case we have

δ(E, F ) = sup
x∈E,‖x‖=1

inf
y∈F

‖x − y‖ = sup
x∈E,‖x‖=1

∥∥∥F ⊥x
∥∥∥ =

∥∥∥F ⊥E
∥∥∥ . (25)

We can also write E − F = F ⊥E − F E⊥ as a direct sum with norm max{∥∥F ⊥E
∥∥ , 

∥∥F E⊥∥∥}. Hence it follows that

δ̂(E, F ) = max
{∥∥∥F ⊥E

∥∥∥ ,

∥∥∥E⊥ F
∥∥∥
}

= max
{∥∥∥F ⊥E

∥∥∥ ,

∥∥∥F E⊥
∥∥∥
}

= ‖E − F‖ . (26)

Thus, if we have E = span{u1, ..., up} with u j orthonormal (and real WLOG) then the projection can be written in the form

E =
p∑

i=1

uiu
T
i . (27)

If we expand in terms of a large number of Legendre polynomials, then the above can be approximated very accurately by 
a finite matrix. To detect eigenspaces of dimension p, we compute the largest singular value of our system A, σnN (A(k)), 
and divide by the p th smallest singular value σp(A(k)). Spikes in the corresponding plot indicate values of k for which k2

is an eigenvalue of multiplicity p. The collection of left singular vectors v1, ..., v p span our approximation space F . After 
performing Gram Schmidt, we can easily compute δ̂(E, F ).

Here we only demonstrate results for p = 2, but we have tested larger values of p and have found similar results. We 
test the method on the triangle in Fig. 1 with Neumann boundary data. The eigenvalues/eigenfunctions are

cos
(mπ√

2
x
)

cos
( nπ√

2
y
) + cos

( nπ√
2

x
)

cos
(mπ√

2
y
)
, λm,n = π2

2
(m2 + n2), m,n ∈ Z≥0,1 ≤ m ≤ n. (28)

The global picture is shown in Fig. 9. We have also shown errors approximations to the eigenvalues and eigenspaces in 
Fig. 10. It is clear that in this case we also achieve spectral convergence.
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Fig. 10. Left: The error in approximating eigenvalues with a representative selection of eigenvalues. Right: The distance between the approximation 
eigenspace and the true eigenspace.

5. Numerical results for examples where the spectrum cannot be computed analytically

We now turn to examples where no analytic solutions are known. First, we mention how to take advantage of symmetry 
(if it is present). If γ j is independent of j and the polygon is regular, then the collocation matrix has a semi block circulant 
form

A =

⎡
⎢⎢⎢⎣

A1 A2 . . . An

An A1 . . . An−1
...

...
. . .

...

A2 A3 . . . A1

⎤
⎥⎥⎥⎦ , A j ∈R

2m×N . (29)

If M = N and the matrix is invertible then its inverse has the following form [46]

A−1 =

⎡
⎢⎢⎢⎣

B1 B2 . . . Bn

Bn B1 . . . Bn−1
...

...
. . .

...

B2 B3 . . . B1

⎤
⎥⎥⎥⎦ , (30)

where

B j = 1

n2

n∑
k=1

α
j−1

k (A(k))−1, αk = exp(2π(k − 1)i/n), A(k) = 1

n

n∑
j=1

A j(αk)
j−1. (31)

This also holds in the least squares sense if M > N . In other words, we can look at the maximum condition number of the 
smaller matrices {A(k)}n

k=1, which is computationally less expensive. This gives a very fast way of detecting eigenvalues and 
regions of the parameter k in which to search for eigenvalues. In practice, we found this to be the most time consuming 
part of our proposed method and hence exploiting symmetry can substantially speed up the relevant procedure.

Suppose also that an eigenspace contains a rotationally symmetric eigenfunction, then we can approximate look at the 
singularities of the matrix

Ã =
n∑

j=1

A j ∈R
2M×N . (32)

Clearly, this will not in general yield approximations to the whole eigenspace (consider multiplicities) and not all eigenvalues 
are detected, since not every eigenspace contains a non-zero rotationally invariant function.

In this section we shall investigate the regular hexagon and a scalene triangle (whose angles are not rational multiples 
of π ), both with vertices on the unit circle. For the hexagon we consider Dirichlet boundary conditions as well as mixed 
alternating Dirichlet and Neumann boundary conditions. In the former case we apply the above symmetry considerations. 
For mixed boundary conditions we can still take advantage of symmetry, but now we need to compute the condition 
number of 3 (rather than 6) smaller submatrices. For the scalene triangle we consider γi chosen uniformly at random. The 
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Fig. 11. The domains considered for three examples, for which the spectrum cannot be computed analytically.

Fig. 12. Condition numbers for N = 20 for each domain.

relevant geometries are shown in Fig. 11 and we take R1 = 1, R2 = 2N and M = 8N . The corresponding condition number 
plots along with eigenvalues computed via FEM are shown in Fig. 12. Using a smaller spacing in k2/π2 causes the spikes to 
become taller, but we have shown them for a reasonably large k spacing.

The previous examples suggest that for eigenfunctions with smooth enough boundary data, the method yields spectral 
convergence. However, we do not expect to see spectral convergence in general. Fig. 13 shows the error estimates for 
eigenvalues (obtained via comparison to large N). We see that algebraic convergence is obtained for some but not all spectral 
data. In all cases we have found that we can achieve higher precision than FEM by at least a few orders of magnitude for 
small N . In order to analyse the method, we recall some well known results about the form of corner singularities. Suppose 
u solves (1), and we consider a corner z j of �. Adopting local polar coordinates such that z j = 0 and ∂� corresponds to 
θ = 0 and θ = α j near the origin, it can be shown (see the references in [13]) that the corner singular functions have the 
asymptotic form

∑
p∈Z≥0

Q (p)∑
q=0

rλ+p logq rφp,q(θ), (33)

with φp,q(θ) analytic. Here the exponents λ depend on the angle α j as well as the boundary conditions around z j . In 
our case, the leading singularities for the hexagon with Dirichlet boundary conditions, hexagon with Neumann boundary 
conditions, and scalene triangle with largest angle ω are of the form

us ∼ r3/2 sin(3θ/2), us ∼ r3/4 sin(3θ/4) and us ∼ rπ/ω cos(θπ/ω), (34)

respectively. These can be computed explicitly using the recipe in [13] and are well known in the literature. We now state 
the following theorem which can be found in [7].

Theorem 1. Let F (x) = (x + 1)γ logν(1 + x) on (−1, 1) where γ > −1/2 and ν ∈ Z≥0 . Denoting the orthogonal projection onto the 
first N Legendre polynomials by P N , we have for N ≥ max{1, γ } that

‖F − P N F‖2 = N−(2γ +1)Eν(γ , N)
(

1 +O
( 1

N

))
, (35)

with

Eν(γ , N)2 =
( ν∑

k=0

Cν−k(γ ) logk(1 + N)
)2

. (36)

Furthermore, if γ is not an integer then C0 �= 0, if γ is an integer and ν > 0 then C0 = 0 but C1 �= 0. Clearly, if γ is an integer and 
ν = 0 then there is no approximation error and Eν(γ , N) = 0.
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Fig. 13. Error approximates for the first 8 (ignoring multiplicities) eigenvalues for each domain. In the case of the scalene triangle we only considered 
non-negative eigenvalues (some were negative).

Fig. 14. Error approximates for the first 8 eigenspaces for each domain. We have also shown reference lines displaying the theoretical optimal rate of 
convergence in the Legendre basis in the presence of the worst singularity.

In the cases considered, there are no logarithmic terms in the leading order and it can be shown that E0(γ , N) �= 0 for 
non-integer γ . Recalling that we must also compute the normal derivatives for unknown data v , it follows that v for our 
three problems is approximated via Legendre series with order of convergence 2, 1/2 and ≈ 3.4 respectively. If the worst 
form of singularities are present, then the above Theorem shows that this is optimal.

The error estimates for eigenfunctions are shown in Fig. 14. In particular, the rate of convergence is similar to that of 
truncating the Legendre series and we have shown the expected rates of convergence in the presence of corner singularities 
as reference lines, suggesting faster convergence for smooth eigenfunctions.4 Eigenspace number 6 for the hexagon with 
Dirichlet boundary conditions corresponds to a Dirichlet eigenfunction of an equilateral triangle, rotated six times and 
then glued together. Hence, the rapid convergence is due to the fact that the Neumann boundary values along each edge 
can be extended analytically to a neighbourhood of the corresponding edge. The approach of supplementing the Legendre 
basis with the most singular corner function was demonstrated in [22] for solving Laplace’s equation. Generalising this to 
Helmholtz type equations is currently under investigation.

6. Negative eigenvalues

In the case of negative eigenvalues, it is necessary to use the modified Helmholtz equation

uxx + u yy − k2u = 0, (x, y) ∈ �, (37)

δ ju
N
j − γ ju j = 0, j = 1, ...,n. (38)

Similar reasoning as earlier [27] leads to the approximate global relation

n∑
j=1

N−1∑
l=0

exp
(
(ik/2)[m j/λ − λm j]

)(
γ j

∣∣h j
∣∣ + δ j

k

2

(
λh j + h j

λ

))
P̂ l

( − k

2
[h j/λ − λh j]

)
a j

l = 0. (39)

The choice of collocation points now becomes

4 In order to gain this optimal rate of convergence, we found it necessary to increase R1 to 8 and R2 to 4N in the case of the scalene triangle.
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Fig. 15. Left: The condition number for N = 10. Right: The errors in eigenvalues and eigenfunctions corresponding to negative eigenvalues. Again we appear 
to get spectral convergence.

λ = −2/k +
√

(2/k)2 + 4
∣∣h j

∣∣2

2h j
. (40)

As before, this is done for each side j = 1, ..., n, with  on M evenly spaces points inside the interval [R1, R2], taking the real 
and imaginary parts of the corresponding relation. In what follows we take R1 = 1, R2 = 5N/2 and M = 8N . For brevity, we 
only present results for one example, but we have found similar results for other examples. We take the square with side 
lengths 2π . Neumann boundary conditions are imposed on the top and bottom, whereas uN = u and uN = −u are imposed 
on the right and left sides respectively. The domain is separable and it is straightforward to show that eigenfunctions must 
be multiples of

u(x, y) = cos
(ny

2

)(
A exp(λx) + B exp(−λx)

)
, n ∈ Z≥0, (41)

where

A(1 − λ)exp(2πλ) + B(1 + λ)exp(−2πλ) = 0, (42)

A(1 − λ) + B(1 + λ) = 0. (43)

For a non trivial solution, (1 − λ2) sinh(2πλ) = 0. Hence, the collection of negative eigenvalues are −1 and −3/4 corre-
sponding to λ2 = 1 and n = 0, 1 respectively.

Fig. 15 shows the spikes for N = 10. We have also demonstrated the spectral convergence to the negative eigenvalues 
(relative error to k2) and to the corresponding eigenfunction data v j = γ juN

j + δ ju j . Note that there is no stair-casing effect 
since the boundary values of the eigenfunctions do not have parity on sides 2 and 4.

7. Constant coefficient elliptic PDEs

It is straightforward to employ the method implemented in this paper to the more general eigenvalue problem

P (D)u = λu, (x, y) ∈ �, (44)

δ ju
N
j − γ ju j = 0 δ j =

√
1 − γ 2

j , γ j ∈ [−1,1], j = 1, ...,n, (45)

where D = (−i∂x, −i∂y)
T and P (D) is a second order, constant coefficient elliptic differential operator of the form

2∑
i, j=1

Aij Di D j +
2∑

i=1

Bi Di + C . (46)

By a linear change of coordinates (which maps our convex polygon to another convex polygon), we can assume that Aij = δi j . 
By setting q(x) = exp(−iB · x/2)u(x), it is easy to see that −(∂2

x + ∂2
y)q = λ̃q inside �. However, unless we have Dirichlet 

boundary conditions, we end up with an oblique derivative problem (essentially replacing the Neumann derivative with an 
oblique derivative). Motivated by the above discussion, we consider mixed Robin and oblique Robin boundary conditions.
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Fig. 16. The domain transformation to an oblique boundary derivative problem.

Suppose we partition the set S = {1, ...n} into D and R such that our boundary conditions become

u j = 0, j ∈ D, (47)

sin(θ j)uN
j + cos(θ j)

du j

ds
− γ ju j = 0, j ∈ R, (48)

with sin(θ j) �= 0. This is known as the oblique Robin boundary condition problem and has been studied for the example of 
an equilateral triangle in [21] and elsewhere [38,37]. Recall that we have the global relation.∮

∂�

exp
(
(−k/2)[λz + z/λ]

)(
uN + ku

2

(
λ

dz

ds
− 1

λ

dz

ds

))
ds = 0, λ ∈C\{0}. (49)

The contributions from the Dirichlet sides were computed earlier; for sides with oblique boundary conditions we substitute 
uN

j for sec(θ j)γ ju j − cot(θ j)du j/ds. Recalling that ds = |h|dt and integrating by parts, the contribution for � j with j ∈ R
is given by

exp
(
(−ik/2)[m j/λ + λm j]

) 1∫

−1

e(−ikt/2)[h j/λ+λh j]u j

( γ j
∣∣h j

∣∣
sin(θ j)

+ k

2

(
λh j − h j

λ

) − cot(θ j)
ik

2

(
λh j + h j

λ

))
dt

− exp
(
(−ik/2)[m j/λ + λm j]

)(
exp

(
(−ikt/2)[h j/λ + λh j]

)
cot(θ j)u j

)t=+1

t=−1
. (50)

The formal integration by parts is justified from the remarks on regularity in Section 2. The method of discretisation is 
exactly as before, but now we have unknown Neumann data on sides j ∈ D and unknown Dirichlet data on sides j ∈ R
with an extra boundary term. Note also that since u j ∈ H3/2+ε(� j) for some ε > 0, we know that the coefficients (with 
respect to the orthonormal Legendre polynomials) decay like O(N−3/2−ε). The polynomials have magnitude O(

√
N) and 

hence it follows that the series converges absolutely uniformly. This means we can include the above boundary terms in 
our discretisation.

It is possible to write the equation in divergence form and solve along the same lines as Sections 2 and 3. However, 
we have chosen to adopt this method since it also demonstrates the use of the method for the oblique derivative problem 
which cannot always be recast as a mixed Robin boundary problem for a constant coefficient elliptic PDE.

For simplicity, we demonstrate the method for an equilateral triangle with vertices z1 = 1, z2 = √
3i, z3 = −1 and for 

the operator 2∂yy + ∂xx with Neumann boundary conditions. We change coordinates to y′ = y/
√

2 to map to the Laplacian 
and oblique boundary conditions on sides �1 and �2 with

θ1 = arctan
(√

18
35 +

√
2

35√
3

35 −
√

12
35

)
+ π,θ2 = π − θ1, θ3 = π/2, γ1 = γ2 = γ3 = 0. (51)

This transformation is shown in Fig. 16. In what follows we take R1 = 1, R2 = 6N and M = 6N . Fig. 17 shows the familiar 
picture of the condition number (for N = 50). We have also shown the eigenvalues calculated using a finite difference 
eigenvalue solver. The corresponding plot for Dirichlet boundary conditions on the base, is also shown in Fig. 17. For both 
cases we did observe algebraic instead of spectral convergence and we expect this is due to non-smoothness of the Dirichlet 
data. Fig. 18 shows a representative plot for the Neumann case where a decay like ∼ O(N−d) is observed for d ≈ 6. Again 
error in truncating the Legendre series was similar but we noted some eigenfunctions with d > 7.

8. Conclusion

We have demonstrated the use of the unified transform (Fokas method) in solving for the spectral data of the Lapla-
cian and general constant coefficient elliptic PDEs in polygonal domains. We provide strong numerical evidence that the 
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Fig. 17. Left: The condition number plotted against k2/π2 for the oblique derivative problem with a Neumann boundary condition on the base, and N = 50. 
Right: Same but with a Dirichlet boundary condition on the base.

Fig. 18. Errors in the first 8 non-trivial eigenvalues and eigenfunctions for the oblique problem with a Neumann boundary condition on the base. We 
observed the same curve (slope ≈ −6) for N up to 60.

convergence rate of the method is determined by the regularity of the boundary data of the eigenfunctions, with spectral 
convergence for smooth enough boundary data. Furthermore, the method is numerically very easy to implement with ex-
plicit matrix values listed in Section 3, avoiding both the singular integrals in usual boundary integral methods and the 
complexity in high order discretisation methods. The method can be easily parallelised and is easily adapted to mixed 
Robin/Dirichlet/Neumann and oblique derivative boundary problems.

These results fit nicely into recent work on using similar approximations to invert the Dirichlet to Neumann map dis-
cussed in the introduction and Section 3. Although no proof of convergence has been provided, there is strong numerical 
evidence that the method of looking locally for ‘spikes’ in the condition number does converge. We should mention how-
ever, that in general the condition number of the system grows with N . The method works since the condition number 
grows at a much faster rate in the vicinity of an eigenvalue. As mentioned earlier, a similar method involving integrating 
the global relation has been proven to converge in [6]. The numerical evidence presented here complements the results 
of [6] and in practice is easier to use, yielding better numerical results with much smaller condition numbers away from 
eigenvalues at the expense of not having a proof of convergence.

Finally, we discuss extensions. So far the numerical implementations of the unified transform method in the literature 
have considered planar domains. Recently Ashton has extended the analysis of the Dirichlet to Neumann map to convex 
polyhedra [3,4]; see also [28]. In future work, these cases will be studied numerically. We have found that the convergence 
rate of the method follows the convergence rate of the Legendre series of the unknown boundary values. This suggests 
that other basis choices may be suitable. The inclusion of basis functions with more singular behavior at the corners of the 
polygon has been mentioned and this will also be the topic of future work.
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