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Abstract—Deep learning has emerged as a competitive new tool in
image reconstruction. However, recent results demonstrate such methods
are typically highly unstable - tiny, almost undetectable perturbations
cause severe artefacts in the reconstruction, a major concern in prac-
tice. This is paradoxical given the existence of stable state-of-the-art
methods for these problems. Thus, approximation theoretical results non-
constructively imply the existence of stable and accurate neural networks.
Hence the fundamental question: Can we explicitly construct/train stable
and accurate neural networks for image reconstruction? We prove the
answer is yes and construct such networks. Numerical examples of the
competitive performance are also provided.

Index Terms—Deep learning, image reconstruction, neural networks,
stability, compressed sensing

I. INTRODUCTION

The existence of stable, accurate and fast methods for image
reconstruction from incomplete noisy measurements is a crucial
problem in both mathematics, the physical and the life sciences.
Real world applications include Magnetic Resonance Imaging (MRI),
Computerised Tomography (CT), fluorescence microscopy, electron
tomography, Nuclear Magnetic Resonance (NMR), radio interferom-
etry, lens-less cameras etc. Accordingly, there is a vast literature
on different optimisation methods and reconstruction models, see
for example [4] and the references therein. Over the last decade
compressed sensing and sparse regularisation have become standard
tools in imaging, providing reduced scanning time and enhanced
image resolution [12], [28], [31], [34], [37], [47]. However, deep
learning has provided a new view on inverse problems and image
reconstruction [5], [32], [36], [39], [40], [48], [56] that may change
the field.

Deep learning and neural networks have provided state-of-the-art
methods for many problems such as image recognition [33], [53] and
speech recognition [30]. Other examples even include the prediction
of effects of drugs [38], language translation [49] (for instance in
Google translate) and speech understanding [22]. However, there is
also an increasing awareness that this may come at a high price
- many of these methods are unstable. It is now well established
that high performance deep learning methods for image classification
are subject to failure given tiny, almost invisible perturbations of
the image [41], [42], [50]. This is not just restricted to image
classification but also applies to image reconstructions from (possibly
noisy) partial measurements [6] (also demonstrated in this paper).
The instability is a major concern in applications such as medical
diagnosis. Given that compressed sensing provides stable methods
tackling this problem, it is paradoxical that deep learning may lead
to instabilities for an inherently stable problem. Indeed, we have the
following paradox:

There may exist stable and accurate neural networks for
image reconstruction, yet, current state-of-the-art neural
networks provided by deep learning become unstable.
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It is important to remark that the image classification problem is
inherently unstable (this can be proven). However, this is not the
case for the problem considered in this paper. A natural question is
therefore:

Question 1. Is it possible to construct stable networks with recovery
guarantees for the problem of image reconstruction?

So far this question has been unanswered with no constructive
proof of the existence of such neural networks. We provide the
answer to this question in the affirmative in the cases of Fourier
measurements (e.g. MRI) and binary measurements (e.g. digital
signal processing) in arbitrary dimensions. In particular, our results
in dimension two cover images, though the results extend to arbitrary
dimensions. We demonstrate (via a constructive proof) the existence
of untrained recursive' neural networks that are stable and achieve
recovery rates at least as optimal as (and in some cases better
than) the current state-of-the-art in compressed sensing. We prove
constructively that a precision of order § > 0 can be achieved via a
stable neural network with O(6~") layers. Our results:

o Provide insight into architectures of stable neural networks,

« Give a lower bound on the expected performance of stable neural
networks,

o Show that the field of compressed sensing (in particular the
notion of sparsity) has useful contributions to the emerging field
of the theory of deep learning and neural networks.

o Numerically demonstrate the recovery guarantee and stability of
the new network.

Both the aforementioned instability of a current state-of-the-art neu-
ral network and the stability of the new network are numerically
demonstrated in Section IV.

II. BACKGROUND

In simple mathematical terms, the problem of image reconstruction
is described as follows. Given an image © € C" (interpreted as a
vector for simplicity), we are given access to measurements of the
form

y= Az +e, M

where A € C™*V represents the sampling modality (we assume
under-sampling with m < N), such as a discrete Fourier transform
modelling MRI, and e represents the error in the measurement due
to effects such as random noise. The task is to reconstruct = from
the noisy measurements y. Note that without additional assumptions,
such as sparsity of the vector x, this problem is highly ill-posed.

ISee below for the relevant definition, this is not to be confused with the
term recursive often used to describe a particular architecture of a neural
network.



The compressed sensing literature typically studies the error of
approximating z via a solution of

min |[Wz|p st ||[Az —y|2 <k, 2)
zeCN

or similar optimisation problems, where W is a sparsifying transform.
This is known as basis pursuit denoising (see for example [11],
[13], [23], [25]). Recently, neural networks have been applied to
the recovery problem, yielding alternative non-linear reconstruction
techniques.

A. Definition of neural networks

For introductions to the field of deep learning/neural networks we
refer the reader to [35] and the references therein. In order to capture
architectures such as skip connections or switches, we consider the
following definition of a neural network. A neural network is a
mapping ¢ : C™ — CV such that we can write

é(y) = Wrlpr—1(...o0(W1(v)))), 3)

where;

o Each W is an affine map CYi-1 — C™i given by W;(x) =
Ajz + bj(y) where A; € CNi*Ni=1 and the b;(y) € CNi are
affine functions of the input y.

o Each p; is a non-linear function and is one of two forms:

1) There exists an index set I; C {1,...,N;} such that p;
applies a non-linear function f; element wise on the input
vector’s components with indices in I;. (I; is allowed to
be a strict subset.)

2) There exists a non-linear function f; such that, after
decomposing the input vector z as (xo, X,Y)7 for scalar
2o and X € C"7, we have

Xo 0
pit | X | = | filzo)X ). “
Y Y

The affine dependence of the bias terms b;(y) on y simply allows
skip connections from the input to the current level as in standard
definitions of feed-forward neural networks (see for example [46]
page 269). The type of architecture above has become standard [29],
[32], [45], [55]. Note that we do not allow the matrices A; to depend
on y. We will denote the collection of all neural networks of the above
form by N'Np, 14, where the vector D = (No = m, N1, ..., N =
N) denotes the dimensions in each layer, L denotes the number of
layers and ¢ denotes the number of different non-linear functions
applied (including different I; and n;). In general, we will require
that the N; do not grow with j so that the size of each layer is of
the same order as the sampling matrix A.

Deep learning for image reconstruction is based on the idea of
constructing (recursively) a neural network from a set of training
images {z1,...,z,} and the operator A from (1). The problem
is that such an approach typically results in unstable methods as
documented in [6], see also Figure 1. The networks we consider are
untrained and recursive in the following sense.

Definition 2 (Recursive neural network). A class C of neural net-
works @ € NNp.1.q, as defined above, depending on inputs 1 € ©,
where © C CP is some infinite subset, is said to be recursive if
the mapping © > 1 — ¢ is recursive. Recursive here means in the
sense of Turing [52] if one is given rational inputs and in the sense
of Blum-Shub-Smale (BSS) [10] if one is given non-rational inputs.
In layman terms this means that there exists an algorithm that can
construct ¢ from the input.

Remark 3 (Recursive networks depending on A). Throughout, we
will only consider recursive networks that depend on the measure-
ment matrix ¢t = A € © C CV*¥ and the number of layers. In fact,
the affine functions in our neural networks can be constructed using
arithmetic operations on the matrix A.

It is possible to extend this framework to trained neural networks
and associate with the constructive algorithm a training cost [14].
Future work will extend these techniques to study the problem of
training cost versus stable recovery guarantees.

B. Sparsity in levels and multilevel random subsampling

In order to state our main theorem we recall some basics from
compressed sensing. Motivated from the observation that the sparsity
structure of natural images is highly structured in bases such as stan-
dard wavelet bases, [4] introduced a new structured sparsity model,
wherein a vector x is allowed to have different sparsities in separate
levels. Since its introduction, this model has been used to explain the
effectiveness of compressed sensing in real life applications [7], [8],
[54]. Indeed, sparsity alone turns out to be an inaccurate model in
many applications as shown by the so-called flip test [4], [8], [44].
Hence, the following will be crucial for proving our main result.

Definition 4 (Sparsity in levels). For r € N, let M = (M, ..., M;.),
where 1 < My < ... < M, = N, and s = (s1,...,Sr), where
sk < My — M1 for k =1,...,7 and Mo = 0. A vector x© € cN
is (s,M)-sparse in levels if

[supp(z) N{Mr—1+1,...; M} <sg, k=1,..,r. (5
We denote the set of (s,M)-sparse vectors by s m.

For simplicity, we will assume throughout that each s; > 0 and
will denote the sum s; + ... + s by s. We also need to describe a
multilevel random sub-sampling model.

Definition 5 (Multilevel random sampling). Ler [ € NN =

(Ni,...,N)) eN' with 1< Ny < ... < N, m= (myq,...,my) €
NZ, with mix < N, — Nx—1, k= 1,...,1, and suppose that
QkC{Nk—1+17"'7Nk}7‘Qk’|:mk7 k::la"'vlv

are chosen uniformly at random, where No = 0. We refer to the set
Q=0Nm = U U...UQ as an (N, m)- multilevel sampling
scheme.

For a multilevel random sampling scheme Q = QN m, with |Q] =
m, we let Po: CV — C™ be the projection onto the canonical basis
e; indexed by €.

C. Fourier, Walsh function and wavelet bases

Our theorems consider the case where A = PqU corresponds to
either discrete Fourier measurements of the image or binary measure-
ments (Walsh-Hadamard measurements). We work in d dimensions
and assume that N = 2%, though the results trivially extend to
rectangular images.

When using Fourier measurements, the matrix U corresponds to
the d-dimensional discrete Fourier transform. For example, in the one
dimensional case, let 2 = {x(t)} ;' € C" be a signal. We denote
its Fourier transform by

weR

2miwt
)s

N-1
Fa(w) = \/% Z z(t) exp ( ~

and let U = Uy € CN*N denote the corresponding matrix such
that
N/2
Uana = {Fa@)}0 2y i



We divide the different frequencies into dyadic bands By, where
B ={0,1} and for k =2,...,r

By ={-2""41,.., 2" 2yu{2" % 41,2}
In the general d-dimensional case we set
B{" = By, x ... x B, k= (ki,....,ka) € N°.

Given (Mi—(ky.....kg) iy, kg1 With || < ‘Bﬁd’

, we will use a
multilevel random sampling such that mk measurements are chosen
uniformly and independently from Blid). In Definition 5, this corre-
sponds to [ = r¢ and the N;’s can be chosen given a suitable ordering
of the Fourier basis.

When using binary measurements, the matrix U corresponds to
Walsh-Hadamard transform. The (Paley-ordered) Walsh functions are
defined by

Vin(z) = (-1)Z5=1™3% 2 €[0,1), m € Zso, (6)

where (z;);en denotes the binary expansion of z (terminating if  is
a dyadic rational) and m = 3°7° | m;2’ ~1. For properties we refer
the reader to [27]. The vector form of these functions are

vip(i) =272V, (i277), @)

fori =0,.,2" —1,7 =0,...,7r — 1,p = 0,....,27 — 1. For the
general d—dimensional case we will take tensor products and define
for k = (ku,...,ka) € {1,...,7}% the levels

Wi = {vgy 1y @ oo @ Uy 1, :0<p; <271 —1}. (8)

Again, this corresponds to [ = r? and the N;’s can be chosen given
a suitable ordering of the basis.

For the sparsifying basis we use the standard multidimensional
Haar wavelets, formed via tensorizing the relevant multiresolution
analysis. Sparsity in levels as per Definition 4 then corresponds to
the r wavelet scales. We let W € CV* be the matrix corresponding
to this basis so that Wz form the wavelet coefficients, i.e. we expect
Wz to be sparse in the sense of Definition 4. Our results also carry
over to the infinite-dimensional setting with the use of higher order
Daubechies wavelets (though the results are more complicated to
write down).

III. MAIN RESULT

To state our results in their most general form, let w = (w;)~;
be a vector of strictly positive weights and define the weighted 11,
norm via

N
Il = wi |zl ©)
i=1

Given a sparsity pattern (s, M), define the best weighted (s, M)-term
approximation error as

osm(z)y = inf{[|z — 2|, : 2z € Bm} (10)

For an image which is compressible in the wavelet basis, o5 m(W ), I
is expected to be small. In general, the weights are a prior on the
anticipated support of the vector [26], [43], [S51]. From now on, we
will assume that if M;_1+1 < ¢ < M then w; = w ) (i.e. constant
in each level). We also define

T 2
25=1 85W()

T ——
minj=1,...r S;We

A(w,s) = on(w,s) =Y swiy, (1)
j=1

and the quantities

lIk[l oo

d
Mz(s,k) = > s []e ™

=1 i=1

T d
S g2 T ke,

1=Kl oo +1 i=1

(12)

d
Ma(s,k) = s, [[2715 1!,

i=1

(13)

These will be used to state the sample size needed for the recovery
guarantee.

Our main results state that stable neural networks exist with
recovery guarantees for the problem of image reconstruction given
noisy Fourier measurements or noisy binary measurements. The
notation a < b means that there is some constant (in our case of order
1 and explicit from the proof), independent of all the parameters, such
that a < Cb.

Theorem 6 (Stable Neural Networks Exist). Let ep € (0,1), r,d €
N N=2"%and M = (M1, ..., M), s = (s1,...,8r) describe
(s, M)-sparse vectors corresponding to the scales in a d-dimensional
wavelet basis. Let 0 = QN m be the multilevel sampling scheme
discussed in §II-C where the my satisfy

mk 2 A\(w,s) - Mx(s,k) - L, (14)
in the case of Fourier measurements and
mk 5 )\(W, S) . MB(S7 k) . L: 15)

in the case of binary measurements. Here L is a logarithmic factor
given by

L=d-r* log(m)-log®(sA(w,s)) + log(ep *). (16)

Then, for each n € N, there exists a recursive neural network qb;?,
i.e. the map

(n, A) — o7 (17)

is recursive, with the following properties:
1) (Stability and accuracy) With probability at least 1 — ep, the
following uniform recovery guarantee holds. For any © € CV

with ||z|l;z2 <1 and y = PoUx + ¢,

1
A(w,s)4
l62(w) - alle S 25 o wayy,
n(w,s) as)
(d)
+ A(w s)%||e|| + )\(w,s)% sup ‘Bk ‘
s 2 + ——— R
: n ke{1,...,r3d V1%

2) (3n layers of bounded size) qﬁﬁ € NNDp 3n,3 with
D = (m,m,2N +m,2(N +m),2N +m+ 1,2N, N).

repeated n — 1 times
(19)
Remark 7. The word recursive in the theorem means in the BSS
sense and © as in Definition 2 is the set of all N x N matrices.
However, the theorem, with a slightly different wording, also holds
in the Turing sense with © being the set of all N x N matrices with
computable (Turing sense) entries.

Note that we can choose the weights w(;) = 1/s/s; to minimise
(14) so that A(w,s) = r and n(w,s) = rs. Up to log-factors, this
measurement condition then becomes equivalent to that for the oracle



Original x

AUTOMAP (AM) ¢(Az)  AM ¢(A(z +11))

_AM p(A(z+ra)

Fig. 1. Results of stability test for AUTOMAP taken from [6], and where A = PqU is a subsampled Fourier transform. To visualise we show |z + 7;|. Top
row: original image with perturbations 7. Bottom row: reconstructions from A(x + r;) by the deep learning AUTOMAP (AM) network ¢ [57]. A detail in
form of a heart (with increasing intensity) is added to visualise the loss in quality.

Original x |z + 71|

Stable recovery ¢rec(Ax)

Fig. 2. Results of stability test for new stable networks, where A = PqU is a sub-sampled Fourier transform (same measurement matrix as Figure 1).
These perturbations are of the same size (measured in 2 norm) as in Figure 1 but are found by searching for instabilities of the new neural network @rec
(and hence the perturbations differ from those in Figure 1). Again, to visualise we show |z + r;|. Top row: original image with perturbations r;. Bottom
row: reconstructions from A(z + rj) by the stable neural network q;rec.

estimator (where one assumes a-priori knowledge of the support of  (14) is implied if
the vector) [1] and we also have

m > 527 kik2lep (22)
L ~ log(N)?log(m)d . (20) (k1,k2)

Further interpretations of the measurement conditions (14) and (15) ~ /Another interpretation is gained by considering
are a.s follows. In. the Fgurier case, if d = 1, this estimate yields the — Z e, k=1, .1 23)
multi-level sampling estimates it
k—1 r
me 2 (Sk + Z 512770 4 Z 512_3“_’“)) rL. (21)  the number of samples per annular region. We then have
1=1 I=k+1 e
In other words, up to logarithmic factors s; measurements are needed my > 3% <Sk + Z 527D Z Sl2—3(l—k)> rL, (24)

in each level. Furthermore, if s1 = ... = s, = s, and d = 2 then =1 I=kt1



which is the same estimate as the one dimensional case for bounded
d. Note that the number of samples required in each annular region is
(up to the usual logarithmic factors) proportional to the corresponding
sparsity s, with additional exponentially decaying terms dependent
on s;,0 # k. In the binary measurement case, (22) remains the same
whereas (24) becomes

my > 2%dsgrL, 25)

and there are no terms from the sparsity levels s;,l # k.

Finally we remark that the result can be extended to infinite
dimensional models of spaces such as L?([0, 1]%) [14]. We refer the
reader to [2], [3] for compressed sensing in infinite dimensions.

IV. NUMERICAL EXAMPLE

To demonstrate the instabilities of deep learning, and the stability
of the new neural networks, we perform an instability test [6] for
the case of Fourier measurements. The test includes an algorithm
that does the following. Given an image = € C" and measurement
matrix A = PolU € C™*" as above, consider a neural network
¢ : C™ — C" which aims to reconstruct the image ¢(y) ~ = from
the (noisy) measurements y = Ax + e. The algorithm seeks a vector
r € RY such that

lp(y + Ar) — d(y)||;2 is large, while ||r||;2 is small. (26)

In other words, the algorithm searches for a perturbation of the image
that makes the most severe change in the output of the network
while still keeping the perturbation small. Specifically, consider the
optimisation problem

r*(y) € argmax %H(b(y + Ar) — x5 — %HTHS (27)

The problem (27) seeks perturbations in the image domain since
this provides an easy way to compare the original image with
a perturbed image and deduce whether the reconstruction of the
perturbed image is acceptable/unacceptable. Of course, we could
have just as easily considered perturbations in the sampling domain
instead.

Due to the non-linearity of ¢, finding a global maximiser of (27)
is very difficult (if not impossible), even for small values of m and
N. The test aims to locate local maxima of (27) by using a gradient
search method. Let

Qi) =5
be the objective function. A natural method to solve (27) is gradient
ascent with momentum. This uses the gradient of ij (which can
easily be written down) along with two parameters v > 0 (the
momentum) and 1 > O (the learning rate) in each step towards a local
maximum. Namely, r(0) is initialised randomly and then we update
the perturbation at the ith step via v(i + 1) = yv(i) + 7V, Q% (r(i))
and 7(i+1) = r(i) + v(i + 1). The final perturbation is taken
after M steps, where typically we run a few hundred steps, seeking
the perturbation which causes the worst reconstructed image. Just as
in the case when training neural networks using stochastic gradient
descent with momentum, choosing the parameters «y and 7 is an art of
engineering, and the optimal choices of ~,n are based on empirical
testing.

First we report the results of [6] on the AUTOMAP [57] network
used for MRI reconstruction with 60% subsampling (this is consid-
ered the current state-of-the-art). The network weights are provided
by the authors of [57] and had been trained on de-identified brain
images from the MGH-USC HCP dataset [24] where the image

A
oy + Ar) — 2z = S II7ll2 (28)

measurements y = Az + e were contaminated with small additive
white noise e. In this test an image = from the mentioned dataset
is picked with an added detail in form of a heart to easier see
the loss of quality (see Figure 1). The mentioned algorithm is run
on the AUTOMAP network to find a sequence of perturbations
[ri] < |r2| < |rs| < |ra]. In order to illustrate how small the
perturbations are we have visualised |z + ;| in the first row of
Figure 1. As can be seen from the second row in the figure, the
network reconstruction completely deforms the image and the added
detail gradually disappears completely in the network reconstruction
(similar results hold without this structural change).

In contrast, we have performed the instability test, but now for
the new neural networks reported in this paper. Figure 2 shows
the instability test applied to the constructed stable neural networks
described by Theorem 6. We now see that despite the search for
adversarial perturbations, the reconstruction remains stable. The error
in the reconstruction was also found to be of the same order of the
perturbation (as expected from the stability Theorem 6).

In applying the test to the new stable neural networks, we
tested/tuned the parameters in the gradient ascent algorithm con-
siderably (much more so than was needed for applying the test
to AUTOMAP where finding instabilities was straightforward), yet
we could not produce instabilities (as expected from Theorem 6).
However, it should be mentioned that this search algorithm is just
one form of test. It is likely that there are many other tests for
creating instabilities for neural networks for inverse problems. Future
work will consider these and also apply them to the new class of
constructed neural networks.

Trained neural networks do not come with any understanding nor
guarantee of their accuracy or stability. This poses a problem as real
world measurements always come with noise, both structural and
random. It is, however, not clear how to protect against the potential
bad tiny noise. Indeed, a detail may be washed out, as shown in the
experiment, but the similarity between the standard artefact may make
it difficult to judge that this is an untrustworthy image. Thus stable
and accurate neural networks are needed. Here we have constructed
and demonstrated the first such class of neural networks for image
reconstruction. Further results can be proven using the setup of the
SCI hierarchy [9], [15]-[21].
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