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Abstract—In recent years, algorithm unrolling has emerged as
a promising methodology in various signal-processing applica-
tions, intending to combine the strengths of iterative algorithms
and deep learning. Despite its success, unrolling greedy sparse
recovery algorithms, particularly Orthogonal Matching Pursuit
(OMP), has yet to receive much attention. The primary challenge
is the non-differentiable nature of the argsort operator, a key
component in greedy algorithms, which hinders gradient back-
propagation during training. To address this, we introduce ‘OMP-
Net’ by utilizing softsorting to approximate the argsort operator
in a differentiable manner. Our numerical and theoretical analysis
shows that under certain conditions, the approximation error
is minimal, and the performance of the approximated OMP,
which we call ‘Soft-OMP’, closely matches the original. We then
incorporate Soft-OMP into the feedforward neural network’s
layers, integrating learnable weight parameters to connect our
approach to weighted sparse recovery. Our numerical results
demonstrate that this network is trainable and can surpass the
performance of the original OMP in certain scenarios.

Index Terms—Algorithm unrolling, OMP, greedy algorithms,
neural networks

I. INTRODUCTION

Sparse recovery has been a core paradigm in data science
over the past few decades. More recently, modern applica-
tions such as medical imaging, radio-astronomy, radars, etc.,
have urged exploring other data-driven approaches beyond
conventional sparse recovery techniques, and neural networks
have usually been at the center of attention. However, lack of
verifiability and interpretability have generally been the main
drawbacks of neural networks [1]. Thus, many attempts have
been made to revive conventional sparse recovery techniques
in the new spirit of neural networks. ‘Algorithm unrolling’
establishes this connection and has shown the capability to
bring rigorous theoretical characteristics to this field [2], [3].

Many well-known sparse recovery algorithms have been
unrolled in the literature, including Iterative Shrinkage and
Thresholding (ISTA), Iterative Hard Thresholding (IHT), the
Alternating Direction Method of Multipliers (ADMM), and
the Primal-Dual iteration [1], [2], [4]–[6]. However, little to
almost no attempt was devoted to unrolling greedy sparse
recovery algorithms, notably Orthogonal Matching Pursuit
(OMP) [7], [8] and Compressive Sampling Matching Pursuit
(CoSaMP) [9]. The main obstacle that hinders unrolling OMP

and CoSaMP is the non-differentiability of these algorithms
due to (arg)sorting, which does not allow gradients to flow
through the algorithm’s steps during the learning phase of a
neural network.

In this paper, we re-interpret iterations of OMP through a
projection-based lens and exploit softsorting, an approximation
of (arg)sorting operator, to derive a differentiable version of
OMP with controlled approximation error, that we term ‘Soft-
OMP.’ We then unfold Soft-OMP onto a neural network with
weights as semantic learnable parameters associated with the
domain (prior) knowledge of the problem we learn by end-
to-end training. We call this neural network ‘OMP-Net’ and
show that these weights serve suitably for other weighted
sparse recovery algorithms. Therefore, our approach can also
be regarded as a meaningful data-driven technique for learning
weights. Our contributions can be summarized as follows:

• We propose differentiable OMP, or Soft-OMP, that ap-
proximates OMP with minimal approximation error,
which we show theoretically and experimentally.

• We unfold iterations of Soft-OMP onto a neural network
and illustrate that this network is trainable.

• The parameters to be learned in the training phase of
the neural network are semantically defined as weights to
discover latent structures within the data.

• We show that the weights learned by OMP-Net can be
adopted for other weighted sparse recovery methods.

II. BACKGROUND

We consider the linear system of equations

y = Ax+ e, (1)

that we aim to solve for the unknown sparse (or compressible)
signal x ∈ CN , which is observed by the vector y ∈ Cm

through the sensing or measurement matrix A ∈ Cm×N . In
other contexts, A might be regarded as an (overcomplete)
dictionary in which we seek to find the expansion coefficients
of y onto its so-called atoms. The vector e ∈ Cm represents
any source of error, such as noise or numerical error. In
particular, we are interested in solving the system (1) in the
underdetermined case, i.e., when m ≪ N .
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The realm of compressed sensing and sparse recovery has
witnessed the emergence of a wealth of methods and algo-
rithms to tackle this problem in the past few decades. Broadly,
these methods mostly fall into either the convex relaxation
methods or iterative algorithms, which include greedy and
thresholding algorithms. Many of these methods have also
attempted to employ domain knowledge in their approaches.
This is commonly achieved by considering some structure
on the signal sparsity, such as sparsity in levels [10], tree
sparsity [11], or joint sparsity [12]. To our particular interest,
there is also weighted sparsity, which is mostly utilized to
incorporate prior knowledge or to promote structure rather
than being a structure itself. A contextualized discussion on
weighted sparsity can be found, e.g., in [13]. Several other
seminal works have shown that weights are useful to accelerate
the convergence of sparse recovery algorithms, improve the
recovery performance, and mitigate the curse of dimensionality
in sample complexity [14]–[16].

A. Weighted OMP (WOMP)

OMP is the most well-studied algorithm among greedy
sparse recovery algorithms. The reason behind the ‘greedy’
nomenclature is that instead of solving for the whole solution
of the sparse recovery problem all at once, these algorithms
gradually construct the signal support by adding validated
indices based on a greedy selection criterion. This update
step is followed by a data-fitting stage in which the coef-
ficients corresponding to the columns of A restricted to the
updated support are approximated by minimizing the residual.
In OMP, the support is updated by only one index at each
iteration, and the data-fitting step translates to solving the
least-squares problem. Well-known advantages of OMP are
its simple formulation, computational efficiency, and good
performance, especially in lower sparsity regimes (when s
is not too large). The algorithm below shows the main steps
of (W)OMP, an extension of OMP to the weighted case that
previously appeared, e.g., in [17], [18], in its simplest form:

S(n+1)=S(n) ∪ argmax
j∈[N ]

∣∣∣∣(WA∗(y−Ax(n))
)
j

∣∣∣∣ , (OMP.1)

x(n+1)=argmin
z∈CN

∥y−Az∥22 s.t. supp(z)⊆S(n+1), (OMP.2)

where S(n+1) denotes the support of the signal x(n+1) af-
ter n iterations, with S(0) = ∅ and x(0) = 0, and the
columns of A are assumed to have unit ℓ2-norm. There is
a key difference between this algorithm and the original OMP
algorithm proposed in [7], [8]. Namely, its greedy selection
rule, i.e., WA∗(y − Ax(n)), includes the weight parameter
W ∈ RN×N . This parameter opens up the way to generalize
OMP to the weighted case. A meaningful choice of W is
W = diag(w), w ∈ RN , where diag(w) is a diagonal matrix
with w on its main diagonal. Adjusting the elements of w, one
can prioritize the choice of corresponding indices to enter the
support of the signal and thus incorporate prior knowledge into
the recovery of x via OMP. More intuitively, at each iteration

of OMP, w points towards the support’s indices based on prior
knowledge. This is not the only method by which one can
encourage weights in OMP; see also [19].

B. Algorithm unrolling

Algorithm unrolling designs deep neural network architec-
tures through the iterations of an iterative algorithm as layers
of a neural network [2], [3]. Since the network is constituted of
a model-based algorithm, it is highly interpretable. Often, this
approach inherits the favorable characteristics of the associated
iterative algorithm, such as stability and generalization bounds
[1]. By introducing end-to-end training of learnable parameters
during the training phase, one can gain superior performance
with respect to the original iterative algorithm and possibly
with fewer iterations (layers). In recent years, many works
have been devoted to unrolling sparse recovery algorithms onto
neural networks [2], [4], [5], but to the best of our knowledge,
unrolling OMP still needs to be explored. In the following
section, we will explain the main challenge of doing so.

C. Sorting: the main challenge in unrolling OMP

Despite the appeal of algorithm unrolling, many iterative
algorithms are not readily ‘unrollable,’ and further steps should
be taken to be able to unroll them onto neural networks
appropriately. The main obstacle in this direction is the
existence of non-differentiable operators that hinder training
unrolled networks via gradient-based optimization schemes.
OMP exemplifies such an algorithm due to the existence of the
sorting operator within its steps. More specifically, implicit to
the greedy selection rule of OMP is the application of functions
sort : Rn → Rn and argsort : Rn → Sn ⊂ [n]n defined for
any v ∈ Rn as

sort(v) = (vi1 , vi2 , . . . , vin), vi1 ≥ vi2 ≥ · · · ≥ vin , (2)
argsort(v) = (i1, i2, . . . , in).

Here Sn is the set of permutations on [n]. Both of these
functions are non-differentiable (in fact, discontinuous). Proper
handling of these operators is the main challenge towards
directly unrolling OMP onto neural networks. In step (OMP.1),
the algorithm needs to select the index corresponding to the
largest absolute entry of WA∗(y−Ax(n)), which intrinsically
involves sorting elements of this vector. This index is later
used implicitly in (OMP.2) to restrict the columns of A to
S(n+1) and approximately solve the equation y = AS(n+1)z
for z ∈ C(n+1). Hence, the gradient cannot be computed with
respect to any of the parameters of WA∗(y−Ax(n)), e.g., W
(i.e., w), which is essential in the backpropagation procedure
of a neural network-based OMP. In the sequel, we leverage
the softsort operator to tackle this issue.

III. MAIN RESULTS

We now introduce Soft-OMP, a differentiable substitute for
OMP that allows backpropagation in a gradient-based neural
network optimization. We then show that Soft-OMP well
approximates OMP under suitable parameter regimes. Lastly,
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we unroll iterations of Soft-OMP onto layers of a neural
network that we will term ‘OMP-Net.’

A. Soft-OMP

The operators sort and argsort, defined in (2), can be
characterized by n× n permutation matrices defined as

Psort(i, j) = Pargsort(i, j) =

{
1 j = argsort(v)i

0 otherwise
,

so that sort(v) = Psortv and argsort(v) = Pargsort1n, where
1n := (1, 2, . . . , n)⊤. The key ingredient of Soft-OMP is the
softsorting operator, proposed in [20] and defined below, that
approximates Pargsort (or equivalently Psort) in a differentiable
manner by the approximate permutation matrix P̃argsort:

P̃argsort = softsort(v) = softmax

(
−|sort(v)1T − 1vT |

τ

)
,

(3)
for any v ∈ Rn, where 1 = (1, 1, . . . , 1)⊤ and the temperature
parameter τ controls the degree of approximation. In equation
(3), the absolute value | · | is applied element-wise, and
softmax(y)j = eyj/

∑n
i=1 e

yi , y ∈ Rn, is applied row-wise.
P̃argsort is referred to as ‘unimodal row stochastic’ matrix, and
admits non-negativity, row affinity and argmax permutation
properties [20], [21].

We now reinterpret iterations of OMP through a projection-
based lens, which paves the way for softsorting to be incorpo-
rated. We first note that the link between (OMP.1) and (OMP.2)
is established through S(n+1) and the variable in (OMP.2) that
holds the dependence with respect to (OMP.1) is AS(n+1) , the
restriction of columns of A to S(n+1). Fundamental to our
derivation is applying a permutation matrix on the space of
columns of A, i.e., span{aj}Nj=1, that projects them onto the
restricted space span{aj}j∈S(n+1) . In matrix language, this can
be represented as AS(n+1) = A(Π(n+1))T , where Π(n+1) is the
aforementioned projection matrix that we approximate with
the softsort operator. This leads to the following differentiable
OMP algorithm that we term ‘Soft-OMP’:{

P̃ (n+1)=softsort(
∣∣(WA∗(y−Ax̃(n))

)∣∣)
Π̃(n+1)=

[
Π̃(n); P̃ (n+1)[1, :]

] , (Soft-OMP.1)
B̃(n+1)=A(Π̃(n+1))T

w̃(n+1)=argmin
z∈Cn+1

∥y − B̃z∥22

x̃(n+1)=(Π̃(n+1))T w̃(n+1)

, (Soft-OMP.2)

where M [j, :] denotes the jth row of a matrix M . The dis-
tinguishing characteristic of OMP with respect to many other
algorithms is that the support is updated by only one index
per iteration. Hence, in the algorithm above, we only require to
add the first row of the approximate projection matrix P̃ (n+1),
computed by softsorting and which corresponds to the largest
element of ṽ(n+1) =

∣∣WA∗(y −Ax̃(n))
∣∣, to Π̃(n), whose rows

consist of all permutations corresponding to maximal elements
of ṽ(k), k = 1, . . . , n.

We next show through the following theorem that iterations
of Soft-OMP asymptotically match the ones of OMP, and
admit minimal error rates controlled under appropriate values
of τ , the temperature parameter of softsorting. The proof of
this theorem will be given in [22].

Theorem 1 (Soft-OMP is a good approximation to OMP):
Let x(n+1) ∈ CN and x̃(n+1)(τ) ∈ CN be the signal acquired
after n iterations of OMP and Soft-OMP, respectively. Assume
that Π̃(n+1) ∈ R(n+1)×N and Π(n+1) ∈ R(n+1)×N are pro-
jection matrices whose rows consist of all permutations corre-
sponding to maximal elements of v(n+1) = |A∗(y−Ax(n))| ∈
RN and ṽ(n+1) = |A∗(y − Ax̃(n))| ∈ RN , associated with
OMP and Soft-OMP respectively. Also for all i ∈ [n], assume
that no ties exist in ṽ(i), i.e., ṽ(i)

ĵ(i)
̸= ṽ

(i)
j , ∀j ∈ [N ]\{ĵ(i)},

where ĵ(i) := argmaxj∈[N ] ṽ
(n). Then, the following hold:

(i) As τ → 0, we have Π̃(n) → Π(n) and x̃(n) → x(n).
(ii) If τ satisfies the condition τ ≤ g̃/ log(C/ϵ), with

g̃ = min
i∈[n]

min
j∈[N ],j ̸=ĵ(i)

|ṽ(i)
ĵ(i)

− ṽ
(i)
j |,

C =
√
2n(N − 1)

(√
1− δs + (

√
n+ 1)∥A∥2

1− δs

)
∥y∥2,

and where δs and ∥A∥2 are, respectively, the sth re-
stricted isometry constant (RIC) and the spectral norm
of A, then ∥x(n) − x̃(n)∥2 ≤ ϵ.

Remark 1: For matrices whose spectral norm can be con-
trolled, e.g., subgaussian matrices, the constant C can be
explicitly bounded. This leads to a practical range for τ
sufficient to achieve a desirable accuracy [22].

Remark 2: Theorem 1 determines the gap between iterations
of OMP and Soft-OMP. Additionally, in the spirit of the
recovery guarantee of OMP proposed in [23], [24] and the
inequality ∥x−x̃(n)∥ ≤ ∥x−x(n)∥+∥x(n)−x̃(n)∥, Theorem 1
establishes a recovery guarantee for Soft-OMP.

B. OMP-Net

A natural consequence of Theorem 1 is that approximating
OMP through the application of softsorting comes at the
cost of losing some performance, which is controlled by
τ . We can compensate for this performance loss (and gain
more) by integrating Soft-OMP into a neural network-based
optimization problem and allowing an appropriate parameter to
be trained in the learning process. We choose w as the trainable
parameter in this work over other potential candidates. As w
stands for weights, this can be regarded as a quest for finding
a suitable structure in the data and, in this sense, connects our
approach to weighted sparse recovery and learning weights
through bilevel optimization [25]. This places OMP-Net in two
prominent positions: (1) a neural network architecture based
on OMP designed to adapt to the inner structure of the data
and (2) a strategy aimed at learning weights for other weighted
sparse recovery methods.

OMP-Net is trained from pairs of data {(y(i), x(i))}Ntrain
i=1 that

are instances of observation and signal vectors and serve as
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Fig. 1: Relative ℓ2-error of
Soft-OMP and OMP as a
function of τ and with σ ∈
10{−5,−3,−1}.

Fig. 3: MSE of OMP-Net,
OMP, WOMP with oracle
and learned weights, with
respect to K.

Fig. 2: Left: Training and validation loss of OMP-Net, OMP,
WOMP (oracle), and WOMP with learned weights over train-
ing epochs. Right: Oracle weights (top), initialization, and
learned weights of OMP-Net (bottom).

inputs and outputs of the network, respectively. Then, the Mean
Squared Error (MSE) loss

L(Θ) =
1

Ntrain

Ntrain∑
i=1

∥x(i) − fΘ(y
(i))∥22,

is minimized using batches of size Nbatch by Stochastic Gra-
dient Descent (SGD) or any other gradient-based optimization
method. Here fΘ represents OMP-Net, Θ = (W (l))Ll=1 (pos-
sibly shared among the layers, i.e., W (1) = W (2) = · · · =
W (L)) the trainable parameters, and L denotes the number of
layers, generally corresponding to the number of iterations of
OMP.

IV. NUMERICAL EXPERIMENTS

A. Soft-OMP vs. OMP

In the first experiment of this section, we put Theorem 1
to the test. We compare the performance of OMP with its
differentiable counterpart, simultaneously investigating the ef-
fect of τ . Our goal is to show that in an appropriate parameter
regime, Soft-OMP coincides with OMP, and the approximation
error is controlled by τ , the temperature parameter of Soft-
OMP. The experimental setup is as follows: We generate a
measurement matrix A ∈ Rm×N with ℓ2-normalized columns
obtained by rescaling the columns of a matrix Ã whose
independent entries are drawn from a standard normal dis-
tribution with zero mean and unit standard deviation, i.e.,
Ãi,j ∼ N (0, 1), i ∈ [m], j ∈ [N ]. Non-zero entries of the
s-sparse signal x ∈ RN also belong to a standard normal
distribution, while their positions are chosen randomly and

uniformly on a subset S ⊆ [N ] of size s. Therefore, the
observation vector y ∈ Rm is obtained as y = Ax+ e, where
e ∈ Rm is the measurement error with independently and
identically distributed entries from a normal distribution with
zero mean and standard deviation σ. We recover x using Niter
iterations of OMP (weights set to W = 1) and Soft-OMP
algorithms for different values of τ . We redo this experiment
for Ntrial = 50 repetitions and various noise levels with the
following experimental settings: N = 160, m = 100, s =
10, σ ∈ 10{−5,−3,−1}, Niter = 10. Figure 1 shows the results
as shaded plots. Solid curves represent mean relative ℓ2-errors
as a function of τ . These are surrounded from above and below
by the boundaries (τ, 10µ

τ
σ+ρτ

σ ) and (τ, 10µ
τ
σ−ρτ

σ ) respectively,

with µτ
σ =

∑Ntrial
i=1 (log(Eτ

σ))i
Ntrial

, ρτσ =
∑Ntrial

i=1 (log(Eτ
σ)i−µτ

σ)
2

Ntrial−1 . Here
Eτ

σ denotes the relative ℓ2-error for the noise level σ and
at τ , with E defined as E = ∥x− x̂∥2/∥x∥2, where x̂ is
the signal recovered by OMP or Soft-OMP. We observe, as
predicted by Theorem 1, that if τ is sufficiently small, Soft-
OMP approximates OMP with minimal error.

B. Learning OMP-Net

In this section, we demonstrate the trainability of OMP-Net
and that the weights learned by the network can be utilized
for other weighted sparse recovery algorithms, particularly
WOMP. We run our experiments in settings where OMP fails
to reconstruct the signal (in terms of MSE) appropriately and
where prior knowledge about the signal structure promoted
through weights is proven to be more beneficial [15], [19]. We
always fix the number of layers equal to s, let τ = 10−3 and
train the network with RMSprop optimizer with learning rate
10−2 and shared weights among the layers. We deem it neces-
sary to mention that although lower values of τ improve Soft-
OMP’s approximation of OMP, as indicated by Theorem 1,
they also lead to vanishing gradients in the network. Thus,
large values of τ are generally preferable for gradient stability
[20], [21]. However, very large values of τ also degrade the
performance of Soft-OMP with respect to OMP to such an
extent that it would be very difficult (if not impossible) for
the network to compensate for this. As a result, a trade-off
exists on the choice of τ that should be handled properly. We
empirically noticed that such trade-off is balanced for values
of τ in the phase transition region of the curves in Figure 1.

a) Proof of concept: We first present a proof of concept
for the trainability of OMP-Net. The compressed sensing setup
that we run for this experiment is as follows: N = 1000,m =
32, s = 6, σ = 10−3. The dataset to train the network consists
of sparse signals with nonzero entries from only the support’s
first s elements. However, we do not assume any oracle
knowledge for the network, and it is initialized with w = 1.
The left image in Figure 2 exhibits the training and validation
loss over 350 epochs. For comparison, we also plotted OMP
and WOMP provided with oracle weights (top right in Figure
2). Furthermore, we feed WOMP with weights learned by
OMP-Net (WOMP with learned and oracle weights overlap
in the image).
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b) Effect of domain knowledge: We investigate the effec-
tiveness of OMP-Net in extracting the correct structure within
the data while the structure level is subject to change. To that
purpose, let [K] ⊆ [N ], be the proportion of the signal ambient
dimension that consists of the signal’s support. For each K in
the discrete range [s,N ], we generate a new dataset and repeat
this procedure Ntrial times. We set N = 84, but keep m, s and
σ the same as in the previous experiment. OMP-Net is always
initialized with w = 1 and the weights for WOMP are set to
wj = 1 if j ≤ K and 0 otherwise. i.e., WOMP is provided with
the oracle knowledge, but OMP-Net has to learn the structure
through the learning process. We note that at K = N , weights
would be W = 1; thus, WOMP corresponds to OMP. This
experiment’s result is summarized in shaded plots with respect
to MSE (rather than relative error) in Figure 1, where OMP
and WOMP with learned weights are also added. We devise
checkpoints every ten epochs during training OMP-Net and
report the best performance on the test data in Figure 3. It
is observable that OMP-Net can learn the structure close to
the oracle level represented by WOMP. As K approaches N ,
OMP-Net approaches the performance of OMP, which fails to
reconstruct the signal well due to the severely undersampled
regime.

V. CONCLUSION AND EXTENSIONS

We proposed unrolled OMP, a greedy sparse recovery
algorithm, that we termed ‘OMP-Net.’ We utilized soft-
sorting to overcome the intrinsic non-differentiability issue
within the iterations of OMP. Reinterpreting OMP through a
projection-based lens, we approximated permutation matrices
from argsort with stochastic matrices derived from soft sorting.
Our numerical and theoretical analysis demonstrated that under
certain conditions, the approximation error is minimal, and
the performance of the approximated greedy algorithm closely
matches the original. The framework proposed in this paper
can be exploited for other generalizations of OMP (see, e.g.,
[19]). Another natural extension currently under development
would be CoSaMP, which includes an additional sorting step
because of hard thresholding. Unlike OMP, CoSaMP benefits
from the advantage that the required number of iterations
to converge to an admissible solution is disentangled from
s, which translates to fewer layers in the unrolled neural
networks and thus makes it more suitable for high-dimensional
applications such as imaging.
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