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Deep learning (DL) has had unprecedented success and is now
entering scientific computing with full force. However, current DL
methods typically suffer from instability, even when universal ap-
proximation properties guarantee the existence of stable neural
networks (NNs). We address this paradox by demonstrating basic
well-conditioned problems in scientific computing where one can
prove the existence of NNs with great approximation qualities;
however, there does not exist any algorithm, even randomized,
that can train (or compute) such a NN. For any positive integers
K > 2 and L, there are cases where simultaneously 1) no ran-
domized training algorithm can compute a NN correct to K digits
with probability greater than 1/2; 2) there exists a deterministic
training algorithm that computes a NN with K − 1 correct dig-
its, but any such (even randomized) algorithm needs arbitrarily
many training data; and 3) there exists a deterministic training
algorithm that computes a NN with K − 2 correct digits using no
more than L training samples. These results imply a classification
theory describing conditions under which (stable) NNs with a
given accuracy can be computed by an algorithm. We begin this
theory by establishing sufficient conditions for the existence of
algorithms that compute stable NNs in inverse problems. We
introduce fast iterative restarted networks (FIRENETs), which we
both prove and numerically verify are stable. Moreover, we prove
that only O(| log(ε)|) layers are needed for an ε-accurate solution
to the inverse problem.

stability and accuracy | AI and deep learning | inverse problems | Smale’s
18th problem | solvability complexity index hierarchy

Deep learning (DL) has demonstrated unparalleled accom-
plishments in fields ranging from image classification and

computer vision (1–3), to voice recognition and automated di-
agnosis in medicine (4–6), to inverse problems and image recon-
struction (7–12). However, there is now overwhelming empirical
evidence that current DL techniques typically lead to unstable
methods, a phenomenon that seems universal and present in
all of the applications listed above (13–21) and in most of the
new artificial intelligence (AI) technologies. These instabilities
are often detected by what has become commonly known in the
literature as “adversarial attacks.” Moreover, the instabilities can
be present even in random cases and not just worst-case scenarios
(22)—see Fig. 1 for an example of AI-generated hallucinations.
There is a growing awareness of this problem in high-stakes
applications and society as a whole (20, 23, 24), and instability
seems to be the Achilles’ heel of modern AI and DL (Fig. 2,
Top row). For example, this is a problem in real-world clinical
practice. Facebook and New York University’s 2019 FastMRI
challenge reported that networks that performed well in terms
of standard image quality metrics were prone to false negatives,
failing to reconstruct small, but physically relevant image abnor-
malities (25). Subsequently, the 2020 FastMRI challenge (26)
focused on pathologies, noting, “Such hallucinatory features are
not acceptable and especially problematic if they mimic nor-
mal structures that are either not present or actually abnormal.

Neural network models can be unstable as demonstrated via
adversarial perturbation studies (19).” For similar examples in
microscopy, see refs. 27 and 28. The tolerance level for false
positives/negatives varies within different applications. However,
for scenarios with a high cost of misanalysis, it is imperative that
false negatives/positives be avoided. AI-generated hallucinations
therefore pose a serious danger in applications such as medical
diagnosis.

Nevertheless, classical approximation theorems show that a
continuous function can be approximated arbitrarily well by a
neural network (NN) (29, 30). Thus, stable problems described
by stable functions can always be solved stably with a NN. This
leads to the following fundamental question:

Question. Why does DL lead to unstable methods and AI-generated
hallucinations, even in scenarios where one can prove that stable
and accurate neural networks exist?

Foundations of AI for Inverse Problems. To answer the above ques-
tion we initiate a program on the foundations of AI, determining
the limits of what DL can achieve in inverse problems. It is
crucial to realize that an existence proof of suitable NNs does not
always imply that they can be constructed by a training algorithm.
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Fig. 1. AI-generated hallucinations. A trained NN, based on a U-net architecture and trained on a set of ellipses images, generates a black area in a white
ellipse (Top Left image, shown as green arrow) when reconstructing the original image x from noiseless measurements. By adding random Gaussian noise
e1 and e2 (where ‖e1‖l2/‖e2‖l2 ≈ 2/5) to the measurements, we see that the trained NN removes the aspiring black ellipse (Top row, Center Left to Center
Right). FIRENET on the other hand is completely stable with and without random Gaussian noise (Bottom row, Left to Center Right). In Right column, we
show the original image x, with a red square (Top Right) indicating the cropped area. In this example, A ∈ Cm×N is a subsampled discrete Fourier transform
with m/N ≈ 0.12.

Furthermore, it is not difficult to compute stable NNs. For exam-
ple, the zero network is stable, but not particularly useful. The big
problem is to compute NNs that are both stable and accurate (30,
31). Scientific computing itself is based on the pillars of stability
and accuracy. However, there is often a trade-off between the
two. There may be barriers preventing the existence of stable and
accurate algorithms, and sometimes accuracy must be sacrificed
to secure stability.

Main Results. We consider the canonical inverse problem of an
underdetermined system of linear equations:

Given measurements y = Ax + e ∈ C
m , recover x ∈ C

N . [1]

Here, A ∈ Cm×N represents a sampling model (m < N ), such as
a subsampled discrete Fourier transform in MRI, and x the un-
known quantity. The problem in Eq. 1 forms the basis for much of
inverse problems and image analysis. The vector e models noise
or perturbations. Our results demonstrate fundamental barriers
preventing NNs (despite their existence) from being computed by
algorithms. This helps shed light on the intricate question of why
current algorithms in DL produce unstable networks, despite the
fact that stable NNs often exist in the particular application. We
show the following:

1) Theorems 1 and 2: There are well-conditioned problems (suit-
able condition numbers bounded by 1) where, paradoxically,
mappings from training data to suitable NNs exist, but no
training algorithm (even randomized) can compute approx-
imations of the NNs from the training data.

2) Theorem 2: The existence of algorithms computing NNs de-
pends on the desired accuracy. For any K ∈ Z≥3, there are

well-conditioned classes of problems where simultaneously
1) algorithms may compute NNs to K − 1 digits of accuracy,
but not K; 2) achieving K − 1 digits of accuracy requires
arbitrarily many training data; and 3) achieving K − 2 correct
digits requires only one training datum.

3) Theorems 3 and 4: Under specific conditions that are typically
present in, for example, MRI, there are algorithms that com-
pute stable NNs for the problem in Eq. 1. These NNs, which
we call fast iterative restarted networks (FIRENETs), con-
verge exponentially in the number of hidden layers. Crucially,
we prove that FIRENETs are robust to perturbations (Fig. 2,
Bottom row), and they can even be used to stabilize unstable
NNs (Fig. 3).

4) There is a trade-off between stability and accuracy in DL,
with limits on how well a stable NN can perform in inverse
problems. Fig. 4 demonstrates this with a U-net trained on
images consisting of ellipses that is quite stable. However,
when a detail not in the training set is added, it washes it
out almost entirely. FIRENETs offer a blend of both stability
and accuracy. However, they are by no means the end of the
story. Tracing out the optimal stability vs. accuracy trade-off is
crucial for applications and will no doubt require a myriad of
different techniques to tackle different problems and stability
tolerances.

Fundamental Barriers
We first consider basic mappings used in modern mathematics of
information, inverse problems, and optimization. Given a matrix
A ∈ Cm×N and a vector y ∈ Cm , we consider the following three
popular minimization problems:
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Fig. 2. Top row (unstable neural network in image reconstruction): The neural network AUTOMAP (60) represents the tip of the iceberg of DL in inverse
problems. Ref. 60, pp. 1 and 487, promises that one can “…observe superior immunity to noise….” Moreover, the follow-up announcement (ref. 83, pp.
1 and 309) proclaims “A deep-learning-based approach improves speed, accuracy and robustness of biomedical image reconstruction.” However, as we
see in Top row, the AUTOMAP reconstruction Ψ(Ax + ej) from the subsampled noisy Fourier MRI data Ax + ej is completely unstable. Here, A ∈ Cm×N is
a subsampled Fourier transform, x is the original image, and the ej s are perturbations meant to simulate the worst-case effect. Note that the condition
number cond(AA∗) = 1, so the instabilities are not caused by poor condition. The network weights were provided by the authors of ref. 60, which trained
and tested it on brain images from the Massachusetts General Hospital Human Connectome Project (MGH-USC HCP) dataset (84). The image x is taken from
this dataset. Bottom row (the FIRENET is stable to worst-case perturbations): Using the same method, we compute perturbations ẽj to simulate the worst-case
effect for the FIRENET Φ : Cm → CN. As can be seen, FIRENET is stable to these worst-case perturbations. Here x and A ∈ Cm×N are the same image and
sampling matrix as for AUTOMAP. Moreover, for each j = 1, 2, 3 we have ensured that ‖ẽj‖l2 ≥ ‖ej‖l2 , where the ej s are the perturbations for AUTOMAP
(we have denoted the perturbations for FIRENET by ẽj to emphasize that these adversarial perturbations are sought for FIRENET and have nothing to do
with the perturbations for AUTOMAP).

(P1) argminx∈CN FA
1 (x ) := ‖x‖l1w , s.t.‖Ax − y‖l2≤ε,

(P2) argminx∈CN FA
2 (x , y ,λ) := λ‖x‖l1w + ‖Ax − y‖2l2 ,

(P3) argminx∈CN FA
3 (x , y ,λ) := λ‖x‖l1w + ‖Ax − y‖l2 ,

known respectively as quadratically constrained basis pursuit [we
always assume existence of a feasible x for (P1) ], unconstrained
least absolute shrinkage and selection operator (LASSO), and
unconstrained square-root LASSO. Such sparse regularization
problems are often used as benchmarks for Eq. 1, and we prove
impossibility results for computing the NNs that can approximate
these mappings. Our results initiate a classification theory on
which NNs can be computed to a certain accuracy.

The parameters λ and ε are positive rational numbers, and the
weighted l1w norm is given by ‖x‖l1w :=

∑N
l=1 wl |xl |, where each

weight wj is a positive rational. Throughout, we let

Ξj (A, y) be the set of minimizers for (Pj ). [2]

Let A ∈ Cm×N and let S = {yk}Rk=1 ⊂ Cm be a collection of
samples (R ∈ N). We consider the following key question:

Question. Given a collection Ω of pairs (A,S), does there exist a
neural network approximating Ξj , and if so, can such an approxi-
mation be trained or determined by an algorithm?

To make this question precise, note that A and samples in S
will typically never be exact, but can be approximated/stored to

arbitrary precision. For example, this would occur if A was a
subsampled discrete cosine transform. Thus, we assume access
to rational approximations {yk ,n}Rk=1 and An with

‖yk ,n − yk‖l2 ≤ 2−n , ‖An − A‖ ≤ 2−n , ∀n ∈ N, [3]

where ‖ · ‖ refers to the usual Euclidean operator norm. The
bounds 2−n are simply for convenience and can be replaced by
any other sequence converging to zero. We also assume access to
rational {xk ,n}Rk=1 with

inf
x∗∈Ξj (An ,yk,n )

‖xk ,n − x∗‖l2 ≤ 2−n , ∀n ∈ N. [4]

Hence, the training data associated with (A,S) ∈ Ω must be

ιA,S := {(yk ,n ,An , xk ,n) | k = 1, . . . ,R, andn ∈ N} . [5]

This set is formed of arbitrary precision rational approximations
of finite collections of data associated with (A,S). Given a col-
lection Ω of pairs (A,S), the class of all such admissible training
data is denoted by

ΩT := {ιA,S as in Eq. 5 | (A,S) ∈ Ω,Eqs. 3 to 4 hold} .

Statements addressing the above question are summarized in
Theorems 1 and 2. We use Nm,N to denote the class of NNs from
Cm to CN . We use standard definitions of feedforward NNs (32),
precisely given in SI Appendix.
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Theorem 1. For any collection Ω of such (A,S) described above,
there exists a mapping

K : ΩT →Nm,N , K(ιA,S) = ϕA,S ,

s.t . ϕA,S(y) ∈ Ξj (A, y), ∀y ∈ S.

In words, K maps the training data ΩT to NNs that solve the
optimization problem (Pj ) for each (A,S) ∈ Ω.

Despite the existence of NNs guaranteed by Theorem 1, com-
puting or training such a NN from training data is most delicate.
The following is stated precisely and proved in SI Appendix.
We also include results for randomized algorithms, which are
common in DL (e.g., stochastic gradient descent).

Theorem 2. Consider the optimization problem (Pj ) for fixed pa-
rameters λ ∈ (0, 1] or ε ∈ (0, 1/2] and wl = 1, where N ≥ 2 and
m < N . Let K > 2 be a positive integer and let L ∈ N. Then there
exists an infinite class Ω= Ω(K ,L) of elements (A,S) as above,
with the following properties. The class Ω is well-conditioned with
relevant condition numbers bounded by 1 independent of all param-
eters. However, the following hold simultaneously (where accuracy
is measured in the l2 norm):

1) (K digits of accuracy impossible) There does not exist any algo-
rithm that, given a training set ιA,S∈ΩT , produces a NN with
K digits of accuracy for any element of S. Furthermore, for any
p > 1/2, no probabilistic algorithm (Blum–Shub–Smale [BSS],
Turing, or any model of computation) can produce a NN with K
digits of accuracy with probability at least p.

2) (K − 1 digits of accuracy possible but requires arbitrarily many
training data) There does exist a deterministic Turing machine
that, given a training set ιA,S∈ΩT , produces a NN accurate
to K − 1 digits over S. However, for any probabilistic Turing
machine, M ∈ N and p ∈

[
0, N−m

N+1−m

)
that produces a NN,

there exists a training set ιA,S ∈ ΩT such that for all y ∈ S, the
probability of failing to achieve K − 1 digits or requiring more
than M training data is greater than p.

3) (K − 2 digits of accuracy possible with L training data) There
does exist a deterministic Turing machine that, given a training
set ιA,S ∈ ΩT and using only L training data from each ιA,S ,
produces a NN accurate to K − 2 digits over S.

Remark 1 (condition and class size). The statement in Theorem
2 refers to the standard condition numbers used in optimization
and scientific computing. For precise definitions, see SI Appendix.
The class Ω we construct is infinite. Similarly, one can design a
finite class Ω with the same conclusion by allowing the sample
size R to be infinite.
Remark 2 (distributions on training data). In DL it is often the
case that one assumes some probability distribution on the train-
ing data. This is not needed for Theorem 2. However, having
a probability distribution on the training data ιA,S would not
invalidate statement 1 in Theorem 2. In particular, there is no
(computable) probability distribution that would make statement
1 in Theorem 2 cease to be true. This follows from the prob-
abilistic part of statement 1 in Theorem 2, as the existence of
such a (computable) distribution and an algorithm would yield
a randomized algorithm violating statement 1 in Theorem 2.
Remark 3 (on the role of K in Theorem 2). The result should be
understood as fixing an integer K (and L) and then Ω= Ω(K ,L)
depends on K and L. However, given a particular Ω one can ask,
what is the largest K such that one can compute K correct digits?
Note that we typically have K = 	log(ε−1)
, where ε > 0 is the
so-called breakdown epsilon of the problem (33), i.e., the largest
ε > 0 for which all algorithms will fail to provide ε accuracy. When
the breakdown epsilon ε > 0, it is typically impossible to check
whether an algorithm fails (33). Thus, even if an algorithm would
succeed with probability 1/2, one could never trust the output.

Table 1. Impossibility of computing approximations of the exist-
ing neural network to arbitrary accuracy

ΨAn ΦAn ‖An − A‖ ≤ 2−n 10−K Ω(K)

‖yn − y‖l2 ≤ 2−n

0.2999690 0.2597827 n = 10 10−1 K = 1
0.3000000 0.2598050 n = 20 10−1 K = 1
0.3000000 0.2598052 n = 30 10−1 K = 1
0.0030000 0.0025980 n = 10 10−3 K = 3
0.0030000 0.0025980 n = 20 10−3 K = 3
0.0030000 0.0025980 n = 30 10−3 K = 3
0.0000030 0.0000015 n = 10 10−6 K = 6
0.0000030 0.0000015 n = 20 10−6 K = 6
0.0000030 0.0000015 n = 30 10−6 K = 6

We demonstrate statement 1 from Theorem 2 on FIRENETs ΦAn and LISTA
networks ΨAn . Shown is the shortest l2 distance between the output from
the networks and the true solution of the problem (P3), with wl = 1 and
λ = 1, for different values of n and K. Note that none of the networks can
compute the existing correct NN (that exists by Theorem 1 and coincides
with Ξ3) to 10−K digits accuracy, while all of them are able to compute
approximations that are accurate to 10−K+1 digits [for the input class Ω(K)].
This agrees exactly with Theorem 2.

Remark 4 (Gödel, Turing, Smale, and Theorem 2). Theorems 1 and
2 demonstrate basic limitations on the existence of algorithms
that can compute NNs despite their existence. This relates to
Smale’s 18th problem, “What are the limits of intelligence, both
artificial and human?”, from the list of mathematical problems
for the 21st century (34), which echoes the Turing test from 1950
(35). Smale’s discussion is motivated by the results of Gödel
(36) and Turing (37) establishing impossibility results on what
mathematics and digital computers can achieve (38). Our results
are actually stronger, however, than what can be obtained with
Turing’s techniques. Theorem 2 holds even for any random-
ized Turing or BSS machine that can solve the halting problem.
It immediately opens up for a classification theory on which
NNs can be computed by randomized algorithms. Theorem 3
is a first step in this direction. See also the work by Niyogi,
Smale, and Weinberger (39) on existence results of algorithms for
learning.

Numerical Example. To highlight the impossibility of computing
NNs (Theorem 2)—despite their existence by Theorem 1—we
consider the following numerical example: Consider the problem
(P3), with wl = 1 and λ= 1. Theorem 2 is stated for a specific
input class Ω= Ω(K ) depending on the accuracy parameter K,
and in this example we consider three different such classes. In
Theorem 2, we required that K > 2 so that K − 2> 0, but this
is not necessary to show the impossibility statement 1, so we
consider K = 1, 3, 6. Full details of the following experiment are
given in SI Appendix.

To show that it is impossible to compute NNs that can solve
(P3) to arbitrary accuracy we consider FIRENETs ΦAn (the NNs
in Theorem 3) and learned ISTA (LISTA) networks ΨAn based
on the architecture choice from ref. 40. The networks are trained
to high accuracy on training data on the form of Eq. 5 with
R = 8, 000 training samples and n given as in Table 1. In all
cases N = 20, m = N − 1, and the xk ,n s minimizing (P3) with
input data (yk ,n ,An) are all 6-sparse. The choice of N, m, and
sparsity is to allow for fast training; other choices are certainly
possible.

Table 1 shows the errors for both LISTA and FIRENETs. Both
network types are given input data (yn ,An), approximating the
true data (y ,A). As is clear from Table 1, none of the networks
are able to compute an approximation to the true minimizer in
Ξ3(A, y) to K digits accuracy. However, both networks compute
an approximation withK − 1 digits accuracy. These observations
agree precisely with Theorem 2.
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The Subtlety and Difficulty of Removing Instabilities and the Need
for Additional Assumptions. Theorem 2 shows that the problems
(Pj ) cannot, in general, be solved by any training algorithm.
Hence, any attempt at using the problems (Pj ) as approximate
solution maps of the general inverse problem in Eq. 1, without
additional assumptions, is doomed to fail. This is not just the case
for reconstruction using sparse regularization, but also applies to
other methods. In fact, any stable and accurate reconstruction
procedure must be “kernel aware” (22), a property that most DL
methods do not enforce. A reconstruction method Ψ: Cm → CN

lacks kernel awareness if it approximately recovers two vectors

‖Ψ(Ax )− x‖ ≤ ε and ‖Ψ(Ax ′)− x ′‖ ≤ ε [6]

whose difference ‖x − x ′‖� 2ε is large, but where the difference
lies close to the null space of A (which is nontrivial due tom < N )
so that ‖A(x − x ′)‖< ε. In particular, by applying Eq. 6 and the
triangle inequality twice, we have that

‖Ψ(Ax )−Ψ(Ax ′)‖ ≥ ‖x − x ′‖ − 2ε [7]

implying instability, as it requires only a perturbation e = A(x ′ −
x ) of size ‖e‖< ε for Ψ(Ax + e) = Ψ(Ax ′) to reconstruct the
wrong image. The issue here is that if we want to accurately
recover x and x ′, i.e., we want Eq. 6 to hold, then we cannot
simultaneously have that x − x ′ lies close to the kernel. Later
we shall see conditions that circumvent this issue for our model
class, thereby allowing us to compute stable and accurate NNs.

While training can encourage the conditions in Eq. 6 to hold, it
is not clear how many of the defense techniques in DL, simulta-
neously, will protect against the condition ‖A(x − x ′)‖< ε. One
standard attempt to remedy instabilities is adversarial training
(41). However, while this strategy can potentially avoid Eq. 6, it
may yield poor performance. For example, consider the following
optimization problem, which generates a reconstruction in the
form of a NN given samples Θ= {(ys , xs) : s = 1, . . . ,R,Axs =
ys} and ε,λ > 0:

min
φ∈Nm,N

R∑
s=1

max
‖e‖

l2
≤ε

{
‖xs−φ(ys)‖2l2+λ‖xs−φ(ys+e)‖2l2

}
. [8]

In other words, for each training point (y , x ) ∈Θ we find the
worst-case perturbation e in the ε -ball around y. This is a sim-
plified model of what one might do using generative adversarial
networks (GANs) to approximate adversarial perturbations (42,
43). For simplicity, assume that A has full row rank m and that
we have access to exact measurements ys = Axs . Suppose that
our sample is such that mini �=j ‖yi − yj‖l2 > 2ε. In this case,
φ minimizes Eq. 8 if and only if φ(ys + e) = xs for all e with
‖e‖l2 ≤ ε. A piecewise affine network achieving this can easily
be constructed using ReLU (rectified linear unit) activation func-
tions. Now suppose that x2 is altered so that x1 − x2 lies in the
kernel of A. Then for any minimizer φ, we must have φ(y1 + e) =
φ(y2 + e) = (x1 + x2)/2 for any e with ‖e‖l2 ≤ ε, and hence we
can never be more than ‖x1 − φ(y1)‖= ‖x1 − x2‖l2/2 accurate
over the whole test sample. Similar arguments apply to other
methods aimed at improving robustness such as adding noise
to training samples (known as “jittering”) (Fig. 4). Given such
examples and Theorem 2, we arrive at the following question:

Question. Are there sufficient conditions on A that imply the exis-
tence of an algorithm that can compute a neural network that is
both stable and accurate for the problem in Eq. 1?

Sufficient Conditions for Algorithms to Compute Stable and
Accurate NNs
Sparse regularization, such as the problems (Pj ), forms the core
of many start-of-the-art reconstruction algorithms for inverse
problems. We now demonstrate a sufficient condition (from

compressed sensing) guaranteeing the existence of algorithms for
stable and accurate NNs. Sparsity in levels is a standard sparsity
model for natural images (44–47) as images are sparse in levels
in X-lets (wavelets, curvelets, shearlets, etc.).

Definition 1 (Sparsity in Levels). Let M = (M1, . . . ,Mr ) ∈ Nr , 1≤
M1 < . . . <Mr = N , and s = (s1, . . . , sr ) ∈ Nr

0, where sl ≤Ml −
Ml−1 for l = 1, . . . , r (M0 = 0). x ∈ CN is (s,M) -sparse in levels
if |supp(x ) ∩ {Ml−1 + 1, . . . ,Ml}| ≤ sl for l = 1, . . . , r .The total
sparsity is s = s1 + . . .+ sr . We denote the set of (s,M) -sparse
vectors by Σs,M. We also define the following measure of distance
of a vector x to Σs,M by

σs,M(x )l1w = inf{‖x − z‖l1w : z ∈ Σs,M}.

This model has been used to explain the effectiveness of com-
pressed sensing (46, 48–52) in real-life applications (53). For
simplicity, we assume that each sl > 0 and that wi = w(l) if
Ml−1 + 1≤ i ≤Ml (the weights in the l1w norm are constant in
each level). For a vector c that is compressible in the wavelet
basis, σs,M(x )l1w is expected to be small if x is the vector of wavelet
coefficients of c and the levels correspond to wavelet levels (54).
In general, the weights are a prior on anticipated support of
the vector (55), and we discuss some specific optimal choices in
SI Appendix.

For I ⊂ {1, . . . ,N }, let PI ∈ CN×N denote the projection
(PIx )i = xi if i ∈ I and (PIx )i = 0 otherwise. The key kernel-
aware property that allows for stable and accurate recovery
of (s,M) -spare vectors for the inverse problem Eq. 1 is the
weighted robust null space property in levels (wrNSPL):

Definition 2 (wrNSPL). Let (s,M) be local sparsities and sparsity
levels, respectively. For weights {wi}Ni=1, A ∈ Cm×N satisfies the
wrNSPL of order (s,M) with constants 0< ρ < 1 and γ > 0 if
for any (s,M) support set I ⊂ {1, . . . ,N } (with complement Ic =
{1, . . . ,N }\I),

‖PIx‖l2 ≤
ρ‖PIcx‖l1w√∑r

l=1 w
2
(l)sl

+ γ‖Ax‖l2 , for all x ∈ C
N .

We highlight that if A satisfies the wrNSPL, then

‖x − x ′‖l2 ≤ C‖A(x − x ′)‖l2 , ∀x , x ′ ∈ Σs,M,

where C = C (ρ, γ)> 0 is a constant depending only on ρ and
γ (SI Appendix). This ensures that if ‖x − x ′‖�2 � 2ε, then we
cannot, simultaneously, have that ‖A(x − x ′)‖< ε, causing the
instability in Eq. 7. Below, we give natural examples of sampling
in compressed imaging where such a property holds, for known
ρ and γ, with large probability. We can now state a simplified
version of our result (the full version with explicit constants is
given and proved in SI Appendix):

Theorem 3. There exists an algorithm such that for any input sparsity
parameters (s,M), weights {wi}Ni=1, A ∈ Cm×N (with the input A
given by {Al}) satisfying the wrNSPL with constants 0< ρ < 1 and
γ > 0 (also input), and input parameters n ∈ N and {δ, b1, b2} ⊂
Q>0, the algorithm outputs a neural network φn with O(n) hidden
layers and O(N ) width with the following property: For any x ∈ CN ,
y ∈ Cm with

σs,M(x )l1w + ‖Ax − y‖l2 � δ, ‖x‖l2 � b1, ‖y‖l2 � b2,

we have ‖φn(y)− x‖l2 � δ + e−n .
Hence, up to the small error term σs,M(x )l1w , as n →∞ (with

exponential convergence), we recover x stably with an error
proportional to the measurement error ‖Ax − y‖l2 . The explicit
constant in front of the ‖Ax − y‖l2 term can be thought of as
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an asymptotic local Lipschitz constant for the NNs as n →∞
and thus measures stability of inexact input y. The error of order
σs,M(x )l1w measures how close the vector x is from the model
class of sparse in levels vectors. In the full version of Theorem
3, we also bound the error when we only approximately apply the
nonlinear maps of the NNs and show that these errors can only
accumulate slowly as n increases. In other words, we also gain a
form of numerical stability of the forward pass of the NN. We call
our NNs FIRENETs.
Remark 5 (unrolling does not in general yield an algorithm pro-
ducing an accurate network). Unrolling iterative methods has
a rich history in DL (9, 56). Note, however, that Theorem 2
demonstrates that despite the existence of an accurate neural
network, there are scenarios where no algorithm exists that can
compute it. Thus, unrolling optimization methods can work only
under certain assumptions. Our results are related to the work
of Ben-Tal and Nemirovski (57) (see also ref. 58), which shows
how key assumptions such as the robust nullspace property help
bound the error of the approximation to a minimizer in terms
of error bounds on the approximation to the objective function.
This is related to robust optimization (59).

In the case that we do not know ρ or γ (the constants in the
definition of wrNSPL), we can perform a log-scale grid search
for suitable parameters. By increasing the width of the NNs to
O(N log(n)), we can still gain exponential convergence in n by
choosing the parameters in the grid search that lead to the vector
with minimal FA

3 [the objective function of (P3)]. In other cases,
such as Theorem 4 below, it is possible to prove probabilistic
results where ρ and γ are known.

Examples in Image Recovery. As an application, we consider
Fourier and Walsh (binary) sampling, using Haar wavelets as
a sparsifying transform. Our results can also be generalized
to infinite-dimensional settings via higher-order Daubechies
wavelets. Theorem 3 is quite general and there are numerous
other applications where problem-dependent results similar to
Theorem 4 can be shown.

Let K = 2r for r ∈ N, and set N =K d so that the objective
is to recover a vectorized d-dimensional tensor c ∈ CN . Let
V ∈ CN×N correspond to the d -dimensional discrete Fourier
or Walsh transform (SI Appendix). Let I ⊂ {1, . . . ,N } be
a sampling pattern with cardinality m = |I| and let D =
diag(d1, . . . , dm) ∈ Cm×m be a suitable diagonal scaling matrix,
whose entries along the diagonal depend only on I. We assume
we can observe the subsampled, scaled and noisy measurements
y =DPIVc + e ∈ Cm , where projection PI is treated as an
m × N matrix by ignoring the zero entries.

To recover a sparse representation of c, we consider Haar
wavelet coefficients. Denote the discrete d-dimensional Haar
wavelet transform by Ψ ∈ CN×N and note that Ψ∗ =Ψ−1 since
Ψ is unitary. To recover the wavelet coefficients x =Ψc of c,
we consider the matrix A=DPIVΨ∗ and observe that y =
Ax + e =DPIVc + e . A key result in this work is that we can
design a probabilistic sampling strategy (SI Appendix), for both
Fourier and Walsh sampling in d dimensions, requiring no more
than m � (s1 + . . .+ sr ) · L samples, that can ensure with high
probability that A satisfies the wrNSPL with certain constants.
The sparsity in levels structure (Definition 1) is chosen to cor-
respond to the r wavelet levels. Here L is a logarithmic term
in N ,m, s , and ε−1

P
[where εP ∈ (0, 1) is a probability]. This

result is crucial, as it makes A kernel aware for vectors that are
approximately (s,M) -sparse and allows us (using Theorem 3) to
design NNs that can stably and accurately recover approximately
(s,M) -sparse vectors. Moreover, due to the exponential con-
vergence in Theorem 3, the depth of these NNs depends only
logarithmically on the error δ. Below follows a simplified version
of our result (the full precise version is given and proved in
SI Appendix).

Theorem 4. Consider the above setup of recovering wavelet coeffi-

cients x =Ψc of a tensor c ∈ CKd

from subsampled, scaled and
noisy Fourier or Walsh measurements y =DPIVc + e . Let A=
DPIVΨ∗, m = |I|, and εP ∈ (0, 1). We then have the following:

1) If I ⊂ {1, . . . ,N } is a random sampling pattern drawn accord-
ing to the strategy specified in SI Appendix, and

m � (s1 + · · ·+ sr ) · L,

then with probability 1− εP, A satisfies the wrNSPL of order
(s,M) with constants (ρ, γ) = (1/2,

√
2), w(l) =

√
s/sl , s =

s1 + · · ·+ sr . Here L denotes a term logarithmic in ε−1
P

,N ,m
and s.

2) SupposeI is chosen as above. For any δ ∈ (0, 1), letJ (δ, s,M,w)
be the set of all y=Ax+e∈ Cm where

‖x‖l2 ≤ 1, max
{
σs,M(x )l1w , ‖e‖l2

}
≤ δ. [9]

We provide an algorithm that constructs a neural network φ with
O(log(δ−1)) hidden layers [and width bounded by 2(N +m) ]
such that with probability at least 1− εP,

‖φ(y)− c‖l2 � δ, ∀y = Ax + e ∈ J (δ, s,M,w).

Balancing the Stability and Accuracy Trade-Off
Current DL methods for image reconstruction can be unstable in
the sense that 1) a tiny perturbation, in either the image or the
sampling domain, can cause severe artifacts in the reconstructed
image (Fig. 2, Top row) and/or 2) a tiny detail in the image
domain might be washed out in the reconstructed image (lack of
accuracy), resulting in potential false negatives. Inevitably, there
is a stability–accuracy trade-off for this type of linear inverse
problem, making it impossible for any reconstruction method
to become arbitrarily stable without sacrificing accuracy or vice
versa. Here, we show that the NNs computed by our algorithm
(FIRENETs) are stable with respect to adversarial perturbations
and accurate for images that are sparse in wavelets (cf. Theorem
4). As most images are sparse in wavelets, these networks also
show great generalization properties to unseen images.

Adversarial Perturbations for AUTOMAP and FIRENETs. Fig. 2 (Top
row) shows the stability test, developed in ref. 19, applied to the
automated transform by manifold approximation (AUTOMAP)
(60) network used for MRI reconstruction with 60% subsam-
pling. The stability test is run on the AUTOMAP network to find
a sequence of perturbations ‖e1‖l2 < ‖e2‖l2 < ‖e3‖l2 . As can be
seen from Fig. 2, Top row, the network reconstruction completely
deforms the image and the reconstruction is severely unstable
(similar results for other networks are demonstrated in ref. 19).

In contrast, we have applied the stability test, but now for the
FIRENETs reported in this paper. Fig. 2 (Bottom row) shows
the results for the constructed FIRENETs, where we rename the
perturbations ẽj to emphasize the fact that these perturbations
are sought for the FIRENETs and have nothing to do with
the adversarial perturbations for AUTOMAP. We now see that
despite the search for adversarial perturbations, the reconstruc-
tion remains stable. The error in the reconstruction was also
found to be at most of the same order of the perturbation (as
expected from the stability in Theorem 3). In applying the test
to FIRENETs, we tested/tuned the parameters in the gradient
ascent algorithm considerably (much more so than was needed
for applying the test to AUTOMAP, where finding instabilities
was straightforward) to find the worst reconstruction results, yet
the reconstruction remained stable. Note also that this is just one
form of stability test and it is likely that there are many other
tests for creating instabilities for NNs for inverse problems. This
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highlights the importance of results such as Theorem 3, which
guarantees stability regardless of the perturbation.

To demonstrate the generalization properties of our NNs, we
show the stability test applied to FIRENETs for a range of images
in SI Appendix. This shows stability across different types of
images and highlights that conditions such as Definition 2 allow
great generalization properties.

Stabilizing Unstable NNs with FIRENETs. Our NNs also act as a
stabilizer. For example, Fig. 3 shows the adversarial example for
AUTOMAP (taken from Fig. 2), but now shows what happens
when we take the reconstruction from AUTOMAP as an input
to our FIRENETs. Here we use the fact that we can view our
networks as approximations of unrolled and restarted iterative
methods, allowing us to use the output of AUTOMAP as an
additional input for the reconstruction. We see that FIRENETs
fix the output of AUTOMAP and stabilize the reconstruction.
Moreover, the full concatenation itself of the networks remains
stable to adversarial attacks.

The Stability vs. Accuracy Trade-Off and False Negatives. It is easy to
produce a perfectly stable network: The zero network is the obvi-
ous candidate! However, this network would obviously have poor
performance and produce many false negatives. The challenge
is to simultaneously ensure performance and stability. Fig. 4
highlights this issue. Here we have trained two NNs to recover a
set of ellipses images from noise-free and noisy Fourier measure-
ments. The noise-free measurements are generated as y = Ax ,
where A ∈ Cm×N is a subsampled discrete Fourier transform,
with m/N = 0.15 and N = 1, 0242. The noisy measurements are
generated as y = Ax + ce, where A is as before, and the real and
imaginary components of e ∈ Cm are drawn from a zero mean
and unit variance normal distributionN (0, 1), and c ∈ R is drawn
from the uniform distribution Unif([0, 100]). The noise ce ∈ Cm

is generated on the fly during the training process.
The trained networks use a standard benchmarking archi-

tecture for image reconstruction and map y �→ φ(A∗y), where
φ : CN → RN is a trainable U-net NN (8, 61). Training networks
with noisy measurements, using for example this architecture,
have previously been used as an example of how to create NNs
that are robust toward adversarial attacks (62). As we can see
from Fig. 4 (Bottom row) this is the case, as it does indeed create
a NN that is stable with respect to worst-case perturbations.
However, a key issue is that it is also producing false negatives
due to its inability to reconstruct details. Similarly, as reported
in the 2019 FastMRI challenge, trained NNs that performed

well in terms of standard image quality metrics were prone to
false negatives: They failed to reconstruct small, but physically
relevant image abnormalities (25). Pathologies, generalization,
and AI-generated hallucinations were subsequently a focus of
the 2020 challenge (26). FIRENET, on the other hand, has a
guaranteed performance (on images approximately sparse in
wavelet bases) and stability, given specific conditions on the
sampling procedure. The challenge is to determine the optimal
balance between accuracy and stability, a well-known problem in
numerical analysis.

Concluding Remarks
1) (Algorithms may not exist—Smale’s 18th problem) There

are well-conditioned problems where accurate NNs exist, but
no algorithm can compute them. Understanding this phe-
nomenon is essential to addressing Smale’s 18th problem on
the limits of AI. Moreover, limitations established in this
paper suggest a classification theory describing the conditions
needed for the existence of algorithms that can compute
stable and accurate NNs (remark 5).

2) (Classifications and Hilbert’s program) The strong optimism
regarding the abilities of AI is comparable to the optimism
surrounding mathematics in the early 20th century, led by
D. Hilbert. Hilbert believed that mathematics could prove or
disprove any statement and, moreover, that there were no
restrictions on which problems could be solved by algorithms.
Gödel (36) and Turing (37) turned Hilbert’s optimism upside
down by their foundational contributions establishing impos-
sibility results on what mathematics and digital computers can
achieve.

Hilbert’s program on the foundations of mathematics led
to a rich mathematical theory and modern logic and com-
puter science, where substantial efforts were made to classify
which problems can be computed. We have sketched a similar
program for modern AI, where we provide certain sufficient
conditions for the existence of algorithms to produce stable
and accurate NNs. We believe that such a program on the
foundations of AI is necessary and will act as an invaluable
catalyst for the advancement of AI.

3) (Trade-off between stability and accuracy) For inverse prob-
lems there is an intrinsic trade-off between stability and ac-
curacy. We demonstrated NNs that offer a blend of both
stability and accuracy, for the sparsity in levels class. Balancing
these two interests is crucial for applications and will no
doubt require a myriad of future techniques to be developed.

Fig. 3. Adding a few FIRENET layers at the end of AUTOMAP makes it stable. The FIRENET Φ : Cm × CN → CN takes as input measurements y ∈ Cm and an
initial guess for x, which we call x0 ∈ CN. We now concatenate a 25-layer (p = 5, n = 5) FIRENET Φ and the AUTOMAP network Ψ : Cm → CN, by using the
output from AUTOMAP as initial guess x0; i.e., we consider the neural network mapping y �→ Φ(y, Ψ(y)). In this experiment, we consider the image x from
Fig. 2 and the perturbed measurements ỹ = Ax + e3 (here A is as in Fig. 2). Left shows the reconstruction of AUTOMAP from Fig. 2. Center Left shows the
reconstruction of FIRENET with x0 = Ψ(ỹ). Center Right shows the reconstruction of FIRENET from Fig. 2. Right shows the reconstruction of the concatenated
network with a worst-case perturbation ê3 such that ‖ê3‖l2 ≥ ‖e3‖l2 . In all other experiments we set x0 = 0 and consider Φ as a mapping Φ : Cm → CN.
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Fig. 4. Trained neural networks with limited performance can be stable. We examine the accuracy/stability trade-off for linear inverse problems by
considering three reconstruction networks Φj : Cm → CN, j = 1, 2, 3. Here Φ1 is a FIRENET, whereas Φ2 and Φ3 are the U-nets mentioned in the main text,
trained without and with noisy measurements, respectively. For each network, we compute a perturbation wj ∈ CN meant to simulate the worst-case effect,
and we show a cropped version of the perturbed images x + wj in Left column (rows 2 to 4). In Center column (rows 2 to 4), we show the reconstructed
images Φj(A(x + wj)) from each of the networks. In Right column (rows 2 to 4) we test the networks’ ability to reconstruct a tiny detail h1, in the form of
the text “Can u see it?”. As we see, the network trained on noisy measurements is stable to worst-case perturbations, but it is not accurate. Conversely, the
network trained without noise is accurate but not stable. The FIRENET is balancing this trade-off and is accurate for images that are sparse in wavelets and
stable to worst-case perturbations.
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Tracing out the optimal stability vs. accuracy trade-off remains
largely an open problem and depends on several factors such
as the model class one wishes to recover, the error tolerance
of the application, and the error metric used. We have shown
stability and accuracy results in the l2 norm, since it is common
in the literature to measure noise via this norm. We expect
a program quantifying the stability and accuracy trade-off
to be of particular relevance in the increasing number of
real-world implementations of machine learning in inverse
problems.

4) (Inverse problems vs. classification problems) The mathemat-
ical techniques used in this paper are applied to inverse prob-
lems. However, the mathematical framework of ref. 33 can
be used to produce similar impossibility results for computing
NNs in classification problems (63).

5) (Future work—Which NNs can be computed?) There is
an enormous literature (29, 30, 64–66) on the existence of
NNs with great approximation qualities. However, Theorem
2 shows that only certain accuracy may be computationally
achievable. Our results are just the beginning of a math-
ematical theory studying which NNs can be computed by
algorithms. This opens up for a theory covering other suf-
ficient (and potentially necessary) conditions guaranteeing
stability and accuracy and extensions to other inverse prob-
lems such as phase retrieval (67, 68). One can also prove
similar computational barriers in other settings via the tools
developed in this paper.

Methods: The Solvability Complexity Index Hierarchy
Our proof techniques for fundamental barriers in Theorem 2
stem from the mathematics behind the solvability complexity
index (SCI) hierarchy (33, 69–78). The SCI hierarchy generalizes
the fundamental problems of Smale (79, 80) on existence of
algorithms and work by McMullen (81) and Doyle and McMullen
(82). We extend and refine these techniques, in particular those
of ref. 33, and generalize the mathematics behind the extended
Smale’s ninth problem (33, 34)—which also builds on the SCI
hierarchy. More precisely, to prove our results we develop the
concept of sequential general algorithms. General algorithms are
a key tool in the mathematics of the SCI hierarchy. Sequential
general algorithms extend this concept and capture the notion
of adaptive and/or probabilistic choice of training data. The
architectures of the NNs in Theorem 3 are based on unrolled
primal–dual iterations for (P3). In addition to providing stability,
the wrNSPL allows us to prove exponential convergence through
a careful restarting and reweighting scheme. Full theoretical
derivations are given in SI Appendix.

Data Availability. All the code and data used to produce the figures
in this paper are available from GitHub, https://www.github.com/Comp-
Foundations-and-Barriers-of-AI/firenet.
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Here we provide statements of theorems from the main text, proofs of theorems, detailed explanations of the experimental12

setup and further numerical examples. We briefly collect some basic notation, and further notation will be introduced13

throughout where appropriate. We use Nm,N to denote the class of neural networks (NNs) from Cm to CN (see §1.B.1 for14

the precise definition). Given a metric space (M, d), x ∈M and X ⊂M, d(x,X) = dist(x,X) = infy∈X d(x, y). For a matrix15

A ∈ Cm×N , the norm ‖A‖ refers to the operator norm of A when Cm and CN are equipped with the standard l2-norm. For16

x ∈ CN and p ∈ [1,∞], ‖x‖lp refers to the lp-norm of x. For a set of indices S and vector x, xS is the vector defined by17

(xS)j = xj if j ∈ S and (xS)j = 0 if j /∈ S. Complex rationals Q + iQ are denoted by Q[i]. We use to denote the end of a18

proof and � to denote the end of a remark.19
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1. Statement of Theorems and Results43

We now state our main theorems. Proofs are given in §3 – §5. Recall that we study the canonical inverse problem of solving an44

underdetermined system of linear equations:45

Given noisy measurements y = Ax+ e ∈ Cm of x ∈ CN , recover x. [1.1]46

Here A ∈ Cm×N represents a model of typically undersampled sampling (m < N), such as a subsampled discrete Fourier47

transform as in Magnetic Resonance Imaging (MRI). Specific choices of A are discussed in §1.C. Problem (1.1) forms the basis48

for much of inverse problems and image analysis. The possibility of y 6= Ax models noise or perturbations.49

A. Existence of NNs is not enough, algorithms may not compute them sufficiently accurately. Here we present Theorems 1 and
2 of the main paper. Given a matrix A ∈ Cm×N and a vector y ∈ Cm, recall that we consider the following three minimisation
problems:

(P1) argminx∈CN F
A
1 (x) := ‖x‖l1w , such that ‖Ax− y‖l2 ≤ ε, [1.2]

(P2) argminx∈CN F
A
2 (x, y, λ) := λ‖x‖l1w + ‖Ax− y‖2l2 , [1.3]

(P3) argminx∈CN F
A
3 (x, y, λ) := λ‖x‖l1w + ‖Ax− y‖l2 . [1.4]

The parameters λ and ε are positive rational numbers, and the weighted l1w norm is given by ‖x‖l1w :=
∑N

l=1 wl|xl|, where each50

weight wl is a positive rational. Throughout, we use the following notation:51

Ξ(A, y) is the set of minimisers for (Pj) given input A ∈ Cm×N , y ∈ Cm, [1.5]52

2 of 32 Matthew J. Colbrook, Vegard Antun and Anders C. Hansen



where, for notational convenience, we have suppressed the dependence on ε or λ (which are usually fixed parameters) and the53

index j. In certain cases, we will write Ξj to specify minimisers of problem (Pj). Let54

A ∈ Cm×N , S = {yk}Rk=1 ⊂ Cm, R <∞.55

In the main text we considered the following key question:56

Given a collection Ω of such pairs (A,S), does there exists a neural network approximating the mapping Ξ, and if57

so, can such an approximation be trained by an algorithm?58

To make this question precise, we first note that A and the elements in S will typically never be exact, but can be approximated59

to arbitrary precision. For example, this would be the case if A was a subsampled discrete cosine transform. Thus, we can60

access approximations {yk,n}Rk=1 ⊂ Q[i]m and An ∈ Q[i]m×N such that61

‖yk,n − yk‖ ≤ 2−n, ‖An −A‖ ≤ 2−n, ∀n ∈ N. [1.6]62

We also assume access to {xk,n}Rk=1 ⊂ Q[i]N such that63

inf
x∗∈Ξ(An,yk,n)

‖xk,n − x∗‖ ≤ 2−n, ∀n ∈ N. [1.7]64

Hence, the training set associated with (A,S) ∈ Ω for training a suitable NN must be65

ιA,S := {(yk,n, An, xk,n) | k = 1, . . . , R, and n ∈ N} . [1.8]66

Thus, given a collection of (A,S), we denote the class of all such admissible training data by67

ΩT := {ιA,S as in Eq. (1.8) | (A,S) ∈ Ω, Eq. (1.6) and Eq. (1.7) hold} .68

Precise statements addressing the above question are summarised in the following theorems, the first of which follows directly69

from standard universal approximation theorems.70

Theorem 1 (Neural networks exist for Ξ). Consider the problem (Pj) (j = 1, 2, 3) for fixed dimensions m < N and
parameters λ or ε. Then, for any family Ω of such (A,S) described above, there exists a mapping

K : ΩT → Nm,N , K(ιA,S) = ϕA,S , such that ϕA,S(y) ∈ Ξ(A, y), ∀y ∈ S.

In words, K maps the training data ΩT to NNs that solve the optimisation problem (Pj) for each (A,S) ∈ Ω.71

Despite the existence of NNs guaranteed by Theorem 1, the problem of computing such a NN from training data is a most72

delicate issue, as described in the following theorem (proven in §3).73

Theorem 2 (Despite existence, neural networks may only be computed to a certain accuracy). For j = 1, 2 or74

3, consider the optimisation problem (Pj) for fixed parameters λ ∈ (0, 1] or ε ∈ (0, 1/2] and wl = 1, where N ≥ 2 and m < N .75

Let K > 2 be a positive integer and let L ∈ N. Then there exists a class Ω of elements (A,S) as in Eq. (1.5), with the following76

properties. The class Ω is well-conditioned with condition numbers of the matrices AA∗ and the solution maps Ξ, as well as the77

feasibility primal local condition number (see §3.A), all bounded by 1 independent of all parameters. However, the following78

hold:79

(i) There does not exist any algorithm that, given a training set ιA,S ∈ΩT , produces a NN φA,S with80

min
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−K , ∀ (A,S) ∈ Ω. [1.9]81

Furthermore, for any p > 1/2, no probabilistic algorithm (BSS, Turing or any model of computation) can produce a NN82

φA,S such that Eq. (1.9) holds with probability at least p.83

(ii) There does exist a deterministic Turing machine that, given a training set ιA,S ∈ΩT , produces a NN φA,S with84

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−1), ∀ (A,S) ∈ Ω. [1.10]85

However, for any probabilistic Turing machine (Γ,P), M ∈ N and p ∈
[
0, N−m

N+1−m

)
that produces a NN φA,S , there exists a86

training set ιA,S ∈ ΩT such that for all y ∈ S,87

P
(

inf
x∗∈Ξ(A,y)

‖φA,S(y)−x∗‖l2 >101−K or the training data size needed to construct φA,S>M
)
>p. [1.11]88

(iii) There does exist a deterministic Turing machine that, given a training set ιA,S ∈ ΩT and using only L training data from89

each ιA,S , produces a NN φA,S(y) such that90

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−2), ∀ (A,S) ∈ Ω. [1.12]91
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Remark 1.1 (Meaning of the notation (Γ,P)). The notation (Γ,P) in (ii) is used to denote a (possibly) randomised algorithm92

Γ and its law P. This includes scenarios such as stochastic gradient descent, random selection of training data, random93

computation with training data etc. The precise setup is detailed in §3.A. �94

Remark 1.2 (Generalisations of Theorem 2). For simplicity, we have stated Theorem 2 for errors measured in the l2-norm95

and the case of unweighted l1 regularisation (all the wl = 1) in the problems (Pj). However, the proof can be adapted, and96

similar results hold for any norm replacing the l2-norm, and any non-singular weighted l1 regularisation. Moreover, result (i) in97

Theorem 2 holds regardless of the model of computation, even if we allowed real number arithmetic (see Definition 3.3). For98

further details on the precise setup, including the definition of condition numbers, which are standard in the literature, see99

§3.A. Finally, the theorem remains true if we restrict ourselves to real-valued matrices and vectors. �100

Further details on the experiment following this theorem (that was given in the main text) can be found in §3.D.101

B. Computing stable and accurate neural networks.102

B.1. Neural networks and notational conventions. To state our theorems, we need to be precise about the definition of a NN. For
introductions to the field of DL and NNs, we refer the reader to (1, 2) and (3), respectively, and the references therein.
To capture standard architectures used in practice such as skip connections, we consider the following definition of a NN.
Without loss of generality and for ease of exposition, we also work with complex-valued NNs. Such networks can be realised
by real-valued NNs by splitting into real and imaginary parts. A NN is a mapping φ : Cm → CN that can be written as a
composition

φ(y) = VT (ρT−1(...ρ1(V1(y)))), where:

• Each Vj is an affine map CNj−1 → CNj given by Vj(x) = Wjx+bj(y) whereWj ∈ CNj×Nj−1 and the bj(y) = Rjy+cj ∈ CNj103

are affine functions of the input y.104

• Each ρj : CNj → CNj is one of two forms:105

(i) There exists an index set Ij ⊂ {1, ..., Nj} (possibly a strict subset) such that ρj applies a possibly non-linear function
fj : C→ C element-wise on the input vector’s components with indices in Ij :

ρj(x)k =
{
fj(xk), if k ∈ Ij
xk, otherwise.

(ii) There exists a possibly non-linear function fj : C→ C such that, after decomposing the input vector x as (x0, X
>, Y >)>106

(> denotes transpose) for scalar x0 and X ∈ Cmj (Y ∈ CNj−1−mj ), we have107

ρj :

(
x0
X
Y

)
→

( 0
fj(x0)X

Y

)
. [1.13]108

The affine dependence of bj(y) on y allows skip connections from the input to the current level as in standard definitions of109

feed-forward NNs (4, p. 269), and the above architecture has become standard (5–7).110

Remark 1.3 (On the use of multiplication). The use of non-linear functions of the form (ii) may be re-expressed using the
following element-wise squaring trick:(

x0
X
Y

)
→

(
fj(x0)
X
Y

)
→

 fj(x0)1
X

fj(x0)1 +X
Y

→
 fj(x0)21

X2

[fj(x0)1 +X]2
Y

→
 0

1
2

[
[fj(x0)1 +X]2 − fj(x0)21−X2]

Y

,
where 1 denotes a vector of ones of the same size as X (so that fj(x0)→ fj(x0)1 is a linear map). However, this is not done in111

practice since the map in Eq. (1.13) is directly trainable via backpropagation. �112

Note that we do not allow the matrices Wj to depend on y. We denote the collection of all NNs of the above form by ND,T,q,113

where the vector D = (N0 = m,N1, ..., NT = N) denotes the dimensions in each layer, T denotes the number of layers and q114

denotes the number of different non-linear functions applied (including the count of different Ij and mj). In general, we will115

require that the layer sizes Nj do not grow with j so that the size of each layer is of the same order as the sampling matrix A.116

We consider stable reconstruction from noisy undersampled measurements, as in Eq. (1.1), and NNs that can be constructed117

via algorithms. To make this precise, we assume that we have access to a sequence of matrices Al ∈ Q[i] such that ‖A−Al‖ ≤ ql118

for some known null sequence {ql}. This is consistent with the training set given by Eq. (1.8). To construct NNs via an119

algorithm, care must be taken with the non-linear activation functions. We assume that for θ ∈ Q>0 we have access to a120

routine “sqrtθ” such that |sqrtθ(x)−
√
x| ≤ θ for all x ∈ R≥0. In what follows, the non-linear maps fj used in the NNs are121

either arithmetic or constructed using arithmetic operations and sqrtθ. We always ensure that sqrtθ acts on non-negative real122

numbers and on rational inputs if the input to the NN is rational. We refer to the pair (φ, θ) as a NN.123
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Remark 1.4 (Approximating
√
· with neural networks). On any bounded set (for bounded input our constructed NNs only124

require the routine sqrtθ on a bounded set), we can construct an approximation to
√
· using standard non-linear activation125

functions such as ReLU (more efficient approximations may be achieved by using other activation functions such as rational126

maps (8)). The choice of the square root function is somewhat arbitrary, but simplifies our proof of Theorem 3. Similar results127

hold for other activation functions. �128

Remark 1.5 (An interpretation of θ). As well as being necessary from a foundations point of view, an important interpretation129

of θ is numerical stability, or accumulation of errors, of the forward pass of the NN. Larger values of θ show greater stability130

when applying the NN in finite precision. We prove results of the form131

‖φn(y)− x‖l2 ≤ ε+ c1(A, x)‖Ax− y‖l2 + c2(A, x)υn, ∀x ∈ S ⊂ CN , y ∈ Cm, [1.14]132

where (φn, θn) is a (sequence of) NN(s) with O(n) layers that is computed by an algorithm, υ ∈ (0, 1) describes the exponential133

rate of convergence in the number of layers, ε > 0 (in our results ε will be related to the distance to vectors that are sparse in134

levels: σs,M(x)l1w in Definition 1.6), and θ−1
n = θ−1 is bounded independent of n. Up to the error tolerance ε, the constant135

c1(A, x) can be thought of as an asymptotic local Lipschitz constant for the NNs as n→∞, and thus measures stability of136

inexact input y. In practice one would use floating point arithmetic to approximate square roots. Hence, the boundedness of137

θ−1
n is a numerical notion of stability - the accuracy needed for approximating square roots (and the non-linear maps) does not138

become too great and errors do not accumulate as n increases. Moreover, in practice the value of θ−1 needed is well below139

what is achieved using standard floating-point formats. �140

B.2. The construction of stable and accurate neural networks. The main result of this subsection, Theorem 3, uses the concept of141

sparsity in levels and weighted robust null space property in levels defined in the main text. We repeat these definitions here142

for the convenience of the reader.143

Definition 1.6 (Sparsity in levels). Let M = (M1, ...,Mr) ∈ Nr, 1 ≤ M1 < ... < Mr = N , and s = (s1, ..., sr) ∈ Nr0, where
sl ≤Ml −Ml−1 for l = 1, ..., r (M0 = 0). x ∈ CN is (s,M)-sparse in levels if

|supp(x) ∩ {Ml−1 + 1, ...,Ml}| ≤ sl, l = 1, ..., r.

The total sparsity is s = s1 + ...+ sr. We denote the set of (s,M)-sparse vectors by Σs,M. We also define the following measure
of distance of a vector x to Σs,M by

σs,M(x)l1w = inf{‖x− z‖l1w : z ∈ Σs,M}.

For simplicity, we assume throughout that each sl > 0 and that144

wi = w(l), if Ml−1 + 1 ≤ i ≤Ml. [1.15]145

Definition 1.7 (weighted rNSP in levels). Let (s,M) be local sparsities and sparsity levels respectively. For weights {wi}Ni=1
(wi > 0), we say that A ∈ Cm×N satisfies the weighted robust null space property in levels (weighted rNSPL) of order (s,M)
with constants 0 < ρ < 1 and γ > 0 if for any (s,M) support set ∆,

‖x∆‖l2 ≤ ρ‖x∆c‖l1w/
√
ξ + γ‖Ax‖l2 , for all x ∈ CN .

We also define the following quantities:

ξ = ξ(s,M, w) :=
r∑
l=1

w2
(l)sl, ζ = ζ(s,M, w) := min

l=1,...,r
w2

(l)sl, κ = κ(s,M, w) := ξ/ζ.

Unless there is ambiguity, we will drop the (s,M, w) from the notation of these parameters. Recall the setup throughout this146

paper of a matrix A ∈ Cm×N (m < N), where we have access to an approximation sequence Al such that ‖A−Al‖ ≤ ql with147

known ql → 0 as l→∞. In this regard, the following simple perturbation lemma is useful (whose proof is given in §4).148

Lemma 1.8 (The weighted rNSP in levels is preserved under perturbations or approximations). Assume that
Eq. (1.15) holds and that A satisfies the weighted rNSPL of order (s,M) with constants 0 < ρ < 1 and γ > 0. Let Â be an

approximation of A such that ‖Â− A‖ < (1− ρ)γ−1
(

1 +
√
ξ

minl=1,...,r w(l)

)−1
. Then Â satisfies the weighted rNSPL of order

(s,M) with new constants

ρ̂ =
ρ+ γ

√
ξ‖Â−A‖/minl=1,...,r w(l)

1− γ‖Â−A‖
, γ̂ = γ

1− γ‖Â−A‖
.

Lemma 1.8 says that if A satisfied the weighted rNSPL of order (s,M), then so does Al for large enough l. Moreover, given149

the sequence {ql}, we can compute how large l must be and the new constants. For ease of exposition, we drop the notational150

hats from these constants. We can now state our main result, proven in §4.151
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Theorem 3 (Stable and accurate neural networks with uniform recovery guarantees can be constructed). There
exists an algorithm such that for any input sparsity parameters (s,M), weights {wi}Ni=1, A ∈ Cm×N (with the input A given by
{Al}) satisfying the rNSPL with constants 0 < ρ < 1 and γ > 0 (also input), and input parameters n ∈ N, {δ, b1, b2} ⊂ Q>0
and υ ∈ (0, 1) ∩Q>0, the algorithm outputs a neural network φn such that the following holds. For

C1 =
(

1 + ρ

2 + (3 + ρ)κ
1/4

4

)(
3 + ρ

1− ρ

)
∼ κ1/4

1− ρ , C2 = 2
(

3 + ρ

1− ρ + 7 + ρ

1− ρ
κ1/4

2

)
γ ∼ κ1/4γ

1− ρ ,

1. (Size) φn ∈ ND(n,p),3np+1,3 with D(n,p) = (m, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
np times

, N), where p ∈ N with the bound p ≤152

⌈ 3C2‖A‖
υ

⌉
. Moreover, θ−1 ∼ p2(1 + ‖w‖l2) max

{
1, ‖w‖l2
‖A‖γ
√
ξ

}
.153

2. (Exponentially Convergent, Uniform and Stable Recovery) For any pair (x, y) ∈ CN × Cm with
2C1

C2
√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 ≤ δ, ‖x‖l2 ≤ b1, ‖y‖l2 ≤ b2,

we have the following exponentially convergent, uniform and stable recovery guarantees:

‖φn(y)− x‖l2≤
2C1√
ξ
· σs,M(x)l1w + 2C2 · ‖Ax− y‖l2 +

(1 + υ

1− υ

)
C2 · δ + b2C2 · υn, [1.16]

‖φn(y)− x‖l1w≤
(

3 + ρ

1− ρ

)√
ξ

C1

(
2C1√
ξ
· σs,M(x)l1w+2C2 · ‖Ax− y‖l2 +

(1 + υ

1− υ

)
C2 · δ + b2C2 · υn

)
. [1.17]

Remark 1.9 (The optimal choice of υ). For a total budget of T = 3pn+ 1 layers,

υn = exp

(
(T − 1)

3

⌈
3C2‖A‖

υ

⌉−1

log(υ)

)
If we ignore the ceiling function, the optimal choice is υ = e−1 (strictly speaking Theorem 3 is only stated for rational υ, but
we can easily approximate e−1). This yields the error term υn = exp

(
− (T−1)

3 d3C2e‖A‖e−1) and exponential convergence in
the number of layers T . This is not optimal. For example, a study of the proof of Theorem 3 shows that we can replace 3C2 in
the exponential by

2
(

1 + ρ

1− ρ + 3 + ρ

1− ρ
κ1/4

2

)
γ + ε

for arbitrary ε > 0. Suppose that we want b2C2 · rn ∼ δ, then the number of layers required is proportional to C2‖A‖ log(b2δ−1),154

and only grows logarithmically with the precision δ−1. This is made precise in Theorem 4, where we apply Theorem 3 to155

examples in compressive imaging. �156

The proof of Theorem 3 uses the optimisation problem (P3) (defined in Eq. (1.2)), in the construction of φn. It is also157

possible to prove similar results using (P1) and (P2), but we do not provide the details. The NNs constructed are approximations158

of unrolled primal-dual iterations for (P3), with a careful restart scheme to ensure exponential convergence in the number of159

layers. Further computational experiments beyond the main test are given in §2. The bounds in Eq. (1.16) and Eq. (1.17)160

are not quite optimal. If we were able to work in exact arithmetic (taking θ → 0 and Al → A), we obtain slightly smaller161

constants, though these do not affect the asymptotic rates.162

Remark 1.10 (What happens without restart or with unknown δ?). Without the restart scheme, the convergence in the
number of layers scales as O(n−1). However, one can get rid of the assumption 2C1/(C2

√
ξ)σs,M(x)l1w + 2‖Ax− y‖l2 ≤ δ. (The

assumption is to ensure that the reweighting of the restarts do not become too small - in practice, we found that this was not
an issue and the assumption was not needed, with (up to small constants) δ replaced by 2C1/(C2

√
ξ)σs,M(x)l1w + 2‖Ax− y‖l2

in Eq. (1.16). See also the discussion in §2.) More precisely, the proof of Theorem 3 can be adapted to show the following. For
an additional input β ∈ Q>0 (and without inputs b2, δ and υ), there exists an algorithm that computes φ̂n ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
n times

, N),

such that for any x, x0 ∈ CN with ‖x‖l2 ≤ b1 and all y ∈ Cm, the following reconstruction guarantees hold:

‖φ̂n(y, x0)− x‖l2≤
2C1√
ξ
σs,M(x)l1w + 2C2

[
‖Ax− y‖l2 + ‖A‖

n

(
‖x− x0‖2l2

β
+ β

)]
, [1.18]

‖φ̂n(y, x0)− x‖l1w ≤
(

3 + ρ

1− ρ

)√
ξ

C1

(
2C1√
ξ
σs,M(x)l1w + 2C2

[
‖Ax− y‖l2 + ‖A‖

n

(
‖x− x0‖2l2

β
+β
)])

. [1.19]

Here, x0 should be interpreted as an initial guess (an arbitrary input to the NNs) and β should be interpreted as a scaling163

parameter, with optimal scaling β ∼ ‖x − x0‖l2 . A good choice for β is ‖x‖l2 , or, when this is unknown, ‖y‖l2/‖A‖. For164

completeness, we provide a proof sketch of Eq. (1.18) and Eq. (1.19) at the end of §4.C. �165
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Algorithm unrolling is particularly well-suited to scenarios where it is difficult to collect large training samples. However,166

training a finite fixed number of layers typically incurs the same stability and generalisation issues mentioned above. Moreover,167

learning the weights and biases usually prevents the convergence analysis of standard (unlearned) iterative methods from168

carrying over. In particular, there is no guarantee of objective function minimisation (let alone convergence of the iterated169

arguments) or any form of convergence as the number of layers increases. A subtle, yet fundamental, point regarding iterative170

methods, whether they are unrolled as a NN and supplemented with learned parameters or not, is the following. Theorem171

2 states that, in general, the optimisation problems (P1), (P2), and (P3) are non-computable. This is despite the fact that172

there are many results in the literature describing rates of convergence for iterative methods. The resolution of this apparent173

puzzle is that convergence results regarding iterative methods are typically given in terms of the objective function that is174

being minimised (see also Theorem 5, which we use to prove Theorem 3). As the proof of Theorem 3 shows, it is crucial to175

have conditions such as the rNSPL to convert these objective function bounds to the desired error bounds on the distance to176

the minimisers or vector x. Moreover, this property has the key effect of allowing exponential convergence through restarting177

and reweighting.178

C. Examples in image recovery. As an example application of Theorem 3, we consider the case of Fourier and Walsh sampling,179

using the Haar wavelets as the sparsifying transform. Our results can be generalised to the infinite-dimensional setting with180

the use of higher-order Daubechies wavelets (though the results are more complicated to write down), and we refer the reader181

to (9) for compressed sensing in infinite dimensions. We first define the concept of multilevel random subsampling (10).182

Definition 1.11 (Multilevel random subsampling). Let N = (N1, . . . , Nl) ∈ Nl, where 1 ≤ N1 < · · · < Nl = N and183

m = (m1, . . . ,ml) ∈ Nl with mk ≤ Nk −Nk−1 for k = 1, . . . , l, and N0 = 0. For each k = 1, . . . , l, let Ik = {Nk−1 + 1, . . . , Nk}184

if mk = Nk −Nk−1 and if not, let tk,1, . . . , tk,mk be chosen uniformly and independently from the set {Nk−1 + 1, . . . , Nk} (with185

possible repeats), and set Ik = {tk,1, . . . , tk,mk}. If I = IN,m = I1 ∪ · · · ∪ Il we refer to I as an (N,m)-multilevel subsampling186

scheme.187

Definition 1.12 (Multilevel subsampled unitary matrix). A matrix A ∈ Cm×N is an (N,m)-multilevel subsampled unitary
matrix if A = PIDU for a unitary matrix U ∈ CN×N and (N,m)-multilevel subsampling scheme I. Here D is a diagonal
scaling matrix with diagonal entries

Dii =
√
Nk −Nk−1

mk
, i = Nk−1 + 1, ..., Nk, k = 1, ..., l

and PI denotes the projection onto the linear span of the subset of the canonical basis indexed by I.188

Throughout this subsection, we let K = 2r for r ∈ N, and consider vectors on CK or d-dimensional tensors on CK×···×K .189

To keep consistent notation with previous sections, we set N = Kd so that the objective is to recover a vectorised x ∈ CN . The190

following can also be generalised to rectangles (i.e. C2r1×···×2rd with possibly different r1, ..., rd) or dimensions that are not191

powers of two.192

Let V ∈ CN×N be either the matrix F (d) or W (d), corresponding to the d−dimensional discrete Fourier or Walsh transform
(see §A). In the Fourier case, we divide the different frequencies {−K/2 + 1, . . . ,K/2}d into dyadic bands. For d = 1, we let
B1 = {0, 1} and Bk = {−2k−1 +1, . . . ,−2k−2}∪{2k−2 +1, . . . , 2k−1} for k = 2, . . . , r. In the Walsh case, we define the frequency
bands B1 = {0, 1} and Bk = {2k−1, . . . , 2k − 1} for k = 2, . . . , r in the one-dimensional case. In the general d-dimensional case
for Fourier or Walsh sampling, we set

B
(d)
k = Bk1 × . . .×Bkd , k = (k1, . . . , kd) ∈ Nd.

For a d-dimensional tensor c ∈ CK×···×K , we assume we can observe subsampled measurements of V vec(c), where vec(c) ∈ CN
is a vectorised version of c. To recover a sparse representation, we consider the Haar wavelet coefficients. We denote the
discrete Haar Wavelet transform by Φ∈ CN×N , and note that Ψ∗ = Ψ−1 since Ψ is unitary. In other words, we consider a
multilevel subsampled unitary matrix (Definition 1.12), with U = VΨ∗. Given {mk=(k1,...,kd)}rk1,...,kd=1, we use a multilevel
random sampling such that mk measurements are chosen from B

(d)
k according to Definition 1.11. This corresponds to l = rd

and the Ni’s can be chosen given a suitable ordering of the Fourier/Walsh basis. The sparsity in levels structure (Definition
1.6) is chosen to correspond to the r wavelet levels. A pictorial representation is given in Figure S1. Finally, we define

MF (s,k) :=
‖k‖l∞∑
j=1

sj

d∏
i=1

2−|ki−j| +
r∑

j=‖k‖l∞+1

sj2−2(j−‖k‖l∞ )
d∏
i=1

2−|ki−j| [1.20]

MW(s,k) := s‖k‖l∞

d∏
i=1

2−|ki−‖k‖l∞ |. [1.21]

For notational convenience, we also define Z = max
{

1, maxl=1,...,r w(l)
√

(Ml−Ml−1)√
ξ(s,M,w)

}
.193

We now state the main theorem of this subsection (proven in §5), which states how many samples are needed and the194

number of layers of the NN needed, which only depends logarithmically on the error δ, a consequence of the exponential195

convergence in Theorem 3. We discuss the sampling conditions below.196
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Theorem 4. Consider the above setup of recovering a d-dimensional tensor c ∈ CK
d (N = Kd) from subsampled Fourier or197

Walsh measurements V c, such that A is a multilevel subsampled unitary matrix with respect to U = VΨ∗. Let εP ∈ (0, 1) and198

L = d · r2 · log(2m) · log2 (s · κ(s,M, w)) + log(ε−1
P ). Suppose that:199

• (a) In the Fourier case200

mk & κ(s,M, w) · MF (s,k) · L. [1.22]201

• (b) In the Walsh case202

mk & κ(s,M, w) · MW(s,k) · L. [1.23]203

Then with probability at least 1− εP, A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2 and γ =
√

2. The204

conclusion of Theorem 3 then holds for the uniform recovery of the Haar wavelet coefficients205

x = Ψc ∈ CN . [1.24]206

Moreover, for any δ ∈ (0, 1), let J (δ, s,M, w) be the collection of all y ∈ Cm with y = PIDV c+ e where207

‖c‖l2 ≤ 1, max
{
σs,M(Ψc)l1w√

ξ
, ‖e‖l2

}
≤ δ. [1.25]208

Then we construct via an algorithm, a neural network φ ∈ ND,3n+1,3 such that with probability at least 1− εP,209

‖φ(y)− c‖l2 . κ
1/4δ, ∀y = PIDV c+ e ∈ J (δ, s,M, w). [1.26]210

The network parameters are211

D = (m, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
n times

, N), n ≤
⌈
log
(
δ−1Z

)
κ1/4Z

⌉
. [1.27]212

The sampling conditions in Eq. (1.22) and Eq. (1.23) are optimised by minimising κ(s,M, w). Up to a constant scale, this
corresponds to the choice w(j) =

√
s/sj and

n =

⌈
log

(
δ−1 max

j=1,...,r

√
max

{
1, Mj −Mj−1

rsj

})
r1/4 max

j=1,...,r

√
max

{
1, Mj −Mj−1

rsj

}⌉
.

Up to log-factors, the measurement condition then becomes equivalent to the currently best-known oracle estimator (where
one assumes apriori knowledge of the support of the vector) (11, Prop. 3.1). For Fourier measurements, we can interpret the
condition as follows. For d = 1, this estimate yields the sampling estimates

mk &

(
k∑
j=1

sj2−|k−j| +
r∑

j=k+1

sj2−3|k−j|

)
· r · L.

In other words, up to logarithmic factors and exponentially small terms, sj measurements are needed in each level. Furthermore,213

if s1 = . . . = sr = s∗ and d = 2 then Eq. (1.22) holds if214

m(k1,k2) & s∗2−|k1−k2| · r · L. [1.28]215

Another interpretation is gained by considering

mk =
∑

‖k‖l∞=k

mk, k = 1, . . . , r,

the number of samples per annular region. We then have216

mk & 3dd

(
sk +

k−1∑
l=1

sl2−(k−l) +
r∑

l=k+1

sl2−3(l−k)

)
· r · L, [1.29]217

which is the same estimate as the one-dimensional case for bounded d. Note that the number of samples required in each218

annular region is (up logarithmic factors) proportional to the corresponding sparsity sk with additional exponentially decaying219

terms dependent on sl, l 6= k. This leads to a measurement condition on the total number of measurements m = m1 + · · ·+mr,220

of the form221

m & 3dd (s1 + · · ·+ sr) · r · L.222

In the case of Walsh sampling, Eq. (1.28) remains the same whereas Eq. (1.29) becomes mk & 2d · d · r · L · sk, with no terms223

from the sparsity levels sl, l 6= k.224
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2. Further examples of FIRENET225

A. Generalisation properties. To demonstrate the generalisation properties of our NNs, Figure S2 shows the stability test (see226

main text) applied to FIRENETs for a range of images. This shows stability across different types of images and highlights an227

important fact. Namely, methods based on conditions such as Definition 1.7 allow great generalisation properties and avoid228

time-consuming and expensive retraining of NNs for different classes of images. As well as being rigorously proven to be stable,229

FIRENETs are accurate for images that are sparse in wavelets. As most images are sparse in wavelets, these networks also230

show great generalisation properties to unseen images.231

B. Exponential convergence. We now provide a computational experiment to demonstrate the convergence in the number of232

layers stated in Theorem 4 (and Theorem 3). Note that the matrix A and its adjoint can be implemented rapidly using the fast233

Fourier transform (or fast Walsh–Hadamard transform). We take the image shown in Figure S3, a subsampling rate of only234

15%, and corrupt the measurements by adding 2% Gaussian noise. Figure S3 shows the reconstructions using Fourier and235

Walsh sampling and Haar wavelets. Similar results hold for other wavelets, such as Daubechies wavelets with a larger number236

of vanishing moments. In fact, the reconstruction results are better than those shown for the Haar wavelet system. We have237

chosen to show the Haar wavelet results because this is the system for which Theorem 4 is stated. For the reconstruction, we238

take λ = 0.00025, τ = σ = 1, p = 5 and the weights as discussed in §1.C. In the spirit of no parameter tuning, the weights were239

selected based on a standard phantom image, and not the image we use to test the algorithm. These parameters are certainly240

not optimal, and instead were chosen simply to emphasise that we have deliberately avoided parameter tuning. Moreover, we241

found that the choice of δ in the algorithm was of little consequence, so have taken δ = 10−9.242

Figure S4 shows the convergence in the number of inner iterations (or, equivalently, n - the total number of inner iterations243

is np, and hence we have not specified n, which is typically chosen to be 5). We show the error between the constructed image244

after j iterations (denoted by cj) and the true image (denoted by c), as well as the convergence of the objective function245

which we denote by F in the figure caption. To compute the minimum of F , denoted F ∗, we ran several thousand iterates246

of the non-restarted version of the algorithm so that the error in the value of F ∗ is at least an order of magnitude smaller247

than the shown values of F (cj)− F ∗. Whilst the objective function is guaranteed to converge to the minimum value when248

computing F ∗ this way, there is no guarantee that the vectors computed by the non-restarted version converge to a minimiser,249

as demonstrated by the non-computability results in Theorem 2. However, in this case, the non-restarted version converged to250

a vector c∗ up to an error much smaller than ‖c− c∗‖l2 . Hence ‖c− c∗‖l2 indicates the minimum error we can expect from251

using (P3) to recover the image.252

The figure shows the expected exponential convergence, as the number of inner iterations increases, of the objective function253

values as well as cj to c until the error is of the order ‖c− c∗‖l2 . This corresponds to an initial phase of exponential convergence,254

where the υ−n term (with υ = e−1) is dominant in Theorem 3, followed by a plateau to the minimal error ‖c− c∗‖l2 (shown255

as the dotted line). This plateau occurs due to inexact measurements (the noise) and the fact that the image does not have256

exactly sparse wavelet coefficients. This corresponds to the robust null space property (in levels) only being able to bound the257

distance ‖c− cj‖l2 up to the same order as ‖c− c∗‖l2 . In other words, we can only accelerate convergence up to this error258

bound. The error plateau disappears in the limit of exactly sparse vectors and zero noise (in the limit δ ↓ 0 in Theorem 3), and259

one gains exponential convergence down to essentially machine precision. Finally, the acceleration is of great practical interest.260

Rather than the several hundreds (or even thousands) of iterations that are typically needed for solving compressed sensing261

optimisation problems with first-order iterative methods, we obtain optimal accuracy in under 20 iterations. This was found262

for a range of different images, subsampling rates etc. The fact that so few layers are needed, coupled with the fast transforms263

for implementing the affine maps in the NNs, makes the NNs very computationally efficient and competitive speed-wise with264

state-of-the-art DL.265

3. Proof of Theorem 2 and tools from the Solvability Complexity Index (SCI) hierarchy266

In this section, we prove Theorem 2. To do this, we rely on some of the mathematics behind the SCI hierarchy (12–25) and the267

extended Smale’s 9th problem (26, 27) – a subset of the SCI program that will be presented below. However, we start with268

some analytical results regarding phase transitions of solutions of (P1), (P2) and (P3) which are given in §3.B. However, before269

analysing these phase transitions, we need some preliminary definitions regarding algorithms, inexact inputs, and condition270

numbers. There are two main reasons for this framework. First, because our definitions are general, they lead to stronger271

impossibility results than when restricted to specific models of computation. Second, our framework greatly simplifies the272

proofs and makes it clear what the key mechanisms behind the proofs are (§3.B describes this in terms of phase transitions of273

minimisers). The following discussions are self-contained.274

A. Algorithmic preliminaries: a user-friendly guide. We begin with a definition of a computational problem, which is deliberately275

general in order to capture any computational problem.276

Definition 3.1 (Computational problem). Let Ω be some set, which we call the domain, and Λ be a set of complex valued277

functions on Ω such that for ι1, ι2 ∈ Ω, then ι1 = ι2 if and only if f(ι1) = f(ι2) for all f ∈ Λ, called an evaluation set. Let278

(M, d) be a metric space, and finally let Ξ : Ω→M be a function which we call the problem function. We call the collection279

{Ξ,Ω,M,Λ} a computational problem. When it is clear whatM and Λ are, we write {Ξ,Ω} for brevity.280
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Remark 3.2 (Multivalued problems). In some cases, such as when considering the optimisation problems (Pj) that may281

have more than one solution, we consider Ξ(ι) ⊂ M. With an abuse of notation, we then set d(x,Ξ(ι)) = dist(x,Ξ(ι)) =282

infy∈Ξ(ι) d(x, y) and this distinction will be made clear from context. �283

The set Ω is the set of objects that give rise to our computational problems. The problem function Ξ : Ω→M is what284

we are interested in computing. Finally, the set Λ is the collection of functions that provide us with the information we are285

allowed to read as input to an algorithm. For example, Ω could consist of a collection of matrices A and data y in Eq. (1.1), Λ286

could consist of the pointwise entries of the vectors and matrices in Ω, Ξ could represent the solution set (with the possibility287

of more than one solution as in Remark 3.2) of any of the problems (Pj) and (M, d) could be CN with the usual Euclidean288

metric (or any other suitable metric).289

Given the definition of a computational problem, we need the definition of a general algorithm, whose conditions hold for290

any reasonable notion of a deterministic algorithm. Throughout this paper, we deal with the case that Λ = {fj}j∈β , where β is291

some (at most) countable index set. Following (12, 14, 15, 26) we use the concept of a general algorithm.292

Definition 3.3 (General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm is a mapping293

Γ : Ω→M such that for each ι ∈ Ω294

(i) There exists a non-empty finite subset of evaluations ΛΓ(ι) ⊂ Λ,295

(ii) The action of Γ on ι only depends on {ιf}f∈ΛΓ(ι) where ιf := f(ι),296

(iii) For every κ ∈ Ω such that κf = ιf for every f ∈ ΛΓ(ι), it holds that ΛΓ(κ) = ΛΓ(ι).297

If, in addition, there exists a canonical ordering ΛΓ(ι) = {fΓ
ι,1 = fk1 , ..., f

Γ
ι,SΓ(ι) = fkSΓ(ι)}, where SΓ(ι) = |ΛΓ(ι)|, such that298

if κ ∈ Ω and fΓ
ι,j(ι) = fΓ

ι,j(κ) for all j ≤ r < SΓ(ι), then fΓ
ι,j = fΓ

κ,j for all j ≤ r + 1, then we call Γ a Sequential General299

Algorithm. In this case, we use the notation kj(Γ, ι) to denote the ordered indices corresponding to the evaluation functions that300

the algorithm reads.301

The three properties of a general algorithm are the most basic natural properties we would expect any deterministic302

computational device to obey. The first condition says that the algorithm can only take a finite amount of information, though303

it is allowed adaptively to choose, depending on the input, the finite amount of information that it reads. The second condition304

ensures that the algorithm’s output only depends on its input, or rather the information that it has accessed (or “read”). The305

final condition is very important and ensures that the algorithm produces outputs and accesses information consistently. In306

other words, if it sees the same information for two different inputs, then it cannot behave differently for those inputs. Note307

that the definition of a general algorithm is more general than the definition of a Turing machine (28) or a Blum–Shub–Smale308

(BSS) machine (29), which can be thought of as digital and analog computational devices respectively. In particular, a general309

algorithm has no restrictions on the operations allowed. The extra condition for a sequential general algorithm is satisfied by310

any algorithm defined by a computational machine with input of readable information (one should think of the ordered indices311

of the evaluation functions as corresponding to sequentially reading the tape which encodes the input information). Hence, a312

sequential general algorithm is still more general than a Turing or a BSS machine. Complete generality in Definition 3.3 is used313

for two primary reasons:314

(i) Strongest possible bounds: Since Definition 3.3 is completely general, the lower bounds hold in any model of computation,315

such as a Turing machine or a BSS machine. On the other hand, the algorithms we construct in this paper are made to316

work using only arithmetic operations over the rationals. Hence, we obtain the strongest possible lower bounds and the317

strongest possible upper bounds.318

(ii) Simplified exposition: Using the concept of a general algorithm considerably simplifies the proofs of lower bounds and319

allows us to see precisely the mechanisms behind the proofs.320

Next, we consider the definition of a randomised general algorithm, which again is more general than a probabilistic Turing321

or probabilistic BSS machine. Randomised algorithms are widely used in practice in areas such as optimisation, algebraic322

computation, machine learning, and network routing. In the case of Turing machines, it is currently unknown, in the sense323

of polynomial runtime, whether randomisation is beneficial from a complexity class viewpoint (30, Ch. 7), however, rather324

intriguingly, this is not the case for BSS machines (29, Ch. 17) (some of the proofs in this reference are non-constructive325

- it is an open problem whether any probabilistic BSS machine can be simulated by a deterministic machine having the326

same machine constants and with only a polynomial slowdown). Nevertheless, randomisation is an extremely useful tool in327

practice. From a machine learning point of view, we also want to consider randomised algorithms to capture procedures such328

as stochastic gradient descent which are commonly used to train NNs. As developed in (26), the concept of a general algorithm329

can be extended to a randomised general algorithm. This concept allows for universal impossibility results regardless of the330

computational model.331

Definition 3.4 (Randomised General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a Randomised General332

Algorithm (RGA) Γran is a collection X of general algorithms Γ : Ω→M, a sigma-algebra F on X and a family of probability333

measures {Pι}ι∈Ω on F such that the following conditions hold:334
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1. For each ι ∈ Ω, the mapping Γran
ι : (X,F)→ (M,B) defined by Γran

ι (Γ) = Γ(ι) is a random variable, where B is the Borel335

sigma-algebra onM.336

2. For each n ∈ N and ι ∈ Ω, the set {Γ ∈ X : sup{m ∈ N : fm ∈ ΛΓ(ι)} ≤ n} ∈ F .337

3. For each ι1, ι2 ∈ Ω and E ∈ F , such that for every Γ ∈ E we have f(ι1) = f(ι2) for every f ∈ ΛΓ(ι1), then338

Pι1(E) = Pι2(E).339

With slight abuse of notation, we denote the family of randomised general algorithms by RGA.340

The first two conditions are measure theoretic to avoid pathological cases and ensure that “natural sets” one might define341

for a random algorithm (such as notions of stopping times) are measurable. These conditions hold for all standard probabilistic342

machines (such as a Turing or BSS machine). The third condition ensures consistency, namely, that in the case of identical343

evaluations, the laws of the output cannot change. Finally, we will use the standard definition of a probabilistic Turing machine344

(which is a particular case of Definition 3.4). However, to make sense of probabilistic Turing machines in our context (in345

particular, to restrict operations to the rationals which can be encoded by the natural numbers), we must define the notion of346

inexact input.347

Suppose we are given a computational problem {Ξ,Ω,M,Λ}, and that Λ = {fj}j∈β , where we remind the reader that β is348

some index set that can be finite or countably infinite. However, obtaining fj may be a computational task on its own, which349

is exactly the problem in most areas of computational mathematics. In particular, for ι ∈ Ω, fj(ι) could be the number e
π
j
i for350

example. Hence, we cannot access or store fj(ι) on a computer, but rather fj,n(ι) where fj,n(ι)→ fj(ι) as n→∞. This idea351

is formalised in the definition below, however, to put this in perspective it is worth mentioning the Solvability Complexity352

Index (SCI) hierarchy.353

Remark 3.5 (The Solvability Complexity Index (SCI) hierarchy (12, 14, 15, 26)). The SCI of a computational problem is the354

smallest number of limits needed in order to compute the solution. The full hierarchy is described in (14), and the mainstay of355

the hierarchy are the ∆α
k classes. The α denotes the model of computation. Informally, we have the following description.356

Given a collection C of computational problems, then357

(i) ∆α
0 is the set of problems that can be computed in finite time, the SCI = 0.358

(ii) ∆α
1 is the set of problems that can be computed using one limit (the SCI = 1) with control of the error, i.e. ∃ a sequence359

of algorithms {Γn} such that d(Γn(ι),Ξ(ι)) ≤ 2−n, ∀ι ∈ Ω.360

(iii) ∆α
2 is the set of problems that can be computed using one limit (the SCI = 1) without error control, i.e. ∃ a sequence of361

algorithms {Γn} such that limn→∞ Γn(ι) = Ξ(ι), ∀ι ∈ Ω.362

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be computed by using m limits, (the SCI ≤ m), i.e. ∃ a family of363

algorithms {Γnm,...,n1} with limnm→∞ . . . limn1→∞ Γnm,...,n1(ι) = Ξ(ι), ∀ι ∈ Ω. �364

The above hierarchy gives rise to the concept of ‘∆1-information.’ That is, in informal terms, the problem of obtaining the365

inexact input to the computational problem is a ∆1 problem. One may think of an algorithm taking the number exp(1) or
√

2366

as input. Indeed, one can never produce an exact version of these numbers to the algorithm, however, one can produce an367

approximation to an arbitrarily small error.368

Definition 3.6 (∆1-information (14, 15, 26) ). Let {Ξ,Ω,M,Λ} be a computational problem. We say that Λ has ∆1-369

information if each fj ∈ Λ is not available, however, there are mappings fj,n : Ω→ Q + iQ such that |fj,n(ι)− fj(ι)| ≤ 2−n for370

all ι ∈ Ω. Finally, if Λ̂ is a collection of such functions described above such that Λ has ∆1-information, we say that Λ̂ provides371

∆1-information for Λ. Moreover, we denote the family of all such Λ̂ by L1(Λ).372

We want to have algorithms that can handle all computational problems {Ξ,Ω,M, Λ̂} whenever Λ̂ ∈ L1(Λ). In order to373

formalise this, we define what we mean by a computational problem with ∆1-information.374

Definition 3.7 (Computational problem with ∆1-information). A computational problem where Λ has ∆1-information is375

denoted by {Ξ,Ω,M,Λ}∆1 := {Ξ̃, Ω̃,M, Λ̃}, where376

Ω̃ =
{
ι̃ = {fj,n(ι)}j,n∈β×N : ι ∈ Ω, {fj}j∈β = Λ, |fj,n(ι)− fj(ι)| ≤ 2−n

}
,377

Moreover, if ι̃ = {fj,n(ι)}j,n∈β×N ∈ Ω̃ then we define Ξ̃(̃ι) = Ξ(ι) and f̃j,n(̃ι) = fj,n(ι). We also set Λ̃ = {f̃j,n}j,n∈β×N. Note378

that Ξ̃ is well-defined by Definition 3.1 of a computational problem and the definition of Ω̃ includes all possible instances of379

∆1-information Λ̂ ∈ L1(Λ).380

We can now define a probabilistic Turing machine for {Ξ,Ω,M,Λ}, where the algorithm Γ is executed by a Turing machine381

(28), that has an oracle tape consisting of {ι̃f}
f∈Λ̃. In what follows, we have deliberately not written down the (lengthy)382

definition of a Turing machine (found in any standard text (30)), which one should think of as an effective algorithm or383

computer programme (the famous Church–Turing thesis).384
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Definition 3.8. Given the definition of a Turing machine, a probabilistic Turing machine for {Ξ,Ω,M,Λ} is a Turing machine385

that has an oracle tape consisting of {ι̃f}
f∈Λ̃ (for ι̃ ∈ Ω̃), with an additional read-only tape containing independent binary386

random numbers (0 or 1 with equal probability), and which halts with probability one and outputs a single element ofM. The387

law of such a machine will be denoted by P. With an abuse of notation, we sometimes denote the probabilistic Turing machine388

by (Γ,P).389

Remark 3.9 (Where does the output live?). Strictly speaking, when we say that the output of a probabilistic Turing machine390

lies inM, we mean that the output corresponds, via an encoding, to an element of a subset ofM such as (Q + iQ)N ⊂ CN .391

However, we follow the usual convention of suppressing such encodings. �392

One should think of Definition 3.8 as an algorithm for the computational problem with inexact input, but with the additional393

ability to generate random numbers (corresponding to the binary input tape) and execute commands based on the sequence of394

random numbers that are generated. The reader should intuitively think of this as a computer program with a random number395

generator. For equivalent definitions and the basic properties of such machines, see (30). For simplicity, we have only considered396

probabilistic Turing machines that halt with probability one, though extensions can be made to non-halting machines. Note397

that Definition 3.8 is a special case of Definition 3.4, where Pι = P is fixed across different ι. In particular, given a probabilistic398

Turing machine, the sigma-algebra and probability distribution generated by the standard product topology on {0, 1}N induce399

the relevant collection X of Turing machines and sigma-algebra F , as well as P.400

Finally, we recall standard definitions of condition used in optimisation (29, 31). The classical condition number of an401

invertible matrix A is given by Cond(A) = ‖A‖‖A−1‖. For different types of condition numbers related to a possibly multivalued402

(signified by the double arrow) mapping Ξ : Ω ⊂ Cn ⇒ CN we need to establish what types of perturbations we are interested403

in. For example, if Ω denotes the set of diagonal matrices (which we treat as elements of Cn for some n), we may not be404

interested in perturbations in the off-diagonal elements as they will always be zero. In particular, we may only be interested in405

perturbations in the coordinates that are varying in the set Ω. Thus, given Ω ⊂ Cn we define the active coordinates of Ω to be406

Act = Act (Ω) = {j : ∃x, y ∈ Ω, xj 6= yj}. Moreover, for ν > 0 (including the obvious extension to ν =∞),407

Ων = {x : ∃ y ∈ Ω such that ‖x− y‖l∞ ≤ ν, xActc = yActc} .408

In other words, Ων is the set of ν-perturbations along the non-constant coordinates of elements in Ω. We can now recall some409

of the classical condition numbers from the literature (29, 31).410

(1) Condition of a mapping: Let Ξ : Ω ⊂ Cn ⇒ Cm be a linear or non-linear mapping, and suppose that Ξ is also defined on
Ων for some ν > 0. Then,

Cond (Ξ,Ω) = sup
x∈Ω

lim
ε→0+

sup
x+z∈Ων

0<‖z‖
l2≤ε

{
dist(Ξ(x+ z),Ξ(x))

‖z‖l2

}
,

where we allow for multivalued functions by defining dist(Ξ(x+ z),Ξ(z)) = infw1∈Ξ(x+z),w2∈Ξ(z) ‖w1−w2‖l2 (see Remark411

3.2). We will use this notion of condition number for (P1), (P2) and (P3).412

(2) Distance to infeasibility - the Feasibility Primal condition number: For the problem (P1) of basis pursuit (for (P2) and
(P3) the following condition number is always zero) we set

ν(A, y) = sup
{
ε ≥ 0 : ‖ŷ‖l2 , ‖Â‖ ≤ ε, (A+ Â, y + ŷ) ∈ Ω∞ ⇒ (A+ Â, y + ŷ) are feasible inputs to ΞP1

}
,

and define the Feasibility Primal (FP) local condition number CFP(A, y) := max{‖y‖l2 ,‖A‖}
ν(A,y) . We then define the FP global413

condition number via CFP (ΞP1 ,Ω) := sup(A,y)∈Ω CFP(A, y).414

B. Phase transitions. To prove Theorem 2, we use the following lemmas, which describe phase transitions of the minimisers of415

the respective optimisation problems (ej correspond to the canonical basis of CN ).416

Lemma 3.10 (Phase transition for basis pursuit). Let N ≥ 2 and consider the problem (P1) for

A =
(
w1
ρ1

w2
ρ2

· · · wN
ρN

)
∈ C1×N , y = 1, ε ∈ [0, 1),

where ρj > 0 for j = 1, ..., N . Then the set of solutions is given by417

N∑
j=1

[
tj(1− ε)

ρj
wj

]
ej , s.t. tj ∈ [0, 1],

N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk. [3.1]418

Proof. Let x̂j = xjwjρ
−1
j , then the optimisation problem becomes419

argminx̂∈CN f(x̂) :=
N∑
j=1

ρj |x̂j | such that

∣∣∣∣∣1−
N∑
j=1

x̂j

∣∣∣∣∣ ≤ ε. [3.2]420
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Since ε < 1 and the (ρ1, ρ2, ...ρN ) weighted l1 norm is convex, it follows that the solution must lie on the hypersurface segment421

x̂1 + x̂2 + ... + x̂j = 1 − ε for x̂j ∈ R≥0. We now claim that if x̂ is a solution of Eq. (3.2), and ρj > mink ρk, then x̂j = 0.422

Suppose for a contradiction that there exists a solution x̂ of Eq. (3.2) where x̂j > 0 and ρj > mink ρk. Pick any l such that423

ρl = mink ρk, then x̂+ x̂j(el − ej) is feasible with f(x̂+ x̂j(el − ej)) < f(x̂), a contradiction. Similarly, if x is of the form given424

in Eq. (3.1), then f(x̂) = (1− ε) mink ρk. In particular, the objective function is constant over the set of all such vectors and425

the result follows.426

Lemma 3.11 (Phase transition for LASSO). Let N ≥ 2 and consider the problem (P2) for

A = λ
(
w1
ρ1

w2
ρ2

· · · wN
ρN

)
∈ C1×N , y = 1,

where 0 < ρj < 2 for j = 1, ..., N . Then the set of solutions is given by427 (
1− mink ρk

2

) N∑
j=1

ρjtj
λwj

ej , s.t. tj ∈ [0, 1],
N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk. [3.3]428

Proof. Let x̂j = xjλwjρ
−1
j , then the optimisation problem becomes argminx̂∈CN f(x̂) := |1−

∑N

j=1 x̂j |
2 +
∑N

j=1 ρj |x̂j |. It is429

clear that any optimal solution must be real, and hence we restrict our argument to real x̂. Define the 2N quadrant subdomains430

Dk1,...,kN = {x̂j · (−1)kj > 0} for kj ∈ {0, 1}, and notice that431

∇f(x̂) =

 −2(1−
∑N

j=1 x̂j) + (−1)k1ρ1

...
−2(1−

∑N

j=1 x̂j) + (−1)kN ρN

 , for x̂ ∈ Dk1,...,kN .432

We first look for stationary points of the objective function in the subdomains Dk1,...,kN . The condition for a stationary point433

in the interior of such a domain leads to the constraint that k1 = k2 = ... = kN . If k1 = k2 = ... = kN = 1, then ∇f = 0 leads434

to the contradiction ρj = 2(x̂1 + ...+ x̂N )− 2 < 0. Finally, in the case (and only in the case) of ρ1 = ρ2 = ... = ρN , there is a435

hypersurface segment of stationary points in D0,0,...,0 given by x̂1 + ...+ x̂N = 1− ρ1/2 (recall that we assumed ρ1 < 2 so this436

segment exists).437

First, consider the case that ρ1 = ... = ρN . Then any optimal solution must either lie on the boundary of some Dk1,...,kN or438

on the hypersurface segment x̂1 + ...+ x̂N = 1− ρ1/2 in D0,0,...,0. A simple case by case analysis now yields that the solutions x̂439

are given by convex combinations of (1− ρj/2)ej for j = 1, ..., N . Now consider the case that not all of the ρj are equal. Then440

any optimal solution must lie on the boundary of some Dk1,...,kN . A simple case by case analysis now yields that the solutions441

x̂ are given by convex combinations of (1− ρj/2)ej for j such that ρj = mink ρk. Rescaling back to x gives the result.442

Lemma 3.12 (Phase transition for square-root LASSO). Let N ≥ 2 and consider the problem (P3) for

A = λ
(
w1
ρ1

w2
ρ2

· · · wN
ρN

)
∈ C1×N , y = 1,

where 0 < ρj < 1 for j = 1, ..., N . Then the set of solutions is given by443

N∑
j=1

ρjtj
λwj

ej , s.t. tj ∈ [0, 1],
N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk. [3.4]444

Proof. Let x̂j = xjλwjρ
−1
j , then the optimisation problem becomes argminx̂∈CN f(x̂) := |1 −

∑N

j=1 x̂j |+
∑N

j=1 ρj |x̂j | . It is445

clear that any optimal solution must be real and hence we restrict our argument to real x̂. The objective function is piecewise446

affine and since ρj < 1, the gradient of f is non-vanishing on the interior of any of the domains Dk1,...,kN = {x̂j · (−1)kj > 0}447

for kj ∈ {0, 1}. It follows that the optimal solutions must lie on the boundaries of the domains Dk1,...,kN . A simple case by448

case analysis shows that the solutions x̂ are given by convex combinations of ej for j such that ρj = mink ρk. Rescaling back to449

x gives the result.450

We will also need the following propositions, which give useful criteria for impossibility results.451

Proposition 3.13. Let {Ξ,Ω,M,Λ} be a computational problem. Suppose that there are two sequences {ι1n}n∈N, {ι2n}n∈N ⊂ Ω452

satisfying the following conditions:453

(a) There are sets S1, S2⊂M and κ>0 such that infx1∈S1,x2∈S2 d(x1, x2)>κ and Ξ(ιjn)⊂Sj for j = 1, 2.454

(b) For every f ∈ Λ there is a cf ∈ C such that |f(ιjn)− cf | ≤ 1/4n for all n ∈ N and j = 1, 2.455

Then, if we consider {Ξ,Ω,M,Λ}∆1 , we have the following:456

(i) For any sequential general algorithm Γ and M ∈ N, there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that

dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M.
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(ii) If there is an ι0 ∈ Ω such that for every f ∈ Λ we have that (b) is satisfied with cf = f(ι0), then for any RGA Γ and457

p ∈ [0, 1/2), there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that Pι(dist(Γ(ι),Ξ(ι)) ≥ κ/2) > p.458

Proof. Without loss of generality, we assume that Ω = {ι1n}n∈N ∪ {ι2n}n∈N. Part (ii) follows immediately from a Proposition of459

(26), so we only prove part (i). Let Γ be a sequential general algorithm and M ∈ N. We will construct the required Λ̂ ∈ L1(Λ)460

inductively. By Definition 3.3 and the setup of ∆1−information for Λ, there exists some fk1 ∈ Λ and n1 ∈ N such that for all461

ι ∈ Ω and for all Λ̂ ∈ L1(Λ), we have fΓ
ι,1 = fk1,n1 . We set fk1,n1(ιjm) = cfk1

for all m ≥ n1 and choose fk1,n1(ιjm) consistently462

for m < n1. Again by Definition 3.3 and the setup of ∆1−information for Λ, it follows that there exists fk2 ∈ Λ and n2 ∈ N463

(which without loss of generality ≥ n1) such that for all m ≥ n1, either ΛΓ(ιjm) = {fk1,n1} or fΓ
ι
j
m,2

= fk2,n2 . In the latter464

case, we set fk2,n2(ιjm) = cfk2
for all m ≥ n2 and choose fk2,n2(ιjm) consistently for m < n2. We continue this process for a465

maximum of M steps up to fΓ
ι
j
m,min{M,|ΛΓ(ιjm)|}

as follows. At the qth step after defining fkq,nq , by Definition 3.3 and the setup466

of ∆1−information for Λ, it follows that there exists fkq+1 ∈ Λ and nq+1 ∈ N (which without loss of generality ≥ nq) such that467

for all m ≥ nq, either ΛΓ(ιjm) ⊂ {fk1,n1 , ..., fkq,nq} or fΓ
ι
j
m,q+1

= fkq+1,nq+1 . In the latter case, we set fkq+1,nq+1(ιjm) = cfkq+1
468

for all m ≥ nq+1 and choose fkq+1,nq+1(ιjm) consistently for m < nq+1. We can then choose the rest of the function values to469

obtain Λ̂.470

Given this Λ̂ ∈ L1(Λ), suppose for a contradiction that for any ι ∈ Ω, dist(Γ(ι),Ξ(ι)) ≤ κ/2 and SΓ(ι) ≤M. Without loss of
generality, we assume that the above construction is carried out for M steps. It follows that we must have f(ι1nM ) = f(ι2nM )
for all f ∈ Λ̂Γ(ι1nM ). By (ii) and (iii) of Definition 3.3, it follows that Γ(ι1nM ) = Γ(ι2nM ). Let ε > 0 be arbitrary. Since
dist(Γ(ι),Ξ(ι)) ≤ κ/2 for all ι ∈ Ω, there exists sj ∈ Sj such that d(Γ(ιjnM ), sj) < κ/2 + ε. It follows that

inf
x1∈S1,x2∈S2

d(x1, x2) ≤ d(s1, s2) ≤ d(Γ(ι1nM ), s1) + d(Γ(ι2nM ), s2) < κ+ 2ε.

Since ε > 0 was arbitrary, we have infx1∈S1,x2∈S2 d(x1, x2) ≤ κ, the required contradiction.471

Proposition 3.14. Let {Ξ,Ω,M,Λ} be a computational problem and u ≥ 2 be a positive integer. Suppose that there are u472

sequences {ιjn}n∈N ⊂ Ω, for j = 1, ..., u, satisfying the following conditions:473

(a) There are sets Sj ⊂M, for j = 1, ..., u, and κ > 0 such that infxj∈Sj ,xk∈Sk d(xj , xk) > κ for any j 6= k and Ξ(ιjn) ⊂ Sj474

for j = 1, ..., u.475

(b) For every f ∈ Λ, there is a cf ∈ C such that |f(ιjn)− cf | ≤ 1/4n for all n ∈ N and j = 1, ..., u.476

Then, if we consider {Ξ,Ω,M,Λ}∆1 , for any halting probabilistic Turing machine (Γ,P), M ∈ N and p ∈ [0, u−1
u

), there exists477

ι ∈ Ω and Λ̂ ∈ L1(Λ) such that P
(

dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M
)
> p.478

Proof. Without loss of generality, we can assume that Ω = ∪uj=1{ιjn}n∈N. Let (Γ,P) be a halting probabilistic Turing479

machine and M ∈ N, p ∈ [0, (u − 1)/u). Suppose for a contradiction that for all ι ∈ Ω and all Λ̂ ∈ L1(Λ), we have480

P(dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M) ≤ p. We will construct the required Λ̂ ∈ L1(Λ) inductively. Let β ∈ (0, 1) be such481

that (1− β)M − p > 1/u. Such a β exists since p ∈ [0, (u− 1)/u). Since the Turing machine must halt with probability one,482

there exists finite sets K1, N1 ⊂ N such that with probability (w.r.t. P) at least 1− β, for all ι ∈ Ω and for all Λ̂ ∈ L1(Λ), it483

holds that fΓ
ι,1 = fk1,n1 for some k1 ∈ K1 and n1 ∈ N1. We set fk1,n1(ιjm) = cfk1

for all m ≥ max{n1 : n1 ∈ N1} and choose484

fk1,n1(ιjm) consistently otherwise.485

We continue this process inductively for M steps up to fΓ
ι
j
m,min{M,|ΛΓ(ιjm)|}

as follows. At the qth step after defining486

fkq,nq for kq ∈ Kq and nq ∈ Nq, it follows (since the Turing machine halts with probability one) that there exists finite sets487

Kq+1, Nq+1 ⊂ N with the following property. Let Eq+1 be the event that for all ιjm ∈ Ω with m ≥ max{n : n ∈ N1 ∪ ... ∪Nq},488

either fΓ
ι
j
m,q+1

= fkq+1,nq+1 , for some kq+1 ∈ Kq+1 and nq+1 ∈ Nq+1, or |Λ(ιjm)| ≤ q. Then P(Eq+1| ∩k≤q Ek) ≥ 1− β. We then489

set fkq+1,nq+1(ιjm) = cfkq+1
for all m ≥ max{n : n ∈ N1 ∪ ... ∪Nq+1} and choose fkq+1,nq+1(ιjm) consistently otherwise. This490

ensures the existence of Kq+2 and Nq+2. After the Mth step, we can choose the rest of the function values to obtain Λ̂.491

It follows that for m ≥ max{n : n ∈ N1 ∪ ...∪NM}, the outputs Γ(ιjm) conditional on the event E1 ∩ ...∩EM ∩{SΓ(·) ≤M}
are equal for j = 1, ..., u. Since infxj∈Sj ,xk∈Sk d(x1, x2) > κ for j 6= k, it follows that the events Fj := {dist(Γ(ιjm),Ξ(ιjm)) ≤
κ/2}∩{SΓ(ιjm) ≤M}∩E1∩ ...∩EM , j = 1, ..., u, are disjoint. Moreover, using the fact that P(A∩B) = P(A)+P(B)−P(A∪B),

P(Fj) ≥ P({dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M}) + P(E1 ∩ ... ∩ EM )− 1
≥ P({dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M}) + (1− β)M − 1 ≥ (1− β)M − p > 1/u.

But this contradicts the disjointness of the Fj ’s.492
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C. Proof of Theorem 2.493

Proof of Theorem 2. We will argue for m = 1 and construct such an Ω for this case. The general case of m > 1 follows by
embedding our construction for A ∈ C1×(N+1−m) in the first row of matrices and vectors of the form

Â =
(
A 0
0 αI

)
, ŷ = (y, 0)>, (A, y) ∈ Ω,

where I ∈ C(m−1)×(m−1) denotes the (m− 1)× (m− 1) identity matrix and α = α(A) is chosen such that ÂÂ∗ is a multiple of494

the identity. In particular, such an embedding does not effect the relevant condition numbers (it is straightforward to see that495

the matrix norm, distance to infeasibility for (P1) and condition numbers of the mappings are all unchanged). For the classes496

we consider, the setup of Theorem 2 coincides with the ∆1−information model discussed in §3.A. In particular, we can use497

Lemmas 3.10, 3.11 and 3.12 to derive the relevant xs,n’s in Eq. (1.7). This means that we can apply Propositions 3.13 and 3.14498

with the metric corresponding to the l2-norm. Recall that for this theorem, we assume that w1 = w2 = ... = wN = 1.499

Step 1: Proof for (P1). First, consider the class defined by

Ω1 =
{

(A(γ1; ρ), y) : A(γ1; ρ) := γ1
( 1
ρ1

1
ρ2

· · · 1
ρN

)
, y = 1, ρj ∈ [1− 2δ, 1− δ]

}
,

for fixed γ1 > 10 and δ ∈ (0, 1/4). We choose γ1 and δ such that

1− ε
γ1
· sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K , [3.5]

1− ε
γ1
· inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 > 2 · 10−K , [3.6]

where the ej denote the canonical basis of CN . Note that we can ensure γ1 > 10 since ε ≤ 1/2 and K > 2. If ρj ∈ [1− 2δ, 1− δ),
for j = 1, 2, then by (a simple rescale of) Lemma 3.10,

ΞP1(A(γ1; (ρ1, 1−δ, ..., 1− δ)), 1)= (1− ε)ρ1

γ1
e1,ΞP1(A(γ1; (1−δ, ρ2, 1− δ, ..., 1− δ)), 1)= (1− ε)ρ2

γ1
e2.

Since Eq. (3.6) holds, it follows by selecting appropriate sequences ιjn for choices of ρj = ρnj ↑ 1 − δ that the conditions of500

Proposition 3.13 hold for Ω1 with501

Sj =
{

1− ε
γ1

ρej : ρ ∈ [1− 2δ, 1− δ]
}
, κ = 2 · 10−K . [3.7]502

Moreover, the condition for part (ii) of Proposition 3.13 also holds with ι0 = (A(γ1; (1− δ, 1− δ, ..., 1− δ)), 1).503

Now suppose for a contradiction that there exists a (halting) RGA (with input ιA,S) and p > 1/2 that produces a NN
φA such that miny∈SA infx∗∈ΞP1 (A,y) ‖φA(y)− x∗‖l2 ≤ 10−K holds with probability at least p for all (A, y) ∈ Ω1. Then there
exists a (halting) RGA, Γ, taking ιA,S as input that computes a solution of (P1) to K correct digits with probability at least p
on each input in Ω1. However, this contradicts Proposition 3.13 (ii). Next, consider the class defined by

Ω2 =
{

(A(γ2; ρ), y) : A(γ2; ρ) = γ2
( 1
ρ1

1
ρ2

· · · 1
ρN

)
, y = 1, ρj ∈ [1− 2δ, 1− δ], ρj 6= ρk if j 6= k

}
,

where γ2 = γ1/10 > 1 so that

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K+1 · γ2

1− ε , [3.8]

inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 > 2 · 10−K+1 · γ2

1− ε . [3.9]

By extending the argument above to u = N + 1−m = N (recall without loss of generality that m = 1) sequences and sets Sj
defined as in Eq. (3.7), the conditions of Proposition 3.14 hold with κ = 2 · 10−K+1. Now suppose that there exists a (halting)
probabilistic Turing machine (Γ,P), M ∈ N and p ∈

[
0, N−m

N+1−m

)
, such that for any (A, 1) ∈ Ω2, Γ computes a NN φA with

P
(

inf
x∗∈ΞP1 (A,y)

‖φA(y)− x∗‖l2 > 101−K or the sample size needed to construct φA > M

)
≤ p.

Then there exists a (halting) probabilistic Turing machine that computes a solution of (P1) to K − 1 correct digits on each504

input in Ω2 with sample size at most M with probability at least 1− p. However, this contradicts Proposition 3.14.505

We now set Ω = Ω1 ∪ Ω2. Note that the negative statements of part (i) and (ii) follow from the above arguments by
considering restrictions to Ω1 and Ω2 respectively. Hence, we are left with proving the condition number bounds, part
(iii) and the positive part of part (ii). First, note that Cond(AA∗) = 1 for any (A, y) ∈ Ω. For any (A, y) ∈ Ω, we have
ν(A, y) = ‖A‖ ≥ 1 = ‖y‖l2 and hence CFP(ΞP1 ,Ω) ≤ 1. To bound the final condition number, first note that if ρj , ρ′j ≤ 1, then
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‖ρ− ρ′‖l2 ≤ ‖
∑N

j=1( 1
ρj
− 1

ρ′
j
)ej‖l2 . Let (A(γ1; ρ), 1) ∈ Ω1, then if (A(γ1; ρ′), 1) ∈ Ω1 with ∆(ρ, ρ′) := γ1‖

∑N

j=1( 1
ρj
− 1

ρ′
j
)ej‖l2

sufficiently small,
dist(ΞP1(A(γ1; ρ′), 1),ΞP1(A(γ1; ρ), 1)) ≤ 1− ε

γ1

∥∥ρ− ρ′∥∥
l2
.

It follows that
lim
β↓0

sup
(A(γ1;ρ′),1)∈Ω1

∆(ρ,ρ′)≤β

dist(ΞP1(A(γ1; ρ′), 1),ΞP1(A(γ1; ρ), 1))
∆(ρ, ρ′) ≤ 1− ε

γ2
1

< 1.

A similar argument holds for (A(γ2; ρ), 1) ∈ Ω2, and hence Cond(ΞP1 ,Ω) ≤ 1.506

We now prove the positive parts of (ii) and (iii). We begin with (ii) and describe the algorithm informally, noting that the
output of the algorithm, Γ(A), yields a NN which maps y = 1 to Γ(A) ∈ CN . Given an input (A, y) ∈ Ω, the algorithm first
tests the size of A1,1 to determine whether (A, y) ∈ Ω1 or (A, y) ∈ Ω2. Explicitly, we note that A1,1 is positive and bounded
away from 0. Hence, with one sample from ιA,S we can determine A1,1 to an accuracy of at least 0.01 · A1,1 and such that,
simultaneously, the corresponding approximation of A−1

1,1 is accurate to at least 10−K . If (A, y) ∈ Ω1, then A1,1 ∈ γ1 · [1, 2]
whereas if (A, y) ∈ Ω2, then A1,1 ∈ γ2 · [1, 2]. Since γ2 = γ1/10, this level of accuracy is enough to determine whether
(A, y) ∈ Ω1 or (A, y) ∈ Ω2. Next, if the algorithm determines (A, y) ∈ Ω1, it outputs the corresponding approximation of
(1− ε)A−1

1,1e1 = 1−ε
γ1
ρ1e1 correct to 10−K in the l2-norm from the sample. Since

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K · γ1

1− ε ,

it follows that infx∗∈ΞP1 (A,y) ‖Γ(A)− x∗‖l2 ≤ 4 · 10−K < 10−K+1. On the other hand, if the algorithm determines (A, y) =
(A(γ2; ρ), y) ∈ Ω2, then we know that all of the ρj are distinct. The algorithm continues to sample ιA,S until we determine j
such that ρj = mink ρk. It then outputs an approximation of (1− ε)A−1

1,jej = ΞP1(A, y) correct to 10−K in the l2-norm. Such
as approximation can be computed using ιA,S . It then follows that ‖Γ(A)− ΞP1(A, y)‖l2 ≤ 10−K < 10−K+1 and this finishes
the proof of (ii). Finally, to prove (iii), note that the arguments above show that, given an input (A, y) ∈ Ω, we can use one
sample (L = 1) of ιA,S to compute an approximation of A−1

1,1 with error bounded by 10−K . We simply set Γ(A) to be (1− ε)e1

multiplied by the approximation of A−1
1,1. Using Eq. (3.5) and Eq. (3.8), it follows that

inf
x∗∈ΞP1 (A,y)

‖Γ(A)− x∗‖l2 ≤ 3 · 10−K+1 + 10−K < 10−K+2.

Step 2: Proof for (P2). This is almost identical step 1 with replacing Lemma 3.10 with Lemma 3.11. The other changes
are replacing ε with the suitable ρi/2 in the solution of each LASSO problem, including the additional scale λ in the definition
of the matrices (see Lemma 3.11) and choosing γ1λ > 10 and δ ∈ (0, 1/4) such that (recall that λ ≤ 1)

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

1
λγ1
· ‖ρj(1− ρj/2)ej − ρk(1− ρk/2)ek‖l2 = 3 · 10−K [3.10]

inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

1
λγ1
· ‖ρj(1− ρj/2)ej − ρk(1− ρk/2)ek‖l2 > 2 · 10−K . [3.11]

Let f(x) = (1− x/2)x, then for x ∈ [0, 1], |f ′(x)| ≤ 1. It follows that∥∥∥∥∥
N∑
j=1

(
ρj(1− ρj/2)− ρ′j(1− ρ′j/2)

)
ej

∥∥∥∥∥
l2

≤

∥∥∥∥∥
N∑
j=1

(
1
ρj
− 1
ρ′j

)
ej

∥∥∥∥∥
l2

.

Hence, for sufficiently small δ, for any (A(γ1; ρ), 1) ∈ Ω1 (recall the additional factor of λ) and ρ′ sufficiently close to ρ with
(A(γ1; ρ′), 1) ∈ Ω1,

dist(ΞP2(A(γ1; ρ′), 1),ΞP2(A(γ1; ρ), 1))

γ1λ

∥∥∥∑N

j=1

(
1
ρj
− 1

ρ′
j

)
ej

∥∥∥
l2

≤ 1
γ2

1λ
2 < 1,

with the same bound holding for Ω2. It follows that Cond(ΞP2 ,Ω) ≤ 1.507

Step 3: Proof for (P3). This is almost identical step 2 with replacing Lemma 3.11 with Lemma 3.12, and deleting the508

corresponding factors of 1− ρj/2.509

D. Details on the numerical example following Theorem 2 of the main text. In this section, we elaborate on the numerical510

example following Theorem 2 of the main text. The example is a simplification of the arguments found in the proof of Theorem511

2 that uses Lemma 3.12 extensively. In our experiment, we use N1 = 2 and λ = 1, but for full generality, we do not keep these512

parameters fixed in the discussion below. We assume throughout that λ ∈ (0, 1] and N1 ≥ 2. The experiment is done for real513

matrices so that the LISTA network architecture can be used.514
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Let γ > 0, ρ ∈ RN1 \ {0}, and D ∈ CN2+1×N2+1 be a unitary discrete cosine transform matrix. Define515

A(γ, ρ) := D

(
a(γ, ρ)> 0

0 ‖a(γ, ρ)‖l2I

)
, where a(γ, ρ)> := γ

(
1
ρ1

· · · 1
ρN1

)
∈ R1×N1 ,516

and I ∈ RN2×N2 is the identity matrix. Observe that A(γ, ρ) ∈ Rm×N , with N = N1 + N2 and m = N2 + 1 and that517

A has irrational entries (hence only approximations can be used in real-life computations). Furthermore, let δ = 1/6 and518

γK =
√

2
3λ (1− δ) · 10K , where K is the parameter from Theorem 2. Also let519

y(x(2)) = D
(
1 ‖a(γ, ρ)‖l2x(2)

)> ∈ RN2+1 for x(2) ∈ RN2 [3.12]520

and ΩK =
{(
y(x(2)), A(γK , ρ)

)
: ρj ∈ [1− 2δ, 1− δ], x(2) ∈ RN2

}
. Next define521

ρ′ =
(
ρ′1 1− δ · · · · · · 1− δ

)
and ρ] =

(
1− δ ρ]2 1− δ · · · 1− δ

)
522

where ρ′1, ρ]2 ∈ [1− 2δ, 1− δ). We let ei denote the i’th canonical basis vector for RN1 and define x′ = ρ′1
λγK

e1 and x] = ρ
]
1

λγK
e2.523

For this choice of parameters we have from Lemma 3.12 and the fact that D is unitary that
(
x′, x(2))> ∈ Ξ3

(
A(γK , ρ′), y(x(2))

)
524

and
(
x], x(2))> ∈ Ξ3

(
A(γK , ρ]), y(x(2))

)
.525

Observe that we can let A(γK , ρ′) and A(γK , ρ]) become arbitrary close by letting ρ′1, ρ]2 ↑ 1− δ. We will let ρ′1 = ρ]2, and
notice that for this choice the data y(x(2)) are the same for both inputs. However, regardless of the choice of ρ′1, ρ]2 ∈ [1−2δ, 1−δ)
the minimisers for the two problems are bounded away from each other. In particular, we have that

inf
ρ′1,ρ

]
2∈[1−2δ,1−δ]

1
λγK
‖ρ′1e1 − ρ]2e2‖l2 > 2 · 10K and sup

ρ′1,ρ
]
2∈[1−2δ,1−δ]

1
λγK
‖ρ′1e1 − ρ]2e2‖l2 = 3 · 10K

which implies that 10K < ‖(x′, x(2))> − (x], x(2))>‖l2 < 10K+1.526

In the numerical experiment, we take A = A(γK , ρ′) with ρ′1 = 1− δ + 2−n−1, and approximate this matrix with the matrix527

An = A(γK , ρ]), where the parameter ρ]2 = 1− δ + 2−n−1. This ensures that ‖A−An‖ ≤ 2n. For the trained neural network,528

we used 8000 triples of the form529

ιA,S,n =
{(

yk,n(x(2)
k,n), An, (x]n, x(2)

k,n)>
)

: k = 1, . . . , 8000, and x(2) is 5-sparse
}
. [3.13]530

for n = 10, 20, 30. Note that it is not necessary to make the x(2) component sparse. This is done merely to make the experiment531

more realistic, as the main usage of the problems (Pj) are for recovery of sparse vectors.532

4. Proof of Theorem 3533

A roadmap for the proof is as follows. We consider the problem (P3) and unroll iterations of Chambolle and Pock’s primal-dual534

algorithm (32, 33). These iterations are approximated by NNs in Theorem 5, where we obtain bounds on a rescaled version of535

the objective function in Eq. (4.9). The assumption of weighted rNSPL then allows us to relate the bounds proven in Theorem536

5 to bounds on the distance of the output of the NN to the wanted vector and also, simultaneously, prove stability. This also537

allows the acceleration to exponential convergence through a restart scheme (with a reweighting at each restart). We begin538

with the proof of Lemma 1.8, which allows us to consider the approximation matrices Al in the construction of the NNs. We539

also state some results from compressed sensing that are needed in our proofs. We then discuss preliminary results on unrolling540

iterative algorithms for (P3), which are used in the proof of Theorem 3. When writing out NNs in the proofs, we will use NL−−→541

arrows to denote the non-linear maps and L−→ arrows to denote the affine maps.542

A. Some results from compressed sensing.543

Proof of Lemma 1.8. Let ∆ be a (s,M) support set and x ∈ CN , then

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Ax‖l2 ≤

ρ‖x∆c‖l1w√
ξ

+ γ‖Âx‖l2 + γ‖Â−A‖‖x‖l2 . [4.1]

Note that mink=1,...,r w
2
(k)
∑

j∈∆c |xj |
2 ≤ (

∑
j∈∆c |xj |wj)

2 = ‖x∆c‖2l1w and hence, Eq. (4.1) implies that

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Âx‖l2 + γ‖Â−A‖

(
‖x∆‖l2 +

‖x∆c‖l1w
mink=1,...,r w(k)

)
.

Rearranging now gives the result.544

The following results are taken from the compressed sensing literature (34).545
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Lemma 4.1 (rNSPL implies l1w distance bound). Suppose that A has the weighted rNSPL of order (s,M) with constants546

0 < ρ < 1 and γ > 0. Let x, z ∈ CN , then547

‖z − x‖l1w ≤
1 + ρ

1− ρ
(
2σs,M(x)l1w + ‖z‖l1w − ‖x‖l1w

)
+ 2γ

1− ρ
√
ξ‖A(z − x)‖l2 . [4.2]548

Lemma 4.2 (rNSPL implies l2 distance bound). Suppose that A has the weighted rNSPL of order (s,M) with constants549

0 < ρ < 1 and γ > 0. Let x, z ∈ CN , then550

‖z − x‖l2 ≤
(
ρ+ (1 + ρ)κ1/4

2

)
‖z − x‖l1w√

ξ
+
(

1 + κ1/4

2

)
γ‖A(z − x)‖l2 . [4.3]551

B. Preliminary constructions of neural networks. When constructing NNs, we will make use of the following maps from CM to552

CM , defined for various M ∈ N and β ∈ Q>0 by ψ0
β(x) = max{0, 1− β/‖x‖l2}x, ψ1(x) = min{1, ‖x‖−1

l2 }x.553

Lemma 4.3. Let M ∈ N, β ∈ Q>0 and θ ∈ Q>0. Then there exists neural networks φ0
β,θ, φ

1
θ ∈ ND,3,2 with D = (M, 2M,M +554

1,M) such that ‖φ0
β,θ(x)− ψ0

β(x)‖l2 ≤ θ and ‖φ1
θ(x)− ψ1(x)‖l2 ≤ θ for all x ∈ CM , and the non-linear maps can be computed555

from sqrtθ and finitely many arithmetic operations and comparisons.556

Proof. We deal only with the case of ψ0
β since the case of ψ1 is nearly identical. Consider the maps φ0

β,θ:

x
L−→
(
x
x

)
NL−−→


|x1|2
|x2|2
...

|xM |2
x

 L−→
(∑M

j=1 |xj |
2

x

)
NL−−→

(
0

max
{

0, 1− β

sqrtθ(‖x‖2
l2

)

}
x

)
L−→max

{
0, 1− β

sqrtθ(‖x‖2l2)

}
x.

The first, third and final arrows are simple affine maps. The second arrow applies pointwise modulus squaring, which can be557

done using finitely many arithmetic operations. The penultimate arrow applies a non-linear map which can be computed from558

one application of sqrtθ and finitely many arithmetic operations and comparisons. The bound ‖ψ0
β(x)− φ0

β,θ(x)‖l2 ≤ θ follows559

from a simple case by case analysis.560

The final piece of machinery needed is a NN approximation of applying a pointwise version of ψ0
β .561

Lemma 4.4. Let s, θ ∈ Q>0, w ∈ QN>0 and for x̂ ∈ CN consider the minimisation problem562

argminx∈CN ‖x‖l1w + s‖x− x̂‖2l2 . [4.4]563

Let x̃s(x̂) denote the solution of Eq. (4.4). Then, there exists φs,θ ∈ ND,2,1 such that564

‖φs,θ(x̂)− x̃s(x̂)‖l2 ≤ θ‖w‖l2 , ∀x̂ ∈ CN [4.5]565

and D = (N,N,N). Each affine map in the NN is linear and is an arithmetic function of w. Moreover, the non-linear maps566

used can be computed from sqrtθ and finitely many arithmetic operations and comparisons.567

Proof. Let B = diag(w1, ..., wN ) ∈ QN×N and consider the function F (y) = ‖By‖l1/(2s) = ‖y‖l1w/(2s). We write the568

minimisation problem in Eq. (4.4) as proxF (x̂). Given y ∈ CN , we identify y = (y1, y2)> ∈ R2N .569

First, for β > 0 and x ∈ Rn recall that the proximal operator of a multiple of the l2-norm is570

proxβ‖·‖
l2

(x) = max{0, 1− β/‖x‖l2}x. [4.6]571

Thus, for β > 0 we define ϕβ(y) = (v(y, β) ∗ y1, v(y, β) ∗ y2)>, where ∗ denotes pointwise multiplication and v(y, β)j =
max{0, 1− β/

√
y2

1,j + y2
2,j} for j = 1, ..., N . The function ϕβ simply corresponds to a proximity map of the l2-norm applied

component-wise to the complexified version of y. Using Eq. (4.6), we have

proxF (y) = argminz∈CN
1
2s‖Bz‖l1 + 1

2‖z − y‖
2
l2

= argminz∈CN
N∑
j=1

(
Bjj
2s

√
z2

1,j + z2
2,j + 1

2
(
(z1,j − y1,j)2 + (z2,j − y2,j)2))

It follows that (in complex vector form) [proxF (y)]j = {0, 1 − Bjj/(2s)
|yj |

}yj , for j = 1, . . . , N. We can therefore write
proxF (y) = Bϕ(2s)−1(B−1y). We unroll the computation of proxF (x̂) via:

x̂
L−→ B−1x̂

NL−−→ ϕ(2s)−1(B−1x̂) L−→ Bϕ(2s)−1(B−1y).
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The first arrow is a simple linear map, the second applies ϕ(2s)−1 and the third is a linear map. We approximate this by
replacing v(y, β)jyj with φ0

β,θ(y1,j + y2,ji) (denoting the replacement of ϕ(2s)−1 by ϕθ(2s)−1) where φ0
β,θ is the NN from Lemma

4.3 with M = 1. This clearly gives φs,θ ∈ ND,2,1, so we need to only bound the error. From Lemma 4.3 we have∥∥proxF (x̂)−Bϕθ(2s)−1(B−1x̂)
∥∥
l2

=
∥∥B (ϕ(2s)−1(B−1x̂)− ϕθ(2s)−1(B−1x̂)

)∥∥
l2
≤ θ‖w‖l2 .

The bound in Eq. (4.5) now follows.572

The following theorem proves that one can construct NNs with objective function bounds. The proof constructs approxima-573

tions of unrolled iterations of Chambolle and Pock’s primal-dual algorithm (32, 33). We have used b to denote part of the574

inputs of the NNs, instead of y, to avoid a clash of notation with the usual notation for primal-dual iterations (y is used to575

denote a dual variable). The bounds in part 2 of Theorem 5 will be combined with results from §4.A to construct the families576

of NNs in Theorem 3.577

Theorem 5. Let A ∈ Q[i]m×N and θ ∈ Q>0. Suppose also that LA ∈ Q≥1 is an upper bound for ‖A‖, and that τ, σ ∈ Q>0578

are such that τσL2
A < 1. Let λ ∈ Q>0, w ∈ QN>0 and consider the resulting optimisation problem (P3). Then there exists an579

algorithm that constructs a sequence of neural networks
{
φAn,λ, θ

}
with the following properties:580

1. (Size) Each φAn,λ : Cm+N → CN takes as input data b ∈ Cm and an initial guess x0 ∈ CN , both of which are completely
general. Also, φAn,λ ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
repeated n times

, N).

2. (O(n−1 + nθ) Error Control) Let581

C = (1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)
√

τ + σ

1− τσL2
A

√
τ + σ

τσ
, [4.7]582

then for any inputs b ∈ Cm and x0 ∈ CN , there exists a vector ψn(b, x0) ∈ CN with583 ∥∥ψn(b, x0)− φAn,λ(b, x0)
∥∥
l2
≤ nθC [4.8]584

such that for any x ∈ CN and η ∈ [0, 1], it holds that585

λ‖ψn(b, x0)‖l1w − λ‖x‖l1w + η‖Aψn(b, x0)− b‖l2 − ‖Ax− b‖l2 ≤
1
n

(
‖x− x0‖2l2

τ
+ η2

σ

)
. [4.9]586

Proof. We use the notation b ∈ Cm to denote an input vector for our NNs throughout the proof and reserve y to denote dual587

vectors, consistent with the literature on primal-dual algorithms for saddle point problems.588

Step 1: The first step is to consider an equivalent optimisation problem over R instead of C, and rewrite the problem
as a saddle point problem. For x ∈ CN , let x1 = real(x) and x2 = imag(x) and consider x = (x1, x2)> as a vector in R2N

(and likewise for the dual variables). With an abuse of notation, we use the same notation for complex x ∈ CN and the
corresponding vector in R2N , though it will be clear from the context whether we refer to the complex or real case. We let
c = (real(b), imag(b))>. Define the matrices

K1 =
(

real(A) −imag(A)
imag(A) real(A)

)
∈ R2m×2N , K2 =

(
real(B) −imag(B)
imag(B) real(B)

)
∈ R2N×2N ,

corresponding to multiplication by the matrices A and B := diag(w1, ..., wN ) respectively. Let F̃1 : R2N → R be defined by589

F̃1(x) =
∑N

j=1

√
(K2x)2

j + (K2x)2
j+N and F̃3(x) = λF̃1(x). Then (P3) is equivalent to minx∈R2N F̃3(x) + ‖K1x− c‖l2 and590

LA is an upper bound for ‖K1‖. The saddle point formulation of the problem is given by591

min
x∈R2N

max
y∈R2m

L(x, y) := 〈K1x, y〉+ F̃3(x)− f∗3 (y), [4.10]592

where f∗3 (y) = χB1(0)(y) + 〈c, y〉, and χS denotes the indicator function of a set S, taking the value 0 on S and +∞ otherwise,593

and B1(0) denotes the closed l2 unit ball.594

Step 2: We will solve Eq. (4.10) by approximating Chambolle and Pock’s primal-dual algorithm (32) (with a shift of595

updates considered in (33)) with a NN. We will write the iteration as an instance of the proximal point algorithm (35) and596

gain a non-expansive map in a norm which we relate to the standard Euclidean norm.597
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We start by setting x0 = x0 (one of the inputs of the NN) and y0 = 0. Recall that for a convex function h, we have that598

x = proxh(z) if and only if z ∈ x+ ∂h(x), where ∂h denotes the subdifferential of h, see, for example, (36, Prop. B.23). Letting599

g = F̃3 and f∗ = f∗3 , the exact iterates can be written as600

xk+1 = argminx∈R2N g(x) + 1
2τ ‖x− (xk − τK∗1yk)‖2l2 = (I + τ∂g)−1(xk − τK∗1yk)

yk+1 = argminy∈R2m f
∗(y) + 1

2σ ‖y − (yk + σK1(2xk+1 − xk)‖2l2

= (I + σ∂f∗)−1 [yk + σK1(2xk+1 − xk)
]
.

[4.11]601

Note that the solutions of these proximal mappings are given by Lemmas 4.3 and 4.4 and their proofs, as we describe explicitly602

below in step 4. The function f∗ also depends on the input data b.603

Let z = (x, y)> and define the matrix

Mτσ =
(

1
τ
I −K∗1

−K1
1
σ
I

)
∈ R2(m+N)×2(m+N),

which is positive definite by the assumption τσL2
A < 1 and hence induces a norm denoted by ‖ · ‖τσ. We can write the iterations

as (see, for example, (33, Sec. 3))

0 ∈M−1
τσ

(
∂g K∗1
−K1 ∂f∗

)
zk+1 + (zk+1 − zk)⇒ zk+1 =

[
I +M−1

τσ

(
∂g K∗1
−K1 ∂f∗

)]−1

zk.

The multi-valued operator

M−1
τσ

(
∂g K∗1
−K1 ∂f∗

)
is maximal monotone with respect to the inner product induced by Mτσ (35) and hence the iterates are non-expansive in the
norm ‖ · ‖τσ. We also have that

‖(x, y)>‖2τσ ≤
‖x‖2l2
τ

+ ‖y‖
2
l2

σ
+ 2LA‖x‖l2‖y‖l2 ≤

(
LA
ν

+ τ−1
)
‖x‖2l2 +

(
LAν + σ−1) ‖y‖2l2 ,

for any ν > 0 by the generalised AM–GM inequality. Choosing ν = σLA and using τσL2
A < 1, we have that604

‖(x, y)>‖2τσ ≤ (τ−1 + σ−1)‖(x, y)>‖2l2 . [4.12]605

A similar calculation yields that606

‖(x, y)>‖2l2 ≤
τ + σ

1− τσL2
A

‖(x, y)>‖2τσ. [4.13]607

Step 3: Next, we use convergence guarantees proven in (33) to obtain inequalities that closely resemble Eq. (4.9). Define the608

ergodic averages Xk = 1
k

∑k

j=1 x
j , Y k = 1

k

∑k

j=1 y
j . By convexity, the map from (x1, y1)> to (Xk, Y k)> is also non-expansive609

in the norm ‖ · ‖τσ. It also holds (see (33) Theorem 1 and remarks) that610

L(Xk, y)− L(x, Y k) ≤ 1
k

(
‖x− x0‖2l2

τ
+ ‖y‖

2
l2

σ

)
, ∀x ∈ R2N , ∀y ∈ R2m. [4.14]611

Let y be parallel to KXk − c such that ‖y‖l2 = η ≤ 1, and x be general in Eq. (4.14). This gives

F̃3(Xk)− F̃3(x) + 〈K1X
k − c, y〉+ 〈c−K1x, Y

k〉 ≤ 1
k

(
‖x− x0‖2l2

τ
+ η2

σ

)
.

Since ‖Y k‖l2 ≤ 1 (otherwise we gain a contradiction in that the left-hand side of Eq. (4.14) is infinite), this implies612

F̃3(Xk)− F̃3(x) + η‖K1X
k − c‖l2 − ‖K1x− c‖l2 ≤

1
k

(
‖x− x0‖2l2

τ
+ η2

σ

)
. [4.15]613

Step 4: The next step is to unroll the iterations in Eq. (4.11) as (complex-valued) NNs that approximate the Xk. We
unroll via the following steps:Xk

xk

yk

 L−→

 Xk

xk − τA∗yk
yk − σAxk

 NL−−→

 Xk

xk+1

yk − σAxk

 L−→

Xk+1

xk+1

uk

 NL−−→

Xk+1

xk+1

yk+1

 ,

with uk = yk +σA(2xk+1−xk)−σb. The first arrow is a simple linear map, the second computes xk+1 =
(
I + τλ∂FA1

)−1 (xk−
τA∗yk). The third is an affine map and the final arrow applies ψ1 to uk. We now define the approximations Z̃k and z̃k
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(of Zk = (Xk, Y k)> and zk = (xk, yk)> respectively) defined by replacing ψ1 with φ1
θ (Lemma 4.3) and the computation

of (I + τλ∂FA1 )−1(xk − τA∗yk) with φ(2τλ)−1,θ(x̃k − τA∗ỹk) (Lemma 4.4). We initialise the network with x̃0 = x0 and
y0 = 0. Since the composition of two affine maps is affine, it follows that the mapping from (b, x0) to X̃n can be realised by
φAn,λ ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
repeated n times

, N).

Clearly, the sequence of NNs are NNs in the sense of §1.B.1 and can be constructed by an algorithm (see §3.A).614

Step 5: Finally, we bound the difference between Zk and Z̃k to deduce Eq. (4.8), and the error bound in the objective
function using the inequalities in Step 3. We write x̃k = xk + ek1 , ỹ

k = yk + ek2 and clearly have that e0
1 = 0 and e0

2 = 0.
We can write x̃k+1 = φ(2τλ)−1(x̃k − τA∗ỹk) + ek+1

3 , with ‖ek+1
3 ‖l2 ≤ θ‖w‖l2 by Lemma 4.4. We also have that ỹk+1 =

ψ1(ỹk + σA(2x̃k+1 − x̃k) − σb) + ek+1
4 , with ‖ek+1

4 ‖l2 ≤ θ by Lemma 4.3. Since ψ1 is non-expansive, it follows that ỹk+1 =
ψ1(ỹk +σA(2(x̃k+1− ek+1

3 )− x̃k)−σb) + ek+1
5 , with ‖ek+1

5 ‖l2 ≤ θ(1 + 2σ ‖A‖ ‖w‖l2). We can then use the fact that the iterates
applied with the exact proximal maps are non-expansive in the norm ‖ · ‖τσ, along with Eq. (4.13) and Eq. (4.12), to conclude
that

‖Xn − X̃n‖l2 ≤
√

τ + σ

1− τσL2
A

‖Zn − Z̃n‖τσ

≤
√

τ + σ

1− τσL2
A

[
‖Zn−1 − Z̃n−1‖τσ + θ

√
τ + σ

τσ

(
1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)

)]

≤ nθ(1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)
√

τ + σ

1− τσL2
A

√
τ + σ

τσ
.

It follows that Eq. (4.8) holds with ψn(b, x0) = Xn and the complex version of Eq. (4.15) implies Eq. (4.9).615

C. Proof of Theorem 3. Step 1: The first step is to derive a bound on the distance between vectors using the square-root
LASSO objective function and rNSPL. For any inputs A (the rational approximations {Al}), ρ and γ described in the theorem,
we can compute, using Lemma 1.8, a positive integer l in finitely many arithmetic operations and comparisons, such that
Al ∈ Q[i]m×N satisfies the rNSPL with constants (1 + ρ)/2 ∈ (0, 1), 2γ > 0. Lemmas 4.1 and 4.2 therefore imply that for any
pair z1, z2 ∈ CN we have

‖z1 − z2‖l1w ≤
3 + ρ

1− ρ
(
2σs,M(z2)l1w + ‖z1‖l1w − ‖z2‖l1w

)
+ 8γ

√
ξ

1− ρ ‖Al(z1 − z2)‖l2 , [4.16]

‖z1 − z2‖l2 ≤
(

1 + ρ

2 + (3 + ρ)κ1/4

4

)
‖z1 − z2‖l1w√

ξ
+
(
2 + κ1/4) γ‖Al(z1 − z2)‖l2 . [4.17]

Combining these two inequalities, we obtain the bound616

‖z1 − z2‖l2 ≤
2C1√
ξ
σs,M(z2)l1w + C1√

ξ

(
‖z1‖l1w − ‖z2‖l1w

)
+ C2‖Al(z1 − z2)‖l2

≤ 2C1√
ξ
σs,M(z2)l1w+2C2‖Alz2 − y‖l2 + C1

λ
√
ξ

(
λ‖z1‖l1w− λ‖z2‖l1w+‖Alz1 − y‖l2−‖Alz2 − y‖l2

)
,

[4.18]617

where the second inequality follows from the fact that ‖Al(z1 − z2)‖l2 ≤ ‖Alz1 − y‖l2 + ‖Alz2 − y‖l2 and we chose a positive618

rational λ ≤ C1/(C2
√
ξ) (we will specify how small |λ− C1/(C2

√
ξ)| must be later, and always assume λ ∼ C1/(C2

√
ξ)). For619

notational convenience, we define620

G(z1, z2, y) := λ‖z1‖l1w − λ‖z2‖l1w + ‖Alz1 − y‖l2 − ‖Alz2 − y‖l2 , [4.19]621

the difference between the values of the objective function FA3 for arguments z1 and z2. We also define622

c(z, y) := 2C1

C2
√
ξ
· σs,M(z)l1w + 2‖Alz − y‖l2 . [4.20]623

It follows from Eq. (4.18) and λ ≤ C1/(C2
√
ξ) that624

‖z1 − z2‖l2 ≤
C1

λ
√
ξ

(c(z2, y) +G(z1, z2, y)) , [4.21]625

which also implies the bound G(z1, z2, y) ≥ −c(z2, y). These bounds hold for general z1, z2 and y.626

Step 2: We now apply Theorem 5 using a suitable scaling to define a family of parametrised NNs, which we iterate later in627

the proof (this corresponds to restarting primal-dual iterations with different parameters). Let σ = τ ∈ (4‖Al‖−1/5, 5‖Al‖−1/6)628

be positive rational numbers. We can compute such parameters by approximating ‖Al‖ via any standard algorithm that629

Matthew J. Colbrook, Vegard Antun and Anders C. Hansen 21 of 32



approximates the largest singular value of a rectangular matrix using finitely many arithmetic operations and comparisons. We630

now use Theorem 5 (with θ specified below) with input y/(pβ) and x0/(pβ) for a given p ∈ N, and β ∈ Q>0 (which we explicitly631

define below). Given φAlp,λ(y/(pβ), x0/(pβ)), Theorem 5 ensures the existence of a vector ψp = ψp(y/(pβ), x0/(pβ)) satisfying632 ∥∥ψp ( ypβ , x0
pβ

)
− φAp,λ

(
y
pβ
, x0
pβ

)∥∥
l2
≤ pCθ633

where C is given in Eq. (4.7) and634

λ‖ψp‖l1w − λ
∥∥∥∥ xpβ

∥∥∥∥
l1w

+
∥∥∥∥Aψp − y

pβ

∥∥∥∥
l2
− 1
pβ
‖Ax− y‖l2 ≤

1
p

(
‖x(pβ)−1 − x0(pβ)−1‖2l2

τ
+ 1
σ

)
[4.22]635

for any x ∈ CN (and we have taken η = 1 in Eq. (4.9)). Define the map Hβ
p : Cm × CN → CN by

Hβ
p (y, x0) = pβφ

Al
p,λ

(
y

pβ
,
x0

pβ

)
.

The additional scaling factors can be incorporated so that Hβ
p ∈ NDp,3p+1,3. Rescaling Eq. (4.22) yields the existence of a636

vector ψ̂p(y, x0) ∈ CN (where the ·̂ denotes an appropriate rescaling by multiplying by pβ) such that637

G
(
ψ̂p(y, x0), x, y

)
≤ 5

4

(
‖Al‖
p2β
‖x− x0‖2l2 + ‖Al‖β

)
, [4.23]638

where we have used τ−1 = σ−1 ≤ 5‖Al‖/4. Moreover, the constant C in Theorem 5 is bounded by639

C = (1 + ‖w‖l2 + 2σ‖Al‖‖w‖l2)
√

τ + σ

1− τσL2
A

√
τ + σ

τσ
≤ Ĉ1(1 + ‖w‖l2), [4.24]640

for a constant Ĉ1 that we can explicitly compute. Hence, upon rescaling Eq. (4.8), we arrive at∥∥ψ̂p(y, x0)−Hβ
p (y, x0)

∥∥
l2
≤ p2θβĈ1(1 + ‖w‖l2).

Using Hölder’s inequality, this also implies that∥∥ψ̂p(y, x0)−Hβ
p (y, x0)

∥∥
l1w
≤ p2θβĈ1(1 + ‖w‖l2)‖w‖l2 .

It follows from the reverse triangle inequality that641

G
(
Hβ
p (y, x0), x, y

)
≤ G

(
ψ̂p(y, x0), x, y

)
+ p2θβĈ1(1 + ‖w‖l2) (‖Al‖+ λ‖w‖l2) . [4.25]642

Using this bound in Eq. (4.23), and the fact that λ . (γ
√
ξ)−1, we can choose θ ∈ Q>0 such that

θ−1 . p2(1 + ‖w‖l2) max
{

1, λ‖w‖l2‖Al‖

}
. p2(1 + ‖w‖l2) max

{
1, ‖w‖l2
‖A‖γ

√
ξ

}
,

and, simultaneously,

G
(
Hβ
p (y, x0), x, y

)
≤ 4

3

(
‖Al‖
p2β
‖x− x0‖2l2 + ‖Al‖β

)
.

Combining this with Eq. (4.21), we obtain the key inequality643

G
(
Hβ
p (y, x0), x, y

)
≤ 4C2

1‖Al‖
3p2βλ2ξ

[c(x, y) +G(x0, x, y)]2 + 4
3‖Al‖β. [4.26]644

Step 3: In this step, we specify the choice of p and β. So far, we have not used any information regarding the vectors x
and y. Recall that for our recovery theorem, we restricted to pairs (x, y) such that

2C1

C2
√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 ≤ δ, ‖x‖l2 ≤ b1, ‖y‖l2 ≤ b2.

Using this, we can choose l larger if necessary such that for any such (x, y), we have the bound

c(x, y) ≤ 2C1

C2
√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 + 2‖A−Al‖‖x‖l2 ≤ 2δ.

The following lemma shows how to choose β and p to gain a decrease in G by a factor of υ ∈ (0, 1), up to small controllable645

error terms.646
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Lemma 4.5. Let υ ∈ (0, 1)∩Q>0, ε0 ∈ Q>0 and choose β ∈ Q>0 such that 8‖Al‖β = 3υ0υ(ε0 + 2δ) for some υ0 ∈ [1, 2). Then647

for any x0 with G(x0, x, y) ≤ ε0 and positive integer p ≥
⌈

8C1‖Al‖
3υλ
√
ξ
√

(2−υ0)υ0

⌉
the following bound holds648

G
(
Hβ
p (y, x0), x, y

)
≤ υ (2δ + ε0) . [4.27]649

Proof. The choice of β ensures that 4
3‖Al‖β ≤

υ0υ
2 (2δ+ε0). Using Eq. (4.26), and the fact that 0 ≤ c(x, y)+G(x0, x, y) ≤ 2δ+ε0,

the bound in Eq. (4.27) therefore holds if

32C2
1‖Al‖2

9p2υ0υλ2ξ
(2δ + ε0) ≤ (2− υ0)υ

2 (2δ + ε0).

Rearranging and taking the square root gives the result, where the ceiling function ensures p is an integer.650

We denote the choice of β in Lemma 4.5 by β(υ, ε0). Since 8/3 < 3, we can, by taking l larger and by making λ closer to651

C1/(C2
√
ξ) if necessary, and through an appropriate choice of υ0, ensure that we can compute (using finitely many arithmetic652

operations and comparisons) a choice p(υ) ≤
⌈ 3C2‖A‖

υ

⌉
such that the conclusion of the lemma holds.653

Step 4: We are now ready to construct our NNs. Note first that G(0, x, y) ≤ ‖y‖l2 ≤ b2, for any y in our desired input. Given654

n ∈ N, we set ε0 = b2 and for j = 2, ..., n set εj = υ (2δ + εj−1) . By summing a geometric series, this implies εn ≤ 2υδ
1−υ + υnb2.655

We define φn(y) iteratively as follows. We set φ1(y) = H
β(υ,ε0)
p(υ) (y, 0) and for j = 2, ..., n we set φj(y) = H

β(υ,εj−1)
p(υ) (y, φj−1(y)).656

Clearly this algorithmically constructs a NN φn. We can concatenate (by combining affine maps) the NNs corresponding to657

the Hβ
p maps to see that φn ∈ ND(n,p),3np+1,3. Moreover, Lemma 4.5 implies the bound G (φn(y), x, y) ≤ εn ≤ 2υδ

1−υ + υnb2.658

Combining this with Eq. (4.18),659

‖φn(y)− x‖l2 ≤
2C1√
ξ
σs,M(x)l1w + 2C2‖Ax− y‖l2 + 2C2‖A−Al‖l2b1 + C1

λ
√
ξ

( 2υδ
1− υ + υnb2

)
, [4.28]660

Again, we can apriori choose l and λ to ensure that

2C2‖A−Al‖l2b1 + C1

λ
√
ξ

( 2υδ
1− υ + υnb2

)
≤ C2

( 2υδ
1− υ + δ + υnb2

)
.

Applying this bound to Eq. (4.28) yields Eq. (1.16).661

Finally, we argue for the error in the weighted l1w-norm. Note that since ρ < 1, the choice of λ ensures that 8γ
√
ξ

1−ρ < 3+ρ
1−ρ

1
λ
.662

It follows from Eq. (4.16), using the same argument for the l2 case, that663

‖φn(y)− x‖l1w ≤
3 + ρ

1− ρ

(
2σs,M(x)l1w + 2

λ
‖Alx− y‖l2 + 1

λ
G (φn(y), x, y)

)
, [4.29]664

Again, we can apriori adjust l and λ as necessary to obtain the bound

‖φn(y)− x‖l1w ≤
3 + ρ

1− ρ

(
2σs,M(x)l1w + 2C2

√
ξ

C1
‖Ax− y‖l2 + C2

√
ξ

C1

( 2υδ
1− υ + υnb2

)
+ δ

C2
√
ξ

C1

)
,

where the final term in brackets corresponds to this final approximation. Simplifying this yields Eq. (1.17).665

To end this section, we provide a brief proof sketch of the bounds in Remark 1.10. The argument is similar to the proof of
Theorem 3. We set φ̂n(y, x0) = βφ

Al
n,λ

(
y
β
, x0
β

)
, and the arguments in Theorem 3 show that we can choose τ, σ, l and θn with

θ−1
n = O(n2) such that for any x, x0 ∈ CN and y ∈ Cm,

G
(
φ̂n(y, x0), x, y

)
≤ 3

2
‖A‖
n

(
‖x− x0‖2l2

β
+ β

)
.

If ‖x‖l2 ≤ b1, then we can choose l such that 2‖A − Al‖b2 ≤ ‖A‖β/(2n) min{C1/(C2λ
√
ξ), 1} and hence Eq. (1.18) follows666

from Eq. (4.18). Similarly, we can use the corresponding bound in Eq. (4.29) to show Eq. (1.19).667

5. Proof of Theorem 4668

For the benefit of the reader, we first recall the orthonormal bases used. We then provide coherence estimates which are used669

to obtain bounds on the number of samples needed, and end this section with the proof of Theorem 4. It will be convenient to670

sometimes enumerate the vector or tensor elements starting from 0, or negative numbers. That is for x ∈ CN with d = 1 we671

might denote its elements as x = (x(0), . . . , x(N − 1)), or x = (x(−N/2 + 1), . . . , x(N/2)) and for d > 1 its k = (k1, . . . , kd)’th672

element is written as x(k). It will always be clear from the context, which range of indices we consider. Furthermore, recall673

from §1.C that we let N = Kd and K = 2r for r ∈ Z≥0. This is assumed throughout this section.674

A. Setup: the relevant orthonormal bases.675
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Discrete Fourier transform. For a d-dimensional signal x = {x(t)}K−1
t1,...,td=0 ∈ CK×···×K we denote its Fourier transform by

[Fx](ω) = 1
N1/2

∑K−1
t1,...,td=0 x(t) exp( 2πiω·t

K
), ω ∈ Rd. For discrete computations, it is customary to consider this transform

at the integers ω ∈ {−K/2 + 1, . . . ,K/2}d and let F (d) ∈ CK
d×Kd denote the corresponding matrix so that F (d)vec(x) =

{[Fx](ω)}ω∈{−K/2+1,...,K/2}d for a suitable vectorisation vec(x) of x and ordering of the ω’s. Let

ϑω =
{
N−1/2 exp

(
−2πiK−1ω · t

)
: t ∈ {0, . . . ,K − 1}d

}
⊂ CK×···×K .

Then676 {
vec(ϑω) : ω ∈ {−K/2 + 1, . . . ,K/2}d

}
[5.1]677

is an orthonormal basis for CK
d = CN . Furthermore, recall from §1.C, that we divide the different frequencies into dyadic

bands. For d = 1 we let B1 = {0, 1} and

Bk =
{
−2k−1 + 1, ...,−2k−2} ∪ {2k−2 + 1, ..., 2k−1} , k = 2, ..., r.

In the general d-dimensional case we set B(d)
k = Bk1 × ...×Bkd for k = (k1, ..., kd) ∈ Nd.678

Walsh transform.679

Definition 5.1. The Walsh functions vn : [0, 1)→ {+1,−1} are defined by680

vω(z) = (−1)
∑∞

j=1
(ω(j)+ω(j+1))z(j)

, z ∈ [0, 1), ω ∈ Z≥0, [5.2]681

where (z(i))i∈N denotes the binary expansion of z (terminating if z is a dyadic rational) and we write ω =
∑∞

j=1 ω
(j)2j−1 for682

ω(j) ∈ {0, 1}. For z ∈ [0, 1)d and ω ∈ Zd≥0, we let vω(z) = vω1(z1) · · · vωd(zd).683

For x ∈ CK×···×K and K = 2r we let its d-dimensional Walsh transform be denoted by

[Wx](ω) = 1
N1/2

K−1∑
t1,...,td=0

x(t)vω(t/K), ω ∈ {0, . . . , 2r − 1}d.

As in the Fourier case, we let W (d) ∈ CN×N so that W (d)vec(x) = {[Wx](ω)}ω∈{0,...,K−1}d for a suitable vectorisation of x684

and ordering of the ω’s. We let %ω = {N−1/2vω(t/K) : t ∈ {0, . . . ,K − 1}d}⊂CK×···×K and note that685 {
vec(%ω) : ω ∈ {0, . . . ,K − 1}d

}
[5.3]686

is an orthonormal basis for CN . As in the Fourier case we recall the frequency bands introduced in §1.C. Let B1 = {0, 1}687

and Bk = {2k−1, . . . , 2k − 1} for k = 2, . . . , r in the one-dimensional case, and B(d)
k = Bk1 × ...× Bkd , k = (k1, ..., kd) ∈ Nd.688

Whether the notation refers to the Walsh or Fourier frequency bands will always be clear from the context.689

Haar-wavelet transform. On CK the Haar wavelet vectors are defined as

ψj,p(i) =


2
j−r

2 , p2r−j ≤ i <
(
p+ 1

2

)
2r−j

−2
j−r

2 ,
(
p+ 1

2

)
2r−j ≤ i < (p+ 1)2r−j

0, otherwise,

for j = 0, ..., r − 1 and p = 0, ..., 2j − 1, and we can define the corresponding scaling vectors as ϕj,p(i) = |ψj,p(i)|. To simplify
the notation we set ψ(0)

j,k = ϕj,k and ψ
(1)
j,k = ψj,k. For d > 1 and q = (q1, ..., qd) ∈ {0, 1}d, p= (p1, . . . , pd) ∈ Zd≥0 define the

tensor product ψq
j,p = ψ

(q1)
j,p1
⊗ ...⊗ ψ(qd)

j,pd
. Splitting these tensors by scale

C1 = {vec(ψq
0,0) : q ∈ {0, 1}d}, Cj = {vec(ψq

j−1,p) : q ∈ {0, 1}d\{0}, pk = 0, ..., 2j−1 − 1},

for j = 2, ..., r, we get that C1 ∪ · · · ∪ Cr is an orthonormal basis for CN . Next, let the vectors in C1 ∪ · · · ∪ Cr, form the rows690

of a matrix Φ ∈ CN×N . The matrix Ψ is called the discrete wavelet transform (DWT) matrix, and its inverse Ψ−1 is called691

the inverse discrete wavelet transform (IDWT) matrix. Notice that since C1 ∪ · · · ∪ Cr is an orthonormal basis, we have the692

relation Ψ−1 = Ψ∗.693
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B. Uniform recovery guarantees and coherence estimates. We express U =
[
U (k,j)]‖k‖l∞≤r,r

k=1,j=1
in block form, where the entries694

in each Uk,j consist of the inner products 〈ϕ, ρω〉 for ϕ ∈ Cj and where ρω is an element in either Eq. (5.1) or Eq. (5.3) with695

ω ∈ B(d)
k , depending on whether we consider Fourier or Walsh sampling. For this decomposition we define local coherence as696

follows.697

Definition 5.2. Let U =
[
U (k,j)]‖k‖l∞≤r,r

k=1,j=1
be defined as above. Then the (k, j)th local coherence of U is

µ(Uk,j) =
∣∣∣B(d)

k

∣∣∣max
p,q
|(Uk,j)pq|2, where

∣∣∣B(d)
k

∣∣∣ is the cardinality of B(d)
k .

Recall from Definition 1.6, that for an (s,M)-sparse vector, s = s1 + . . . + sr denotes the total sparsity. Furthermore,698

m =
∑‖k‖l∞≤r

k=1 mk denotes the total number of samples in an (N,m)-multilevel subsampling scheme. The following shows699

that to use Theorem 3, we need to bound the local coherences of U .700

Proposition 5.3 ((37, Thm. 13.12)). Let εP ∈ (0, 1), (s,M) be local sparsities and sparsity levels respectively with 2 ≤ s ≤ N ,701

and consider the (N,m)-multilevel subsampling scheme to form a subsampled unitary matrix A as in Definitions 1.11 and 1.12.702

Let703

tj = min
{⌈

ξ(s,M, w)
w2

(j)

⌉
,Mj −Mj−1

}
, j = 1, ..., r, [5.4]704

and suppose that705

mk & L′ ·
r∑
j=1

tjµ(Uk,j), k = 1, ..., l [5.5]706

where L′ = r · log(2m) · log2(t) · log(N) + log(ε−1
P ). Then with probability at least 1 − εP, A satisfies the weighted rNSPL of707

order (s,M) with constants ρ = 1/2 and γ =
√

2.708

The following bound the local coherences of U , withMF (s,k) andMW(s,k) defined in Eq. (1.20) and Eq. (1.21).709

Lemma 5.4 (Coherence bound for Fourier case). Consider the d-dimensional Fourier–Haar–wavelet matrix with blocks710

Uk,j, then the local coherences satisfy711

µ(Uk,j) . 2−2(j−‖k‖l∞ )+
d∏
i=1

2−|ki−j|, [5.6]712

where for t ∈ R, t+ = max{0, t}. It follows that713

r∑
j=1

sjµ(Uk,j) .
‖k‖l∞∑
j=1

sj

d∏
i=1

2−|ki−j| +
r∑

j=‖k‖l∞+1

sj2−2(j−‖k‖l∞ )
d∏
i=1

2−|ki−j| =MF (s,k). [5.7]714

Proof. From the one-dimensional case treated in (38, See proof of Lem. 1), we have715 ∣∣∣[Fψ(1)
j,p

]
(ω)
∣∣∣2 . {2−k2−|k−j|, if j ≤ k,

2−k2−3|k−j|, otherwise
,716

We proceed by showing that |[Fψ(0)
j,p ](ω)|2 . 2−k2−|k−j| in the one-dimensional case, before considering d dimensions. Let

ω 6= 0 correspond to a frequency in Bk, j ∈ {0, ..., r − 1} and p ∈ {0, ..., 2j − 1}. Then

[
Fψ(0)

j,p

]
(ω) = 2

j
2−re2πiωp2−j

2r−j−1∑
t=0

e2πiωt2−r = 2
j
2−re21−jπiωp 1− e2πiω2−j

1− e2πiω2−r
.

A simple application of the double angle formula then yields717 ∣∣∣[Fψ(0)
j,p

]
(ω)
∣∣∣ . 2

j
2−r

∣∣sin(πω2−j)
∣∣

|sin(πω2−r)| = 2
j
2

|ω|

∣∣ω2−r
∣∣

|sin(πω2−r)|
∣∣sin(πω2−j)

∣∣ . 2
j
2−k

∣∣sin(πω2−j)
∣∣ ,718

where the second inequality follows from |ω2−r| ≤ 1/2 and 2k . |ω|. If k > j, this implies |[Fψ(0)
j,p ](ω)|2 . 2−k2−|k−j|. If k ≤ j,719

we use that | sin(πt)| ≤ π|t|, ∀t ∈ R to get
∣∣sin(πω2−j)

∣∣ . 2k−j . Hence,720 ∣∣∣[Fψ(0)
j,p

]
(ω)
∣∣∣2 . 2j−2k22k−2j = 2−j = 2−k2−|k−j|.721

If ω = 0 then by definition we have |[Fψ(0)
j,p ](ω)|2 . 2−j = 2−k2−|k−j| and hence this bound still holds.722
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We now consider the general d-dimensional case. The above computations give that

µ(U (k,1)) . 2
∑d

i=1
ki max

q∈{0,1}d

d∏
i=1

max
w∈Bki

∣∣∣[Fψ(qi)
0,0

]
(ω)
∣∣∣2 . d∏

i=1

2−|ki−1|.

Similarly for j > 1

µ(U (k,j)).2
∑d

i=1
ki max

q∈{0,1}d\{0}

d∏
i=1

max
w∈Bki

max
pi∈{0,...,2j−1−1}

∣∣∣[Fψ(qi)
j−1,pi

]
(ω)
∣∣∣2. max

q∈{0,1}d\{0}

d∏
i=1

2−|ki−j|−2qi(j−ki)+ .

The maximum value of this estimate is obtained when the non-zero component of q corresponds to the maximum value of ki.723

This gives precisely Eq. (5.6).724

Before proceeding with the Walsh–Haar–wavelet case, we recall the following lemma (39).725

Lemma 5.5. Let ω and j ≥ 0 be integers so that 2j ≤ ω < 2j+1 and let ∆j
k = [k2−j , (k + 1)2−j) for k∈ Z≥0. Then vω is726

constant on each of the intervals ∆j+1
k , k ∈ {0, . . . , 2j+1 − 1}. Each of the intervals ∆j

k can be decomposed into the intervals727

∆j+1
2k and ∆j+1

2k+1, where vω is equal to 1 on exactly one of them and equal to −1 on the other. When ω = 0, we have vω ≡ 1.728

Lemma 5.6 (Coherence bound for Walsh case). Consider the d-dimensional Walsh–Haar–wavelet matrix with blocks729

U (k,j), then the local coherences satisfy730

µ(U (k,j)) .


d∏
i=1

2−|ki−j| if ki ≤ j for i = 1, ..., d with at least one equality,

0 otherwise

. [5.8]731

It follows that732

r∑
j=1

sjµ(U (k,j)) . s‖k‖l∞
d∏
i=1

2−|ki−‖k‖l∞ | =MW(s,k). [5.9]733

Proof. We begin with some computations in the one-dimensional case. Let Ij,p = {p2r−j , . . . , (p + 1)2r−j − 1}. We recall734

that that supp(ψ(0)
j,p ) = supp(ψ(1)

j,p ) = Ij,p. Using Lemma 5.5 it is clear that for 2m ≤ ω < 2m+1, %ω is constant on Im+1,k, for735

k ∈ {0, . . . , 2m+1 − 1} and that for any pair Im+1,2t, Im+1,2t+1, %ω changes sign. For ω = 0, we have that %ω is all constant.736

Keeping track of the supports gives the relations737

∣∣∣〈ψ(0)
j,p , %ω

〉∣∣∣ =
{

2−j/2 if ω < 2j

0 otherwise
, and

∣∣∣〈ψ(1)
j,p , %ω

〉∣∣∣ =
{

2−j/2 if 2j ≤ ω < 2j+1

0 otherwise
.738

In particular, we can rewrite this as |〈ψ(0)
j,p , %ω〉| = 2−j/2 = 2−k/22−(j−k)/2 if ω ∈ Bk, k ≤ j and 0 otherwise, and note that739

|〈ψ(1)
j,p , %ω〉| = 2−j/2 if ω ∈ Bj+1 and 0 otherwise.740

Turning to the general d-dimensional case. The above computations immediately give that µ(U (k,1)) .
∏d

i=1 δki,1, where
δi,j is the Kronecker-delta. Similarly for j > 1

µ(U (k,j)) =
∣∣∣B(d)

k

∣∣∣ max
q∈{0,1}d\{0}

d∏
i=1

max
ωi∈Bki

max
pi∈{0,...,2j−1−1}

∣∣∣〈%ωi , ψ(qi)
j−1,pi〉

∣∣∣2
. 2
∑d

i=1
ki max

q∈{0,1}d\{0}

d∏
i=1

(
δqi,0δki<j2

−ki−|ki−j| + δqi,1δki,j2
−ki
)

. max
q∈{0,1}d\{0}

d∏
i=1

(
δqi,0δki<j2

−|ki−j| + δqi,1δki,j
)
.

This estimate is zero unless ki ≤ j and at least one of the ki is equal to j. In this case the maximum corresponds to qi = 1 if741

ki = j and qi = 0 otherwise. This gives precisely Eq. (5.8).742
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C. Proof of Theorem 4. For the benefit of the reader, we recall that A = PIDVΨ. We apply Proposition 5.3, noting that the tj743

in Eq. (5.4) satisfy744

tj .
ξ(s,M, w)

w2
(j)

≤ sj · κ(s,M, w), t . s · κ(s,M, w). [5.10]745

Therefore
∑r

j=1 tjµ(Uk,j) . κ(s,M, w)
∑r

j=1 sjµ(Uk,j). Combining with Eq. (5.10), note that Eq. (5.5) holds if746

mk & κ(s,M, w) ·

(
r∑
j=1

sjµ(Uk,j)

)
· L, where [5.11]747

L = r · log(2m)
log(2) · log2 (s · κ(s,M, w)) · log(N) + log(ε−1

P ) = d · r2 · log(2m) · log2 (s · κ(s,M, w)) + log(ε−1
P ),

since N = 2r·d. In the Fourier sampling case, by Lemma 5.4, Eq. (5.11) holds if Eq. (1.22) holds. Similarly, in the Walsh748

sampling case, by Lemma 5.6, Eq. (5.11) holds if Eq. (1.23) holds. By Proposition 5.3, with probability at least 1 − εP, A749

satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2 and γ =
√

2. The conclusion of Theorem 3 then holds for750

the uniform recovery of the Haar wavelet coefficients x = Ψc ∈ CN .751

For the final part, we use Theorem 3. The only difference is that we have to compose the NNs with (an approximation of)
the matrix Ψ∗ to recover approximations of c from approximations of x = Ψc. Recall that

Z = max

{
1,

maxj=1,...,r w(j)
√

(Mj −Mj−1)√
ξ(s,M, w)

}

and set n0 =
⌈
log
(
δ−1Z

)
κ1/4Z

⌉
. Let p be as in Theorem 3 and let n1 ∈ Z≥0 such that n0 = n1p+ n2 for n1 ∈ {0, ..., p− 1}

(the n from the statement of the theorem corresponds to n1p). Set φ(y) = Ψ∗ [φn1(y, 0)] , where φn1 denotes the NN from
Theorem 3 with b1 = 1, b2 = ‖A‖+ δ and υ = e−1. Strictly speaking, we need to approximate ‖A‖ and e−1, and also apply
a rational approximation of the matrix Ψ∗ instead of Ψ∗, but we have avoided this extra notational clutter (the associated
approximation errors can be made smaller than κ1/4δ since the vectors we apply the matrix to are uniformly bounded). Now
suppose that y = PIDV c+ e ∈ J (δ, s,M, w), and notice that for ‖c‖l2 ≤ 1 we have that ‖y‖l2 ≤ ‖A‖+ ‖e‖l2 ≤ b2 since Ψ is
an isometry. Then, since C1, C2 ∼ κ1/4 (using that κ ≥ 1), Eq. (1.16) implies that

‖φ(y)− c‖l2 = ‖φn0(y, 0)−Ψc‖l2 . κ
1/4δ + b2κ

1/4e−n1 .

The theorem follows if we can prove that b2e−n1 . δ.752

Let t be as in Eq. (5.4) and let ∆1,∆2, ... be a partition of {1, ..., N} such that each support set is (t,M)-sparse. We can
choose such as partition with at most

max
j=1,...,r

⌈
Mj −Mj−1

tj

⌉
. max
j=1,...,r

⌈
Mj −Mj−1

min{ξ(s,M, w)/w2
(j),Mj −Mj−1}

⌉
sets. The proof of Proposition 5.3 shows that A satisfies the RIPL of order (t,M) and hence for any x ∈ CN ,

‖Ax‖l2 ≤
∑
i

‖A(x∆i)‖l2 .
∑
i

‖x∆i‖l2 . max
j=1,...,r

√⌈
Mj −Mj−1

min{ξ(s,M, w)/w2
(j),Mj −Mj−1}

⌉
‖x‖l2 ,

where we have used Hölder’s inequality in the last step. It follows that ‖A‖ . Z and hence that p . κ1/4Z and b2 . Z. This753

implies that n1 & log
(
δ−1Z

)
and b2e−n1 . δ, completing the proof.754
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Fourier sampling regions Walsh sampling regions
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Fig. S1. The different sampling regions used for the sampling patterns for Fourier (left, r = 3) and Walsh (right, r = 4). The axis labels correspond to the frequencies in each
band and the annular regions are shown as the shaded greyscale regions.
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|x1 + v1| |x2 + v2| |x3 + v3|

Φ(A(x1 + v1)) Φ(A(x2 + v2)) Φ(A(x3 + v3))

Fig. S2. (FIRENET withstands worst-case perturbations and generalises well). To show that FIRENET generalises well and is stable, we consider three different images
xj , j = 1, 2, 3. For each image xj we compute a perturbation vj meant to simulate worst-case effect for a FIRENET Φ with n = 5 and p = 5. The first row shows the
perturbed images xj + vj , whereas the second row shows the FIRENET reconstructions from data A(xj + vj). Here A ∈ Cm×N is a subsampled discrete Fourier
transform with m/N = 0.25 and N = 2562. The perturbations vj have magnitude ‖Avj‖l2 /‖Axj‖l2 ≥ 0.05 in the measurement domain.
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Image Fourier Sampling Walsh Sampling

Fig. S3. Left: The true image. Middle: Reconstruction from noisy Fourier measurements. Right: Reconstruction from noisy Walsh measurements. Both images were
reconstructed using only a 15% sampling rate according to the sampling patterns in Figure S1 and n = p = 5. The top row shows the full image and the bottom row shows a
zoomed in section (corresponding to the red boxes in the top row).
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Fig. S4. The convergence of the algorithm in the number of inner iterations. The dashed line shows ‖c− c∗‖l2 /‖c‖l2 . In both cases, the error between the reconstruction
and the image decreases exponentially until this bound is reached. The objective function gap decreases exponentially slightly beyond this point, demonstrating that the robust
null space property (in levels) controls the l2-norm difference between vectors (locally around c∗) down to the error ‖c− c∗‖l2 (see the bound in Eq. (4.18) in our proof).
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