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networks (NNs), and artificial intelligence

(Al) over the last decade has been
profound. Advances in computer vision
and natural language processing have
yielded smart speakers in our homes,
driving assistance in our cars, and
automated diagnoses in medicine. Al has
also rapidly entered scientific computing.
However, overwhelming amounts of
empirical evidence [3, 8] suggest that Instabilities in medical diagnosis
modern Al is often non-robust (unstable), Original Mole Perturbed Mole
may generate hallucinations, and can
produce nonsensical output with high
levels of prediction confidence (see
Figure 1). These issues present a serious
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Figure 1. Hallucinations in image reconstruction and instabilities in
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Robustness and trust of algorithms lie at neural network (NN). 1d. Combined image of the nevus with a
the heart of numerical analysis [9]. The slight perturbation and the diagnostic probability from the same
lack of robustness and trust in Al is deep NN. One diagnosis is clearly incorrect, but can an algorithm
hence the Achilles’ heel of DL and has determine which one? Figures 1a and 1b are courtesy of the 2020
become a serious political issue. fastMRI Challenge [10], and 1c and 1d are courtesy of [6].

Classical approximation theorems show that a continuous function can be approximated arbitrarily
well by a NN [5]. Therefore, stable problems that are described by stable functions can be solved
stably with a NN. These results inspire the following fundamental question: Why does DL lead to
unstable methods and Al-generated hallucinations, even in scenarios where we can prove that
stable and accurate NNs exist?

Our main result reveals a serious issue for certain problems; while stable and accurate NNs may
provably exist, no training algorithm can obtain them (see Figure 2). As such, existence theorems
on approximation qualities of NNs (e.g., universal approximation) represent only the first step
towards a complete understanding of modern Al. Sometimes they even provide overly optimistic
estimates of possible NN achievements.

The Limits of Al: Smale’s 18th Problem

The strong optimism that surrounds Al is evident in computer scientist Geoffrey Hinton’s 2017
quote: “They should stop training radiologists now.” Such optimism is comparable to the
confidence that surrounded mathematics in the early 20th century, as summed up in David
Hilbert’s sentiment: “Wir miissen wissen. Wir werden wissen”[“We must know. We will know”].

Hilbert believed that mathematics could prove or disprove any statement, and that there were no
restrictions on which problems algorithms could solve. The seminal contributions of Kurt Goédel [7]
and Alan Turing [12] turned Hilbert’s idealism upside down by establishing paradoxes that
expedited impossibility results about the feasible achievements of mathematics and digital

computers.

A similar program on the boundaries of Al is necessary. Stephen Smale already suggested such a
program in the 18th problem on his list of mathematical problems for the 21st century: What are
the limits of AI?[11]. As we gain a deeper appreciation of Al’s limitations, we can better understand
its foundations and acquire a stronger sense of direction for exciting new Al techniques. This is
precisely the type of growth that happened with the work of Gddel and Turing, which respectively
lead to many modern foundations and modern computer science.

By expanding the methodologies of Gédel and Turing, we initiate a foundations program about
the boundaries of Al and demonstrate limitations on the existence of randomized algorithms for
NN training [4]. Despite many results that establish the existence of NNs with excellent

approximation properties, algorithms that can compute these NNs only exist in specific cases.
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Figure 2. Simplified summary of our main theorem [4]. There are basic computational problems such that for any K € N,

certain cases lead to the phenomenon depicted here. The proof technique originates from the mathematics behind the

Solvability Complexity Index hierarchy, which generalizes mathematical paradoxes that date back to David Hilbert, Kurt

Godel, and Alan Turing [1, 2, 4, 7, 12]. Figure courtesy of the authors.

Desirable NNs May Exist

Classical approximation theorems show that NNs can approximate a continuous function

arbitrarily well [5]. In response, we might initially expect few restrictions on the scientific problems

that NNs can handle. For example, consider the least absolute shrinkage and selection operator

(LASSO) problem

E(y) = argmin, v Allzp + [[Az — 93,

A>0

for a fixed A € R™¥ with variable y € R™. Can we train a NN to solve this problem? Let us
consider a simple scenario wherein we have a collection § = {y, }gzl and want to compute a

(1)

NN ¢ : R™ — R¥, such that dist(¢(y3 ), E(yx)) < € for some accuracy parameter € > 0 and

anyy, € S.

Here, dist(z, Z(y)) denotes the [2-distance of x € R™ to the solution set Z(y). We take the

word “compute” literally, meaning that a computer can never exactly give A and the y;,s; for

example, an entry of A could be an irrational number. Even if A and the y; s are all rational, the

overwhelming majority of software runs floating-point arithmetic in base-2. The training data that

is available to an algorithm is thus the collection of all T = ({4, }nen, {Uk.n b e<rmnen), such that

|A— Al <27 and ||y — Ykn| < 27", ie., an arbitrary precision approximation of the

dataset. By denoting the suitable collection of NNs with A/ A/, it follows easily from classical

approximation theory that a mapping ® exists with

®(T) = o7 € NN, where o¢7(y) € E(y)

Vy e S.

This formula raises the following question: /f we can prove the existen~e of a NN with great

approximation qualities, can we find the NN with a training algorithm¢
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The World of Neural Networks

Simplified: Achievable accuracy Refined: Achievable accuracy and amount of training data needed

Existence of NNs Achievable accuracy
& training algorithms of computation

B trainable w/ 1 datum arbitrary accuracy

B trainable w/ 2 data
3 digits of accuracy

O arb. large training data 2 digits of accuracy

. O NN exists 1 digit of accuracy
Figure 3. The world of neural networks (NNs) according to the main results, along with the different collections of NNs
based on the amount of data that is needed to compute them. For example, the dark green area that falls above the top
dashed red line represents the family of NNs that training algorithms can compute to arbitrary levels of accuracy with only

one data point. Figure courtesy of the authors.

But They May Not Be Trainable

The answer to the aforementioned question is “no,” but for quite subtle reasons. Consider the
earlier LASSO problem (1). While a NN for this problem provably exists—as in (2)—it generally
cannot be trained by an algorithm [4]. Pick any positive integers K > 3 and L. Well-conditioned
classes of datasets, such that (2) is true, do then exist. Yet regardless of computing power and
the data’s precision levels, we have the following:

(i) Not trainable: No algorithm, not even one that is randomized, can produce a NN with
K digits of accuracy for any member of the dataset with a probability greater than 1/2.

(ii) Not practical: K — 1 digits of accuracy is possible over the whole dataset, but any
algorithm that trains such a NN requires arbitrarily large training data.

(iii) Trainable and practical: K — 2 digits of accuracy is possible over the whole dataset via
an algorithm that only uses L training data, regardless of the parameters.

Figure 3 depicts a Venn diagram of the intricate world of NNs that is based on the above results.
We try to compute the existing accurate NN in Figure 4, even though we know that doing so is
impossible.

The SCI Hierarchy

The techniques that prove our results stem from the seminal work of Godel and Turing, with
generalizations and extensions from the Solvability Complexity Index (SCI) hierarchy [2]. The SCI
hierarchy and its accompanying tools allow users to obtain sharp boundaries of algorithms’
abilities. We expand upon and refine some of the tools that are associated with this hierarchy, as
well as *ine mathematics behi~d Smale’s extendad 9th problem abou* "near programs [1, 1! To
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prove our results, we also introduce and develop the theory of sequential general algorithms.
General algorithms are a key tool within the SCI hierarchy, and sequential general algorithms
broaden this concept and capture the notion of adaptive and/or probabilistic choices of training
data.

ming dist(Vp(yr ). Z(A. yp)) ming dist(Pp(yr). =(A.yx)) prec. of training data 10 K

(.2999690 0.2507827 n= 10 101
().3000000 0.2598050 n =20 101
().3000000 0.25980052 n =30 101
0.0030000 0.0025980 n =10 103
0.0030000 0.0025980 n=20 103
0.0030000 0.0025980 n=30 103
().0000030 0.0000015 n=10 10—°
0.0000030 0.0000015 n =20 105
0.0000030 0.0000015 n =30 106

Figure 4. Impossibility of computing approximations of the neural network (NN) to arbitrary accuracy. We demonstrate the
impossibility statement on fast iterative restarted networks ®,, and learned iterative shrinkage thresholding algorithm
networks W,, [4]. The table reveals the shortest 12-distance between the networks’ output and the problem’s true solution
for different values of n (precision of training data is 27 ") and K (integer from the theorem). Neither of the trained NNs
can compute the existing correct NN to 107K digits of accuracy, but both compute approximations that are accurate to

10~ K+ digits. Figure courtesy of [4].

The Boundaries of Al Through Numerical Analysis

Any theory seeking to understand the foundations of Al must be aware of methodological
limitations. This realization is increasingly apparent. “2021 was the year in which the wonders of
artificial intelligence stopped being a story,” Eliza Strickland wrote in /EEE Spectrum. “Many of this
year’s top articles grappled with the limits of deep learning (today’s dominant strand of Al) and
spotlighted researchers seeking new paths.”

Given the rich history of establishing methodological boundaries via condition numbers, backward
errors, precision analysis, and so forth, it is natural to turn to numerical analysis for a solution. We
must design a program about the boundaries of Al through numerical analysis to determine the
areas wherein modern Al can be made robust, secure, accurate, and ultimately trustworthy. Due
to methodological boundaries, such a program cannot include all areas. The formidable question
is thus: When can modern Al techniques provide adequate robustness and trustworthiness? The
answer to this query will shape political and legal decision making and significantly impact the
market for Al technologies.

Moreover, we cannot determine this theory solely with the extensive collection of non-
constructive existence theorems for NNs, as evidenced by the previous impossibility result. The
big che 'enge is identifying ** : NNs that are not only stable and acci.. .7e, but can also be
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computed by algorithms. This collection is a small subset of the collection of NNs that are proven
to exist.
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