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PSEUDOERGODIC OPERATORS

AND PERIODIC BOUNDARY CONDITIONS

MATTHEW J. COLBROOK

Abstract. There is an increasing literature on random non-self-adjoint infi-
nite matrices with motivations ranging from condensed matter physics to neu-
ral networks. Many of these operators fall into the class of “pseudoergodic”
operators, which allows the elimination of probabilistic arguments when study-
ing spectral properties. Parallel to this is the increased awareness that spectral
properties of non-self-adjoint operators, in particular stability, may be better
captured via the notion of pseudospectra as opposed to spectra. Although it
is well known that the finite section method applied to these matrices does not

converge to the spectrum, it is often found in practice that the pseudospec-
trum behaves better with appropriate boundary conditions. We make this
precise by giving a simple proof that the finite section method with periodic
boundary conditions converges to the pseudospectrum of the full operator.
Our results hold in any dimension (not just for banded bi-infinite matrices)
and can be considered as a generalisation of the well-known classical result for
banded Laurent operators and their circulant approximations. Furthermore,
we numerically demonstrate a convergent algorithm for the pseudospectrum,
including cases where periodic boundary conditions converge faster than the
method of uneven sections. Finally, we show that the result carries over to
pseudoergodic operators acting on lp spaces for p ∈ [1,∞].

1. Introduction

Random matrices appear in a wide number of contexts throughout the sciences,
ranging from applied physics through to areas of pure mathematics such as number
theory [13, 38, 64, 65]. In particular, the study of random Jacobi operators can be
traced back at least as far as the famous Anderson model [2, 3]. More recently,
over the past two decades, there has been a considerable amount of interest in the
study of random non-self-adjoint (NSA) operators on separable Hilbert spaces [15,
16, 31, 35, 36]. As well as their interesting mathematical properties, motivation for
studying such operators can be found in condensed matter physics: conductivity of
disordered media, flux lines in superconductors and asymmetric hopping particles,
and even in population biology [1, 39, 50, 53, 66]. One is often interested in how
the spectrum and pseudospectrum behave under truncation of the operators to
finite matrices [29,40,44,60,73,74], and this can lead to algorithms to numerically
compute spectral properties. Many of the operators studied in these papers are
pseudoergodic (also sometimes referred to as stochastic Laurent matrices in the
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l2(Z) case), which roughly means that every possible finite pattern in the matrix
elements appears somewhere up to arbitrary precision (see Definition 1.1). This
allows the treatment of such random operators in a deterministic fashion, leading
to simplified proofs of spectral properties which often depend only weakly on the
distribution of matrix elements (e.g., on its support).

In general, spectral properties of NSA operators are much more difficult to anal-
yse than their self-adjoint relatives due to the absence of the spectral theorem and
instability of eigenvalues/spectra [35,37]. This has led to the study of pseudospec-
tra. If A is a bounded operator, then for ε > 0 the ε-pseudospectrum is defined
as

(1.1) Spε(A) := Sp(A) ∪ {z /∈ Sp(A) : ‖R(z, A)‖−1 ≤ ε}
or, equivalently, via the stability condition [67],

Spε(A) = cl
( ⋃
‖B‖≤ε

Sp(A+B)
)
,

where cl denotes closure. Here we use the notation R(z, A) = (A − zI)−1 for the
resolvent. Amongst its uses, the pseudospectrum was crucial for the solution of
the long-standing problem of computing the spectrum from matrix values [48] and
it has a useful role in non-Hermitian quantum mechanics [56]. It has been argued
that pseudospectra, as opposed to spectra, may provide more useful information
when studying NSA operators, in particular, when studying the notion of stability
[35, 72]. We refer the reader to [74] for more applications.

This paper studies the limit of pseudospectra of finite truncations (finite section)
of pseudoergodic operators. We show that in the limit of increasing system size,
pseudospectra converge to the pseudospectra of the full operator if we apply periodic
boundary conditions. This result was conjectured in [34] for a one-dimensional
lattice model but has so far remained an open problem.1 The result presented here
holds for any dimension and any finite range interaction pseudoergodic operator
(not just tridiagonal). In other words, the passage from finite volumes to the
infinite volume case is continuous with respect to the pseudospectrum. This can
be considered as a complement to the well-known corresponding result for banded
Laurent operators—it is precisely the fact that pseudoergodic operators “look the
same” under translational shifts that allows us to prove this result. We also convert
this new result into an efficient algorithm that converges to the pseudospectrum
in the Hausdorff metric, which we numerically demonstrate on a wide range of
examples. Furthermore, the fact that we can approximate the pseudospectrum of
the full infinite-dimensional operator using square matrices allows the numerical
computation of pseudospectra for p �= 2, and we also prove the convergence of
pseudospectra in this case.2 This is in contrast to the method of uneven sections
(see [33] and the Appendix) which uses rectangular matrices and for which no

1Most results in the literature consider either special cases of tridiagonal pseudoergodic oper-

ators or use the theory of limit operators to write the pseudospectrum of pseudoergodic operators
acting on l2(Z) as the union of pseudospectra over all possible periodic submatrices (see for ex-
ample [45,46]), which is not helpful from a numerical perspective.

2Although it must be said that one cannot use singular values of matrices to characterise the

pseudospectrum when p �= 2, and it appears the only known method of computing p-pseudospectra
of finite matrices is via directly estimating ‖R(z,A)‖p over some fine grid. The computation of
matrix norms of finite square matrices for p �= 1, 2, or ∞ is NP-hard [52], so this currently seems
intractable for large matrices for any p other than these.
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such generalisation is numerically possible. As well as being of interest from the
finite section point of view, our results have practical significance. We numerically
demonstrate the algorithm for general p and also compare the p = 2 case to the
method of uneven sections (which is only available for p = 2), where in some cases
the new algorithm converges much faster.

It should be mentioned that in sharp contrast to our results, spectra of finite
sections are often very different from that of the full operator, particularly in the
NSA case. The classic example of this is the NSA Anderson model introduced
by Hatano and Nelson in the context of vortex pinning in type-II superconductors
[49], which has been widely studied [25, 26, 35, 50, 51, 66, 71]. The model showed
that an imaginary gauge field in a disordered one-dimensional lattice can induce a
delocalisation transition. This pseudoergodic operator acts on l2(Z) via

(1.2) (Hx)n = e−gxn−1 + egxn+1 + Vnxn,

where g > 0 and V is a (real-valued) random potential. Truncating the operator
to span{e−n, . . . , en} and adopting periodic boundary conditions gives a spectrum
with the famous “bubble and wings”. Goldsheid and Khoruzhenko have studied the
convergence of the spectral measure in the periodic case as n → ∞ in [43,44]. This
can be very different from the spectrum of the operator on l2(Z) [35], highlighting
the difficulty in computing the spectrum. Applying no boundary conditions and
simply taking the matrix3 PnAPn is even worse. In this case, the matrix is similar
to a real symmetric matrix, hence has completely real spectrum! We can already
see stability playing a role—as n increases, the condition number of the similarity
transform increases exponentially for g �= 0. There are certain cases where the
obvious finite section PnAPn behaves better, and we refer the reader to [28, 29]
for a thorough study of the famous “hopping sign model” (also a pseudoergodic
operator) where, remarkably, this is the case.

1.1. Definitions and main results. Given A ∈ B(l2(Zd)) and i, j ∈ Zd, we will
denote the inner product 〈Aej , ei〉 with respect to the canonical basis by Ai,j .

Definition 1.1 (Pseudoergodicity). Let A be a bounded operator acting on l2(Zd).
Given a collection M = {Mk}k∈Zd of compact subsets Mk ⊂ C, we say that M
is permissible if only finitely many of the Mk are not {0}. Given a permissible
M , we say that A is pseudoergodic with respect to M if Ai,j ∈ Mi−j and the
following property holds. Given any ε > 0, finite subsets Sk ⊂ Z

d, and functions
Fk : Sk → Mk, there exists a translation T acting on Zd such that

(1.3) sup
i∈Sk

∣∣AT (i),T (i)−k − Fk(i)
∣∣ < ε ∀k ∈ Z.

We define A(M) to be the class of pseudoergodic operators with respect to M , and
Ωd to be the class of pseudoergodic operators acting on l2(Zd).

A few remarks are in order. Note first that in the case of d = 1, such an operator
must be banded by the assumption that only finitely many of the Mk are not {0}.
Second, it is also clear that such operators must be bounded for any d. This is
also true when considering these infinite matrices as operators acting on lp(Zd) (see
Section 3) for which we use the same definition of pseudoergodicity. Third, the
same translation T is required to work for all the diagonals simultaneously and it

3Throughout Pn will denote the orthogonal projection onto span{e−n, e−n+1, ..., en} in the
case of l2(Z).
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is clearly sufficient to only test those diagonals that are nonzero. The idea is that
every possible finite “pattern” is realised up to an arbitrarily small error in each of
the selected diagonal. In the case of the (one-dimensional) NSA Anderson model
with i.i.d. diagonals with support M , A is clearly almost surely pseudoergodic with
respect to M1 = {eg},M0 = M , and M−1 = {e−g} (with all other diagonals
being zero). This can be extended to the hopping sign model, random tridiagonal
operators, and many other variants studied in the literature.

It is straightforward to show that the maps Sp(·) and Spε(·) are constant on each
A(M) (see [36] for the case of pseudoergodic potentials; exactly the same argument
can be extended to the cases in this paper). We then let Aper

n denote the nth order
truncation of A ∈ Ωd with natural periodic boundary conditions (see Section 2, in
particular, equation (2.7)). In the Hilbert space case of l2(Zd) our main result is
the following.

Theorem 1.2. Let A ∈ Ωd, and let ε > 0. Then limn→∞ Spε(A
per
n ) = Spε(A)

in the Hausdorff metric and Spε(A
per
n ) ⊂ Spε(A). Define the algorithm Γn(A) =

PseudoSpecPer(A, n, ε), then limn→∞ Γn(A) = Spε(A) in the Hausdorff metric and
Γn(A) ⊂ Spε(A).

The routine alluded to in the above theorem is written in pseudocode as

Function PseudoSpecPer(A, n, ε)
Input : n, A pseudoergodic, ε > 0
Output: Γ ⊂ C, an approximation to Spε(A)

G = 1
n (Z+ iZ) ∩Bn(0)

for z ∈ G do
B = Aper

n − zI
C = (Aper

n )∗ − z̄I
S = B∗B
T = C∗C
p = IsPosDef(S − ε2)
q = IsPosDef(T − ε2)
ν(z) = min(p, q)

end
Γ =

⋃
{z ∈ G |ν(z) = 0}.

end

Here Bn(0) denotes the closed ball of radius n around 0 and the IsPosDef rou-
tine determines whether a matrix is positive definite (returns 1) or not (returns
0). This can be done by using an incomplete Cholesky decomposition [33] (cho-
sen for stability and speed of computation). If wanted, this can be altered to use
only finitely many arithmetic operations and comparisons. It is also efficient to
restrict/alter the ball G to be any region of the complex plane where one is inter-
ested in computing the pseudospectrum (e.g., near a rough approximation of the
pseudospectrum).

The results can also be extended to the lp(Zd) case where the definition of pseu-
doergodicity remains the same and we use a superscript to denote pseudospectra
with respect to the corresponding operator norm.

Theorem 1.3. Let p ∈ [1,∞], and let A ∈ Ωd. Then limn→∞ Sppε (A
per
n ) = Sppε (A)

in the Hausdorff metric and Sppε (A
per
n ) ⊂ Sppε (A).

Licensed to University of Cambridge. Prepared on Fri Jul 22 04:59:40 EDT 2022 for download from IP 131.111.20.225.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PSEUDOERGODIC OPERATORS & PERIODIC BOUNDARY CONDITIONS 741

This can also be used in a similar routine to PseudoSpecPer (see Section 3).
The 2-norm and any other p-norm of an n × n matrix can only differ by a factor
of

√
n, and hence the different notions of pseudospectra are only useful for large or

infinite matrices. There have been examples [54] where this difference is expected
to be important. In particular, the 1-norm and ∞-norm pseudospectra are relevant
for probability theory [11, 12] and heat flow [4].

1.2. Connections with previous work. There is a vast literature on the study of
the finite section method and conditions under which it converges. For large classes
of operators, an open question is whether suitable boundary conditions applied to
finite sections leads to convergence of the spectrum/pseudospectrum as the matrix
size increases, and the finite section method has often been viewed in connection
with Toeplitz theory. In particular, we refer the reader to work by Böttcher [14,24],
Böttcher and Silbermann [22], Lindner [59, 61], Marletta [62], and Marletta and
Scheichl [63]. For an operator algebra point of view, we refer the reader to [5–7,27].
Our results fit nicely into this framework by answering this question for a large
class of well-studied operators in the case of the pseudospectrum.

Definition 1.1 is similar to that of [36], where the definition of pseudoergodicity
first appeared in the literature; however, there are some differences. We do not
consider an arbitrary group of permutations of Zd but rather consider only transla-
tions which respect the structure of Zd. We also consider arbitrary pseudoergodic
nondiagonal parts rather than the case of a sum of a pseudoergodic potential and
operator that commutes with the action of the permutation group. Extensions to
Zd ×S (equivalently vector-valued sequences) with S finite are also given (see Sec-
tion 2.4). Note also that if we select elements of the diagonals independently from
a probability distribution of support Mk, then A will almost surely be pseudoer-
godic. Weaker conditions ensure pseudoergodicity, but we will use this context for
our numerical examples.

An extreme version of pseudoergodic operators are banded Laurent operators.
It is well known in this case that the l2 spectrum and pseudospectrum of the cor-
responding circulant matrices converge to that of the infinite-dimensional operator
(the matrices are normal and one can easily prove convergence of the spectrum us-
ing Fourier analysis). Perhaps surprising is the fact that Toeplitz operators under
pure finite section (truncation with no added boundary conditions) also share nice
properties with regards to pseudospectra. This statement is false for the spectrum
as is easily seen by considering the shift operator. The following is taken from
[20,21], where Sppε (A) denotes the pseudospectrum with respect to the lp norm.

Theorem 1.4. Let b be a Laurent polynomial, and let T (b) be the correspond-
ing Toeplitz operator with finite sections Tn(b). Then for p ∈ (1,∞) we have the
following convergence in the Hausdorff metric:

lim
n→∞

Sppε (Tn(b)) = Sppε (T (b)) ∪ Sppε (T (b̃)),

where b̃(ζ) = b(−ζ).

In particular, we recover convergence for the case p = 2. Amongst its extensions,
this result has been shown to hold for piecewise continuous symbols [19,23]. There
are also studies considering randomly perturbed Laurent and Toeplitz operators
[15–18].
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742 MATTHEW J. COLBROOK

With regards to pseudoergodic operators, work has focused on the case of pure
finite section (no periodic boundary conditions). Remarkably this converges to the
pseudospectrum of the full (doubly infinite) operator for the hopping sign model
[29]. Furthermore, for tridiagonal pseudoergodic operators, it has been proven [30]
that the pseudospectrum using pure finite section converges for p = 2 to the corre-
sponding pseudospectrum of the operator A+ on l2(N) (which is also independent
of the operator sampled from the pseudoergodic class). This convergence can over-
estimate the pseudospectrum of the doubly infinite operator, in particular for the
NSA Anderson model example we give later. However, the pseudospectrum still
captures in some sense the famous bubble and wings. Finally, it was shown in
[30] that for tridiagonal A, the 2-norm pseudospectra of A+ is the union of Sp2ε(A)
together with a set G that closes the gap between Sp(A+) and Spess(A+), a result
completely analogous to the Toeplitz/Laurent case.

Finally, it should be mentioned that our results fit into the framework of the
Solvability Complexity Index (SCI) hierarchy. The SCI provides a classification
hierarchy [9,10,48] of spectral problems providing classifications according to their
computational difficulty. The SCI of a class of spectral problems is the least number
of limits needed in order to compute the spectrum of operators in this class. In
particular, denoting the algorithm in Theorem 1.2 by Γε,n, our results show that
computing the pseudospectrum of operators in Ωd requires one limit and computing
the spectrum requires at most two limits via

Sp(A) = lim
ε↓0

lim
n→∞

Γε,n(A).

This is in contrast to the class of general bounded operators where three limits are
needed to compute the spectrum [9].

1.3. Organisation of the paper. The paper is organised as follows. In Section 2
we prove our main results for the Hilbert space case l2(Zd). These are generalised
to lp spaces in Section 3 where we recover the full pseudospectrum for p ∈ [1,∞]. In
Section 4 we present examples, which includes an explanation of the results in [33]
that gave a method for increasing the speed of convergence to the pseudospectrum of
the NSA Anderson model. We also demonstrate that the speed of convergence using
periodic boundary conditions can be superior to the method of “uneven sections”
proposed in [33], with substantial speed up in higher dimensions (d > 1). Finally,
we conclude with a discussion of the results in Section 5.

2. The Hilbert space case

Throughout this section, we will use ‖ · ‖ to denote the standard l2-norm and
assume that M is permissible. Let A ∈ B(l2(Zd)) and define the injection modulus
by

(2.1) σ1(A) := inf{‖Ax‖ : x ∈ l2(Zd), ‖x‖ = 1},
which is equal to the smallest singular value in the case of finite matrices. Define
the function

(2.2) ψA(z) := min{σ1(A− zI), σ1(A
∗ − z̄I)}.

It is well known that ψA(z) = ‖R(z, A)‖−1, and hence we can characterise the
pseudospectrum via

(2.3) Spε(A) = {z ∈ C : ψA(z) ≤ ε}.
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As part of the proof of Theorem 1.2, we will show that for n larger than the
bandwidth of A,

lim sup
l→∞

ψAper
l

(z) ≤ ψA(z) ≤ ψAper
n

(A),

where Aper
n denotes the finite sections of A with appropriate periodic boundary

conditions (see below). We begin with the simpler case of d = 1 and then discuss
the generalisation to d > 1. These are then used to prove Theorem 1.2. Finally,
we discuss the generalisation to vector-valued l2 sequences (where matrix-valued
entries Ai,j are considered).

2.1. The case of d = 1. We will first deal with the case of d = 1 since it presents
the key ideas without additional notational complexity. Given A ∈ B(l2(Z)), let
Ao

n ∈ C(2n+1)×(2n+1) denote the matrix formed by PnAPn with Pn the orthogonal
projection onto span{e−n, e−n+1, . . . , en}. In other words, Ao

n is the matrix formed
by a standard finite section with open boundary conditions. Our first lemma states
that in the limit n → ∞, ψAo

n
(z) ≤ ψA(z) and uses only the properties of banded-

ness and boundedness of A ∈ Ω1.

Lemma 2.1. Let A ∈ Ω1 with A ∈ A(M). Then for any z ∈ C, lim supn→∞ ψAo
n
(z)

≤ ψA(z).

Proof. Let δ > 0; then by definition there exist some x̃ ∈ l2(Z) of norm one such
that ‖(A− zI)x̃‖ ≤ σ1(A− zI) + δ. Let xk = Pkx̃/‖Pkx̃‖; then, since Pkx̃ → x̃ as
k → ∞ and A is bounded, it follows that for large enough k ≥ k0, ‖(A− zI)xk‖ ≤
σ1(A − zI) + 2δ. Set x = xk0

, which has norm one by construction. Since the
support of x is finite and A is banded, we must have (Ao

n − zI)x = (A − zI)x for
n ≥ m+ k0 where m is the bandwidth of A given by

(2.4) m := max{|k| : Mk �= 0}.

Hence σ1(A
o
n − zI) ≤ ‖(Ao

n − zI)x‖ ≤ σ1(A− zI) + 2δ. Since δ > 0 was arbitrary,
it follows that

lim sup
n→∞

σ1(A
o
n − zI) ≤ σ1(A− zI).

Since the adjoint is also banded, we can prove the same inequality by replacing
σ1(A

o
n − zI) by σ1((A

o
n)

∗ − z̄I) and σ1(A− zI) by σ1(A
∗ − z̄I) in exactly the same

way. The result now follows. �

Given A ∈ A(M), let Lb.c.
n be a lower diagonal matrix, with matrix values

uniformly bounded in n, such that (Lb.c.
n )i,j = 0 if j > i+m− (2n+ 1), where i, j

are indexed in {−n,−n+1, . . . , n} and m is defined in (2.4). Similarly, let Ub.c.
n be

an upper diagonal matrix, with matrix values uniformly bounded in n, such that
(Ub.c.

n )i,j = 0 if i > j +m− (2n+1). The superscript b.c. stands for the boundary
conditions being imposed which are captured by these upper and lower diagonal
matrices. Let Ab.c.

n = Ao
n + Lb.c.

n + Ub.c.
n . For fixed m, letting n → ∞, we can

conclude in exactly the same way as above that

(2.5) lim sup
n→∞

ψAb.c.
n

(z) ≤ ψA(z).

The point is that the boundary conditions only act locally. We denote periodic
boundary conditions by a superscript per, and in this case we fix the nonzero
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entries of Lper
n and Uper

n such that these are given by

(Lper
n )i,j ∈ Mi−j−(2n+1) if j ≤ i+m− (2n+ 1),

(Uper
n )i,j ∈ Mi−j+(2n+1) if i ≤ j +m− (2n+ 1).

Note that we are allowing any choice up to these constraints. The above ensure that
the coupling between sites (i.e., the nonzero diagonals) is consistent if one defines
the matrix

Aper
n,N :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ao
n Lper

n

Uper
n Ao

n

. . .

. . .
. . .

. . .

. . .
. . . Lper

n

Uper
n Ao

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N blocks

,

where each block is an n × n matrix. The following proposition is the key result
in showing that periodic boundary conditions are a good choice for calculating
pseudospectra of pseudoergodic operators.

Proposition 2.2. Consider the above set up with A ∈ A(M) (and d = 1). For all
n ≥ m and all z ∈ C we have ψAper

n
(z) ≥ ψA(z).

Proof. We will show that for n ≥ m and all z ∈ C we have σ1(A
per
n − zI) ≥

σ1(A − zI). Dealing with σ1(A
per∗
n − z̄I) is similar, and together these give the

result.
Let δ > 0 and choose x ∈ C2n+1 such that ‖x‖ = 1 and ‖(Aper

n − zI)x‖ ≤
σ1(A

per
n − zI) + δ. The idea is to extend x periodically and use pseudoergodicity.

Extend x and y = (Aper
n − zI)x periodically N times to obtain xN , yN ∈ CN(2n+1)

and consider the matrix Aper
n,N above. Then we have

(Aper
n,N − zI)xN =

⎛
⎜⎜⎜⎜⎝

Ao
n Lper

n

Uper
n Ao

n

. . .

. . .
. . . Lper

n

Uper
n Ao

n

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
x
x
...
x
x

⎞
⎟⎟⎟⎟⎟⎠− zxN =

⎛
⎜⎜⎜⎜⎜⎝
(Ao

n + Lper
n )x

Aper
n x
...

Aper
n x

(Ao
n + Uper

n )x

⎞
⎟⎟⎟⎟⎟⎠− zxN .

It follows that the vector

(2.6) (Aper
n,N − zI)xN − yN = −

⎛
⎜⎜⎜⎜⎜⎝
Uper
n x
0
...
0

Lper
n x

⎞
⎟⎟⎟⎟⎟⎠

has norm bounded by some constant, D(m,M), independent of N and all x of norm
one. This is because the values of the nonzero entries of (Aper

n,N − zI)xN − yN are
uniformly bounded and there are at most 2m of them. The constant will in general
depend on m and the maximum modulus over the set

⋃
k Mk, but this dependence

is not relevant for the argument. The idea is shown visually in Figure 1.
It follows that

‖(Aper
n,N − zI)xN‖ ≤ ‖yN‖+D(m,M) ≤ N

1
2 (σ1(A

per
n − zI) + δ) +D(m,M).
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Figure 1. Visualisation of matching across periodic extensions for
n = 1 and N = 2, on l2(Z). For this example, the diagonal takes
the value 1 and the superdiagonal takes values bi ∈ M−1. The circled
index corresponds to the discrepancy with yN (in this case the missing
b3x1 term).

By construction, all entries of the periodic extension Aper
n,N come from the set Mk

of the corresponding diagonal with respect to which A is pseudoergodic. Hence
by pseudoergodicity of A, for each desired accuracy ε > 0 there is a desired (2n+
1)N × (2n+ 1)N submatrix of A which is ε close to Aper

n,N . Hence we can shift the

support of xN and let wN ∈ l2(Z) equal xN on the corresponding (2n+1)N entries

and zero otherwise. Choosing ε sufficiently small we have ‖wN‖ = ‖xN‖ = N
1
2 and

‖(A− zI)wN‖ ≤ N
1
2 (σ1(A

per
n − zI) + δ) + δ +D(m,M).

It follows that

σ1(A− zI) ≤ σ1(A
per
n − zI) + 2δ +D(m,M)N− 1

2 .

Letting N → ∞ and then δ ↓ 0 gives σ1(A
per
n − zI) ≥ σ1(A− zI). �

2.2. The case of d > 1. In order to deal with the higher-dimensional case, it is
useful to introduce some notation. Given n ∈ N and k ∈ Zd define the index sets

Cn := {−n, n+ 1, . . . , n}d, Cn,k := Cn + (2n+ 1)k.

The Cn,k partition Zd and will be used to construct the relevant periodisations.
Given N ∈ N, we also define

CN ⊗ Cn :=
⋃

k∈CN

Cn,k = C2Nn+N+n.

For W ⊂ Zd, we define the orthogonal projections PW , P⊥
W : l2(Zd) → l2(Zd) via

(PWx)j =

{
xj , if j ∈ W,

0, otherwise

and P⊥
W = PZd\W . We define the shift operator Sn,k : l2(Zd) → l2(Zd) via

(Sn,kx)j = xj−(2n+1)k, j ∈ Z
d,
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which translates between the Cn,k’s. Given A ∈ Ωd, and with a slight abuse of
notation, we can define the matrices Ao

n and Aper
n acting on the range of PCn

(i.e.,
l2(Cn)) via

(2.7) Ao
nx = PCn

APCn
x, Aper

n x =
∑
k∈C1

PCn
Sn,−kAPCn

x.

Finally, the periodisation Aper
n,N acting on l2(CN ⊗ Cn) is defined via

(2.8) Aper
n,Nx = PCN⊗Cn

∑
k∈CN

Sn,kAPCn
Sn,−kx.

All of these definitions also extend to the lp case considered in Section 3. As
before, we could have taken any values from the relevant Mk’s in forming the above
generalisations of Lper

n and Uper
n . However, the above definitions give a much cleaner

presentation. The reader is referred to Figure 2 for the case of d = 2 which also
explains the idea of the proof below. Note that the proof of Lemma 2.1 is identical
for d > 1 and yields (2.5) for periodic boundary conditions with the general notion
of bandedness given by

(2.9) m := max{‖k‖∞ : Mk �= {0}}.
Care is only needed for the argument in the proof of Proposition 2.2.

Proof of extension of Proposition 2.2 to d > 1. Again we will only show that for
n ≥ m and all z ∈ C we have σ1(A

per
n − zI) ≥ σ1(A − zI). Let δ > 0 and choose

x ∈ l2(Cn) such that ‖x‖ = 1 and ‖(Aper
n − zI)x‖ ≤ σ1(A

per
n − zI) + δ. Define the

periodisations

yN := PCN⊗Cn

∑
l∈CN

Sn,l(A
per
n − zI)x, xN := PCN⊗Cn

∑
l∈CN

Sn,lx.

The key step of the proof is a result analogous to (2.6). We have that

(Aper
n,N − zI)xN − yN

=
(
PCN⊗Cn

∑
k∈CN

Sn,kAPCn
Sn,−kx

N
)
−zxN−

(
PCN⊗Cn

∑
k∈CN

Sn,kA
per
n x

)
+ zxN

= PCN⊗Cn

∑
k∈CN

[
(Sn,kAPCn

Sn,−k

∑
l∈CN

Sn,lx)− Sn,k

∑
l∈C1

PCn
Sn,−lAPCn

x
]
.

Since PCn
x = x, we can simplify the first term in the sum via

PCn
Sn,−k

∑
l∈CN

Sn,lx = PCn
x.

This yields
(2.10)

(Aper
n,N − zI)xN − yN = PCN⊗Cn

∑
k∈CN

(
Sn,kAPCn

x− Sn,k

∑
l∈C1

PCn
Sn,−lAPCn

x
)
.

Since n ≥ m we can write

APCn
x =

∑
t∈C1

PCn,t
APCn

x.

Note that the terms corresponding to t = 0 cancel in (2.10). We also have the
relation

PCn
Sn,−l = Sn,−lPCn,−l

.
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Putting these together in (2.10), we arrive at

(Aper
n,N − zI)xN − yN

= PCN⊗Cn

∑
k∈CN

Sn,k

[
(
∑
t∈C1

PCn,t
)−

∑
l∈C1

Sn,−lPCn,−l

∑
t∈C1

PCn,t

]
P⊥
Cn

APCn
x

= PCN⊗Cn

∑
k∈CN

∑
t∈C1

(
Sn,k − Sn,kSn,t

)
PCn,t

P⊥
Cn

APCn
x

=
∑

t∈C1\{0}

∑
k∈CN

PCN⊗Cn

(
Sn,k − Sn,k+t

)
PCn,t

APCn
x.

Given t ∈ C1\{0}, the only terms remaining in∑
k∈CN

PCN⊗Cn

(
Sn,k − Sn,k+t

)
PCn,t

after cancellations are ∑
k∈CN ,t−k/∈CN

−PCN⊗Cn
Sn,k+tPCn,t

.

We can also restrict the sum to k ∈ CN such that there exists t ∈ C1 with t−k /∈ CN

and denote this set inclusion via k ∈ ∂CN . Upon swapping the order of summations
again, we arrive at

(Aper
n,N − zI)xN − yN = −

∑
k∈∂CN

∑
t∈C1\{0}
t−k/∈CN

Sn,k+tPCn,t
APCn

x.

Given k ∈ ∂CN , the vector ∑
t∈C1\{0}
t−k/∈CN

Sn,k+tPCn,t
APCn

x

is supported in Cn,−k and has norm at most 3d‖A‖. Since these vectors have
disjoint support over different k, it follows that

(2.11) ‖(Aper
n,N − zI)xN − yN‖ ≤ 3d‖A‖ |∂CN |

1
2 = O(N

d−1
2 ).

It follows that
(2.12)

‖(Aper
n,N − zI)xN‖ ≤ ‖yN‖+O(N

d−1
2 ) ≤ |CN |

1
2 (σ1(A

per
n − zI) + δ) +O(N

d−1
2 ),

since ‖yN‖ = |CN |
1
2 ‖y‖. The idea behind this part of the proof is shown in Figure

2 for the case of d = 2.
Now we use the pseudoergodicity property of A. Again by construction, all

entries of the periodic extension Aper
n,N come from the set Mk of the corresponding

diagonal with respect to which A is pseudoergodic. Hence by the pseudoergodicity
of A, for each desired accuracy ε > 0 there is a desired (2(2Nn +N + n) + 1)d ×
(2(2Nn+N +n)+1)d submatrix of A which is ε close to Aper

n,N . Hence we can shift

the support of xN and let wN ∈ l2(Z) equal xN on the corresponding (2(2Nn +
N + n) + 1)d entries and zero otherwise. Choosing ε sufficiently small we have

‖wN‖ = ‖xN‖ = |CN |
1
2 = (2N + 1)

d
2 and

‖(A− zI)wN‖ ≤ (2N + 1)
d
2 (σ1(A

per
n − zI) + δ) + δ +O(N

d−1
2 ).

Licensed to University of Cambridge. Prepared on Fri Jul 22 04:59:40 EDT 2022 for download from IP 131.111.20.225.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



748 MATTHEW J. COLBROOK

Figure 2. Visualisation of how periodisation works for d = 2 and

z = 0. We have Aper
n = Ao

n + A
(−1,1)
n + A

(0,1)
n + A

(1,1)
n + A

(1,0)
n +

A
(1,−1)
n + A

(0,−1)
n + A

(−1,−1)
n + A

(−1,0)
n . Without (−1, 1) refers to this

sum without A
(−1,1)
n and with (−1, 1) refers to A

(−1,1)
n , etc. We clearly

see that (Aper
n,N − zI)xN − yN is supported on ∂CN with at most 3d

terms (in fact 3 in this case) in each “box”.

It follows that

(2.13) σ1(A− zI) ≤ σ1(A
per
n − zI) + 2δ +O(N− 1

2 ).

Letting N → ∞ and then δ ↓ 0 gives σ1(A
per
n − zI) ≥ σ1(A− zI). �

2.3. Proof of Theorem 1.2. Using these results, we can now prove Theorem 1.2.

Proof of Theorem 1.2. The inclusion Spε(A
per
n ) ⊂ Spε(A) follows from Proposition

2.2 and the characterisation in (2.3). For the convergence limn→∞ Spε(A
per
n ) =

Spε(A), note that A is bounded so there exists a compact set K such that Spε(A) ⊂
K. By Proposition 2.2 we only need to prove convergence of the sets Spε(A

per
n ) to

Spε(A) restricted to K which without loss of generality we assume to be a closed
ball around the origin. For any bounded operators S, T we have

|σ1(T )− σ1(S)| ≤ ‖S − T‖,
and it follows that for n ≥ m, ψAper

n
(z) is Lipschitz over z ∈ K with Lipschitz

constant independent of n. Proposition 2.2 and Lemma 2.1 together give that

ψA(z) ≤ lim inf
n→∞

ψAper
n

(z) ≤ lim sup
n→∞

ψAper
n

(z) ≤ ψA(z).

It follows that ψAper
n

(z) converges pointwise to ψA(z), and hence the uniform Lip-
schitz continuity upgrades this to uniform convergence over K. Now let 0 < δ < ε;
then the above shows that for large n we have

Spε−δ(A) ⊂ Spε(A
per
n ) ⊂ Spε(A).

Finally, Spη(T ) is continuous (w.r.t. the Hausdorff metric) in η for any fixed T ∈
B(l2(Zd)). Convergence now follows since 0 < δ < ε was arbitrary.
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To see the convergence of PseudoSpecPer note that we have Γn(A) ⊂ Spε(A
per
n )

by construction. Choose a compact subset K ⊂ C with ψAper
n

(z) > 2ε for all
z ∈ C\K and for all n. By the uniform convergence and the Arzelá–Ascoli theorem
we can choose δn ↓ 0 such that for all n,

(2.14) |ψAper
n

(z)− ψAper
n

(w)| < δn for all z, w ∈ K with |z − w| < 1/n.

Let n be large so that K ⊂ [−n, n] + i[−n, n] and such that δn < ε. If this
holds and z1 ∈ Spε−δn(A

per
n ), then there exists some z2 ∈ 1

n (Z+ iZ) ∩ Bn(0) with
|z1− z2| < 1/n, and hence |ψAper

n
(z1)−ψAper

n
(z2)| < δn. It follows that z2 ∈ Γn(A),

and hence

Spε−δn(A
per
n ) ⊂ Γn(A) +B1/n(0) ⊂ Spε(A

per
n ) +B1/n(0).

Let η > 0 with η < ε and choose n large such that ε− δn > η; then

Spη(A
per
n ) ⊂ Γn(A) +B1/n(0) ⊂ Spε(A

per
n ) +B1/n(0).

The right-hand side converges to Spε(A) and the left-hand side converges to Spη(A).
Since η < ε was arbitrary and Spη is continuous in η, the desired convergence now
follows. �

We have now shown why periodic boundary conditions are a natural choice for
pseudoergodic operators. Although we may not have convergence of spectra (for
example the 1D NSA Anderson model in the example in Section 4.1), we do obtain
convergence for pseudospectra.

2.4. Extension to vector-valued sequences. Here we briefly remark on the ex-
tension of the above arguments to vector-valued sequences. Consider the following
generalisation of the standard lattice Zd. For some d ∈ N and finite set S, set

X = Z
d × S.

We view this as the lattice Zd with |S| sites attached to each point. In this case
l2(X,C) ∼ l2(Zd,C|S|). Enumerating a basis of l2(X) (each basis vector correspond-
ing to a site) as {ei,a : i ∈ Zd, a ∈ S} allows us, for A ∈ B(l2(X)), to form matrix
elements

A(i,a),(j,b) = 〈Aej,b, ei,a〉.
In complete generalisation of Definition 1.1 above (where |S| = 1), we say that a
collection M = {Mk,a,b ⊂ C : k ∈ Z

d, and a, b ∈ S} is permissible if there exists
m ∈ N such that Mk,a,b = {0} if ‖k‖∞ > m. Given permissible M , we say A
is (translationally) pseudoergodic with respect to M if A(i,a),(j,b) ∈ Mi−j,a,b for
all a, b ∈ S and the following property holds. Given any ε > 0, finite subsets
Sk,a,b ⊂ Z

d × S2, and functions Fk,a,b : Sk,a,b → Mk,a,b (for k ∈ Z
d, and a, b ∈ S),

there exists a translation T acting on Zd such that

(2.15) sup
(i,a,b)∈Sk,a,b

∣∣A(T (i),a),(T (i)−k,b) − Fk,a,b(i)
∣∣ < ε, k ∈ Z

d, and a, b ∈ S.

Denote the collection of such A by A(M) and the union of A(M) over permissible
M by ΩX. Note that A(i,a),(j,b) ∈ Mi−j,a,b implies that

(2.16) A(i,a),(j,b) = 0, if ‖i− j‖∞ > m,

the generalised notion of bandedness.
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To treat these operators, only a slight adjustment to the definitions in Section
2.2 are needed. We now define the index sets CS

n := {−n, n + 1, . . . , n}d × S,
CS

n,k :=
(
Cn + (2n+ 1)k

)
× S, and

CS
N ⊗ CS

n :=
⋃

k∈CN

CS
n,k = CS

2Nn+N+n.

For W ⊂ X, we define the orthogonal projections PW , P⊥
W : l2(X) → l2(X) via

(PWx)(j,a) =

{
x(j,a), if (j, a) ∈ W,

0, otherwise

and P⊥
W = PX\W as before. The shift operator SS

n,k : l2(X) → l2(X) now acts via

(SS
n,kx)(j,a) = x(j−(2n+1)k,a), j ∈ Z

d, a ∈ S,

which translates between the CS
n,k’s. The definitions of Ao

n, A
per
n , and Aper

n,N are as
before with the relevant superscripts S on the projections and shifts:

Ao
nx = PCS

n
APCS

n
x, Aper

n x =
∑
k∈C1

PCS
n
SS
n,−kAPCS

n
x,

Aper
n,Nx = PCS

N⊗CS
n

∑
k∈CN

SS
n,kAPCS

n
SS
n,−kx.

The proof of the generalisation of Proposition 2.2 to |S| > 1 now follows through
almost verbatim with the addition of the relevant superscripts S. For instance, the
same manipulations lead to

(Aper
n,N − zI)xN − yN = −

∑
k∈∂CN

∑
t∈C1\{0}
t−k/∈CN

SS
n,k+tPCS

n,t
APCS

n
x,

from which the rest of the argument easily follows. Lemma 2.1 also holds, and
together these prove the generalisation of Theorem 1.2 to ΩX using the same argu-
ments as in Section 2.3.

3. The general lp case

In this section we will prove that the results of Section 2 can be generalised to
the case of viewing the pseudoergodic operator as acting on lp(X), where X is the
generalisation of Zd discussed in Section 2.4. Recall that due to the definition of
pseudoergodicity, the operators are banded in the generalised sense with uniformly
bounded matrix values—hence their matrices can be viewed as operators acting on
lp(X) for any p ∈ [1,∞]. For general Banach spaces, one needs to be careful of
the definition of pseudospectrum since it is possible for the resolvent norm to be
constant on open sets in the resolvent [70]. This does not occur for Banach spaces
which have the strong maximum property (see [42, 70] for a definition and the
following theorem—the fact that lp(X) satisfies the required property is mentioned
in [70] with results from [32,41, 57]), and the following theorem demonstrates that
we do not have to worry about this in the cases considered in this paper.

Theorem 3.1. Suppose that X is a Banach space such that at least one of X, X∗

is complex uniformly convex or such that X is finite-dimensional. Then X has the
strong maximum property. In particular, this holds for lp(X).
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This means that we shall take (1.1) as our definition of Sppε (A) with the l2

operator norm replaced by its lp counterpart. Some authors differ in requiring
< ε or the closure of such a set, but in light of Theorem 3.1, we see that the
closure definition and ours agree in this context. In proving results, we will find
the following theorem useful (see [74]). If B is a bounded operator on the Banach
space X, then B∗ is the adjoint operator defined on X∗ (with the convention of
taking antilinear functionals following Kato [55]). In our case, this means that if
1 ≤ p < ∞, then A∗ is the matrix operator defined by the usual complex conjugate
defined on lq(X) with 1/p+ 1/q = 1.

Theorem 3.2. Let X be a Banach space with the strong maximum property, and
let A ∈ B(X). Then SpXε (A) (the ε-pseudospectrum defined using the operator norm
on A ∈ B(X)) is the set of z ∈ C satisfying any of the following four equivalent
definitions:

(I) ‖R(z, A)‖−1 ≤ ε,
(II) z ∈ Sp(A+ E) for some E ∈ B(X) with ‖E‖ ≤ ε,
(III) z∈Sp(A) or there exists xn ∈ X of norm 1 with lim supn→∞ ‖(A− zI)xn‖

≤ ε,
(IV) there exists xn ∈ X of norm 1 with lim supn→∞ ‖(A− zI)xn‖ ≤ ε or there

exists yn ∈ X∗ of norm 1 with lim supn→∞ ‖(A∗ − z̄I)yn‖ ≤ ε.

Following [68], we define the injection and surjection modulus, respectively, by

jX(A) = sup{τ ≥ 0 : ‖Ax‖ ≥ τ‖x‖ for all x ∈ X} = inf{‖Ax‖ : ‖x‖ = 1},
qX(A) = sup{τ ≥ 0 : A(BX) ⊃ τBX}.

We then have ‖A−1‖−1 = min{j(A), q(A)}, jX∗(A∗) = qX(A), and qX∗(A∗) =
jX(A). Furthermore, if A is invertible, then jX(A) = qX(A). We define the func-
tions

ψp
A(z) : = min{jlp(A− zI), qlp(A− zI)},

ψp
Aper

n
(z) : = min{jlp(Aper

n − zI), qlp(A
per
n − zI)},

and note that we can characterise the pseudospectrum as Sppε (A) = {z ∈ C :
ψp
A(z) ≤ ε}. Assume for the remainder of this section that M is permissible. Note

that we have not yet shown that Sppε (A) is constant over all A ∈ A(M), however
this follows from Theorem 4.7 (and Corollary 4.9) of [8]. Upon letting ε ↓ 0, this
also proves that the spectrum is constant on A(M). Recalling the generalised
bandwidth m of A ∈ A(M) in (2.16), we have the following proposition which
extends Proposition 2.2 to p �= 2.

Proposition 3.3. Let p ∈ [1,∞], let d ∈ N, and let A ∈ B(lp(X)) be pseudoergodic
with respect to M . For n ≥ m and all z ∈ C we have ψp

Aper
n

(z) ≥ ψp
A(z).

Proof. Assume that A ∈ A(M) and n ≥ m. If z ∈ Spp(A), then ψp
A(z) = 0, and we

have nothing to prove so assume that z /∈ Spp(A). This implies that

ψp
A(z) = jlp(A− zI) = qlp(A− zI).

Since Aper
n acts on a finite-dimensional vector space, we also have that

ψp
Aper

n
(z) = jlp(A

per
n − zI) = qlp(A

per
n − zI).
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Hence we must prove that

(3.1) jlp(A− zI) ≤ jlp(A
per
n − zI).

We begin with the case that p < ∞. To see that (3.1) holds in this case, we argue
as in Section 2.2 (with the added notational complexity of Section 2.4 if |S| > 1).
The only real changes are that in (2.11) which now becomes

(3.2) ‖(Aper
n,N − zI)xN − yN‖ ≤ 3d‖A‖

∣∣∂CS
N

∣∣ 1
p = O(N

d−1
p ),

and xN , yN which now have norms
∣∣CS

N

∣∣ 1
p and

∣∣CS
N

∣∣ 1
p ‖y‖, respectively. We now

have ∣∣CS
N

∣∣ 1
p = (2N + 1)

d
p |S|

1
p .

The same arguments then yield

jlp(A
per
n − zI) ≤ jlp(A− zI) + 2δ +O(N

1
p )

in place of (2.13), and (3.1) then follows using exactly the same arguments.
Next we show that (3.1) holds for p = ∞. For this we consider the matrix

adjoint B = (A− zI)∗ as an operator on l1(X). Note that this is not the same as
the operator adjoint (which acts on a much larger space). Similarly, we consider the
matrix adjoint Bn = (Aper

n − zI)∗ as an operator on l1(CS
n ). B is pseudoergodic,

and hence
jl1(B) ≤ jl1(Bn).

(Note that the periodisation commutes with taking the matrix adjoint.) But we
then must have that ql∞(B∗) = jl1(B) and ql∞(B∗

n) = jl1(Bn). Hence

jl∞(A−zI) = ql∞(A−zI) = ql∞(B∗) ≤ ql∞(B∗
n) = ql∞(Aper

n −zI) = jl∞(Aper
n −zI),

which proves (3.1) for p = ∞. �

Theorem 3.4. Let p ∈ [1,∞], and let A ∈ B(lp(X)) be pseudoergodic with respect
to M . Then ψp

Aper
n

(z) converges uniformly to ψp
A(z) from above on compact subsets

of C. Hence limn→∞ Sppε (A
per
n ) = Sppε (A) in the Hausdorff metric and Sppε (A

per
n ) ⊂

Sppε (A), i.e., Theorem 1.3 and its extension to lp(X) hold.

Proof. Suppose that we can prove pointwise convergence. Uniform convergence
follows by a similar argument as Theorem 1.2 where we have uniform Lipschitz
continuity from the definition of injection modulus (and hence the surjection mod-
ulus by considering the operator dual if p < ∞ or the matrix adoint if p = ∞).
By Proposition 3.3, convergence is from above, and hence Sppε (A

per
n ) ⊂ Sppε (A).

Using Theorem 3.1 and a straightforward compactness argument, it is easy to see
that Sppε (A) is continuous in ε. The uniform convergence of ψp

Aper
n

(z) now implies

limn→∞ Sppε (A
per
n ) = Sppε (A) as in the proof of Theorem 1.2.

Hence we are left with proving pointwise convergence. By Proposition 3.3, it is
enough to show that

(3.3) lim sup
n→∞

ψp
Aper

n
(z) ≤ ψp

A(z).

The truncation argument in the proof of Lemma 2.1 works for p ∈ (1,∞) (p and
its dual must be finite), and hence we only have to consider the p ∈ {1,∞} cases.
Note that the truncation argument shows that

(3.4) lim sup
n→∞

jl1(A
per
n − zI) ≤ jl1(A− zI).
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Applying this to the matrix adjoints and using the same argument as in the proof
of Proposition 3.3 shows that

(3.5) lim sup
n→∞

ql∞(Aper
n − zI) ≤ ql∞(A− zI).

Suppose that we can also show that

(3.6) lim sup
n→∞

jl∞(Aper
n − zI) ≤ jl∞(A− zI).

Then the duality (l1)∗ = l∞ yields (again by matrix adjoints) that

(3.7) lim sup
n→∞

ql1(A
per
n − zI) ≤ ql1(A− zI),

which finishes the proof of (3.3) and hence of the theorem.
We are thus left with proving (3.6), so assume for the remainder of the proof

that p = ∞. Given δ > 0, there exists x ∈ l∞(X) of norm 1 such that ‖(A−zI)x‖ ≤
jl∞(A− zI) + δ. Fix any N ∈ N and define

(xN )(i,a) = x(i,a) max
{
0, 1− ‖i‖∞

N

}
, i ∈ Z

d, a ∈ S.

It is clear that xN has finite support and PCS
n
xN = xN for large n. Now we use

the fact that if A(i,a),(j,b) �= 0, then ‖i − j‖∞ ≤ m for some m ∈ N. Consider the
entry ((Aper

n − zI)xN )(i,a) where we assume that n is large so that this is equal
to ((A − zI)xN )(i,a) for all (i, a). Since the operator is banded in the generalised
sense, we must have

(3.8)
∣∣((A− zI)xN − λi(N)(A− zI)x

)
(i,a)

∣∣ ≤ C(A, z)

N
,

for some constant C(A, z) independent of N and (i, a) where λi(N) is the local
factor

λi(N) = max
{
0, 1− ‖i‖∞

N

}
,

which converges to 1 as N → ∞ for any i. Let yN be defined by

(yN )(i,a) = λi(N)
(
(A− zI)x

)
(i,a)

;

then we have that

lim sup
n→∞

jl∞(Aper
n − zI) ≤ ‖(A− zI)xN‖

‖xN‖ ≤
C(A,z)

N + ‖yN‖
‖xN‖ .

But limN→∞ ‖xN‖ = ‖x‖ = 1 and

lim
N→∞

‖yN‖ = ‖(A− zI)x‖ ≤ jl∞(A− zI) + δ.

Hence

lim sup
n→∞

jl∞(Aper
n − zI) ≤ jl∞(A− zI) + δ.

Since δ > 0 was arbitrary this proves (3.6) and hence the theorem. �

Remark 3.5. Bandedness was crucial in the above proof to obtain (3.8). One can
in fact study ‖B‖ and ‖B−1‖ for much more general operators B on l∞ by looking
at ‖B0‖ and ‖B−1

0 ‖ where B0 is the restriction of B to the space of null sequences
(see [47, Lemma 3.8]), hence allowing similar arguments for B0 as in the case of
p < ∞. See also [69] for further discussion of these so-called P-techniques.
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4. Numerical examples

We now seek to provide numerical examples of Theorems 1.2 and 1.3. We start
with the Hilbert space case and then finish with an example for the lp(X) case.
When dealing with the l2 case, we will sometimes use p to denote the parameter of
certain random variables (in agreement with the literature) but the notation will
always be clear from context. Note that the inclusion Spε(A

per
n ) ⊂ Spε(A) implies

that the eigenvalues of the matrix Aper
n lie in the spectrum of A.

4.1. The variation of distributions for NSA Anderson model. Here we re-
visit the operator defined by (1.2) in the introduction. In [43, 44] Goldsheid and
Khoruzhenko presented a method of describing the limiting curves of the spectra of
the periodic matrices using a potential dependent on the density of states. Through-
out, parameter values are g = 1/2 and M = {±1}, where Vn are i.i.d. Bernoulli
(with range {±1}) of parameter p. We let An denote the matrix of size 2n + 1
obtained by truncating the operator H to acting on span{e−n, . . . , en} with peri-
odic boundary conditions and the corresponding operator with nonperiodic (open)
boundary conditions by Bn:

An=

⎛
⎜⎜⎜⎜⎜⎜⎝

V−n e−g eg

eg V−n+1 e−g

eg V−n+2
. . .

. . .
. . . e−g

e−g eg Vn

⎞
⎟⎟⎟⎟⎟⎟⎠ , Bn=

⎛
⎜⎜⎜⎜⎜⎜⎝

V−n e−g

eg V−n+1 e−g

eg V−n+2
. . .

. . .
. . . e−g

eg Vn

⎞
⎟⎟⎟⎟⎟⎟⎠ .

In the notation in Section 2, An = Aper
n and Bn = Ao

n. Bn can be transformed
to a self-adjoint operator, hence we can define, for real λ, the eigenvalue counting
function

Nn(λ) =
1

n
#{eigenvalues of Bn in (−∞, λ)}.

It is well known that, with probability 1, Nn converges to a continuous non-
decreasing function N , known as the integrated density of states (dN is known
as the density of states). We then define the potential

Φ(z) =

∫ ∞

−∞
ln(|λ− z|)dN(λ),

and denote the support of dN by Σ. It is key to note that, whilst the support Σ does
not change as we vary p ∈ (0, 1), the distribution dN does! The limit distribution
of the complex eigenvalues of An is supported on the level set {Φ(z) = g}, a curve
L. More precisely, if we let dAn denote the measure on the complex plane assigning
mass 1/n to each eigenvalue of An, then the following holds [44].

Theorem 4.1. For the operator H defined above (where the {Vi} are i.i.d.) the
following holds almost surely:

(1) For every compact set Kin C\L∪R, there exists n1 such that for all n > n1,
there are no eigenvalues of An in K.

(2) For any bounded continuous function f on C,

lim
n→∞

∫
C

f(z)dAn(z) =

∫
Σ̃

f(λ)dN(λ) +

∫
L
f(z(l))ρ(z(l))dl,
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where

ρ(z) =
1

2π

∣∣∣∣
∫ ∞

−∞

dN(λ)

λ− z

∣∣∣∣ ,
dl is the arc-length element along L, and

Σ̃ = {λ ∈ supp(dN) : Φ(λ+ 0i) > g}.

We have computed the support of the limiting distribution by calculating the
density of states numerically (for n = 105) and using the fact that we have conver-
gence for the integral of any continuous function against this measure to accurately
find the potential Φ. Figure 3 shows the output of PseudoSpecPer for n = 105 and
various p along with the (approximate) limit curves L∪Σ̃ (which depend on p). The
transformation p → 1−p induces a reflection in the imaginary axis so we only show
for p ≥ 0.5. Note that these curves appear to fill up the apparent converged region
in the right of Figure 3, which shows the union over p. Although PseudoSpecPer is
guaranteed to converge for any selected p, it requires extremely large, and indeed
computationally infeasible, n in order to gain convergence in some regions of the
complex plane. This is simply due to the very small probability of the sequence
of diagonal values needed to obtain convergence in the truncation window (infinite
monkey theorem). Taking unions over different values of p causes regions near the
limit curves to converge very fast, and hence n can be taken much smaller. Exactly
the same phenomenon occurs when the support of the diagonal potential is not
discrete (for instance a uniform random variable). The set E +M is contained in
the spectrum, with E the ellipse {eg+iθ + e−g−iθ : θ ∈ [0, 2π)}, and we have shown
bounds on the spectrum (which lies between the two magenta curves obtained via
a series argument and consideration of numerical ranges). Note in this case that
the limit of the pure finite section eigenvalues is the interval [−3, 3] which is neither
contained in, nor contains the true spectrum.

Remark 4.2. Given this example, it is reasonable to ask whether taking the union
of spectra of all possible periodic finite sections converges to the true spectrum.
This does not hold in general. For instance, consider an operator A acting on l2(Z)
and pseudoergodic with respect to M−1 = {0, 1} in the notation of Definition 1.1.
It can be shown (see [58] for a generalisation for bidiagonal operators) that the
spectrum is the closed unit disk. Periodic finite sections are of the form⎛

⎜⎜⎜⎜⎜⎜⎝

0 α1

0 α2

0
. . .

. . . αn−1

αn 0

⎞
⎟⎟⎟⎟⎟⎟⎠

with αj ∈ {0, 1}. These either have spectrum consisting of the nth roots of unity if
all the αj are 1 or {0} otherwise. Hence whilst the spectra of periodic finite sections
lie in the true spectrum, we do not recover all of the spectrum by taking their union
and closure. We refer the reader to [45] for positive results and for conditions that
ensure convergence to the spectrum.
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Figure 3. Left: Pseudospectra plots for PseudoSpecPer at n = 105

and various p. Limit curves of the finite section with periodic bound-
ary conditions are also shown in green. Note that this explains the
areas of fast vs. slow convergence of the algorithm. Right: Union of
pseudospectra over various p.

4.2. A quidiagonal operator. Next we consider the quidiagonal operator acting
on l2(Z) by

(Tx)n = Vnxn−2 +Wnxn+1,

where Vn,Wn are i.i.d. random variables whose distribution has support {±1}. We
realise this by setting Vn and Wn to be independent Bernoulli random variables of
parameters p and q, respectively. The reason for selecting this operator is that it
is not tridiagonal (not previously considered in the literature), hence it is in the
more general setting of that considered by Theorem 1.2. Figure 4 shows the union
of outputs of PseudoSpecPer over different p, q for n = 10, 000 (so that the true
matrix sizes are 20, 001). It is straightforward to show that the curves γ and −γ
are contained in the spectrum, where γ is the trifolium

γ(θ) = exp(θ2πi/6) + exp(−θπi/6), θ ∈ [0, 2π),

and these are shown in green. Note that if there were no randomness present, say
Vn = Wn = 1 for all n, then the spectrum of T would be γ (the range of the
symbol). The operator would be normal, and hence the Spε(T ) would consist of
the spectrum together with points at most ε distance from the spectrum. The effect
of adding randomness is most pronounced between the petals of γ ∪ −γ. It is also
straightforward to show that the pseudospectrum (and spectrum) possess many
symmetries. In particular, they are invariant under complex conjugation and have
rotational symmetry of order six. Note that whilst applying periodic boundary
conditions ensures that the pseudospectrum converges, the eigenvalue distribution
seems to depend on the distribution of Vn,Wn in a nontrivial manner. This is
entirely analogous to the NSA Anderson model.

We also show the time taken for PseudoSpecPer to estimate the resolvent norm
(for a single sample of the operators) on a 100× 100 grid for both T and the NSA
Anderson model H for ε ∈ {10−k : k = −8,−8.05, . . . , 0}. We can use an interval
bisection search routine to make this efficient. In order to make the algorithms as
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Figure 4. Left: Output of PseudoSpecPer for n = 104. Right: Com-
parison of times for both methods for the tridiagonal operator H and
the quidiagonal operator T . Note that PseudoSpec is slightly faster.

fast as possible we used an approximate minimal degree ordering of the matrices4

to aid computing Cholesky decompositions which are the basis of our positive def-
initeness test. The times are shown in Figure 4, computed on a standard desktop
computer with four cores. The algorithm is easily parallelisable—we simply split
the searches amongst workers, and hence much faster speeds can be implemented
if one has access to more cores and very little communication is needed between
nodes. Note that as expected, the tridiagonal case was quicker, especially for large
system sizes (2n + 1 in the above notation). Figure 4 also shows the time when
using the method of uneven sections presented in [33]. For completeness, this is
described in the Appendix and we label the algorithm PseudoSpec. We have not
shown the outputs when using PseudoSpec for H and T since the difference with
PseudoSpecPer is negligible (and cannot be detected by eye). The key difference
is that PseudoSpec uses matrices PmAPn with m > n and does not apply bound-
ary conditions. Hence in this case, it reduces to the computation of the smallest
singular value of banded rectangular matrices. PseudoSpec is slightly faster than
PseudoSpecPer as expected since the periodic matrices used in PseudoSpecPer are
no longer banded. We will compare computation time and speed of convergence in
two dimensions in the next example.

4.3. 2D NSA Anderson model. Our aim here is to demonstrate that, whilst
using periodic boundary conditions can be slightly slower to implement than the
algorithm presented in [33] for fixed n, it can perform faster convergence of pseu-
dospectra as n → ∞, particularly in higher dimensions. We will consider two cases
of the NSA Anderson model in two dimensions given by

(Ax)m,n = e−gxm−1,n+egxm+1,n+e−hxm,n−1+ehxm,n+1+Vm,nxm,n, m, n ∈ Z,

where, as usual, Vm,n are i.i.d. random variables. We found that varying the distri-
bution of the potential V whilst keeping its support constant caused the algorithms
to converge at different rates in different regions of the complex plane, in a com-
pletely analogous fashion to the one-dimensional case discussed above. Hence we

4Obviously these are different for each algorithm. We shall use this ordering without further
comment and note that it can be quickly computed from one test point using standard routines
in MATLAB.
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Figure 5. Left: Case one, output for L = 200. Note that
PseudoSpecPer performs better. The test points are shown as
blak/white crosses. Right: The estimate of the resolvent norm for dif-
ferent system sizes at the different points zi. The point z3 converges
very slowly for this distribution.

shall only consider one distribution in each of our cases but stress that the same
conclusions hold for other distributions.

Our first example is the case of g = h = 0.3 and Vm,n = ±3 with equal probability
1/2. One can show that the sum of ellipses Eg + Eh, with Eα = {eα+iθ + e−α−iθ :
θ ∈ [0, 2π)}, is in the spectrum and similarly bound the spectrum with convex
hulls. We tested PseudoSpec and PseudoSpecPer on sites in a square of length L,
corresponding to system sizes L2. The result for L = 200 is shown in Figure 5.
We clearly see that employing periodic boundary conditions gives a much better
approximation of the resolvent norm. The faster convergence can be quantified by
studying specific z. We choose the points z1 = 0, z2 = 4 cosh(0.3) + 3 + 0.1i and
z1 = 4 sinh(0.3)i. These points lie in the spectrum, and for our choice of distribution
we expect that convergence will be fastest for z1 and slowest for z3 (changing the
distribution can reverse this). This is confirmed in Figure 5 where we have also
shown the estimates of ‖R(z, A)‖−1 at these points over a mean of 100 runs for
different L. Note also that periodic boundary conditions consistently approximate
‖R(z, A)‖−1 better, even in the regions of slow convergence.

Our second example considers the case when the support of the potential is not
discrete. We let g = sinh−1(0.1) and h = 0 with Vm,n having uniform distribution
in [−1/5, 1/5]. For these parameters, the spectrum is known to be Eg + Eh [36].
Figure 6 shows the analogous plots for this case. We choose the test points z1 =
0, z2 = 2(1+ cosh(sinh−1(0.1))) + 0.2, and z1 = 0.2i. Exactly the same conclusions
can be drawn. We also tested for complex potentials which produced similar results.

The fact that PseudsoSpecPer performs better can be understood as follows.
PesuoSpec only uses one sample (L×L square) of the potential. However, as soon
as we adopt periodic boundary conditions, we effectively gain a larger number of
samples due to translations modulo L × L. This larger sample is not indepen-
dent, but we are able to use more information due to the larger number of possible
couplings (nonzero diagonals) between sites. For instance, periodic boundary con-
ditions take advantage of the fact that sites along the edge of the square can couple
to those on the opposite edge. This effect becomes greater in higher dimensions. In
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Figure 6. Analogous figure for the second case considered. We have
also shown the boundary of the spectrum in the left plot.

Figure 7. Left: Minimum over 11 distributions with 20 samples each.
Note that in some cases periodic boundary conditions ensure an esti-
mate several orders of magnitude better. Right: Time taken in both
cases for PseudoSpec and PseudoSpecPer. The time appears to grow
roughly as ∼ L2.5 (shown), less than quadratically with the system
size.

Figure 7 we have shown results over zi but now after taking the minimum over 11
distributions, each sampled 20 times. Note that PseudoSpecPer generally produces
an estimate several orders of magnitude better than PseudoSpec. Finally, we com-
pare the time taken for both methods. As before, a 100 × 100 grid was chosen in
each case with ε ∈ {10k : k = 8, 8.05, . . . , 0}. The results are also shown in Figure
7. Again, there is no difference between these methods in terms of how the time
scales with system size with both scaling less than quadratically with the system
size, but PseudoSpec is slightly faster.

Remark 4.3. It must be said that the above explanation is purely heuristic and
does not always hold. In the general Zd case, one has for p < ∞ and x ∈ lp(Cn)
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Table 1. Comparisons of periodic boundary conditions and uneven
sections for the shift operator. Both jl2(A

per
n − I) and jl2((A− zI)Pn)

converge to zero as n → ∞. Pn denotes the projection onto the n-
dimensional subspace.

n = 3 n = 5 n = 11 n = 51 n = 101 n = 501

j
l2

(Aper
n − I) 1.00 6.18 × 10−1 2.85 × 10−1 6.16 × 10−2 3.11 × 10−2 6.27 × 10−3

j
l2

((A − I)Pn) 7.65 × 10−1 5.18 × 10−1 2.61 × 10−1 6.04 × 10−2 3.08 × 10−2 6.26 × 10−3

that

‖(Aper
n − zI)x‖p=

∥∥∥∥∥ ∑
k∈C1

PCn
Sn,−k(A− zI)PCn

x

∥∥∥∥∥
p

≤
∑
k∈C1

‖PCn
Sn,−k(A−zI)PCn

x‖p

≤ 3
d
q

( ∑
k∈C1

‖PCn
Sn,−k(A− zI)PCn

x‖pp
) 1

p

= 3
d
q ‖(A− zI)PCn

x‖p ,

where we have used Hölder’s inequality and 1/p + 1/q = 1 (this also extends to
p = ∞). This gives jl1(A

per
n − zI) ≤ jl1((A − zI)PCn

). However, this can be
false for p > 1. For instance consider the shift operator (Ax)j = xj+1 (on lp(Z))
and z = 1 ∈ Sp(A). We can of course consider n × n periodic approximations (as
opposed to (2n + 1) × (2n + 1)) for which jlp(A

per
n − I) = 0 if n is even. Table 1

shows some results for p = 2. Whilst jl2(A
per
n − I) ≥ jl2((A − I)Pn) for odd n, it

appears their ratio converges to 1 as n → ∞.

4.4. Coupled Anderson model (example with |S| > 1). Our final example
for the Hilbert space case demonstrates the algorithm when |S| > 1. We consider
two coupled one-dimensional NSA Anderson models, where the couplings between
different sites are now random variables. We match up each site of both models at
each lattice point, giving rise to the finite matrices

Aper
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 a1 e−g 0 eg 0
b1 W1 0 e−h 0 eh

eg 0 V2 a2 e−g 0
0 eh b2 W2 0 e−h

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

e−g 0 eg 0 Vn an
0 e−h 0 eh bn Wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Vi and Wi describe the potentials in each model which have parameters g and h,
respectively. The ai and bi describe the interactions between the models at each
point of the lattice Z. We take the example of g = 1, h = 1/10 with Vi and Wi

taking values in {±1/2} (Bernoulli independent random variables with parameter
q). For the interactions we set bi = 1 and ai taking values in {±1} (Bernoulli
independent random variables with parameter p). Figure 8 shows the output over
p ∈ {0, 0.05, 0.1, . . . , 1}, q ∈ {0, 1/10, . . . , 1} for n = 104. Note that this example
also demonstrates how we can naturally treat periodically pseudoergodic operators.
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Figure 8. Estimate of resolvent norm for the coupled Anderson
models. We have taken the maximum over outputs with parame-
ters p ∈ {0, 0.05, 0.1, . . . , 1}, q ∈ {0, 1/10, . . . , 1}.

4.5. Example for lp(X). As an example for lp spaces we consider an alteration of
the Laurent operator with symbol T (θ) = −(exp(−iθ) + i exp(iθ) + exp(2iθ)). For
this operator, the spectrum is simply the curve traversed by the symbol, and it is
straightforward to show that ψ1

Aper
n

(z) = ψ∞
Aper

n
(z) (Aper

n − zI are circulant so as

to have circulant inverses with the same l1 and l∞ operator norms). We alter the
first superdiagonal to have entries in {±1} independently with the value 1 being
chosen with probability q. Figure 9 shows the convergence of ψp

Aper
n

(z), where z is

the point on the symbol curve closest to the origin (so that the limit is zero), for a
range of 1000 values of q. Note that this demonstrates that we do not always obtain
monotone convergence (in contrast to the method of uneven sections). Figure 10
shows typical pseudospectral plots for one realisation.

As mentioned in the introduction, one cannot use singular values of matrices
to characterise the pseudospectrum, and it appears that the only known method
of computing p-pseudospectra is via directly estimating ‖R(z, A)‖p over some fine
grid. The computation of matrix norms of finite square matrices for p �= 1, 2, or
∞ is NP-hard [52], so this currently seems intractable for large matrices for any p
other than these.

5. Conclusion

There is now a vast literature on spectral studies of random NSA operators.
Most of these fall into Definition 1.1 (and more generally that in Section 2.4) of
pseudoergodicity. We have shown that under this general condition, finite sections
with periodic boundary conditions are very well behaved in terms of pseudospectra.
Given that the spectrum need not be recovered in the infinite system size limit, it
is perhaps remarkable that the pseudospectrum is. This example demonstrates
why pseudospectra may be the correct spectral property to study for nonnormal
operators, a viewpoint backed up by many important examples [74].

As well as our main theorem, we have demonstrated that periodic boundary
conditions provide a useful numerical tool, particularly in higher dimensions. For
many pseudoergodic operators, it outperforms the algorithm PseudoSpec (method
of uneven sections) proposed in [33], though it is slightly slower. Future work will
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Figure 9. Convergence of ψp
Aper

n
(z), where z is the nearest point on

the curve T (θ) to the origin. We have shown q = 0 (the Laurent opera-
tor), as well as the maximum, minimum, and mean over 1000 Bernoulli
parameters when we alter the first superdiagonal to have entries in
{±1}. This last case corresponds to the entries being independent and
having value −1 with probability 1− q for q = 0, 1/999, 2/999, . . . , 1.

Figure 10. Typical pseudospectral plots for one realisation at n =
100. Eigenvalues of the periodic matrices are shown in red.

aim at studying this trade-off and exactly when periodic boundary conditions out-
perform PseudoSpec.5 Finally, the simple proof method used for our main theorem
has been adapted to the general lp setting (where PseudoSpec is not applicable)
using a different argument for the p = ∞ case. The results presented here hold for

5Although PseudoSpec does converge in many cases where periodic boundary conditions do
not.
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more general operators such as those which are periodically pseudoergodic. Future
work will aim to extend this type of result to semi-infinite matrices (stochastic
Toeplitz matrices).

Appendix: Method of uneven sections

Here we briefly recall the method of uneven sections described in [33] to com-
pute pseudospectra, and we denote the algorithm by PseudoSpec. By an effective
enumeration of our basis sites, we can realise our operators as matrices acting on
l2(N) with respect to the canonical basis {e1, e2, . . .}. All the operators studied in
this paper then have the property that there is a function f : N → N (which we
can explicitly evaluate) such that

Ai,j = Aj,i = 0,

if i > f(j). This simply captures the finite range interaction of our operators (and
the adjoint). For instance, if our original operator is tridiagonal when viewed in the
original basis of l2(Z), then with the enumeration {e0, e−1, e1, e−2, e2, . . .} giving
l2(Z) ∼= l2(N) we can take f(n) = n+ 2. The algorithm can then be written as

Function PseudoSpec(A, n, ε, f)
Input : n, A ∈ B(l2(N)), ε > 0, f : N → N

Output: Γ ⊂ C, an approximation to Spε(A)

G = 1
n (Z+ iZ) ∩Bn(0)

for z ∈ G do
B = (A− zI)(1 : f(n), 1 : n)
C = (A− zI)∗(1 : f(n), 1 : n)
S = B∗B
T = C∗C
p = IsPosDef(S − ε2)
q = IsPosDef(T − ε2)
ν(z) = min(p, q)

end
Γ =

⋃
{z ∈ G |ν(z) = 0}

end

The basic idea is that the function ψA,n(z) := min{σ1((A − zI)Pn), σ1((A
∗ −

zI)Pn)} is nonincreasing in n and converges uniformly to ‖R(z, A)‖−1 from above
on compact subsets of C.
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