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Stratified Sampling Based Compressed Sensing for
Structured Signals

Theresa Loss , Matthew J. Colbrook , and Anders C. Hansen

Abstract—Structured compressed sensing takes signal structure
into account, thereby outperforming earlier compressed sensing
methods. However, results are usually based on sampling in the
Fourier domain, such as in Magnetic Resonance Imaging. In
the time domain, the benefits of structured compressed sensing
are still unknown. This paper introduces concepts that incorporate
the signal structure into both the acquisition and reconstruction of
compressed sensing in time and image domain applications. First,
a stratified-random sampling pattern is proposed to improve the
recovery of the dominant low-frequency range of natural signals.
A heuristic decay of primes criterion is developed to evaluate the
properties of the sensing matrix and is used to optimize the sam-
pling pattern. Second, the sparsity of the Fourier transform as
the representation domain is improved by estimating the signal
structure in a preprocessing step, and then adapting the grid of the
Fourier transform. In contrast to existing methods, grid stretching is
integrated into the fast Fourier transform to reduce computational
complexity. Both structured acquisition and reconstruction are
evaluated using simulations, as well as two real-world applica-
tions: wireless sensor networks in structural health monitoring and
electron microscopy. Results show that both reconstruction errors
and robustness can significantly be improved by incorporating
structure into the acquisition and reconstruction.

Index Terms—Electron microscopy, structured compressed
sensing, stratified random sampling, structural health monitoring.

I. INTRODUCTION

T ECHNOLOGICAL advances in physical and biological
sensing applications frequently result from the need to

overcome restrictions on the number of measurements taken by
the system. Such restrictions may result from: a limited power
supply, as present in wireless sensor networks [1]; limited mea-
surement time, such as the duration of examination in Magnetic
Resonance Imaging (MRI) [2]; as well as restrictions in energy
doses in Electron Microscopy (EM) [3].
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Apart from tackling the problem from the hardware side,
signal processing methods can be applied to reconstruct mea-
surements from far fewer samples than the Nyquist criterion
suggests. By exploiting sparseness of the original signal, com-
pressed sensing (CS) has successfully been used in the last 15
years to solve the underdetermined inverse problem of recon-
struction in many applications [4]–[7]. Recently, artificial intel-
ligence has also been used in sampling problems, with neural
networks (NNs) trained to optimally reconstruct original signals
from a limited number of measurements [8], [9]. However, there
remain several challenges with this approach:

1. The optimal trade-off between stability and accuracy of
NNs is mostly unexplored [10], [11], and there is evidence
that many current AI technologies may be unstable [10],
[12]–[20] in a variety of scenarios. For example, it has
been shown that tiny perturbations or structural changes
in the image signal can lead to major changes in NN
reconstruction [17].

2. The problem of false negatives is important in clini-
cal practice. For example, Facebook and NYU’s 2019
FastMRI challenge reported that networks that performed
well in terms of standard image quality metrics were prone
to false negatives and failing to reconstruct small, but phys-
ically relevant image abnormalities [21]. The 2020 version
of the challenge subsequently focused on pathologies,
noting the problem of AI-generated hallucinations [22].

3. Reconstruction accuracy of a trained NN does not neces-
sarily increase (and may in fact decrease) with an increased
subsampling ratio. Typically, NNs need to be trained sep-
arately for varying subsampling ratios [17] (and on large
training sets), which is computationally very expensive.

In this paper, we focus on so-called structured CS, which takes
the signal’s sparse structure into account in both acquisition of
measurements and reconstruction of the original signal. Despite
the success of structured CS [23]–[34], including an abundance
of elaborated theory, there is a lack (see §I-A) of structured
CS-based strategies on how to incorporate structure into the
acquisition of signals or images in time or image domains.
This leads to the following crucial – and largely unexplored
– question:

Question 1: How to best incorporate structured sampling
when sampling in the time or image domain?

Mathematically, in the finite-dimensional case, this means that
we have a reconstruction problem of the following form

Given y = PΩx+ e ∈ C
m, recover x ∈ C

N , (1)
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Fig. 1. Comparison of reconstruction results for the proposed method (“Proposed” CS, left) and current state-of-the-art CS (“Traditional” CS, right). Reconstruction
from 5.26% of samples for a piecewise linear function with sampling for both methods in the time domain and reconstruction in the Fourier domain. Traditional
CS uses uniform at random sampling in the time domain, whereas our proposed mehod uses structured sampling in the time domain and reconstruction via an
adapted Fourier transform. Methods are presented in detail in the remainder of this paper (this example uses the model in §II-A with N=4000.).

wherePΩ is the operator choosingm components ofx according
to the index set Ω ⊂ {1, . . . , N} with |Ω| = m and e ∈ C

m is
the noise vector. The big question is how to best choose Ω,
and obviously that has to depend on the signal model. In this
paper, we introduce stratified subsampling. On certain classes
of structured signals, this strategy is much more effective than
standard uniform sampling, as demonstrated in Fig. 1. Results
are demonstrated by means of two applications, namely electron
microscopy (EM) and the relatively new field of structural health
monitoring (SHM). However, methods are not limited to those
fields and we shall provide benefits for time- and image-domain-
based sensing in many applications.

A. Related Work

Structured CS [23]–[34] has almost exclusively been de-
veloped for Fourier, Hadamard and Radon measurements in
MRI, EM, CT etc. (for a comprehensive overview see [34]
and the references therein), but not for sampling a signal or
image directly in time or image (pixel) domain. Hence, there
is very little literature to cite on this fundamental problem.
One approach to be mentioned here is the so-called spotscan
mode of acquisition as studied in [3], [35] to prevent damage by
the electron beam. The classical setup for structured CS based
on asymptotic incoherence and asymptotic sparsity is reviewed
below. As we describe, the theory for this model is insufficient in
our case, as there is no asymptotic incoherence nor any structured
robust nullspace property in levels [26], [34] which are essential
for this theory.

II. PROBLEM STATEMENT

A. Background – Standard Structured Sampling

Following, for example [23], [34], we consider briefly the
following standard setup in structured sampling CS (see [34]
for details). We are given the inverse problem

y = Φx, x ∈ C
N ,Φ ∈ C

N×N ,

where Φ typically has full rank. However, we cannot afford to
sample all the components of y. If x is a natural image then
Ψx is asymptotically sparse [34] when Ψ ∈ C

N×N is a discrete
wavelet transform (DWT). If, in addition, ΦΨ−1 is asymptoti-
cally incoherent [34], one can sample a set Ω ⊂ {1, . . . , N} in

a random, yet structured, way with |Ω| = m � N , based on the
asymptotic incoherence and asymptotic sparsity and solve

argminx̃∈Cn ‖Ψx̃‖1 s.t. ‖PΩy − PΩΦx̃‖2 ≤ ε, (2)

with ε being a threshold, e.g. used to account for measurement
noise (see [36] for computational issues regarding (2)). If Ω
is chosen, for example, according to a multi-level sampling
pattern as in Definition 1 (below) based on the asymptotic
incoherence and asymptotic sparsity, one can substantially out-
perform uniform random sampling. Note that ΦΨ−1 is always
asymptotically incoherent when Φ is either the discrete Fourier
transform (DFT) or the Hadamard transform (with certain spe-
cific orderings) and Ψ is a DWT [34, Ch. 11].

In our approach, we focus on the acquisition of measurements
in the time or image domain and on sparse representation in the
Fourier domain. Throughout, Ψ is taken to be the DFT so that

(Ψx)[k] = X[k] =

N−1∑
n=0

x[n]e
2πink

N , (3)

for k = 1, . . ., N (see also §III-B for suitable adaptations).

B. Problem: Standard Theory and Methods Will Not Work

In our case we have

Φ = I ⇒ IΨ−1 is not asymptotically incoherent,

and thus there is no known method for doing structured sam-
pling. Our proposed method of stratified sampling is a proof-of-
concept of this method and mathematical proofs of performance
are not developed yet. However, we demonstrate substantial
benefits over random sampling as illustrated in Fig. 1. Note
that because of the lack of asymptotic incoherence, a standard
multilevel sampling scheme used on the example in Fig. 1 (right)
would give highly inaccurate results. In our proof-of-concept,
we use a Monte Carlo simulation to create the sampling patterns
and we leave mathematical theory to future developments.

C. Signal Model – Dominating Low Fourier Frequencies

In physical and biological sensing applications, many sig-
nals exhibit significant structure and are dominated by the low
frequency range. Considering our two exemplary applications,
we find that a sensor in an SHM application will typically
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Fig. 2. Exemplary structure of an electron microscopy image (left). A mag-
nified section of the Fourier coefficients is shown for the Fourier transform
computed on (i) the original image (middle, green) and (ii) the section of the
image (right, red).

measure the fundamental frequency of an oscillation and multi-
ples thereof, complemented by the structure’s eigenfrequencies.
Also, EM images of materials and biological tissues exhibit sig-
nificant regularities as modeled in Fig. 2, which shows reduced
sparsity of Fourier coefficients if the underlying section of the
image is misaligned with the signal structure.

We use S to denote the indices corresponding to non-zero
components of X . Our model assumption is that the signal X
is sparse (or approximately sparse) for frequencies k > K and
some positive K (i.e., dominated by the low-frequency range).
This leads to a refined version of Question 1 above:

Question 2: How do we best incorporate structured sampling
when sampling in time or image domain and the signal/image
has dominating low frequencies – is uniform random sampling
optimal?

D. Structure in Acquisition

Unlike the case of sensing in the Fourier domain, mathe-
matical principles on structured sampling in time- and image-
domain-based sensing problems have, to our knowledge, not yet
been developed. Since low frequencies dominate the signals in
both applications, the following questions should be addressed
when designing the sampling pattern:

1) How should we choose the sampling pattern Ω to capture
a certain frequency?

2) How should we choose the sampling pattern Ω to ensure
that the dominant lower frequencies in the signal are
captured?

3) Repeat the above questions and ask additionally for robust
(in terms of noise) reconstruction?

Our initial answers in §III-A to these questions are used to
improve the design of the sensing matrix for a structured input
signal.

E. Structure in Reconstruction

Additionally, the signal structure plays a major role when
reconstructing signals from real-world discrete measurements.
When using the DFT as the representation domain Ψ, the fast
Fourier transform (FFT) is widely used to rapidly compute the
Fourier transform of the discrete input signal. This leads to two
major implications.

First, measurement devices are limited in terms of time and
memory, and only capture a section of the original signal,

Fig. 3. Impact of window mismatch in the time domain (top) on the sparsity of
Fourier coefficients (bottom). Reconstruction results are shown for a fundamen-
tal frequency of 0.083Hz, sampled at 400Hz, in the case of window mismatch
for a measurement period of 10 s. x̃ denotes the solution of the optimization
problem in (2) and X̃ denotes the frequencies Ψx̃.

which leads to discontinuities. Simultaneously, the FFT assumes
periodic continuation of the input signal, which may lead to
a mismatch between the measurement window and the signal
structure. Fig. 3 shows the reconstruction results in case of
window mismatch for a fundamental frequency of 0.083Hz,
and a measurement period of 10 s.

Second, window mismatch also implies grid mismatch. The
resolutionR of the signal is defined by the measurement window
T with R=1/T , T = tN − t1 and tn being the measurement
time of samples n∈{1, . . ., N}. Hence, the alignment of the
equally spaced frequency grid of the DFT to the signal structure
depends on the measurement window as shown in Fig. 2 and
Fig. 3 (bottom). A refinement of the discretization can help to
align the signal structure to the grid. However, the resulting in-
terpolation of the Fourier coefficients leads to decreased sparsity
and should be avoided.

Therefore, we aim to incorporate the signal structure into
reconstruction by answering the following questions:

i) How can the structure of the signal be estimated from
compressed measurements?

ii) How can window and grid mismatch be addressed?
iii) What adaptions can be made to the FFT to increase re-

construction accuracy while keeping computational costs
low?

Our answers in §III-B to these questions are used to optimize
the sparse representation Ψ and improve reconstruction.

III. MAIN RESULTS

This section contains the main results on incorporating the
signal structure into the design of the sampling matrix during
acquisition (§III-A) and into the sparsifying transform during
the reconstruction of the signal (§III-B).

A. Sampling Algorithm

1) Motivation: The naive sampling approach would be to use
uniform sampling with the sampling frequency fs exceeding
the highest dominant frequency fi=K in the spectrum by at
least twice for exact recovery (fs ≥ 2fi) [37]. Suppose that
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N/(2K) ∈ Z and that we select every N/(2K)th sample (so
that Ω = {lN/(2K) : l = 0, . . ., 2K − 1}). Consider two sig-
nals x1 and x2 such that the corresponding X1 and X2 differ
only for indices i1 = r (0 ≤ r < K) and i2 = 2K + r, and such
that X1[i1] = X2[i2] 	= 0 and X1[i2] = X2[i1] = 0. It follows
that y1 = y2 and consequently reconstruction of compressed
measurements fails.

To overcome this issue the first step is to make sure that A =
PΩΨ

∗PS is injective. From Theorem 1.1 in [7] we know that as
long as |Ω| ≥ 2|S|, this will be the case for anyΩ and anyS when
N is a prime. Such a luxury is rare in applications. However,
there is a moral lesson from this result, as the phenomenon above
would not happen for S = {1, . . . ,K} when N is a prime as the
sampling points will not form subgroups ofZ/NZ, and avoiding
such subgroups is thus a crucial motivation. This well-known
problem is overcome to some degree by using uniform at random
(UAR) sampling. However, if we have the extra structure where
for example S = {1, . . . ,K}, we should be able to do better,
which motivates our concept of stratified sampling.

2) Stratified Sampling: Since our signal model is domi-
nated by the low-frequency range, we focus on the recovery
of those frequencies. We propose a stratified sampling pat-
tern, in which the maximum distance between adjacent sam-
ples is restricted. To introduce this, we first discuss multilevel
sampling.

Definition 1 (Multilevel subsampling [23]): Let N =
(N1, . . . , Nl) ∈ Z

l
≥0, where 0 ≤ N1 < · · · < Nl = N − 1 and

m = (m1, . . . ,ml) ∈ Nl with mk ≤ Nk −Nk−1 for k =
1, . . . , l, and N0 = 0. For each k = 1, . . . , l, let Ik ⊂ {Nk−1 +
1, . . . , Nk} with |Ik| = mk. We refer to I1 ∪ · · · ∪ Il as an
(N,m)-multilevel subsampling scheme.

In Definition 1, the vector N describes the levels and m
describes the sparsities in each level. The Ik denote possible
index sets that satisfy the corresponding subsampling scheme.
For equidistant batch length L and a fixed number of samples m
per batch, we introduce stratified subsampling, which becomes
a particular type of multilevel sampling.

Definition 2 (Stratified subsampling): Let λ > 0, L(K,λ) =
�N/(2Kλ) (batch length) and l = �N/L(K,λ) (number of
batches). For k = 1, . . ., l − 1, set Nk = k · L(K,λ)− 1 and
set Nl = N − 1. If m1 = m2 = . . . = ml = m > 0, we refer
to an (N,m)-multilevel subsampling scheme as a stratified
subsampling scheme. We set M = m1 + · · ·+ml and denote
the set of such stratified subsampling schemes by Λ(K,λ,m).

The constant λ is a multiplier which shrinks the batch length
according to the number of samples in Ω ∈ Λ(K,λ,m). It has
been selected empirically in the following experiments with a
lower limit of λ = 1. We have also selected m = 2. In the fol-
lowing, we seek a deterministic sampling pattern that optimizes
the positions of the samples within batches.

3) Optimization of the Sampling Pattern: Let Ω =
{s1, s2, . . ., sM} ∈ Λ(K,λ,m) be a stratified sampling
pattern. The pairwise distances between elements in Ω
can be calculated as DK,m = {di,j}, with di,j = sj − si for
j > i. We denote this list (which includes possible repeats) as
DK,m = {d1, . . ., dLD

}, where LD = m(m− 1)/2.

Fig. 4. Decay of multiples of primes UK,m(p) for pairwise distances DK,m

for uniform sampling (uniform), coprime sampling (coprime), uniform at ran-
dom sampling (UAR), and stratified sampling (SR). 5% sampling is used for
N=4000.

Let PN = {p1, p2, . . ., pLP
} be the collection of primes

smaller than N and define, for each prime p ∈ PN ,

UK,m(p) :=
1

LD

LD∑
j=1

νj , νj =

{
1 if dj mod (p) = 0

0 else.

(4)
In other words, the decay of primesUK,m(p) tells the proportion
of elements of DK,m that are divisible by the prime p.

To avoid subgroups of Z/NZ appearing in the set of dis-
tances, we desire that UK,m(p) is small. Smaller primes p will,
as a rule of thumb, have larger UK,m(p) and have a greater
chance of contributing to subgroups. We therefore desire that
UK,m(pj+1)− UK,m(pj) is small. Therefore, we introduce the
following quantity:

Dc(Ω) :=
1

LP

LP−1∑
j=1

max

{
0,

UK,m(pj+1)− UK,m(pj)

UK,m(pj)

}
. (5)

The corresponding algorithm is shown in Algorithm 1. We then
seek to solve the following optimization problem:

min
Ω∈Λ(K,λ,m)

Dc(Ω). (6)

Constructing a deterministic stratified pattern Ω with mini-
mum overall decay Dc(Ω), is a highly non-trivial task. There-
fore, we use a Monte Carlo simulation to create a large number of
stratified sampling patterns and select the pattern with minimum
overall decay Dc (see Algorithm 2). In the simulation, stratified
patterns are created by distributing samples uniformly at random
per batch. This is referred to as stratified-random (SR) sampling
in the following. Accordingly, the optimized pattern is denoted
as stratified-random-minimized (SRM) pattern and described as
Ω(K,N, q) for a signal lengthN and sampling quota q = M/N .

As an example, the decayDc(Ω) is analyzed for four different
sampling patterns with signal length N = 4000 and 5% of sam-
ples in Fig. 4. In the case of UAR and SR sampling, one can note
a smooth decay with UK,m(pi) > UK,m(pi+1). On the other
hand, uniform sampling results in two distinct peaks at p=2 and
p=5. Additionally, coprime sampling has been analyzed, which
uses two coprime integers p1 and p2 to determine the sampling
pattern Ω = Ω1 ∩ Ω2, with Ωi = npi for n = 1, . . ., N/pi and
i = 1, 2 [38]. Coprime sampling has successfully been used in
the field of array sensing to find the optimal placement of single
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Algorithm 1: Find the overall decay Dc(Ω).

function FINDDECAY(pattern)
def D,U � empty arrays
for i = 1 to length pattern

for j = i to length pattern
if pattern[i] = 1 AND pattern[j] = 1 � distance

D.append(j-i) � append list of distances
end if

end for
end for
def P = {1,2,3,5,7,...M} �M ≤ N , all primes
for i = 1 to length P

for j = 1 to length D
if D[j] mod P[i] = 0 � find multiples

U[i] = U[i]+1 � create decay of primes
end if

end for
end for
def Dc = 0 � initialize
for i = 2 to length U

if U[i]-U[i-1]>0 � only use positive differences
Dc = Dc+(U[i]-U[i-1])/U[i] � sum decay

end if
end for

return Dc

Algorithm 2: Pattern creation by using Monte Carlo simu-
lation.

function MINIMIZEMULTIPLESSRPATTERN(K,M)
def decayMIN = 100 � initialize with large number
for i = 1 to 1000 � test 1000 patterns

pattern = getPattern(K,M) � SR pattern, §III-A2
Dc = findDecay(pattern)
if Dc ≤ decayMIN

def patternOPT = pattern
decayMIN = Dc

end if
end for

return patternOPT

measurements [38]–[40], but it results in an increase in multiples
for the two primes as simulated here for p1 = 41 and p2 = 43.

4) Numerical Evaluation: In order to recover x from y, the
matrix A = PΩΨ

∗PS must be injective [34]. A useful quantity
in this regard is the condition number κ(C) with C = A∗A.

We simulate three different signal models with (i) exactly
one non-zero frequency with S = {K}, (ii) non-zero frequen-
cies k ≤ K with S = {1, ..,K} and (iii) low frequencies with
two additional frequencies S = {1, ..,K, N

4 ,
N
2 }. The sensing

matrix PΩ is generated for UAR, SR and SRM sampling, and
1000 realizations each for different percentages q and K=8 are
tested. Results show that condition numbers are significantly
smaller for SRM sampling than for UAR sampling (see Fig. 5).

Fig. 5. Condition number κ(C) visualized. Shaded areas, solid and dashed
lines represent maximum, mean and mean with additional standard deviation
of respective κ(C) for 1000 realizations each. Results are shown for UAR,
SR and SRM sampling with different percentages of samples q and signal
length N=1000. The low frequency range is set to K=8. Three different
signal models are simulated, Top: S={8}, Middle: S={1, .., 8}, Bottom:
S={1, .., 8, 500, 2000}.

Fig. 6. Exemplary worst case scenario for SR sampling in comparison to SRM
sampling. Top: Original signal with S={1, .., 8}, N=4000, 2% of samples
used, i.e. M=80. The decay Dc is also shown. Bottom: Reconstruction error
‖x− x̃‖ on a logarithmic scale, where x̃ is reconstructed by using (i) SR
sampling and (ii) SRM sampling.

Applying �1-reconstruction as in (2) for all sampling patterns
supports those findings. Fig. 6 displays a worst-case scenario for
a signal model S={1, . . ., 8}, N = 4000 and 2% of samples
being used. A comparison of SR and SRM sampling shows
that reconstruction is significantly improved by using SRM
sampling. In addition, reconstruction errors are evaluated for
the three signal models, for which condition numbers have been
compared, and UAR, SR and SRM sampling. Reconstruction re-
sults for different sampling percentages q and 1000 realizations
each are displayed in Fig. 7 and demonstrate a reduction of
reconstruction errors for SRM sampling in comparison to UAR
sampling. Consequently, our proposed SRM sampling method
can be used to improve the reconstruction results of structured
signals at low sampling rates.
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Fig. 7. Comparison of reconstruction results for UAR, SR and SRM sampling
and different percentages of samples q= M

N , N=4000. Solid lines, dashed
lines and shaded areas represent the mean, the mean plus standard deviation and
the maximum of root-mean-square errors (RMSE) in the time domain for 1000
realizations each. The three signal models are the same as described in Fig. 5.

5) Main Findings: Our findings on the design of a structured
sampling pattern for adapting signal acquisition to the structure
of the input signal can be summarized as follows:

i) The direct transfer of structured sampling approaches in
Fourier sensing to sensing in time or image domain is
impossible.

ii) The low frequency range can be considered by using
stratified sampling, which restricts distances between
adjacent samples.

iii) By selecting a sampling pattern with minimum overall
decay Dc(Ω), reconstruction accuracy can significantly
be increased.

B. Structured Reconstruction

1) Estimation of Signal Structure: While a general knowl-
edge of the signal structure is sufficient to design a suitable sam-
pling pattern, e.g. focusing on the recovery of low frequencies,
knowledge of the location of those frequencies improves recon-
struction. Several approaches have been proposed for iteratively
adapting the DFT via dictionary learning [41], [42]. However,
this leads to a non-uniform grid, for which a fast implementation
via the FFT is impractical. Our approach focuses on a feasible
implementation for real-world applications based on the FFT as
an implementation of the DFT, thereby reducing computational
effort and memory consumption.

The signal structure can be estimated from under-sampled
measurements y = PΩx by optimizing the representation Y
resulting from Y = Ψ

̂Ny, where

(Ψ
̂Ny)[k]=Y [k]=

N−1∑
n=0

(PΩx)[n]e
2πink

N̂ =
∑
n∈Ω

y[n]e
2πink

N̂ , (7)

with N̂ ≥ N the size of the used DFT. Let ε>0 be a thresh-
olding parameter and let I1 denote the indices corresponding
to coefficients of Y greater in magnitude than ε and I0 be the

complementary indices. For an ideal sparse representation, we
expect the following sparsity measure χ to be large,

χ
(
N̂
)
:=

|I0|
|I1|

∑
j∈I1

|Yj |
/⎛⎝∑

j∈I0
|Yj |

⎞⎠ . (8)

We can therefore select a DFT size which seeks to maximize χ
over a suitable range of sizes

maxχ(N̂). (9)

In many applications, prior knowledge on the signal structure is
available based on simulations, construction plans, experiments,
physical, chemical or biological properties etc. and can replace
or support structure estimation in (9).

2) Implementation: We now discuss how to implement the
optimization problem with regard to the DFT size N̂ . The
optimization problem can be interpreted in two different ways:

i) If N̂=cN with c∈N, the optimization problem corre-
sponds to c-fold subsampling. Subsampling can be used
to adapt the DFT to the signal structure but is only
successful if a large c is chosen. However, this comes
along with increased computational effort and storage
consumption while decreasing sparsity. Therefore, sub-
sampling should not be used as a method on its own but
can be used to complement structure estimation.

ii) If N̂ = θ−1N with θ−1 ∈ (1, 2), the optimization prob-
lem corresponds to stretching of the fixed grid of the DFT
by a factor θ:∑

n∈Ω
x[n]e

2πink

N̂ =
∑
n∈Ω

x[n]e2πiθ
k
N n. (10)

For a harmonic signal model, i.e., S =
{f0, 2f0, 3f0, . . .}, the size of the DFT can be estimated
as

N̂ =

⌈
fs

f̂0

⌈
Nc

f̂0
fs

⌉⌉
(11)

with fs, f̂0 being the sampling frequency and the esti-
mated fundamental frequency, respectively.

iii) A combination of stretching and subsampling can be
implemented by selecting cN < N̂ < (c+ 1)N for c ∈
N, e.g., to account for a harmonic signal model with
a small number of higher non-harmonics, such as S =
{f0, 2f0, 3f0, fi1, fi2}.

Fig. 8 shows the results for a comparison of those differ-
ent implementation options by using an Ω(10, 4000, 10) SRM
sampling pattern. In detail, original reconstruction with c=1,
stretching with 1≤c<2), subsampling with (c=3) and the
combination of stretch.+subsampl. (3≤c<4) are compared. If
c comprises a range, the N̂ maximizing χ is picked. The input
signal consists of multiples of a fundamental frequency f0 and
two additional frequencies 10 ≤fi,fj≤ 20 Hz. Lowest recon-
struction errors are achieved by combining the two methods of
bin stretching and subsampling. In doing so, grid mismatch is
reduced for harmonics by grid stretching and for non-harmonics
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Fig. 8. Reconstruction results for original, stretching, subsampling,
stretch.+subsampl. reconstruction and an Ω(10, 4000, 10) SRM pattern. The
input signal consists of {f0, 2f0, 3f0, fi, fj} with randomly selected 0.1 ≤
f0≤ 0.2 Hz and 10 ≤fi,fj≤ 20 Hz. Mean μ and standard deviation σ of
root-mean-square errors (RMSE) displayed.

by subsampling. The computational effort remains small due to
using the FFT.

3) Main Findings:
i) The signal structure can be estimated by maximizing a

sparsity measure. Estimation can be complemented by
prior knowledge in many applications.

ii) Window and grid mismatch can be addressed by adapting
the representation matrix Ψ to the model of the signal by
using a combination of stretching and subsampling.

iii) To keep computational effort at bay, the FFT is used to
compute Ψ. The number of frequency points is moder-
ately increased up to the best match of estimated signal
model and frequency grid.

IV. APPLICATIONS

In the following, our findings are demonstrated by means of
two applications. First, structured CS is applied to the emerging
field of SHM, in which measurements are conducted in the time
domain (§IV-A). Second, structure is incorporated into CS of
EM images which are acquired using time- and image-domain-
based sensing (§IV-B).

A. Structural Health Monitoring

In the field of SHM, sensor networks are widely used to
continuously monitor the condition of civil structures. Since sen-
sors often operate wirelessly and depend on energy harvesting
methods, CS is promising to reduce the energy needed for mea-
surements as well as for wireless data transmission [43]–[45].
Even though vibration measurements in SHM applications are
highly structured, signal structure is still being neglected in the
vast majority of CS approaches.

In our example, we focus on CS in the field of wind turbines, in
which continuous monitoring is essential to increase the safety
and competitiveness of wind energy. By measuring vibrations
of the turbine blades, blade damage can be detected and turbine
settings can be optimized to reduce load and forces acting on
the blades [46], [47].

The vibrational response of a turbine blade was measured in
operation of the turbine by mounting triaxial accelerometers on
the blade tip as described in [48]. To reduce the impact of noise
at high rotation frequencies, only measurements at low rotation

Fig. 9. Original and reconstructed acceleration, 10% of samples used. Com-
parison of (i) traditional CS (UAR sampling and reconstruction with original
resolution, N̂ = N ) and (ii) structured CS (Ω(10, 4000, q) SRM sampling,
reconstruction with stretching and threefold subsampling, 3N≤N̂≤4N ).

frequencies (f0 ≤ 0.15 Hz) were evaluated. Also, the following
analysis is based on measurements in x-direction of the sensor,
which experienced the lowest noise levels. Acceleration was
measured at 400Hz for a duration of 10 s. The sampling matrix
has not been integrated into the prototype sensor yet; therefore,
compressed measurements are simulated and are selected from
the set of measurements according to the sampling matrix.

Fig. 9 shows original and reconstructed acceleration for tra-
ditional CS with 10% of samples and original reconstruction,
and structured CS with an Ω{10, 4000, 10} SRM pattern and
stretch.+subsampl. reconstruction with c = 3. One can clearly
note that the measured signal is dominated by the fundamental
rotation frequency, which does not coincide with the measure-
ment window. Consequently, window mismatch and resulting
grid mismatch lead to poor reconstruction results for traditional
CS. When using structured CS instead, the fundamental fre-
quency is incorporated into reconstruction and, thereby, recon-
struction accuracy at the boundaries of the measurement interval
is improved significantly.

Next, the overall reconstruction accuracy is evaluated by
calculating the following errors in the frequency domain:

E1: Low-frequency error for k ≤ 10 in the frequency do-
main.

E2: Overall error across all frequencies.
E3: Noise error: Distinct peaks in the original spectrum are

identified. The error is then computed for all remaining
frequencies to assess the number of falsely created peaks.

E4: Peak error for the 10 peaks with largest amplitude.
Results for 100 measurement campaigns and the same param-

eter settings used in the single example in Fig. 9 are depicted in
Fig. 10. Reconstruction errors for all error measures are reduced
by using structured CS. To summarize, incorporating the signal
structure into CS algorithms is beneficial in SHM applications
such as monitoring of wind turbine blades.

B. 1D and 2D Imaging

CS is promising in imaging methods such as electron mi-
croscopy (EM), in which samples are acquired according to
fixed positions in the image domain. By reducing the number of
measurements, the risk of damaging sensitive structures can be
reduced. Different variants of EM have incorporated CS meth-
ods, such as random-beam scanning transmission EM [49] and
scanning line probe imaging [50]. In addition, CS has been used
for further scanning microscopy methods such as fluorescence
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Fig. 10. Reconstruction errors for 100 acceleration measurement campaigns
on the turbine for 10 s each. Comparison of (i) traditional CS (10 % UAR
sampling, reconstruction with original resolution, N̂ = N ) and (ii) structured
CS (Ω(10, 4000, q)SRM sampling, reconstruction with stretching and threefold
subsampling, 3N≤N̂≤4N ). Mean μ, standard deviation σ and maximum of
root-mean-square errors (RMSE) are displayed.

Fig. 11. Variability of reconstruction errors for traditional CS (5% UAR
sampling, reconstruction with N̂=N ) in comparison to structured CS
(Ω(10, 4000, 5) SRM sampling, structured reconstruction with N≤N̂≤3N ).
20 one-dimensional images simulated (piecewise linear functions, signal length
N = 4000) with 100 UAR patterns tested per image. Root-mean-square errors
(RMSE) displayed.

microscopy [51] and atomic force microscopy [52]. Even though
the implementation of the sensing matrix was optimized and
adapted in a few approaches [52], [53], no specific attention has
been paid to the design of the sensing matrix itself.

In the following, two experiments are performed for evaluat-
ing the benefit of structured CS for EM.

1) Experiment 1 - 1D Evaluation of Structured CS: First,
the variability of UAR sampling in traditional CS is evalu-
ated against fixed SRM sampling in structured CS. To re-
duce computational complexity, one-dimensional (1D) test
signals are created by using piecewise linear functions. For
this, the signal length N=4000 is divided into 10 pieces
with corresponding functions randomly selected from the
set F (x) = {b sin(2πax), ax, a√x+ b, b cos(2πax)} and ran-
domly selected parameters a and b from a Gaussian distribution.
An additional offset is introduced to align the last value of
each piece to the first value of the next one. In total, 20 one-
dimensional images are simulated and 100 UAR patterns with
5% of samples are tested per signal. For structured CS, SRM
sampling was selected with Ω(10, 4000, 5) and reconstruction
with N≤N̂≤3N ).

Results show that reconstruction errors for structured CS are
smaller than for traditional CS for all test signals (see Fig. 11).
Additionally, errors for traditional CS are highly variable both
within and between test signals, with the maximum error of

Fig. 12. Image reconstruction by using traditional CS, i.e. 10% UAR sampling
with N̂=N , and structured CS (Ω(10, 200, 10) SRM sampling, structured
reconstruction with 3N≤N̂≤4N ). From left to right: (i) original images of
size 200 x 200, (ii) traditional CS and (iii) structured CS reconstruction. Top
row: test image with 2% noise, relative L2 error 0.36 / 0.10 and PSNR 19.2 dB /
30.2dB for traditional and structured CS, respectively. Middle row: EM image
of animal cells, snippet from [54], rel. L2 error 0.16 / 0.13 and PSNR 17.5dB
/ 19.3dB. Bottom row: EM image of animal cells, snippet from [55], rel. L2
error 0.47 / 0.42 and PSNR 15.1dB / 16.1dB.

structured CS being 10 times smaller than the maximum error
of traditional CS.

2) Experiment 2 - 2D Test Images: Next, the benefit of struc-
tured CS in EM is evaluated. When moving from 1D to 2D test
signals, the design of the sampling matrix needs to be extended to
two dimensions. For this, the concept of 1D batches in stratified
subsampling is extended to 2D batches and the pairwise distance
between elements in Ω are calculated as Euclidean distances
di,j=(d2i + d2j )

1
2 . In addition, the signal structure is estimated

by adapting the size [N̂1, N̂2] of the two-dimensional DFT.
In order to demonstrate our method, one highly structured

test image and two EM images of animal cells are tested
(see Fig. 12). UAR sampling with 10% samples is compared
with Ω(10, 200, 10) SRM sampling for the 200 x 200 images.
Structured reconstruction with 3N ≤N̂ ≤4N is used and the
structure of the two-dimensional DFT is estimated as [695,623]
(Image 1), [686,624] (Image 2) and [684,618] (Image 3) by using
the 2D extension of equations 8 and 9.

For the test image (Image 1), reconstruction errors can be
decreased significantly by 72% from 0.36 to 0.10. In addition, the
peak signal-to-noise ratio (PSNR) was used to evaluate recon-
struction results by relating the peak amplitude â of the original
image to the reconstruction error e =

√
(Iorig − Irec)2 between

original and reconstructed image I with psnr = 20 log( âe ). For
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the test image, the PSNR could be increased significantly by
11.0 dB from 19.2 dB to 30.2 dB.

For the real-world EM images, structure is not as promi-
nent as for the 1D SHM application. Consequently, recon-
struction accuracy is increased by 18.5% (from 0.16 to 0.13)
and 10.6% (from 0.47 to 0.42), and PSNRs are increased by
1.8 dB (from 17.5 dB to 19.3 dB) and 1.0 dB (from 15.1 dB
to 16.1 dB) for Image 2 and Image 3, respectively, by using
structured CS.

As for the 1D case, structured CS is expected to increase
robustness but either needs computationally costly Monte Carlo
simulations or profound mathematical elaboration to be verified.
This exceeds the scope of this paper and will be covered in
future work. One needs to note that in our applications images
are sampled by picking single locations as needed in EM. This
is a different task than in many image reconstruction problems,
in which Fourier sensing is paired with reconstruction by us-
ing wavelets. Therefore, results cannot be compared to those
reconstruction problems one-by-one.

V. CONCLUSION

Even though structured CS is state-of-the-art in Fourier sens-
ing applications, structure is still neglected in most time- and
image-domain-based sensing applications. In this paper, we
developed a method to incorporate structure into both the ac-
quisition of samples and the reconstruction of signals, thereby
significantly reducing reconstruction errors in such applications.
The sensing matrix was designed via stratified random sampling
with the sample intervals being related to the largest frequency
being captured. Also, a measure for optimizing the sampling
pattern was proposed to increase the robustness of reconstruc-
tion. Additionally, we propose structured reconstruction for
reducing grid mismatch of the Fourier transform while keeping
computational costs low.

Simulation results show that structured CS significantly re-
duces reconstruction errors and increases robustness. Structured
CS also successfully reduces reconstruction errors in an SHM
application. Error reduction was smaller in 2D EM and we
propose further research on the estimation of signal structure
in 2D images in the future. Our approach represents first steps
from structured Fourier sensing to time- and image-domain-
based sensing, and we hope that it will initiate further work
on structured sampling and how it can be generalized.
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problem - On computational barriers and paradoxes in estimation, regular-
isation, computer-assisted proofs and learning,” 2021, arXiv:2110.15734.

[37] H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Amer.
Inst. Elect. Eng., vol. 47, no. 2, pp. 617–644, 1928.

[38] A. Koochakzadeh and P. Pal, “On the robustness of co-prime sampling,”
in Proc. 23rd Eur. Signal Process. Conf., 2015, pp. 2825-2829.

[39] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the music algorithm,”
in Proc. Digit. Signal Process. Signal Process. Educ. Meeting, 2011,
pp. 289–294.

[40] T. Jia, H. Wang, X. Shen, and X. Liu, “Direction of arrival estimation
with co-prime arrays via compressed sensing methods,” in Proc. OCEANS
Shanghai, 2016, pp. 1–5.

[41] J. Fang, F. Wang, Y. Shen, H. Li, and R. S. Blum, “Super-resolution
compressed sensing for line spectral estimation: An iterative reweighted
approach,” IEEE Trans. Signal Process., vol. 64, no. 18, pp. 4649–4662,
Sep. 2016.

[42] L. Hu, Z. Shi, J. Zhou, and Q. Fu, “Compressed sensing of complex
sinusoids: An approach based on dictionary refinement,” IEEE Trans.
Signal Process., vol. 60, no. 7, pp. 3809–3822, Jul. 2012.

[43] D. Mascareñas, A. Cattaneo, J. Theiler, and C. Farrar, “Compressed
sensing techniques for detecting damage in structures,” Struct. Health
Monit., vol. 12, no. 4, pp. 325–338, 2013.

[44] Y. Yang and S. Nagarajaiah, “Output-only modal identification by com-
pressed sensing: Non-uniform low-rate random sampling,” Mech. Syst.
Signal Process., vol. 56, pp. 15–34, 2015.

[45] Y. Bao, Z. Shi, X. Wang, and H. Li, “Compressive sensing of wireless sen-
sors based on group sparse optimization for structural health monitoring,”
Struct. Health Monit., vol. 17, no. 4, pp. 823–836, 2018.

[46] D. Tcherniak and L. L. Mølgaard, “Active vibration-based structural
health monitoring system for wind turbine blade: Demonstration on an
operating vestas V27 wind turbine,” Struct. Health Monit., vol. 16, no. 5,
pp. 536–550, 2017.

[47] Y. Du, S. Zhou, X. Jing, Y. Peng, H. Wu, and N. Kwok, “Damage detection
techniques for wind turbine blades: A review,” Mech. Syst. Signal Process.,
vol. 141, 2020, Art. no. 106445.

[48] T. Loss, O. Gerler, and A. Bergmann, “Online calibration of accelerometers
for monitoring of wind turbine blade movement,” in Proc. IEEE Int.
Instrum. Meas. Technol. Conf., 2020, pp. 1–6.

[49] L. Donati, M. Nilchian, S. Trépout, C. Messaoudi, S. Marco, and M. Unser,
“Compressed sensing for STEM tomography,” Ultramicroscopy, vol. 179,
pp. 47–56, 2017.

[50] H.-W. Kuo, A. E. Dorfi, D. V. Esposito, and J. N. Wright, “Compressed
sensing microscopy with scanning line probes,” 2019, arXiv:1909.12342.

[51] V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan,
“Compressive fluorescence microscopy for biological and hyperspectral
imaging,” Proc. Nat. Acad. Sci., vol. 109, no. 26, pp. E1679–E1687,
2012.

[52] C. S. Oxvig, T. Arildsen, and T. Larsen, “Structure assisted compressed
sensing reconstruction of undersampled AFM images,” Ultramicroscopy,
vol. 172, pp. 1–9, 2017.

[53] X. Liu, S. Zhang, A. Yurtsever, and J. Liang, “Single-shot real-
time sub-nanosecond electron imaging aided by compressed sensing:
Analytical modeling and simulation,” Micron, vol. 117, pp. 47–54,
2019.

[54] J. A. Don W. Fawcett, “Cil_36063, bombylius major, flight muscle cell,”
Accessed: Jan. 8, 2021. [Online]. Available: http://www.cellimagelibrary.
org/images/36063

[55] M. Guervos, “Cil_40405, convallaria majalis,” Accessed: Jan. 8, 2021.
[Online]. Available: http://www.cellimagelibrary.org/images/40405,

https://books.google.co.uk/books{?}id=cAMOzgEACAAJ
http://www.cellimagelibrary.org/images/36063
http://www.cellimagelibrary.org/images/36063
http://www.cellimagelibrary.org/images/40405


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


