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We provide the first significant extension of the unified transform (also known as the Fokas method)
applied to elliptic boundary value problems, namely, we extend the method to curvilinear polygons and
partial differential equations (PDEs) with variable coefficients. This is used to solve the generalized
Dirichlet-to-Neumann map. The central component of the unified transform is the coupling of certain
integral transforms of the given boundary data and of the unknown boundary values. This has become
known as the global relation and, in the case of constant coefficient PDEs, simply links the Fourier
transforms of the Dirichlet and Neumann boundary values. We extend the global relation to PDEs with
variable coefficients and to domains with curved boundaries. Furthermore, we provide a natural choice of
global relations for separable PDEs. These generalizations are numerically implemented using a method
based on Chebyshev interpolation for efficient and accurate computation of the integral transforms that
appear in the global relation. Extensive numerical examples are provided, demonstrating that the method
presented in this paper is both accurate and fast, yielding exponential convergence for sufficiently smooth
solutions. Furthermore, the method is straightforward to use, involving just the construction of a simple
linear system from the integral transforms, and does not require knowledge of Green’s functions of the
PDE. Details on the implementation are discussed at length.

Keywords: unified transform/Fokas method; elliptic PDEs; boundary value problems; curvilinear
polygons; variable coefficients.

1. Introduction

In the late ’90s, a new method for analysing boundary value problems (BVPs) for linear and for
integrable nonlinear partial differential equations (PDEs) was introduced (Fokas, 1997, 2000, 2001),
which has become known as the unified transform, or the Fokas method. Reviews can be found in Fokas
(2008), Fokas & Spence (2012), Deconinck et al. (2014) and Fokas & Pelloni (2014), with a discussion
of the method applied to nonlinear PDEs in Fokas & Sung (2005). The method has been extensively
used to numerically (and in some cases, analytically) solve the generalized Dirichlet-to-Neumann map
for constant coefficient elliptic PDEs formulated in the interior of a polygon (Smitheman et al., 2010;
Fornberg & Flyer, 2011; Ashton, 2013; Hashemzadeh et al., 2015). For the Laplace, modified Helmholtz
and Helmholtz equations the method expresses the solution in terms of integrals in the complex Fourier
plane (Fokas, 2000; Spence & Fokas, 2010a; Davis & Fornberg, 2014). In simple geometries, where the
method can be used analytically, it has been used to obtain analytical solutions where classical methods
apparently fail (Spence, 2011; Fokas & Kalimeris, 2014) and the method has been put on a rigorous
footing by Ashton (Ashton, 2012, 2013). However, the unified transform has thus far only been applied
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EXTENDING THE UNIFIED TRANSFORM 977

to PDEs with constant coefficients in polygonal domains.1 In this paper we provide the first extension
of the unified transform to solving the generalized Dirichlet-to-Neumann map on general curvilinear
polygons and for PDEs with variable coefficients. The method proposed in this paper has the following
attractive features:

• It is very easy to code up as a numerical method (see Section 4).

• It is fast, with numerical experiments taking at most the order of a few seconds to implement using
simple MATLAB code on a standard laptop with 1.80 GHz processor. The time is dominated by
setting up the linear system (which requires the computation of certain integrals). As we explain
later, this scales linearly with the number of collocation points and is virtually independent of the
number of basis functions. It is also trivial to parallelize.

• It is accurate, with convergence rates determined by the expansion basis along the boundary.2 In
particular, spectral convergence is obtained for sufficiently smooth solutions in exactly the same
manner as in the case of constant coefficients and polygon domains.

• It is a purely boundary-based method—no discretization of the domain interior is required. However,
unlike other boundary methods such as the boundary integral method, it avoids entirely the
computation of singular integrals. More importantly, for the setting of variable coefficients we
consider here, and in contrast to boundary integral methods, the unified transform does not require
calculation of Green’s functions (these are generally unknown for variable coefficient PDEs except
in a few selective cases). It is also very easy to extend the method to obtain the solution at any point
in the interior by simply decomposing the domain into smaller subdomains (see Section 5.1).

1.1 The problem and the unified transform

The problem of evaluating the generalized Dirichlet-to-Neumann map can be stated as follows. Assume
that the PDE is strongly elliptic in the Lipschitz curvilinear polygon Ω , and along each side Γj
connecting corners zj and zj+1 we are given a relation of the form

δj

∂uj

∂N + Ajuj = gj, (1.1)

where δj, Aj ∈ R do not vanish simultaneously and gj are known functions. In general, the method can
also cope with nonconstant, complex valued δj, Aj, as well as oblique derivative problems or nonlocal
boundary conditions, but for simplicity we consider the above case. Evaluating the generalized Dirichlet-
to-Neumann map means solving for the complementary boundary values along Γj given by

hj := Aj

∂uj

∂N − δjuj. (1.2)

Recall that for smooth enough given data gj, there is a unique H1(Ω) solution (e.g. McLean, 2000),
provided that there is no solution to the homogeneous equation. For certain simple domains and simple

1 Apart from some simple cases mentioned below.
2 Our use of a Legendre basis restricts us to algebraic convergence in the presence of corner singularities. Future work will aim

at including singular functions in the basis to improve convergence rates in this case.
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978 M. J. COLBROOK

PDEs, classical methods such as the method of images, separation of variables and eigenfunction
expansions can be used to find the associated Green’s function and solve this problem explicitly
(e.g. Stakgold, 2000). However, in general, this problem must be solved numerically.

Throughout we shall identify R
2 with C via the complex variable z = x + iy. Consider first the

simplest case of the two-dimensional Laplace equation formulated in the interior of a closed polygon
characterized by the corners zj = xj + iyj, zj ∈ C, j = 1, ..., n. Define ûj(λ) as the following Fourier
transform along the side (zj, zj+1):

ûj(λ) =
∫ zj+1

zj

e−iλz
(

∂uj

∂N
ds

dz
+ λuj

)
dz, j = 1, ..., n, λ ∈ C, (1.3)

with
∂uj
∂N denoting the derivative of u in the outward normal to the side (zj, zj+1) and s denoting the

arc length parametrizing this side. The integral transform defined by (1.3) involves both the Dirichlet
and Neumann boundary values, however, a well-posed elliptic BVP generally requires prescribing one
boundary condition along each part of the boundary. The so called ‘global relation’ in this case is
given by

n∑
j=1

ûj(λ) = 0, λ ∈ C, (1.4)

and links the Dirichlet and Neumann boundary values. In some cases the analysis of the global relation
implies that the unknown transforms can be computed through the solution of a Riemann–Hilbert
problem (Fokas & Kapaev, 2003) and for particular boundary conditions and simple domains this can
be bypassed, and the unknown transforms can be computed using only algebraic manipulations. An
example is the equilateral triangle for which several results generalizing the classical results of Lamé
can be obtained (Dassios & Fokas, 2005; Fokas & Kalimeris, 2014).

In the case of constant coefficient elliptic PDEs on convex Lipschitz domains, it has been shown
that the analysis of the global relation actually yields a unique solution (Ashton, 2012) for the unknown
boundary values for sufficiently regular boundary data. For the simple case of constant coefficient
elliptic PDEs on strict polygons, following the work of several researchers (Fulton et al., 2004; Sifalakis
et al., 2007; Sifalakis et al., 2008; Fokas et al., 2009; Sifalakis et al., 2009; Smitheman et al., 2010;
Fornberg & Flyer, 2011; Saridakis et al., 2012; Davis & Fornberg, 2014; Hashemzadeh et al., 2015;
Ashton 2015a; Colbrook et al. (2018)) and in particular the results presented in Fornberg & Flyer (2011),
Davis & Fornberg (2014), Hashemzadeh et al. (2015) and Colbrook et al. (2018), there now exists the
following simple algorithm for determining numerically the unknown boundary values of this solution:

(1) Expand {gj}n
1 and {hj}n

1 in terms of N ∈ N Legendre polynomials (or some other suitable basis),

gj(t) ≈
N−1∑
l=0

a j
l Pl(t), hj(t) ≈

N−1∑
l=0

bj
lPl(t), j = 1, ..., n, t ∈ [−1, 1]. (1.5)

(2) Express uj = (Ajgj − δjhj)/(δ
2
j + A2

j ) and ∂uj/∂N = (δjgj + Ajhj)/(δ
2
j + A2

j ). Substitute these into
the global relation (1.4) to obtain an approximate global relation by evaluating at M λ-values in C

(called a collocation set).
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EXTENDING THE UNIFIED TRANSFORM 979

(3) Overdetermine the system (M > nN) and also evaluate the Schwartz conjugate of the global
relation. Solve this system in the least squares sense to determine the vector of the unknown
expansion coefficients.

Because this approach involves enforcing the global relations at a set of discrete points in the
spectral plane, it is a spectral collocation method. This method can be viewed as an alternative to the
boundary integral method, where now the key relations are formulated in spectral space rather than
physical space. A key advantage of the method, as opposed to many methods which are formulated
in the physical space, is that the set of allowed collocation points is very large (typically C minus a
finite set of points). Using this freedom wisely leads to algebraic systems with small condition numbers
(Hashemzadeh et al., 2015).

Early numerical implementations of this method used Fourier expansions and were limited to
relatively low algebraic rates of convergence (Fulton et al., 2004; Fokas, 2008; Fokas et al., 2009).
For sufficiently smooth boundary data, exponential convergence was proven by Ashton and Crooks
(Ashton & Crooks, 2016) for a computationally more expensive Galerkin scheme based on the
method. Such convergence was realized via the use of Chebyshev rather than Fourier expansions in
Sifalakis et al. (2008) and Smitheman et al. (2010), but, in the case of irregular polygons, the
relevant algorithms encountered conditioning and convergence issues. A breakthrough in the numerical
implementation of the unified transform was achieved by Fornberg & Flyer (2011); (a) Legendre
expansions were introduced and Fourier transforms of the Legendre polynomials were given in terms
of Bessel functions. (b) By evaluating the global relation at Halton nodes and by overdetermining the
relevant algebraic system, accurate solutions were obtained in an efficient way.

1.2 Contribution of paper

Despite the success of the unified transform in solving the above BVP, the major drawback of this
method has thus far been its restriction to constant coefficient PDEs and strict polygons (i.e. straight
edges). There are three notable exceptions to these limitations: in Fokas (2004) PDEs of the form
uxx + uyy + a(x)u = 0 were solved on the quarter plane 0 < x, y < ∞, a separable domain,3 via the
analysis of the global relation, and in Spence & Fokas (2010b,c) integral relations and global relations
were constructed for certain domains in polar coordinates, and used to solve BVPs for the Helmholtz
equation in a wedge and for the Poisson equation in a circular wedge. However, there has been neither
an extension to more general PDEs, or more general domains, nor any numerical implementation of
these cases. The final exception to this restriction, related to Spence & Fokas (2010b,c), can be found in
Crowdy (2015a,b), which extends the integral transforms of Fokas & Kapaev (2003) to circular regions
for the Laplace equation. This was further extended to the biharmonic equation in Crowdy & Luca
(2014) and Luca & Crowdy (2018).

In this paper we will show that both of the above drawbacks can be overcome, and extend the unified
transform to general curvilinear polygons and general variable coefficient PDEs. It is found that the use
of a Legendre basis still has many advantages in this more general setting. The key observation is that the
integral transforms themselves correspond to Legendre coefficients of certain functions. Through the use
of a Chebyshev interpolation scheme, Chebyshev coefficients of these functions can be approximated
and then converted to the corresponding Legendre coefficients. The advantage of this method is that
it is extremely fast (making use of the fast Fourier transform) and very accurate, even for polynomial
approximations of large degree. Given this method of computing the integral transforms, we provide

3 See also Fokas (2004); Treharne & Fokas (2007).
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980 M. J. COLBROOK

motivation for the proper choice of test functions analogous to the exponential solutions in the case of
Laplace equation appearing in (1.3). We provide extensive numerical examples for a variety of elliptic
PDEs, including comparisons with the finite element method (FEM), demonstrating that the method,
whilst simple, is very robust and accurate.

1.3 Relation to other methods

There exists a vast literature on methods seeking to solve above the BVP such as finite element, finite
difference, boundary integral methods, spectral methods, etc. It is beyond the scope of this paper to
discuss thoroughly the rich literature on PDE methods. However, we feel it appropriate to make a few
remarks in this direction.

The closest classical method to the unified transform is the null-field method that originated in the
electrical engineering community in the 1960s (e.g. Kleinman et al., 1984). Similarly, to the unified
transform, the null-field method is also based on Green’s second identity with one of the two functions
equal to the solution of the BVP and the other function equal to a family of solutions to the adjoint
equation (with no boundary conditions). However, there are significant differences: first, the null-
field method is specific to the exterior Helmholtz scattering problem, whereas the unified transform
in this paper is applied to interior problems and more general PDEs. Secondly, in the former method
one chooses the adjoint solutions to be outgoing wave functions found by separation of variables in
polar coordinates, whereas the unified transform has typically chosen the adjoint functions to be the
exponential functions found by separation of variables in Cartesian coordinates. Thirdly, in the null-
field method one expands the unknown boundary value in a ‘global basis’, i.e. the basis functions are
supported on the whole of the boundary; common choices of the basis are either the outgoing wave
functions themselves, or their normal derivatives (see Section 7.7.2 of Martin (2006)). In contrast, the
unified transform uses a local basis. Further comparisons with other standard variational methods based
on Green’s identities can be found in Spence (2014). The unified transform was originally developed
using a Lax pair formulation in the theory of integrable nonlinear PDEs, which naturally arises from the
differential form of Green’s second identity (Fokas & Spence, 2012). In this sense, the unified transform
can be viewed as the natural linear limit of inverse scattering transforms used to solve integrable systems.

The unified transform is a boundary-based method, but, in contrast to boundary–integral formu-
lations, it does not involve any singular integrals or Green’s functions. Other advantages which are
shared with other spectral methods include speed and the fact that one only needs to deal with small-
system sizes for suitable basis choices (choices dealing with corner singularities will be discussed
elsewhere). There is also a large degree of freedom in how to pick collocation points (typically
C\{0}). However, unlike many spectral methods (e.g. Boyd, 2001), there is no theory on the optimum
choice of collocation points for the unified transform (there is no link with interpolation), with only
simple heuristics existing in the literature. Also, in the presence of corner singularities, if one chooses
Legendre functions as a basis for expanding the unknown boundary values, one can only achieve
algebraic rates of convergence. Adapting the basis to cope with corner singularities was discussed in
Colbrook et al. (2018) and Fornberg & Flyer (2011), where the unified transform compared well
against spectrally accurate boundary integral methods. There are many well-known examples in the
literature on how to deal with corner singularities (Li & Lu, 2000), including hp-FEM (Guo & Babuška,
1986; Babuška & Guo, 1988; Babuška & Guo, 1989), boundary integral methods (Symm, 1973),
Mukhopadhyay et al., 2000), multigrid FEMs (Zhu & Cangellaris, 2006) and collocation methods (such
as Trefftz and radial basis methods) (Li et al., 2008; Fornberg & Flyer, 2015). Clearly, adapting the basis
used in the unified transform to cope with singularities merits further study.
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EXTENDING THE UNIFIED TRANSFORM 981

1.4 Organization of paper

The paper is organized as follows. In Section 2 we generalize the global relation to arbitrary divergence
form PDEs on curvilinear polygons. The generalized global relation now involves tangential derivatives,
as well as the usual Dirichlet and Neumann boundary values that appear in (1.3). Some examples are then
given in Section 3. The method and its implementation are extensively analysed in Section 4. Numerical
results, including comparisons to finite element and a nonself-adjoint example, are given in Section 5.
Finally, we discuss the implications of our results and where they fit into the literature on the unified
transform in Section 6.

2. Generalizing the global relation

Suppose that α(x, y) ∈ C
2×2 is a matrix valued function, β(x, y) ∈ C

2 a vector valued function and γ a
function (all sufficiently smooth) defined over Ω . Consider the formal PDE in divergence form

∇ · (α∇u) + ∇ · (βu) + γ u = 0. (2.1)

We assume that the domain Ω is a curvilinear polygon, meaning that it is a bounded connected Lipschitz
domain whose boundary consists of a finite number of vertices connected by C1 arcs. We shall refer to
such a domain as a curvilinear polygon and to a standard straight-edged Lipschitz polygon as simply
a (strict) polygon. Without loss of generality we shall consider real solutions and real coefficients. We
denote the corners of Ω in anticlockwise order as {zj}n

1 with the side Γj, joining zj to zj+1 (with the
convention that zn+1 = z1). Γj can be parametrized by

[−1, 1] � t → (xj(t), yj(t)) ∈ R
2,

where we assume that the parametrization is C1 (i.e. the derivative on (−1, 1) can be extended to a
continuous function on [−1, 1]).

The adjoint of equation (2.1) is given by

∇ · (αT∇v) − β · ∇v + γ v = 0. (2.2)

We can write the expression v × (2.1) − u × (2.2) in the form

∇ · [v(α∇u) − u(αT∇v) + βuv] = 0. (2.3)

Integrating across the domain and applying the divergence theorem we recover the global relation
(n denotes the outward normal):

∫
∂Ω

u
[
(n · β)v − n · (αT∇v)

] + v
[
n · (α∇u)

]
ds = 0. (2.4)

Define lj(t) =
√

ẋj(t)
2 + ẏj(t)

2 along the curve Γj and assume that lj(t) > 0. Suppose that we have

a one-parameter family of solutions of the adjoint equation, v(x, y; λ) = vλ, for some λ ∈ C , where C
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982 M. J. COLBROOK

denotes the collocation set. Denoting the solution u along side Γj by uj, the unit outward normal by nj
and analogously the oblique derivative by nj · (α∇uj), we define the following important transform:

μ̂j(λ) :=
∫ 1

−1

{
uj

[
(nj · β)vλ − nj · (αT∇vλ)

] + vλ

[
nj · (α∇uj)

]}
lj(t) dt. (2.5)

Using (2.5), the global relation (2.4) becomes

n∑
j=1

μ̂j(λ) = 0. (2.6)

By choosing α, β and γ appropriately, we can formally treat any PDE of the form

a1(x, y)uxx + a2(x, y)uxy + a3(x, y)uyy + b1(x, y)ux + b2(x, y)uy + c(x, y)u = 0,

for sufficiently smooth a1, a2, a3, b1, b2 and c. Of course, for a general PDE of the form (2.2), it may be
difficult to construct a one-parameter family of solutions.

Remark 2.1 As is usually the case for the unified transform, if u and the PDE coefficients are real-
valued and for any λ in our parameter family, there is a corresponding solution of the adjoint equation
for λ, then we can obtain a second global relation via Schwartz conjugation, i.e. taking the complex

conjugate and replacing λ by λ. This simply replaces v(x, y; λ) by v(x, y; λ) in the global relation.
However, as we shall see in Section 5.2, it is crucial for the numerical implementation of separable
equations to consider a complementary global relation obtained via the complementary solution of
the ordinary differential equation resulting from separation of variables. For example, in the case of
Tricomi, we found it necessary to use both Ai- and Bi-type functions for the y-variable (see Example
(3.1)), instead of Ai and the global relation obtained from Ai via Schwartz conjugation.

2.1 A particular form

Most examples in this paper will be PDEs of the particular form

a(x)uyy + b(y)uxx + cuxy + A(x)uy + B(y)ux + d(x, y)u = 0, (x, y) ∈ Ω , (2.7)

where a, b, A, B, d are given (sufficiently smooth) functions and c is some constant. In the notation of
(2.1) this corresponds to

α(x, y) =
(

b(y) c/2
c/2 a(x)

)
, β(x, y) =

(
B(y)
A(x)

)
, γ (x, y) = d(x, y).

Suppose that u solves (2.7) and that v solves the corresponding homogeneous adjoint equation:

a(x)vyy + b(y)vxx + cvxy − A(x)vy − B(y)vx + d(x, y)v = 0, (x, y) ∈ Ω . (2.8)
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EXTENDING THE UNIFIED TRANSFORM 983

We can write the expression v × (2.7) − u × (2.8) in the form

∂

∂x

[
b(y)(vux − uvx) + c

2
(vuy − uvy) + B(y)uv

]
− ∂

∂y

[
a(x)(uvy − vuy) + c

2
(uvx − vux) − A(x)uv

]
= 0.

(2.9)
We then employ Green’s theorem,

∫∫
Ω

(∂F

∂x
− ∂G

∂y

)
dx dy =

∫
∂Ω

(
Gdx + Fdy

)
, (2.10)

to write the global relation (2.4) in the form

∫
∂Ω

[
a(x)(uvy − vuy) + c

2
(uvx − vux) − A(x)uv

]
dx

+
∫

∂Ω

[
b(y)(vux − uvx) + c

2
(vuy − uvy) + B(y)uv

]
dy = 0. (2.11)

In what follows, Ḣ will denote the t derivative of the function H and, with an abuse of notation,
∂H/∂N will denote the normal derivative of H along the parametrization of the curve Γj. With these
conventions, it easily follows that dx = ẋ dt, dy = ẏ dt and

∂

∂x
= ẋ

l2j

∂

∂t
+ ẏ

lj

∂

∂N ,
∂

∂y
= ẏ

l2j

∂

∂t
− ẋ

lj

∂

∂N .

Thus, the basic transform μ̂j(λ) becomes

μ̂j(λ) =
∫ 1

−1

{[
a(xj(t))

(
ẏj

l2j
v̇ − ẋj

lj

∂v

∂N

)
+ c

2

(
ẋj

l2j
v̇ + ẏj

lj

∂v

∂N

)
− A(xj(t))v

]
ẋj(t)

−
[

b(yj(t))

(
ẋj

l2j
v̇ + ẏj

lj

∂v

∂N

)
+ c

2

(
ẏj

l2j
v̇ − ẋj

lj

∂v

∂N

)
− B(yj(t))v

]
ẏj(t)

}
uj dt

+
∫ 1

−1

[
b(yj(t)) − a(xj(t))

l2j
ẋjẏj + c

2l2j
(ẏ2

j − ẋ2
j )

]
vu̇j dt

+
∫ 1

−1

[
a(xj(t))ẋ

2
j + b(yj(t))ẏ

2
j

lj
− c

lj
ẋjẏj

]
v

∂uj

∂N dt. (2.12)

This expresses μ̂j(λ) as an integral transform of the Dirichlet boundary data, as well as the tangential
and normal derivatives of uj that is useful for the boundary conditions given in (1.1).

Remark 2.2 Note that the global relation now involves the extra information u̇ (tangential derivative)
as opposed to simply just the Dirichlet and Neumann boundary values when considering the Laplace,
modified Helmholtz or Helmholtz equations. This is due to the oblique derivative that appears when
applying the divergence theorem.
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984 M. J. COLBROOK

The global relation simply follows from the fact that the differential form

W(x, y; λ) =
[
a(uvy − vuy) + c

2
(uvx − vux) − Auv

]
dx +

[
b(vux − uvx) + c

2
(vuy − uvy) + Buv

]
dy

is closed whenever u is a solution of the equation and v a solution of the adjoint equation. Choosing
separable exponential solutions to the adjoint equation in the case of the Laplace, the modified
Helmholtz or the Helmholtz equations, leads to a simple one form that gives a global relation in terms of
the finite Fourier transforms of the relevant boundary values (Hashemzadeh et al., 2015). In these cases
we refer the reader to Ashton (2012, 2013) and Ashton & Fokas (2015) for further results.

Another possible route to dealing with curvilinear polygons is to approximate them via strict
polygons (this is commonly used in FEMs). However, for accurate approximations this requires
polygons whose edges may be very short. Such edges increase the condition number of the linear
system in the unified transform (as well as increasing its size) and make the current implementation
of the method impractical. Hence, this paper treats curved edges directly since they do not add any more
complications other than those that already arise from variable coefficients.

3. Examples of global relations

Given the adjoint equation (2.2), the question of how to construct a one-parameter family of solutions
naturally arises. If the PDE is separable then separation of variables allows us to compute a one-
parameter family of separable solutions v(x, y; λ). Another method is to look for symmetries of the PDE
(Hydon, 2000; Oliveri, 2010). Some simple examples are shown below, where we choose λ to avoid
branch-cuts/singularities in the domain.

Example 3.1 (Tricomi). Suppose the adjoint equation is

vyy + yvxx = 0,

i.e. a(x) = 1, b(y) = y and c = A = B = g = 0 in the notation of Section 2.1. Separation of variables
yields the two families of solutions

v(x, y; λ) = exp(iλx)Ai(
3
√

λ2y), v(x, y; λ) = exp(iλx)Bi(
3
√

λ2y), (3.1)

where Ai and Bi denote the Airy functions of the first and second kind, respectively. Another choice
could be given by

v(x, y; λ) =
[
(x + λ)2 + 4

9
y3

]− 1
6

. (3.2)

This is obtained by considering the particular solution when λ = 0 and noting that the PDE is invariant
under the transformation x → x + λ.

Example 3.2 (Generalized Tricomi). Suppose the adjoint equation is

vyy + yαvxx = 0,
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EXTENDING THE UNIFIED TRANSFORM 985

for some α > 0. Separation of variables yields the two families of solutions

v(x, y; λ) = exp(iλx)Aiα(
3
√

λ2y), v(x, y; λ) = exp(iλx)Biα(
3
√

λ2y), (3.3)

where Aiα and Biα denote the generalized Airy functions of the first and second kind, respectively. For
α �= 1 we can define these functions in terms of the modified Bessel functions

Aiα(z) = z1/2K1/(α+2)

( 2

α + 2
z(α+2)/2

)
, (3.4)

Biα(z) = z1/2
[
I1/(α+2)

( 2

α + 2
z(α+2)/2

)
+ I−1/(α+2)

( 2

α + 2
z(α+2)/2

)]
. (3.5)

Again, another choice is given by

v(x, y; λ) =
[
(x + λ)2 + 4

(α + 2)2 yα+2
] 1

2 − α+1
α+2

. (3.6)

Separation of variables can also be applied to

xβvyy + yαvxx = 0,

to yield solutions in terms of products of Aiα or Biα with Aiβ or Biβ .

Example 3.3 (Perturbed Tricomi). Suppose that the adjoint equation is

vyy + y(vxx + v) = 0.

Separation of variables yields the two families of solutions

v(x, y; λ) = exp(iλx)Ai(
3
√

λ2 − 1y), v(x, y; λ) = exp(iλx)Bi(
3
√

λ2 − 1y). (3.7)

Alternatively, we have solutions of the form

v(x, y; λ) =
[
(x + λ)2 + 4

9
y3

]− 1
12

J±1/6

(√
(x + λ)2 + 4

9
y3

)
. (3.8)

Example 3.4 Suppose that the adjoint equation is

vyy ± exp(αy)vxx = 0.

Separation of variables yields the two families of solutions

v(x, y; λ) = exp(iλx)J0

(2λ exp(αy/2)

α

)
, v(x, y; λ) = exp(iλx)Y0

(2λ exp(αy/2)

α

)
, (3.9)
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986 M. J. COLBROOK

for the hyperbolic case and

v(x, y; λ) = exp(iλx)I0

(2λ exp(αy/2)

α

)
, v(x, y; λ) = exp(iλx)K0

(2λ exp(αy/2)

α

)
, (3.10)

for the elliptic case. Here J0 and Y0 denote the Bessel functions of the first and second kind, respectively,
whereas I0 and K0 denote the modified Bessel functions of the first and second kind, respectively.
Another possible choice is

v(x, y; λ) =
[
(x + λ)2 ± 4

α2 exp(αy)
]− 1

2
. (3.11)

Remark 3.1 There is a connection between the test functions in (3.1), (3.3), (3.7), (3.10) and the
canonical form of the PDE. Namely, under the transformation that maps the elliptic equation to its
canonical form, these test functions are analogous to exponential solutions of the adjoint equation. For
example, in the case of the Tricomi equation in a domain with y > 0, the transformation w = 2y3/2/3
maps the PDE to its canonical form. If

3√
λ2 �∈ R�0 then for large |λ| we have (with the ± depending on

branch cuts)

exp(iλx)Ai(
3
√

λ2y) ∼ exp[λ(ix ± 2
3 y3/2)]

2
√

π(
3√
λ2y)1/4

,

whose exponential form is analogous to exp(λ(ix ± w)). Similarly, for the other cases considered in the
above examples.

Example 3.5 (General Divergence Form Example). Suppose that we take the more general form of (10)
with

α(x, y) =
(

(x + ε)2 x + ε

0 1

)
, β(x, y) = 0, γ (x, y) = 0.

This is elliptic if the domain does not cross the line x = −ε. The adjoint is

vyy + (x + ε)vxy + (x + ε)2vxx + 2(x + ε)vx = 0

and, in particular, the PDE is not formally self-adjoint. We have the family of solutions

v(x, y; λ) = (x + ε)λ exp
(

− λ

2
y ±

√−λ(3λ + 4)

2
y
)

.

4. The numerical method

We focus on the simplified case of Section 2.1, though the more general case will be discussed
in Sections 4.4 and 5.4. There are at least three ingredients necessary for the successful numerical
implementation of the method outlined in the introduction:

• A suitable basis choice or equivalently a suitable discretization of boundary values.

• A good choice of test functions v(x, y; λ) and of a subset of C (collocation points) at which to
evaluate the global relation.

• Efficient and accurate computation of the integral transforms of the basis functions in the global
relation.
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EXTENDING THE UNIFIED TRANSFORM 987

4.1 Basis choice and integral transforms

The use of Legendre polynomials as a basis choice has had considerable success in the literature since
it yields spectral convergence for sufficiently smooth solutions (Fornberg & Flyer, 2011), as opposed
to quadratic convergence for a Fourier or sine basis (Fulton et al., 2004; Fokas, 2008; Fokas et al.,
2009). It also yields an algebraic system with a much smaller condition number than a Chebyshev basis
(Sifalakis et al., 2008; Smitheman et al., 2010). Another key advantage in the strict polygon case for
Laplace/Helmholtz-type PDEs is the explicit expression of the finite Fourier transforms of Legendre
functions in terms of Bessel functions

P̂l(λ) =
∫ 1

−1
e−iλtPl(t) dt =

√−2π iλ

−iλ
Il+1/2(−iλ), l = 0, ..., N − 1, λ ∈ C. (4.1)

In general, given the definition of μ̂j(λ) in (2.12), there is no hope of obtaining such an explicit
representation for anything, but the most simple arcs Γj and functions v(x, y; λ). For large |λ|,
if the solution v(x, y; λ) has a known asymptotic form, then it would be possible to obtain accurate
approximations through the methods of steepest descent/stationary phase. If the integral is oscillatory
for large |λ|, then one could use methods developed in recent years to compute such oscillatory integrals
(Olver, 2007; Gamallo et al., 2018). However, it is in fact possible to use the Legendre basis and
compute the integral transforms accurately and quickly in a very simple manner. Furthermore, for
each side, all of the integral transforms can be computed simultaneously. With the approximations
in (1.5), the integral transforms are simply linear combinations of rescaled Legendre coefficients of
functions, given explicitly in terms of v, v̇ and the PDE/side parameters. For example, introducing the
functions Fj(l),

Fj(l) :=
∫ 1

−1

[b(yj(t)) − a(xj(t))

l2j
ẋjẏj + c

2l2j
(ẏ2

j − ẋ2
j )

]
vPl(t) dt, (4.2)

it follows that (2l + 1)Fj(l)/2 are simply the Legendre coefficients of the function

[b(yj(t)) − a(xj(t))

l2j (t)
ẋj(t)ẏj(t) + c

2l2j (t)
(ẏ2

j (t) − ẋ2
j (t))

]
v(x(t), y(t); λ), t ∈ [−1, 1].

To compute these, we first compute a high-order Chebyshev interpolation of the integrand and
then convert to Legendre coefficients. Given an expansion in terms of M2 approximated Cheby-
shev coefficients, stable fast O(M2 log(M2)

2) methods are available (Hale & Townsend, 2014;
Townsend et al., 2018) for the conversion to Legendre coefficients. The interpolation and con-
version code are available in the MATLAB package Chebfun.4 This allows us to construct the
matrices D , T and N ∈ C

M×nN corresponding to the integral transforms of the Dirichlet, tangent and

4 This is freely available at http://www.chebfun.org/. Another option for Julia users is Slevinsky’s FastTransforms.jl at https://
github.com/MikaelSlevinsky/FastTransforms.jl.
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Neumann data, respectively. Explicitly, for collocation points λ1, ..., λM , these transforms are defined
as follows:

Di,( j−1)N+2+l =
∫ 1

−1

{[
a

(
ẏj

l2j
v̇(xj(t), yj(t); λi) − ẋj

lj

∂v

∂N (xj(t), yj(t); λi)

)

+ c

2

(
ẋj

l2j
v̇(xj(t), yj(t); λi) + ẏj

lj

∂v

∂N (xj(t), yj(t); λi)

)
− Av(xj(t), yj(t); λi)

]
ẋj(t)

−
[

b

(
ẋj

l2j
v̇(xj(t), yj(t); λi) + ẏj

lj

∂v

∂N (xj(t), yj(t); λi)

)

+ c

2

(
ẏj

l2j
v̇ − ẋj

lj

∂v

∂N (xj(t), yj(t); λi)

)
− Bv(xj(t), yj(t); λi)

]
ẏj(t)

}
Pl(t)dt,

Ti,( j−1)N+2+l =
∫ 1

−1

(
b − a

l2j
ẋjẏj + c

2l2j
(ẏ2

j − ẋ2
j )

)
v(xj(t), yj(t); λi)Pl(t) dt,

Ni,( j−1)N+2+l =
∫ 1

−1

(aẋ2
j + bẏ2

j

lj
− c

lj
ẋjẏj

)
v(xj(t), yj(t); λi)Pl(t) dt,

for l = 0, 1, ..., N − 1.
We also express the tangential derivatives in terms of our basis expansion by taking the t derivative

of the expansion

uj = Ajgj − δjhj

δ2
j + A2

j

≈ 1

δ2
j + A2

j

N−1∑
l=0

(Aja
j
l − δjb

j
l )Pl(t)

and using the well-known Legendre expansions of derivatives of Legendre polynomials. This gives

u̇j ≈ 1

δ2
j + A2

j

N−1∑
l=0

(Aja
j
l − δjb

j
l )

l−1∑
m=0,l−m odd

(2m + 1)Pm(t).

To convert the Dirichlet expansion to its tangential counterpart, define the matrix D ∈ C
N×N by

Dj−2(k−1)−1,j = 2( j − 2k) + 1, j = 1, ..., N, k = 1, ...,

⌊
j + 3

2

⌋
.

Now define

νi = −1

δ2
j + A2

j

n∑
j=1

[
Aj(Di, j + Ti, jD) + δjNi,j

]
g

j
, (4.3)

where g
j

denotes the vector (a j
0, ..., a j

N−1)
T and given a matrix Q ∈ C

M×nN , Qi, j denotes the block

portion {Qi,k}jN
k=( j−1)N+1. Finally, define W ∈ C

M×nN by

Wi, j = −δj

δ2
j + A2

j

(Di, j + Ti, jD) + Aj

δ2
j + A2

j

Ni, j, (4.4)
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where again the subscript j denotes the portion corresponding to the jth side. The linear system we wish
to solve can now be expressed (in the case of real-valued solutions) as

[
W
W

]
b =

[
ν

ν

]
, (4.5)

where b = (b1
0, ..., b1

N−1, b2
0, ..., b2

N−1, ..., bn
0, ..., bn

N−1)
T is the vector of unknown expansion coefficients

and · denotes component-wise complex conjugation. For complex solutions we do not include the part
with complex conjugation. While scaling of rows does not affect solutions of linear systems with equally
many equations as unknowns, it does affect least squares solutions of overdetermined systems. Hence,
before proceeding, we normalize to make each row in the coefficient matrix have unit l1 norm. We then
solve this system using MATLAB’s backslash command (which uses a QR solver) for a least squares
solution approximation of b.

4.2 Collocation points

The final question to consider is the choice of collocation points and test functions. Obviously, this
depends on the solutions v(x, y; λ) and the resulting set C . For the majority of cases considered in this
paper we can choose C = C\S , where S is a simple set consisting of singularities or branch cuts. For
convex strict polygons and the Laplace/modified Helmholtz/Helmholtz equations, a suitable choice for
collocation points is given in Hashemzadeh et al. (2015):

λj,r = −(z̄j+1 − z̄j)
R

2M
r, j = 1, ..., n, r = 1, ..., M, (4.6)

where the positive integer M specifies the total number of collocation points (that is given by nM) and
the positive number R specifies the distance between consecutive collocation points. In this case the test
functions are certain complex exponentials:

v(x, y; λ) = exp(−i(±x + iy)λ), (Laplace), (4.7)

v(x, y; λ) = exp
{

i
κ

2
[(±x − iy)/λ − λ(±x + iy)]

}
, (modified Helmholtz ∇2 − κ2), (4.8)

v(x, y; λ) = exp
{

− i
κ

2
[(±x − iy)/λ + λ(±x + iy)]

}
, (Helmholtz ∇2 + κ2). (4.9)

Such a choice yields an algebraic system with a very small condition number because of the following
fact (Fokas et al., 2009) valid for convex polygons: for λ = λp,r all transforms {μ̂j(λ)}n

1 decay
exponentially as λ → ∞, except for μ̂p(λ) that involves an oscillatory integral and for μ̂p−1(λ), μ̂p+1(λ)

that decay linearly. This analysis still holds true in the curvilinear case, provided that the polygon is
convex. However, lack of convexity can cause serious degrading of the condition number regardless of
the collocation choice, though splitting up the polygon can alleviate this problem. Such a splitting is not
always possible in the curvilinear case.

In principle, for simple enough PDEs it may be possible to perform a similar analysis as in Fokas
et al. (2009), leading to curves in the complex plane that yield the same diagonally dominant form of
the collocation matrix. However, for the sake of simplicity, we shall evaluate at Halton nodes within a
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990 M. J. COLBROOK

circle of radius R around the origin. Although these do not lead to as accurate solutions as the above
‘ray’ choice for Laplace/Helmholtz type PDEs, they are still able to yield extremely accurate results.
We leave the investigation of more optimal collocation points to future study.

4.3 A Simple test

As a simple test for the method of computing the relevant transforms, we compare the Chebyshev
expansion method against explicit evaluation using (4.1). Figure 1 shows the computation of the first 51
Legendre Fourier transforms for λ = 10, 10i, 100, 100i. As can be seen, the minimum of the absolute
and relative errors are negligible. The time taken to evaluate these transforms are shown in Table 1. This
suggests that the Chebyshev expansion provides a stable and accurate way to evaluate the more general
integral transforms required in the unified transform extremely quickly, and our numerical experiments
in Section 5 support this statement.

Fig. 1. Absolute and relative errors for computing the Legendre Fourier transforms using the Chebyshev expansions. The linear
system setup involves a wide range of different λ and hence, a small absolute or relative error is desirable.

Table 1 Average time taken (seconds) over 1000 test runs of computing the first 51 Legendre Fourier
transforms on a standard laptop with 1.80 GHz processor using MATLAB. The Chebyshev method
computes all of these simultaneously with negligible difference in times for a larger number of Legendre
Fourier transforms. Clearly direct evaluation is quicker, but the Chebyshev method is still very fast and
can be applied to the more general integral transforms considered in this paper

λ = 10 λ = 10i λ = 100 λ = 100i

Proposed method 3.8 × 10−3 3.7 × 10−3 5.4 × 10−3 4.3 × 10−3

Direct evaluation 2.4 × 10−4 1.3 × 10−4 1.3 × 10−3 1.5 × 10−4
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EXTENDING THE UNIFIED TRANSFORM 991

4.4 A Natural oblique problem

Given the divergence form of the PDE, it is easy to apply the method to the following BVP:

δ̂jnj · (α∇uj) + Âjuj = gj ≈
N−1∑
l=0

a j
l Pl(t),

Âjnj · (α∇uj) − δ̂juj = hj ≈
N−1∑
l=0

b j
l Pl(t),

where gj are known and hj are unknown. This leads to the following approximate global relation:

n∑
j=1

N−1∑
l=0

b j
l

∫ 1

−1

{ −δ̂j

δ̂2
j + Â2

j

[nj · βvλ − nj · (αT∇vλ)] + δ̂j

Â2
j + Â2

j

vλ

}
lj(t)Pl(t) dt

= −
n∑

j=1

N−1∑
l=0

a j
l

∫ 1

−1

{ Âj

δ̂2
j + Â2

j

[nj · βvλ − nj · (αT∇vλ)] + δ̂j

δ̂2
j + Â2

j

vλ

}
lj(t)Pl(t) dt.

This can be solved in exactly the same manner as outlined in Section 4.1. Alternatively, assuming the
oblique derivative is not tangential, we can solve using the boundary conditions (1.2) by expressing
the oblique derivative in terms of the tangential and normal derivatives and employing the methods of
Section 4.1. We shall only consider this oblique problem in Section 5.4.

5. Numerical results

We now demonstrate the method on a variety of problems. The numerical implementation is very simple
and fast, and only involves the construction of the linear system (4.5). An important benefit of using the
proposed method is that in practice the time to set up the matrix scales as O(Mn), independent of N
(although we will allow M to depend on N). Setting up the system is also very easy to parallelize.5

5.1 Laplace, modified Helmholtz and Helmholtz on curved domains

Our first example considers Laplace- and Helmholtz-type PDEs in a family of curvilinear polygons
shown in Fig. 2, parametrized by the position of x0. These PDEs have been the focus of the literature
on the unified transform, but on strict polygons. In particular, we shall study the solution as we vary
the position of x0 and for the choice of adjoint solutions given by (4.8), (4.9) and (4.10), where the
± takes into account the second global relation obtained via Schwartz conjugation. For the numerical
experiments we shall consider the following solutions:

u(x, y) = 10 × Re
[
J3(x + iy)

]
, (Laplace), (5.1)

5 This was not necessary for the numerical examples in this paper, which can be run in a few seconds when efficiently
implemented. However, this parallelization could provide a serious advantage over other methods such as finite elements/finite
differences for large M and N.
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u(x, y) = exp
[ κ√

2
(x + y)

]
, (modified Helmholtz), (5.2)

u(x, y) = cos
[
i

κ√
2
(x + y)

]
, (Helmholtz), (5.3)

with κ = 2 for the Helmholtz/modified Helmholtz equations. The parameters used are x0 = −3/2,
R = 30 (radius of Halton nodes) and M = 20N. In general, we found that there was a threshold beyond
which increasing M does not effect the accuracy of the solution. The choice of the parameter R is
discussed in an appendix. However, the key point to note is that there is a wide range of R that produces
very similar results—there is no need for extensive parameter tuning.

We specified mixed data with (δ1, δ2, δ3, δ4) = (1, 1, 0, 1) and (A1, A2, A3, A4) = (1, 1/2, 1, 0).
Figure 3 shows the exponential convergence of the computed Legendre coefficients, as well as the
condition numbers of the system. The results are qualitatively exactly the same as in the strict polygonal
case and were similar for different solutions, Aj, δj and κ .

Figure 4 shows the errors of the computed Legendre coefficients and condition numbers of the
algebraic system as functions of x0, for N = 10. There is a breakdown in accuracy for x0 near −2
and 0. The breakdown near 0 occurs due to the domain ceasing to be Lipschitz (cusps develop at −1± i)
and at this point the condition number of the system increases. These breakdowns can be prevented by

Fig. 2. Domain for the first example, parametrized by the point x0 ∈ [−2, 0]. The curved side Γ1 has constant curvature.
The subfigure on the right shows the domain decomposition into four subdomains to improve accuracy/conditioning when x0 is
near −2.

Fig. 3. Left: maximum errors in Legendre coefficients for the unknown boundary values as functions of N. Note the exponential
convergence. Right: condition numbers of the systems as functions of N. The parameters for collocation points were not optimized
(see appendix) and increasing M further reduces the condition number.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/40/2/976/5210368 by U
niversity of C

am
bridge user on 16 July 2020



EXTENDING THE UNIFIED TRANSFORM 993

Fig. 4. Left: error as a function of x0, the bold lines represent errors when we split the domain. Splitting the domain reduces the
errors by several orders of magnitude when x0 is near −2 or 0. Right: analogous plot for the condition numbers.

Fig. 5. Curvilinear polygons on which we test the method for the differential operators L1, L2 and L3.

splitting the domain. When x0 is close to −2, we split into the four domains in Fig. 2 and match the
Dirichlet and Neumann data across the artificial edges (i.e. we have four coupled algebraic systems).
For points near x0 = 0 we combine Ω1 and Ω4, as well as Ω2 and Ω3, resulting in two sub-domains.
The results are shown in Fig. 4 and further decompositions can reduce the errors further. In general
we found it a good strategy to avoid internal angles of π (x0 = −2) or greater. Note also that such a
decomposition can be used to find the solution (as well as directional derivatives of the solution) at any
point in the interior of the domain.

5.2 More general elliptic PDEs on curved domains

In this example, we will consider the three Examples 3.1, 3.3 and 3.4 (elliptic version with α = 1)
of Section 3 and label the relevant operators as L1, L2 and L3, respectively. For Examples 3.1 and 3.3
we shall shift under a translation of y → y + 2 to ensure ellipticity near the origin. The four domains
considered are shown in Fig. 5 and are denoted as Ω1, Ω2, Ω3 and Ω4. For our test functions we choose
the following exact solutions of the relevant adjoint equations:

v1(x, y; λ) = exp(iλx)Ai[
3
√

λ2(y + 2)], v2(x, y; λ) = exp(iλx)Bi[
3
√

λ2(y + 2)], (L1),

v1(x, y; λ) = exp(iλx)Ai[
3
√

λ2 − 1(y + 2)], v2(x, y; λ) = exp(iλx)Bi[
3
√

λ2 − 1(y + 2)], (L2),

v1(x, y; λ) = exp(iλx)I0[2λ exp(y/2)], v2(x, y; λ) = exp(iλx)K0[2λ exp(y/2)]. (L3).
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We set M = 20N, R = 25 for L1 and L2 and M = 20N, R = 35 for L3. The parameters δj and Aj are
chosen as follows:

(δ1, ..., δ5) = (1, 0, 1, 1, 0), (A1, ..., A5) = (0, 1, 0, 1, 1), (Ω1 and Ω2),

(δ1, ..., δ8) = (1, 0, 1, 1, 1, 0, 1), (A1, ..., A8) = (0, 1, 0, 1, 1/2, 1, 4), (Ω3 and Ω4).

The analytical solutions we approximate are as follows:

u(x, y) =
[
x2 + 4

9
(y + 2)3

]− 1
6
, (L1),

u(x, y) =
[
x2 + 4

9
(y + 2)3

]− 1
12

J1/6

(√
x2 + 4

9
(y + 2)3

)
, (L2),

u(x, y) = [
x2 + 4 exp(y)

]− 1
2 , (L3).

The results are shown in Figs 6, 7 and 8. We have labelled three choices of test functions as V1, V2
and V3 corresponding to using only the functions v1, only the functions v2, and using both v1 and v2
(where we halve M, the number of collocation points, so that the matrix sizes are the same across our
experiments), respectively. There are a few observations that are worth mentioning:

• In each case we observe exponential convergence for V3 due to the smoothness of the analytical
solutions.

• The errors are smaller for the more regular polygons (Ω1 and Ω3) than the irregular curved polygons.

• For the Tricomi type operators (L1 and L2), the errors are much smaller when we use both types of
test functions (V3) as opposed to only one type.

These results demonstrate that it is straightforward to implement the unified transform in curvilinear
polygons and for elliptic PDEs with variable coefficients.

5.3 Generalized Tricomi

In this example we will consider the generalized Tricomi equation

(x + 2)uyy + (y + 2)2uyy = 0,

for the two domains shown in Fig. 9. We set R = 5 for Ω1 and R = 10 for Ω2, with M = 20N for both
domains. Based on the evidence in Section 5.2, we evaluated the global relations with the two types of
test functions given by

v(x, y; λ) =
{

Ai[λ(x + 2)]
Bi[λ(x + 2)]

}
· Ai2[λ3/4eiπ/4(y + 2)].

We have found that this considerably outperformed the choice of using only one type of separable
solution as a test function (however, the results were not improved upon using Bi2 type solutions in the
y variable as well).
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Fig. 6. Maximum errors in computed Legendre coefficients and condition numbers for the operator L1.

Fig. 7. Same as Figure 6, but for L2.

Fig. 8. Same as Figure 6, but for L3.
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Fig. 9. Domains for which we treat the generalized Tricomi equation. We have also shown an example triangulation for our
comparisons with FEM (the triangulation used was much finer).

Our first test uses the following parameter choices:

(δ1, δ2, δ3) = (1, 0, 1), (A1, A2, A3) = (1/2, 1, 0), (Ω1),

(δ1, δ2, δ3, δ4) = (1, 0, 1, 1), (A1, A2, A3, A4) = (1/2, 1, 0, 1), (Ω2)

and the analytic solution

u(x, y) = Ai(x + 2)Re{Ai2[eiπ/4(y + 2)]}.
As before, the method converges exponentially to this solution with the results for N = 16 (Ω1) and
N = 22 (Ω2) shown in Fig. 10.

Finally, we consider a case where the solution is not known analytically. We set Aj = 1 and δj = 0,
a Dirichlet problem, with

u(x, y) = sin(x), (x, y) ∈ ∂Ω .

Such a boundary condition will cause corner singularities in the solution and hence, we only expect
algebraic convergence. The algebraic convergence is shown in Fig. 11, where we plot the maximum
error over the points t = −0.99, −0.98, ..., 0.99, along each side against N. The error is estimated
by comparing to larger N and also to the solution calculated using the FEM. The convergence for
FEM (linear and quadratic elements) is shown in Fig. 13. The difference in the number of degrees
of freedom (nN ≈ 100 for the unified transform) needed to gain a given error tolerance is striking. Of
course, the algebraic rate of convergence of the unified transform with the Legendre basis will struggle
to compete with methods such as adaptive h-FEM6 or exponential convergence of special boundary
integral methods (the latter also offers the advantage of boundary-based methods, namely much fewer
degrees of freedom needed). However, the unified transform has a significant pedagogical advantage:
the numerical implementation of the method is straightforward so that even undergraduate students can
implement it using MATLAB. Future work will aim at dealing with corner singularities in the context
of the unified transform to improve the rate of convergence. Another important point is reflected by

6 Or hp-FEM, but it should be noted that such schemes which take p → ∞ generally have very high complexity with the
notable exception of Beuchler & Schoeberl (2006) so that it is common to restrict to polynomial orders <10.
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EXTENDING THE UNIFIED TRANSFORM 997

our choice of comparisons with FEM (rather than say boundary integral methods). Although boundary
integral methods require much fewer degrees of freedom than FEM to compute the unknown boundary
values, they require the calculation/integration of Green’s functions. For variable coefficient PDEs,
the Green’s functions are largely unknown or, if they are known, they are complicated. Hence, a key
advantage of the unified transform is that it provides a boundary method that does not need knowledge
of the corresponding Green’s function.

5.4 An oblique derivative problem

In this final example we shall test the method for the PDE given by Example 3.5 using the test functions

v(x, y; λ) = (x + ε)λ exp
(

− λ

2
y ±

√−λ(3λ + 4)

2
y
)

.

Fig. 10. Results for problem with analytically known solution. Left: N = 16 and Ω1. Right: N = 22 and Ω2.

Fig. 11. Convergence rates in presence of corner singularities for the unified transform. Left: algebraic convergence for Dirichlet
problem for the generalized Tricomi equation. Right: algebraic convergence for Dirichlet problem for the general divergence
problem.
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Fig. 12. Results for problem with analytically known solution. Left: N = 13 and Ω1. Right: N = 17 and Ω2.

Fig. 13. Convergence rates in presence of corner singularities for FEM, p denotes the polynomial order of the elements.
Left: algebraic convergence for Dirichlet problem for the generalized Tricomi equation. Right: algebraic convergence for Dirichlet
problem for the general divergence problem.

In this case we follow the remarks in Section 4.4 and give boundary conditions in terms of the oblique
derivative

δ̂jnj · (α∇uj) + Âjuj = gj ≈
N−1∑
l=0

aj
lPl(t),

Âjnj · (α∇uj) − δ̂juj = hj ≈
N−1∑
l=0

bj
lPl(t).

The domains considered are the same as the previous section (shown in Fig. 9), and we select ε = 3/2
to ensure ellipticity.
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Our first example uses the same parameter choice as before:

(δ̂1, δ̂2, δ̂3) = (1, 0, 1), (Â1, Â2, Â3) = (1/2, 1, 0), (Ω1),

(δ̂1, δ̂2, δ̂3, δ̂4) = (1, 0, 1, 1), (Â1, Â2, Â3, Â4) = (1/2, 1, 0, 1), (Ω2),

but employed the analytic solution

u(x, y) = (x + 3/2) cos(y) exp(−y).

We choose R = 20 for Ω1, and R = 40 for Ω2, with M = 20N for both. As before, the method
converges exponentially to this solution with results shown in Fig. 12. Finally, we consider the same
Dirichlet boundary conditions

u(x, y) = sin(x), (x, y) ∈ ∂Ω ,

as in Section 5.3. Figures 11 and 13 show the expected algebraic convergence for the unified transform
and FEM, respectively. Again we have computed the error by comparing to larger N and a more refined
FEM solution. The same conclusions can be drawn as before.

6. Conclusion and future work

We have extended the unified transform of solving the generalized Dirichlet-to-Neumann map to PDEs
with variable coefficients and to domains with curved edges. The corresponding global relation (2.6)
now involves the integral transforms (2.5). While in general, for a given basis expansion of u and its
derivatives, we cannot compute (2.5) explicitly, it was found that the use of a Legendre basis still allows
for extremely fast and accurate numerical approximations. The key observation is that the integral
transforms are simply rescaled Legendre coefficients which can be approximated by a Chebyshev
interpolation. Our numerical results support that this is a fast and competitive method that inherits
the convergence properties of the Legendre basis—i.e. it is spectrally accurate for sufficiently smooth
solutions and converges algebraically in the presence of corner singularities. A major advantage of the
method is that it is a boundary-based method which does not need knowledge of the corresponding
Green’s function. Hence, it is more applicable than boundary integral methods in the setting of variable
coefficients.

The results of Section 5.1 also suggest that in some cases it may be advantageous to break up the
domain into several coupled subdomains, and numerical experiments suggest that such decompositions
are advantageous if there exist internal angles of π or greater. For straight edges and for the Laplace
equation, this advantage can be understood as follows: the exponential ‘test functions’ grow/decay
exponentially in certain directions in the complex plane. When using a sufficiently large selection
of complex λ-values, located in all directions from the origin, each side of a convex polygon will
encounter for many of these λ-values larger test functions than the remaining sides. In other words, the
linear system we seek to solve is block diagonally dominated (Hashemzadeh et al., 2015). However, for
nonconvex internal angles this breaks down—boundaries in indented regions will always be dominated
by effects from other boundary parts, no matter the λ-value. Simple domain decompositions have
been explored in the context of the unified transform in Crowdy & Luca (2014), Crowdy (2015b),
Colbrook et al. (2018) and Luca & Crowdy (2018). The Dirichlet-to-Neumann map has also been
used by Martinsson and collaborators for domain decomposition spectral methods (Martinsson, 2013;

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/40/2/976/5210368 by U
niversity of C

am
bridge user on 16 July 2020



1000 M. J. COLBROOK

Gillman & Martinsson, 2014; Gillman et al., 2015). Future work will aim to see if the results presented
here can be applied to such methods. This could also be an effective route to lower both the complexity
of the method presented here and the degree N needed to gain accurate results. It is also likely to be
effective at dealing with corner singularities via finer decompositions near the corners of the original
domain.

There are several other questions that naturally arise from this study. First, given our choice of the
family {v(x, y; λ) : λ ∈ C }, is the set of equations (2.6) sufficient for determining the generalized
Dirichlet to Neumann map? For the case of a convex polygon and a constant coefficient elliptic
PDE, assuming the problem has a unique solution (e.g. avoiding eigenvalues of the Laplacian in the
Helmholtz/modified Helmholtz case), it was proven in Ashton (2012) that this is indeed the case
when using the usual family of exponential solutions. Current work seeks to extend this result to
solution families analogous to exponential solutions. The choice of collocation points is also related
to numerical complexity and conditioning. For the well-studied case of convex polygons and constant
coefficients PDEs, good choices lead to well-conditioned block diagonally dominant linear systems,
with the majority of the matrix values exponentially small. For many PDEs such a suitable choice of
collocation points may also exist, in which case very small matrix values can be set to zero, resulting
in a sparse approximate linear system. Taking advantage of such structure may be an effective way to
reduce the complexity of the solution step (now solving a sparse linear system) and also the construction
of the linear system by reducing the number of integral transforms that need to be computed. Future
work will also aim to take advantage of similar structure. For example, in some cases, the presence of
symmetry implies that the collocation matrix (and its least squares inverse) has a semiblock circulant
form (Colbrook & Fokas, 2018) that reduces the dimensions of the linear system by a factor of n.

Secondly, can the method be extended to PDEs of higher order? Some results concerning the unified
transform applied to the biharmonic equation can be found in (Crowdy & Luca, 2014; Dimakos &
Fokas, 2015; Luca & Crowdy, 2018), but in general there are few results in this direction. Thirdly,
can the implementation of the unified transform be extended to three dimensions or more generally
n-dimensions? Some initial progress in this direction can be found in Hitzazis & Fokas (2017) for
cylindrical domains where the global relation and integral representation are generalized, and in
Ashton (2015a,b) where the Dirichlet problem is studied, and an integral representation that serves
as a concrete realization of the fundamental principle of Ehrenpreis is given. Based on this result, a
well-posed Galerkin scheme was constructed and studied numerically in Crooks (2015). In the three
dimensional case, this involves the integration of the spectral data over a two dimensional infinite region
and hence, poses considerable implementational challenges. Moreover, this method is only available for
PDEs with constant coefficients, and so far no similar collocation methods have been implemented in
three dimensions. Analogous to Section 2, it is straightforward to write down a global relation using
the divergence theorem. If the domain boundary consists of a collection of polytopes, then this leads to
(n − 1)-dimensional integral transforms of the chosen basis functions. The key difficulty then becomes
choosing a suitable basis and family of solutions so that these transforms can be computed accurately
and efficiently. Such a task remains a challenge, but it is expected that the unified transform still retains
a considerable advantage, namely, the reduction of an n-dimensional problem to an (n − 1)-dimensional
problem. A collocation approach to the 3D case is work in progress.

The major drawback of the method proposed in this paper is that it may be difficult to construct
a one-parameter family of solutions for the adjoint PDE. Nonetheless, once such family of test
functions {v(x, y; λ) : λ ∈ C } is constructed, the implementation becomes quite simple as discussed
in Section 4. For separable PDEs this is not a problem and hence, the numerical version of the unified
transform allows one to deal with separable PDEs on nonseparable domains with nonseparable boundary
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conditions. Also, the method adopted for the computation of integral transforms becomes difficult for
less regular boundaries, test functions and PDE coefficients. This follows from the larger Chebyshev
expansion needed to interpolate the functions. Future work will aim at using the method in this less
regular setting and developing/implementing methods to compute the integral transforms in these cases.

Clearly, work is needed in order to address the above issues, but we have provided the first major
step in extending the unified transform to curvilinear polygons and to PDEs with variable coefficients. In
particular, the unified transform provides a boundary-based method for which the integral transforms can
easily be computed, even in these more complicated scenarios, with only small-system sizes needed to
achieve very accurate results. Our method of implementation still retains the advantages demonstrated in
the literature of the previous collocation-based methods for polygons and constant coefficients, namely,
spectral convergence for smooth solutions, speed and the fact that the method is very easy to implement.
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Appendix. Effect of the Choice of R

Figure A1 shows the errors and condition numbers for the BVPs in Section 5.1 as functions of R for
N = 10, M = 200 and x0 = −3/2. In general, increasing M reduces the condition number, but for a
fixed M there is a wide range of values of R which yield similar results. The degradation of accuracy for
R > 40 is not due to errors in approximating the integrals numerically—the same effect occurs for the
strict polygonal case where we have analytic forms of the integrals.

Fig. A1. Left: maximum errors in Legendre coefficients for the unknown boundary values as functions of R. Right: condition
numbers of the systems as functions of R.
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