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This paper implements the unified transform to
problems in unbounded domains with solutions
having corner singularities. Consequently, a wide
variety of mixed boundary condition problems can
be solved without the need for the Wiener–Hopf
technique. Such problems arise frequently in acoustic
scattering or in the calculation of electric fields in
geometries involving finite and/or multiple plates.
The new approach constructs a global relation that
relates known boundary data, such as the scattered
normal velocity on a rigid plate, to unknown
boundary values, such as the jump in pressure
upstream of the plate. By approximating the known
data and the unknown boundary values by suitable
functions and evaluating the global relation at
collocation points, one can accurately obtain the
expansion coefficients of the unknown boundary
values. The method is illustrated for the modified
Helmholtz and Helmholtz equations. In each case,
comparisons between the traditional Wiener–Hopf
approach, other spectral or boundary methods and the
unified transform approach are discussed.

1. Introduction
Mixed boundary condition problems arise in a number
of physical situations, for example, in the scattering
of sound by a rigid plate, which is governed by
the Helmholtz equation. In this case, the boundary
conditions change suddenly from a zero-normal velocity
condition on the rigid surface to a suitable continuity
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condition across the upstream and downstream zero-streamline. In the field of electrical
engineering, mixed boundary conditions can also arise in the modelling of the flow of
electrorheological fluids when exposed to long electrodes [1]. This situation is governed by the
Laplace equation and the boundary conditions change from the known electric potential on the
electrodes to a known jump in derivatives of the electric potential.

If there is only one point at which the type of condition changes, these mixed boundary
condition problems can be solved, often exactly, by applying the Wiener–Hopf method [2]. Such
a well-known one-point problem arises from the scattering of a sound wave by a semi-infinite
flat plate, also known as the Sommerfeld diffraction problem [3]. The Wiener–Hopf method is
effective in this case because a single scalar kernel function, κ(λ), is required to be factorized
as κ(λ) = κ−(λ)κ+(λ), where κ±(λ) is analytic in the upper/lower half of the complex λ plane,
respectively. For a scalar function, one can typically obtain a suitable factorization via the use of
the Cauchy integral formula [2].

When a sudden change of boundary condition occurs in more than one location, such as in the
case of sound scattering by two semi-infinite staggered plates [4], the Wiener–Hopf method gives
rise to a matrix equation. The Wiener–Hopf factorization of a matrix, M(λ), involves obtaining two
matrices, M±(λ) which are analytic in the upper/lower half of the complex λ plane, respectively,
such that M−M+ = M. However, unlike the commutative scalar case, for a general matrix, there is
no formula equivalent to the Cauchy integral formula that allows one to obtain a suitable matrix
factorization. Only matrices of very specific forms are known to be factorizable exactly [5]. To
illustrate the difficulty of matrix Wiener–Hopf problems, consider the semi-infinite staggered
plates of [4] which have endpoints (0, −h) and (−a, 0). The matrix arising from the Wiener–Hopf
analysis is given by (

1 eiaλ−hγ (λ)

e−iaλ−hγ (λ) 1

)
, (1.1)

where γ (λ) =
√
λ2 − k2

0 and k0 is the reduced frequency of the incident sound wave being scattered
by the plates. This is a particularly difficult matrix to factorize due to the existence of the factors
e±iaλ which grow exponentially in the lower/upper halves of the complex λ plane as |λ| → ∞.
Having such exponential growth prohibits the use of Liouville’s theorem which is vital for
progress in the Wiener–Hopf method. To deal with these exponential factors, an ingenious but
lengthy procedure is implemented in [4], which unfortunately cannot be extended to general
matrices with exponential factors. Therefore, upon finding a matrix with such exponential factors,
it is not clear if, in fact, it can be factorized. Indeed, a similarly structured matrix arises for sound
scattering by a semi-infinite impermeable plate with a finite permeable extension [6], and in this
case, an iterative procedure is implemented to obtain the approximate solution.

As many relevant physical problems consist of interactions with more than one point of
sudden change of boundary conditions (relating to finite structures), it is imperative to have
efficient and reliable methods to tackle these multi-point problems. In this paper, we discuss
an alternative approach to mixed boundary condition problems that does not involve the
Wiener–Hopf method. This approach is based on the unified transform [7], commonly known
as the Fokas method, which employs the so-called global relation. The analysis of the global
relation, which relates appropriate transforms of the given boundary data with transforms of the
unknown boundary values, provides a mathematically elegant and also computationally efficient
characterization of the general Dirichlet to Neumann (DtN) map, [8]. A previous approach using
the unified transform to avoid Wiener–Hopf factorization can be found in [9] and has been
seen to work for two-point problems. This different approach, for the harmonic and biharmonic
equations, requires analysis of the zeros of functions arising in the global relation.

Recently, a simple and efficient technique based on the unified transform has been introduced
[10] for the numerical evaluation of the approximate global relation for the case of a bounded
polygonal domain. This involves approximating the given data and the unknown boundary
values in terms of expansions of suitable basis functions, and then determining the expansion
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coefficients by evaluating the approximate global relation at a set of discrete values of λ,
called collocation points. To tackle problems which involve unbounded domains (formed by
the exterior of one or more finite or semi-infinite infinitesimally thin strips in R

2), we will
present a modification of the above procedure of evaluating the DtN map. Furthermore, we
discuss at length suitable basis functions and collocation points to obtain spectral accuracy in
the presence of singularities encountered in typical problems. After the DtN map has been
computed, all boundary values are known and the solution can be computed using either the
solution formulae obtained via the unified transform or the classical representations involving
the associated fundamental solutions [11]. The ability to calculate all boundary values quickly
and efficiently is particularly advantageous for acoustics, as a simple application of the Ffowcs
Williams–Hawkings technique [12] allows one to obtain far-field noise from boundary pressure
data. Our results can also be extended to more general scattering/exterior problems.

This paper is organized as follows: In §2, we review the DtN map for the modified Helmholtz,
Helmholtz, and for completeness, Laplace, equations in a bounded polygonal domain. We also
discuss how to adapt the method in the case of unbounded domains. In §3, we illustrate the
DtN map for the modified Helmholtz and Helmholtz equations, extending the earlier analysis to
the case of semi-infinite domains. Specifically, in §3a, we use the unified transform to derive the
DtN map for a semi-infinite flat plate problem governed by the modified Helmholtz equation
and compare the approximate solution against the known exact solution found analytically
via the traditional Wiener–Hopf technique [2]. In §3b, we illustrate the Helmholtz equation
for a four-point problem by considering acoustic scattering by two finite parallel staggered
plates; the traditional Wiener–Hopf approach yields a 4 × 4 matrix which cannot be factorized
easily, whereas the unified transform allows us to approximate the surface response quickly and
efficiently. The method is found to be competitive with spectral and boundary integral methods.
Our conclusions are summarized in §4.

2. The unified transformmethod
Here, we discuss the use of the unified transform for solving the Helmholtz, modified Helmholtz
and Laplace equations,

∂2q
∂x2 + ∂2q

∂y2 + k2
0q = 0,

∂2q
∂x2 + ∂2q

∂y2 − k2
0q = 0 and

∂2q
∂x2 + ∂2q

∂y2 = 0, (2.1)

in the interior of a convex polygonal domain, D, with boundary ∂D, as discussed in [7].
To derive the global relation for the Helmholtz equation, let v be a solution to its adjoint (also

the Helmholtz equation). Multiplying the Helmholtz equation by v, and then subtracting the same
equation with q and v interchanged, we find

∂

∂x

(
v
∂q
∂x

− q
∂v

∂x

)
+ ∂

∂y

(
v
∂q
∂y

− q
∂v

∂y

)
= 0. (2.2)

Then, Green’s theorem implies
∫
∂D

[(
v
∂q
∂x

− q
∂v

∂x

)
dy −

(
v
∂q
∂y

− q
∂v

∂y

)
dx
]

= 0. (2.3)

To express the integrand of the above equation in terms of just the Dirichlet and Neumann
boundary values, we parametrize q(x, y) and v(x, y) in terms of the arc length, s, of ∂D.
Differentiating the function q(x(s), y(s)) with respect to s, we find

∂q
∂x

dx + ∂q
∂y

dy = qT ds, (2.4)

where qT denotes the derivative of q along the tangential direction. Thus,

∂q
∂x

dy − ∂q
∂y

dx = qn ds, (2.5)
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where qn denotes the derivative of q along the outward normal to the boundary. Inserting (2.5)
into (2.3) we find the global relation

∫
∂D

(
v
∂q
∂n

− q
∂v

∂n

)
ds = 0, (2.6)

where v is any solution to the (adjoint) Helmholtz equation. Equation (2.6) is also valid for the
Laplace equation upon setting k0 = 0, and the modified Helmholtz equation upon k0 → ik0.

In what follows, to further simplify the global relation, we introduce the complex variable z =
x + iy, and its conjugate z̄ = x − iy. This enables us to write the Helmholtz, modified Helmholtz
and Laplace equations, respectively, in the form

∂2q
∂z∂ z̄

+ β2q = 0,
∂2q
∂z∂ z̄

− β2q = 0,
∂2q
∂z∂ z̄

= 0, (2.7)

where β = k0/2.
We choose the following particular solutions of the Helmholtz, modified Helmholtz and

Laplace equations:

v = e−iβ(λz+z̄/λ), v= e−iβ(λz−z̄/λ), v= e−iλz. (2.8)

Then, (2.6) gives for Helmholtz the global relation

∫
∂D

e−iβ(λz+z̄/λ)
[

qn + β

(
λ

dz
ds

− 1
λ

dz̄
ds

)
q
]

ds = 0, λ ∈ C\{0}, (2.9)

for modified Helmholtz, we find

∫
∂D

e−iβ(λz−z̄/λ)
[

qn + β

(
λ

dz
ds

+ 1
λ

dz̄
ds

)
q
]

ds = 0, λ ∈ C\{0} (2.10)

and for Laplace,
∫
∂D

e−iλz
[

qn + λ
dz
ds

q
]

ds = 0, λ ∈ C. (2.11)

Equations (2.9)–(2.11) involve only q and its normal derivative, qn, on the boundary. Note also that
these three cases deal with more general second-order elliptic constant coefficient PDEs through
a suitable linear change of variables.

The range of values of the complex parameter λ for which the global relations are valid
depends on the domain D. If the domain is bounded, the global relations are valid for all
complex λ (excluding 0 for Helmholtz/modified Helmholtz), as each integral along the boundary
always converges. If the domain is semi-infinite or infinite, then the range of values of λ for
which the integrals converge are limited by enforcing convergence within the whole domain
to ensure the validity of Green’s theorem. In particular, Re[−iβ(λz + z̄/λ)]< 0 for Helmholtz,
Re[−iβ(λz − z̄/λ)]< 0 for modified Helmholtz and Re[−iλz]< 0 for Laplace. Other values can
also be included by assuming q satisfies certain conditions at infinity (see [13]).

(a) Dirichlet to Neumann map
The DtN map is discussed in [10] for finite polygonal domains; we review the relevant details
here for the Helmholtz, modified Helmholtz and Laplace equations.

Let ∂D consists of M straight sides such that D is a convex M-gon (for extensions to non-
convex polygons, we refer the reader to [14]. The unified transform can also be used for circular

domains [15–17] and domains with general curved edges [18]). Let qj and qj
n denote the Dirichlet
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and Neumann boundary values on the jth side which connects corners zj and zj+1. We expand qj

and qj
n in terms of a collection of basis functions, Sn(t):

qj(t) ≈
N−1∑
n=0

aj
nSn(t), qj

n(t) ≈
N−1∑
n=0

bj
nSn(t), (2.12)

where t ∈ [−1, 1] provides a suitable parametrization of ∂D. Such a parametrization is given in
[10] by considering the jth side of the polygon:

z = mj + thj, mj = 1
2

(zj + zj+1), hj = 1
2

(zj+1 − zj). (2.13)

Substituting the function expansions into the global relation for Helmholtz, (2.9), yields

M∑
j=1

N−1∑
n=0

e−iβ(m̄j/λ+λmj)

[
bj

n|hj| + aj
nβ

(
λhj − h̄j

λ

)]
Ŝn

[
iβ

(
h̄j

λ
+ λhj

)]
= 0, (2.14)

for λ ∈ C\{0}, where

Ŝn(λ) =
∫ 1

−1
eiλtSn(t) dt, λ ∈ C, (2.15)

which is consistent with [10]. Similarly, modified Helmholtz, (2.10), yields

M∑
j=1

N−1∑
n=0

eiβ(m̄j/λ−λmj)

[
bj

n|hj| + aj
nβ

(
λhj + h̄j

λ

)]
Ŝn

[
−iβ

(
h̄j

λ
− λhj

)]
= 0, (2.16)

for λ ∈ C\{0}, and for Laplace, (2.11), we obtain

M∑
j=1

N−1∑
n=0

e−imjλ
[
bj

n|hj| + aj
nλhj

]
Ŝn [iλhs] = 0, λ ∈ C. (2.17)

For any given boundary value problem, some of the constants {aj, bj} are known, and some
unknown. By evaluating the approximate global relation, (2.14) and its Schwartz conjugate (which
is given by taking the complex conjugate then replacing λwith λ̄) if the solution is real, at suitably
chosen Fourier collocation points, λi ∈ C, we can construct sufficiently many equations for the
unknown constants {aj, bj}. Discussion of how optimal collocation points are chosen for bounded
domains can be found in [10,19].

(b) Extension to semi-infinite domains
We can extend the earlier construction in the case of a semi-infinite convex polygonal domain
(such as the upper half plane) by imposing a suitable decay condition, such as a radiation
condition, on the solution q as |z| → ∞, so that all required integrals converge. The global
relations, (2.9), (2.10) and (2.11), remain valid; however, rather than using the parametrization
t ∈ [−1, 1], in the case of infinite edges, we need to use a parametrization t ∈ [0, ∞) or t ∈ (−∞, ∞).
We therefore require relevant basis functions over semi-infinite domains which also capture the
appropriate decay at infinity.

Also, as stated earlier, the λ-domain over which the global relations, (2.9), (2.10) or (2.11), hold
must now be restricted. As D is semi-infinite, λ is restricted to a subset of the complex plane. Thus,
rather than applying the Schwartz conjugate to the global relation, we may need to find another
suitable symmetry (which will be discussed within each example below).

3. Examples and results
We now present examples of the global relation for the modified Helmholtz and Helmholtz
equations. First, in §3a, we use the global relation (2.10) for the modified Helmholtz equation
to obtain the approximate solution to a semi-infinite half-plate problem. In §3b, we use the global
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relation to solve the Helmholtz equation for the scattering of a (complex) plane wave by two finite
staggered plates, a situation which gives rise to a 4 × 4 matrix Wiener–Hopf problem.

These examples illustrate the effectiveness of the new approximate global relation method for
determining the solution to elliptic PDEs in semi-infinite polygonal domains that have been so
far solved via the Wiener–Hopf method. We also compare the new approach to boundary integral
and spectral methods. All numerical experiments were run on a 1.80 GHz processor in Matlab.
Code for the examples can be found at http://www.damtp.cam.ac.uk/user/mjc249/code.html.

(a) Modified Helmholtz: semi-infinite half plate
We consider the following problem

∂2q
∂x2 + ∂2q

∂y2 − k2
0q = 0, (3.1)

subject to
∂q
∂y

(x, 0±) = f (x), x> 0, [q](x, 0) = [qy](x, 0) = 0, x< 0, (3.2)

where [q](x, y0) denotes the jump in q across y = y0. For this example, we choose, f (x) = e−x/2

(lengths scaled with k−1
0 ) to ensure the Wiener–Hopf equation can be factorized exactly without

the need for the (numerical) Cauchy integral formula (this is not always the case with more
complicated boundary conditions).

The Wiener–Hopf solution [2] of the above boundary value problem is given by

q(x, y) = sgn(y)

2π
√

i(k0 + 1/2)

∫∞

−∞
e−iλx−|y|

√
λ2+k2

0

(λ+ i/2)
√
λ+ ik0

dλ. (3.3)

(i) Global relation

To obtain a suitable global relation, we consider (2.10) applied over the following two domains,

S1 = {−∞< x<∞, 0+ ≤ y<∞}, S2 = {−∞< x<∞, −∞< y ≤ 0−}. (3.4)

Then (2.10) yields the following equation:
∫ 0

−∞
e−iβx(λ−1/λ)

(
− ∂q
∂y

(x, 0+) + β

(
λ+ 1

λ

)
q(x, 0+)

)
dx

+
∫∞

0
e−iβx(λ−1/λ)

(
−f (x) + β

(
λ+ 1

λ

)
q(x, 0+)

)
dx = 0, λ ∈ R−, (3.5)

together with
∫ 0

−∞
e−iβx(λ−1/λ)

(
∂q
∂y

(x, 0−) − β

(
λ+ 1

λ

)
q(x, 0−)

)
dx

+
∫∞

0
e−iβx(λ−1/λ)

(
f (x) − β

(
λ+ 1

λ

)
q(x, 0−)

)
dx = 0, λ ∈ R+, (3.6)

where β = k0/2. A suitable symmetry transform in this case consists of taking the complex
conjugate and then replacing λ by −λ. We take this symmetry transform of (3.6) and then subtract
the resulting equation from (3.5):

∫ 0

−∞
e−iβx(λ−1/λ) ∂q

∂y
(x, 0) dx −

∫∞

0
e−iβx(λ−1/λ) β

2

(
λ+ 1

λ

)
[q](x, 0) dx

= −
∫∞

0
e−iβx(λ−1/λ)f (x) dx = 2i

2β(λ− 1/λ) − i
, λ ∈ R−. (3.7)

http://www.damtp.cam.ac.uk/user/mjc249/code.html
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Suppose we expand the unknown functions as follows:

qy(−x, 0) =
N1−1∑
n=0

anSn,1(x), x> 0 (3.8)

and

[q](x, 0) := q(x, 0+) − q(x, 0−) =
N2−1∑
n=0

bnSn,2(x), x> 0, (3.9)

where the constants an, bn are to be determined and {Sn,j}n≥0 are suitable collections of expansion
functions. Substituting (3.8) and (3.9) yields the global relation

N1−1∑
n=0

anŜn,1

[
β

(
λ− 1

λ

)]
−

N2−1∑
n=0

bn
β

2

(
λ+ 1

λ

)
Ŝn,2

[
−β

(
λ− 1

λ

)]
= 2i

2β(λ− 1/λ) − i
, (3.10)

where

Ŝn,j(λ) =
∫∞

0
Sn,j(x) eiλx dx. (3.11)

By evaluating (3.10) at appropriate collocation points λi, we can solve for the unknown
constants ai, bi via a linear system of equations. Typically, we overdetermine the system and
then solve in the least squares sense. If the full solution is needed, it can be computed using
the computed unknown [q](x, 0) and the given data f (x) via Green’s representation formula.

(ii) Choices of basis functions and singularities

A suitable choice of basis functions is determined from the regularity of the solution. For
example, if the unknown boundary values are smooth (and decay sufficiently rapidly), then
experimentation suggests {Ln(x) e−x/2}n≥0 are suitable, where Ln denotes the standard Laguerre
polynomials. However, for solutions with singular behaviour, it is important to choose basis
functions that incorporate these singularities to gain rapid convergence. This is discussed in the
context of the unified transform (for bounded domains) in [14,20] and a survey of how to deal with
singularities in the wider PDE literature can be found in [21].

In this example, the behaviour of the solution at the origin is typically singular and is of
fundamental concern during the Wiener–Hopf method as it is used during the Wiener–Hopf
analysis when invoking Liouville’s theorem to bound the large behaviour of formally unknown
functions and determine the associated needed entire function. In addition, the edge behaviour
ensures the Wiener–Hopf solution is unique (a full discussion of edge behaviour for Wiener–Hopf
problems can be found in [2, §2]).

It is well known that the singular behaviour can be predicted from the geometry of the domain
[22–24]. In our case, the solution is odd in the y variable and hence the problem is equivalent
to the modified Helmholtz equation in the upper half plane with the given Neumann boundary
condition along x> 0 and homogeneous Dirichlet boundary condition along x< 0. Locally around
the origin, this gives the following functions in polar coordinates:

In−1/2(k0r) cos[(n − 1
2 )θ ], n ∈ N, (3.12)

where Im are modified Bessel functions of the first kind. Hence q(x, 0) has
√

x type behaviour as
x ↓ 0 and qy(−x, 0) has a 1/

√
x type singularity as x ↓ 0. A good choice of basis functions should

satisfy two criteria; first, it should capture such algebraic behaviours (as well as the relevant
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decay at infinity) and second it should have an easily computed Laplace/Fourier transform. The
generalized Laguerre polynomials for α >−1 have the explicit expansion

Lαn(x) =
n∑

j=0

(−1)j
(

n + α

n − j

)
xj

j!
. (3.13)

Selecting basis functions as xαLαn(x) with α= −1/2 thus provides the relevant square-root
behaviour of interest. These are particularly useful as a straightforward calculation yields

∫∞

0
xαLαn(x) e−x/2 eiλx dx = Γ (α)

B(n + 1,α)

(
1 − 1

1/2 − iλ

)n (1
2

− iλ
)−(α+1)

, (3.14)

where B denotes the Beta function. This can be efficiently evaluated, as can the generalized
Laguerre polynomials using their recurrence relations, allowing us to both approximate the global
relation and reconstruct the approximate solution.

(iii) Choice of collocation points

For the majority of spectral collocation methods, there is a standard theory that describes the
best positions of collocation points due to the link with interpolation [25]. However, there is
no general theory on the optimum choice of collocation points for the unified transform due
to the fact that collocation happens in Fourier space. Instead, there are only simple heuristics.
One notable example is the choice found in [10] that leads to block diagonally dominant linear
systems for convex polygons. No such choice is possible here due to the restriction λ ∈ R−. Instead,
we choose collocation points somewhat randomly. Choosing true random points is a bad strategy
as dense clusters will occasionally form which can lead to ill-conditioned linear systems. Thus,
we follow [20] and select Halton nodes which create scattered points with a lack of regularity and
can be easily generated in MATLAB. These are examples of a quasi-random number sequence and
are used in the theory of numerical integration [26] (for example, the one-dimensional sequence
using base two has nth number as the number n written in binary and suitably inverted). The
idea is that for a suitably large number of such collocation points, the linear system we solve
becomes well conditioned. For our problem, we have found that a good choice is to take M
Halton nodes inside the interval [−1, 0). As we shall see later, this can be interpreted as sampling
the Fourier transform of the boundary integral equations for frequencies in the interval (−∞, 0].
The symmetry transform then implies sampling along the positive axis [0, ∞) as well. It is well
known that the singularities of a function are determined by the large wavenumber asymptotics
of its Fourier transform and we found that sampling large frequencies was necessary to obtain
the most accurate results.

(iv) Numerical performance

In this section, we choose k0 = 3. Larger frequencies will be discussed later. We will compare the
approximate solution obtained by the unified transform to the analytic values. These can be found
from (3.3) and some simple integral evaluations:

[q](x, 0)
2

= q(x, 0+) = − e−x/2√
k2

0 − 1/4
erf

(√(
k0 − 1

2

)
x

)
, x ∈ R+ (3.15)

and

qy(−x, 0) = −e−k0x√
π (k0 + 1/2)x

+ ex/2 erfc

(√(
k0 + 1

2

)
x

)
, x ∈ R+. (3.16)

Note in particular, there are two different scales of exponential decay; exp(−x/2) for the unknown
Dirichlet values, and exp(−k0x) for the unknown Neumann values. We will see later that these
two scales can make it difficult to apply standard spectral methods which typically expand q over
the whole domain.
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Figure 1. (a) Convergence of computed Dirichlet jump values along the positive axis. (b) Convergence of computed Neumann
values along the negative axis.

For the unknown Dirichlet values [q](x, 0), we choose basis functions

{Ln(l1x)e−l1x/2}N−1
n=0 ∪

{√
l1xL1/2

n (l1x)e−l1x/2
}p1−1

n=0
,

and for the unknown Neumann values qy(−x, 0) we choose basis functions

{Ln(l2x)e−l2x/2}N−1
n=0 ∪

{
L−1/2

n (l2x)√
l2x

e−l2x/2

}p2−1

n=0

.

The idea is that we can adjust p1 and p2 to capture the singularities of the unknown boundary
values. The problem with using (3.12) directly is that these Bessel functions diverge at infinity.
The extra scaling parameters l1, l2 appear due to the fact that the intervals are of infinite length.
Such scaling is common in spectral methods and can effect convergence results [27,28]. We took
l1 = 1 and l2 = 2k0. Note that these can be chosen without knowing the analytic solution—the
given Neumann data suggest l1 = 1, whereas asymptotics for radial solutions of the modified
Helmholtz equation suggest l2 = 2k0. For medium k0, we found this not to be important, but it
was important when k0 is large. Our basis is over-complete, meaning we can obtain expansions
after removing some of the basis functions (e.g. p1 = p2 = 0). However, we found this was useful
in gaining accurate solutions that capture the singularities. Many successful (pseudo-)spectral
methods also employ such expansions or even do not have a well-defined basis at all [29].

We have measured a discrete error by measuring the maximum error over the evenly spaced
points 0.01, 0.02, . . . , 10 for [q](x, 0) and 0.01, 0.02, . . . , 1 for qy(−x, 0), in each case dividing by
the maximum value of the true solution over these points to gain a relative error. We took
M = 6 · (2N + p1 + p2) collocation points (a much smaller number produced similar results but
even with the above choice the method was very fast). Figure 1 shows the convergence of
the unified transform for different N, p1 and p2. As expected, for fixed p1, p2, we gain rather
slow algebraic rates of convergence, whereas for p1 = p2 = N, we gain exponential convergence
(spectral accuracy). The unknown Dirichlet values are easier to approximate than their Neumann
counterparts (which have a stronger singularity). However, we are able to gain 13 and 12 digits of
accuracy for each, respectively, in less than 0.15 s (averaged over 100 realizations—see §3avii for
more timing results) for N = p1 = p2 = 45 which uses 180 basis functions.

(v) Relation to boundary integral methods and the Wiener–Hopf method

Here, we relate the unified transform to boundary integral methods by showing that, for this
particular geometry, the global relation can be derived from taking the Fourier transform of
a boundary integral equation (this is not true in general). This means that for this particular
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problem, we can view the unified transform as a Fourier boundary integral method. In the case
of posing the problem on the upper half plane as discussed above, and taking the limit of Green’s
representation formula from within the domain to the boundary, we obtain the integral equation

∫∞

−∞
G(x − y)g(y) dy + 1

2
h(x) = −

∫∞

0
G(x − y)f (y) dy, (3.17)

where we have defined the functions

g(τ ) =
{

qy(τ ), for τ < 0

0, otherwise
h(τ ) =

{
q(τ ), for τ > 0

0, otherwise
,

and G denotes a fundamental solution of the equation. Extending the function f to have the value
zero along the negative real axis and taking Fourier transforms yields the equation

Ĝ(ω)ĝ(ω) + 1
2

ĥ(ω) = −Ĝ(ω)f̂ (ω). (3.18)

We have G(x) = K0(k0|x|)/(2π ), where K0 is the modified Bessel function of the second kind of
zeroth order, and the integral

Ĝ(ω) = 1
2π

∫∞

−∞
eiωxK0(k0 |x|) dx = 1

2

(
k2

0 + ω2
)−1/2

. (3.19)

The change of variables ω= (λ−1 − λ)β
(

where λ ∈ R− so that − (λ−1 + λ)β =
√

k2
0 + ω2

)
then

yields the equation

ĝ
[
(λ−1 − λ)β

]− (λ−1 + λ)βĥ
[
(λ−1 − λ)β

]= −f̂
[
(λ−1 − λ)β

]
, (3.20)

which is equivalent to (3.7). Note also that (3.18) together with (3.19) is precisely the equation that
appears (with complex ω) in the solution of the problem using the Wiener–Hopf method.

The unified transform has some desirable properties over the typical boundary integral
methods posed in physical space. By choosing suitable basis functions, the unified transform
avoids entirely the evaluation of singular integrals, emphasized by the above example where
convolution becomes multiplication in Fourier space. There is a vast literature on effective
quadratures for methods based on boundary integrals [30–32]. A common approach is to
discretize the boundary into a large number of boundary elements which generally leads to only
algebraic convergence [33]. For example, we found that we could only achieve an error (in the
above sense) of around 10−5 for the unknown Dirichlet values using 2000 standard quadratic
elements densely clustered near the singularity. A full comparison with such a boundary element
method would take up too much space. However, we note that such slow algebraic convergence
will not be able to compete with the spectral convergence observes in figure 1. We also subtracted
off the logarithmic singularity of the integrand for accurate quadrature and evaluated this
separate part analytically. There are of course hp-versions of boundary element methods [34–36]
which fare better. A much better class of methods for this particular problem are (pseudo-)spectral
methods which we discuss next.

(vi) Comparison of spectral methods

The simplicity of the geometry of the problem opens up the possibility of the use of
(pseudo-)spectral methods. For an introduction and history of these methods, we refer the reader
to [37–39] and in particular [25,40] for a discussion of unbounded domains. In this section, we
solve the problem (posed on the upper half plane) using such a method and also separation of
variables. These methods are then compared to the unified transform when we discuss solving
the problem for large k0.

The first step is to get rid of the singularities. The easiest way to do this is to define the complex
variable z = x + iy and deform the domain via z → z1/2. In the new coordinates, also denoted by
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(x, y), this transforms the problem to the quarter plane x> 0, y> 0 and

∂2q
∂x2 + ∂2q

∂y2 − 4k2
0(x2 + y2)q = 0, (3.21)

subject to
∂q
∂y

(x, 0) = 2xe−x2/2 x> 0, q(0, y) = 0 y> 0. (3.22)

The above problem can be solved via separation of variables which leads to Weber’s equation and
the expansion

q(x, y) =
∞∑

n=0

anψ2n+1

(√
2k0x

)
Fn

(
2
√

k0y
)

. (3.23)

Here ψm denotes the standard Hermite functions, whereas Fn denotes the rescaled parabolic
cylinder function

Fn(z) = 2nn!D−(2+2n)(z). (3.24)

Both of these (as well as their derivatives) have well-known recursion relations for quick and
accurate computation. The boundary condition then enforces

∞∑
n=0

anψ2n+1(τ ) = − τ

k0
√
π

e−τ 2/4k0 . (3.25)

This expansion highlights the difference in scales already mentioned when k0 �= 1/2. To
approximately solve (3.25), we truncated the expansion to N terms and collocated at the

(non-negative) zeros of ψ2N+1

(√
2k0·

)
.

The above problem also suggests the approximate expansion

q(x, y) =
N−1∑
n=0

M−1∑
m=0

an,mψ2n+1(l1x)φm(l2y). (3.26)

Here, we define
φm(z) = e−z2/2Qm(z), (3.27)

where {Qm}∞m=0 are (normalized) orthogonal polynomials on the half-line with weight w(z) = e−z2
.

This choice is natural given the expected decay of the solution (also confirmed by the asymptotics
of the Fn) and we choose l1 = l2 =√

2k0. There is no closed form expression for the coefficients
used in the recursion relations defining {Qm}∞m=0. We follow [41] and compute these coefficients
with high precision (this can be done very quickly in Matlab) recursively. From these, φm and
their derivatives can be computed quickly and accurately. The zeros of φm can also be computed
via diagonalizing a standard symmetric tridiagonal matrix using the computed coefficients (see
[41] and electronic supplementary material for further details). These polynomials have recently
appeared in the solution of kinetic equations via spectral methods [42,43]. To approximately solve
(3.25), we took the expansion (3.26) and substituted it into equation (3.21). We evaluated at the

tensor product grid formed by the zeros of ψ2N+1

(√
2k0·

)
and φM

(√
2k0·

)
yielding a system of

equations for the unknown coefficients. These were supplemented by evaluating the boundary

condition at y = 0 at the zeros of ψ2N+1

(√
2k0·

)
, leading to an overdetermined system which we

solved in the least-squares sense.
Figure 2 plots the first few functions φm and Fm. It also shows the convergence of separation

of variables and the spectral method (choosing M = N) for the above discrete measures of error.
Errors were computed in the original coordinate system (i.e. before applying the transformation
z → z1/2). Both methods converge exponentially with very similar errors. We found the spectral
method to converge much faster than other choices of basis functions such as Laguerre functions
or Hermite functions in the y direction. The errors obtained by these methods are about an order of
magnitude smaller than that of the unified transform for the same number of expansion functions
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along the boundary (approximately 90). However, the spectral method/separation of variables
become difficult to implement in more complicated geometries and it is not always possible
to transform away the singularities. The unified transform copes with both of these problems
and, as we shall see next, is faster to implement than the spectral method due to the fact that
one only needs to expand functions along the boundary. Also, as will be discussed later, it fares
better for large k0. However, an advantage of the above spectral method is that it automatically
approximates the solution in the interior of the domain. For the unified transform, it is necessary
to use Green’s representation formula to compute values in the interior using the boundary
values. This is explored in [11] for bounded domains. Future work will focus on extending this
efficiently to unbounded domains.

(vii) High frequency

We now compare the unified transform to the above spectral method and separation of variables
for the case of large k0, taking M = k0(2N + p1 + p2)/2 collocation points for the unified transform.
Figure 3 shows the size of the parameter N needed to gain an error of 0.01 (two digits) in the
computed Dirichlet values as we vary k0. Here, N is the number of expansion functions along each
side (which is double the previous N for the unified transform owing to the singular functions).
We have measured the discrete (relative) error as before but now over 1000 equally spaced points
from 0 up to the point past the peak at which the true solution reaches 0.1 of its maximum
value. We also show the times taken for each such N (averaged over 100 runs) where we have
excluded the time needed to compute the zeros of the expansion function (collocation points)
for the spectral method and separation of variables. We see roughly linear growth in N with the
frequency k0 (this is known as the pollution effect in the boundary integral method literature
[44]), but the unified transform needs far fewer basis functions to achieve the accuracy for larger
k0. The same plot for the unified transform is also shown but with the requirement of four digits of
accuracy which still requires fewer basis functions than the other methods. This can be explained
by the two different natural decay rates in the solution: the unified transform is boundary-based
so can easily capture these two rates via different scalings of the basis functions along each side.
This is not possible for separation of variables and is extremely hard for spectral methods which
would require the treatment of a boundary layer. Note also that the time taken for the unified
transform is much less than the spectral method and even less than the separation of variables.
This is partly due to the smaller N required, but also as the spectral method uses O(N2) basis
functions owing to the basis functions in the y-direction that expand the solution over the whole
domain.
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From our results, it is apparent that the unified transform is more competitive than spectral
methods for this problem due to the fact it is a boundary method, and can even compete with
separation of variables due to the freedom in choosing appropriate basis functions.

(b) Helmholtz: two staggered finite parallel flat plates
We now consider the problem of acoustic scattering by two staggered parallel flat plates of
the same finite length (lengths are non-dimensionalized by this), lying in y = 0, x ∈ [−a, 1 − a]
and y = −h, x ∈ [0, 1], for some a, h> 0. The scattered field is found by solving the Helmholtz
equation,

∂2q
∂x2 + ∂2q

∂y2 + k2
0q = 0, (3.28)

subject to

∂q
∂y

(x, 0±) = f (x), x ∈ [−a, −a + 1], (3.29a)

[q](x, 0) = [qy](x, 0) = 0, x<−a, x>−a + 1, (3.29b)

∂q
∂y

(x, −h±) = g(x), x ∈ [0, 1] (3.29c)

and [q](x, −h) = [qy](x, −h) = 0, x< 0, x> 1, (3.29d)

where f (x) and g(x) are such that the total normal derivative on the plates is zero for a given
incident field. We also impose the Sommerfeld radiation condition on the (full complex) solution.

To employ the unified transform, we consider three separate semi-infinite domains:

D1 = {−∞< x<∞, 0+ ≤ y<∞}, (3.30a)

D2 = {−∞< x<∞, −∞< y ≤ −h−} (3.30b)

and D3 = {−∞< x<∞, −h+ ≤ y ≤ 0−}. (3.30c)
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Evaluating the global relation (2.9) in the domains D1,2,3 and applying the normal derivative
boundary conditions, yields the following three relations. Namely, from integrating along ∂D1,
we obtain the relation

∫−a

−∞
e−iβx(λ+1/λ)

[
−qy(x, 0+) + β

(
λ− 1

λ

)
q(x, 0+)

]
dx

+
∫ 1−a

−a
e−iβx(λ+1/λ)

[
−f (x) + β

(
λ− 1

λ

)
q(x, 0+)

]
dx

+
∫∞

1−a
e−iβx(λ+1/λ)

[
−qy(x, 0+) + β

(
λ− 1

λ

)
q(x, 0+)

]
dx = 0, (3.31)

valid for λ ∈ (−∞, −1) ∪ (0, 1) ∪ {eiθ : 0< θ < π} =Λ1. Similarly, from integrating along ∂D2, we
obtain the relation

∫ 0

−∞
e−iβx(λ+1/λ)

[
qy(x, −h−) − β

(
λ− 1

λ

)
q(x, −h−)

]
dx

+
∫ 1

0
e−iβx(λ+1/λ)

[
g(x) − β

(
λ− 1

λ

)
q(x, −h−)

]
dx

+
∫∞

1
e−iβx(λ+1/λ)

[
qy(x, −h−) − β

(
λ− 1

λ

)
q(x, −h−)

]
dx = 0, (3.32)

valid for λ ∈ (−1, 0) ∪ (1, ∞) ∪ {eiθ : π < θ < 2π} =Λ2. Finally, from integrating along ∂D3, we
obtain

e−βh(λ−1/λ)
∫ 0

−∞
e−iβx(λ+1/λ)

[
−qy(x, −h+) + β

(
λ− 1

λ

)
q(x, −h+)

]
dx

+ e−βh(λ−1/λ)
∫ 1

0
e−iβx(λ+1/λ)

[
−g(x) + β

(
λ− 1

λ

)
q(x, −h+)

]
dx

+ e−βh(λ−1/λ)
∫∞

1
e−iβx(λ+1/λ)

[
−qy(x, −h+) + β

(
λ− 1

λ

)
q(x, −h+)

]
dx

+
∫−a

−∞
e−iβx(λ+1/λ)

[
qy(x, 0−) − β

(
λ− 1

λ

)
q(x, 0−)

]
dx

+
∫ 1−a

−a
e−iβx(λ+1/λ)

[
f (x) − β

(
λ− 1

λ

)
q(x, 0−)

]
dx

+
∫∞

1−a
e−iβx(λ+1/λ)

[
qy(x, 0−) − β

(
λ− 1

λ

)
q(x, 0−)

]
dx = 0, (3.33)

valid for λ ∈ R\{0} ∪ {eiθ : θ ∈ [0, 2π ]}.
We manipulate (3.31), (3.32) and (3.33) using the symmetry transform, defined now by λ→

λ−1, to obtain two global relations. The first global relation arises from summing (3.32) multiplied
by e−βh(λ−1/λ) with (3.33) and then subtracting the symmetry transform of (3.31), yielding

∫−a

−∞
e−iβx(λ+1/λ)qy(x, 0) dx +

∫∞

1−a
e−iβx(λ+1/λ)qy(x, 0) dx

+
∫ 1−a

−a
e−iβx(λ+1/λ)

[
f (x) + β

2

(
λ− 1

λ

)
[q](x, 0)

]
dx

+ e−βh(λ−1/λ)
∫ 1

0
e−iβx(λ+1/λ) β

2

(
λ− 1

λ

)
[q](x, −h) dx = 0, λ ∈Λ2. (3.34)
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The second global relation arises from summing (3.31) with (3.33) and then subtracting e−βh(λ−1/λ)

multiplied by the symmetry transform of (3.31), yielding
∫ 0

−∞
e−iβx(λ+1/λ)qy(x, −h) dx +

∫∞

1
e−iβx(λ+1/λ)qy(x, −h) dx

+
∫ 1

0
e−iβx(λ+1/λ)

[
g(x) − β

2

(
λ− 1

λ

)
[q](x, −h)

]
dx

− eβh(λ−1/λ)
∫ 1−a

−a
e−iβx(λ+1/λ) β

2

(
λ− 1

λ

)
[q](x, 0) dx = 0, λ ∈Λ1. (3.35)

Using simple transformations of integral variables, we transform each finite integral to t ∈
[−1, 1], and each semi-infinite integral to t ∈ [0, ∞). For our test problem, the transforms of f and
g can be written down explicitly and we use the following expansions for the unknowns:

qy(−t, −h) =
N1−1∑
n=0

anSn,1(t), t> 0, qy(t + 1, −h) =
N2−1∑
n=0

bnSn,2(t), t> 0, (3.36a)

qy(−t − a, 0) =
N3−1∑
n=0

cnSn,3(t), t> 0, qy(t + 1 − a, 0) =
N4−1∑
n=0

dnSn,4(t), t> 0, (3.36b)

[q]
(

t + 1
2

, −h
)

=
N5−1∑
n=0

enSn,5(t), t ∈ [−1, 1], (3.36c)

and [q]
(

t + 1
2

− a, 0
)

=
N6−1∑
n=0

fnSn,6(t), t ∈ [−1, 1], (3.36d)

for suitable expansion functions {Sn,j}. Substituting these expansions into (3.34) and (3.35) and
evaluating at a finite number of allowed λ values gives a coupled linear system for the unknown
coefficients.

(i) Basis choice and collocation points

For the finite intervals, to capture the
√

1 − t2 type singularity near the edge tips we define χ (t) =
arcsin(t) ∈ [−π/2,π/2] and the functions

Cm(t) =
{

cos(mχ (t)), m odd

i sin(mχ (t)), m even
. (3.37)

We used the basis functions {Cn(t)}N
n=1 along each finite side which have the following Fourier

transforms: ∫ 1

−1
eiλtCm(t) dt = −mπ

λ
Jm(−λ). (3.38)

For the semi-infinite intervals, we used the Bessel functions {J(n+1)/2(k0x)/x}N̂−1
n=0 . These have the

advantage of capturing the correct singular behaviour near the plate edges when n is even. They
decay with the correct algebraic rate at infinity and have Fourier transforms that are easy to
compute [45]:

∫∞

0
eiλt Jα(bt)

t
dt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(iα arcsin(λ/b))
α

, for 0 ≤ λ≤ b

bα exp(απ i/2)

α
(
λ+

√
λ2 − b2

)α , for 0< b ≤ λ
. (3.39)

For collocation points λ ∈Λ1, we chose M1 Halton nodes in the interval (0,1), minus their
reciprocal values in (−∞, −1), and M2 points in {eiθ : 0< θ <π} with θ corresponding to Halton
nodes in (0,π ). Reciprocal values were selected for λ ∈Λ2. With the change of variables ω=
β(λ+ λ−1), this corresponds to sampling frequencies along the entire real line of the Fourier
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Figure 4. (a) Convergence of method for h= 1 and various k0. (b) Value of N needed to gain five digits of accuracy as we vary
the parameter k0h.

transforms of the relevant functions. The complex collocation points along the unit circle are
allowed precisely because the solution satisfies the Sommerfeld radiation condition so that the
contribution of Green’s identity along the relevant semi-circular arc vanishes in the infinite radius
limit (see [13]). We found that to obtain accurate numerical solutions, we needed to sample these
points and hence we considered the full complex solution. This corresponds to implementing the
boundary conditions that make the boundary value problem well posed.

(ii) Numerical results

We consider a scattering problem with a plane wave incident at angle θ with the positive x-axis.
This corresponds to the boundary functions

f (x) = ik0 sin(θ ) exp[ixk0 cos(θ )], g(x) = ik0 sin(θ ) exp[ixk0 cos(θ ) + ihk0 sin(θ )]. (3.40)

The corresponding matrix Wiener–Hopf equation for this problem gives rise to a 4 × 4 problem
containing multiple exponential factors which do not decay in the upper or lower half planes
(see electronic supplementary material). It is not known if there is a suitable method for the
approximate factorization of this matrix.

Figure 4 shows the convergence of the method for a range of k0 and h = 1. We took a = 0.2,
N̂ = 2N, θ = π/6 and similar results were found for other values of a and θ . We have measured
the error by looking at 201 equally spaced points in the interval [−1, 1], comparing to converged
values at larger N, dividing by the maximum amplitude of the computed solutions and taking
the maximum error of the computed [q](x, 0) and [q](x, h). For collocation parameters, we took
M1 = 6N̂ and M2 = 3N̂. The method appears to converge exponentially, largely following the
convergence of the true expansion in the functions {Cm}m∈N. As expected, convergence is slower
for larger k0. We have also shown the value of N required to gain five digits of accuracy in the
solution as a function of the dimensionless parameter k0h and for different k0. The results show
that the method is able to gain accurate solutions over a wide range of parameters. However,
convergence is slower for very small and very large k0h, as expected due to the more complicated
solution. We found the effect of smaller h to be less severe for a closer to 0 (when the plates are
exactly aligned). We have also shown typical solutions in figure 5.

(iii) Single-plate problem and comparison with a boundary integral method

To validate our numerical implementation, we have computed the solutions for the single-
plate problem with a single-finite plate lying in the region x ∈ [− 1

2 , 1
2 ], y = 0. The single-plate

solution can be obtained analytically in terms of Mathieu functions through the use of an elliptic
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Figure 5. Typical ‘converged’ solutions for h= 1 and h= 0.1 and various k0. Thesewere computed for a= 0.2 and θ = π/6.
(Online version in colour.)

coordinate system, discussed in [46] and briefly reviewed in the supplementary material. In what
follows, we have computed a ‘converged’ reference solution using this expansion to measure
errors. The global relation for this (easier) problem is given by (3.34) without the term involving
the Fourier transform of [q](x, −h).

We compare to a boundary integral method based on the work of Achenbach & Li [47] and
recently improved in [48]. Other ways to treat boundary integral equations in cracked domains
can be found in [49,50]. The single-plate problem is odd in the y variable and hence we can
consider the problem in the upper half plane. Choosing the Green’s function that satisfies a
homogeneous Dirichlet boundary condition on the x-axis, the boundary integral equations give
rise to the following Fredholm integral equation of the first kind

ik0 sin(θ ) eik0x cos(θ) = − ∂

∂y

∫ 1/2

−1/2
q(x′, 0+)

∂G
∂y′ (x, 0; x′, 0) dx′, (3.41)

where

G(x, y; x′, y′) =
H(1)

0

(
k0

√
(x − x′)2 + (y − y′)2

)
4i

−
H(1)

0

(
k0

√
(x − x′)2 + (y + y′)2

)
4i

. (3.42)

The idea is to expand the unknown function

q(x, 0+) =
∞∑

m=1

amCm(2x) (3.43)

for which (3.41) gives rise to an infinite symmetric linear system for the unknown coefficients:

∞∑
m=1

∫∞

−∞

√
t2 − 1
t2 Jn(k0t/2)Jm(k0t/2) dt mam = −i tan(θ )Jn(cos(θ )k0/2). (3.44)

The difficult part of this method is the computation of the integrals of products of Bessel functions
and we use the methods of [48]. We also mention that this is a similar approach to the method in
[51] which seeks to solve singular integral equations by expanding the unknowns in a basis and
solve the boundary integral equations as an infinite dimensional linear system using low rank
approximations for sparse representations of the bivariate kernels.

Figure 6 shows the results for the unified transform and the above boundary integral method
for θ = π/6. The unified transform is able to gain near machine precision for a wide range of
wavenumbers k0 (the required number N to gain a specified number of digits also appears to
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grow sub-linearly with k0), whereas the boundary integral method struggles, especially for larger
wavenumbers. This is due to the difficulty in computing the integrals in (3.44), a difficulty which
is entirely avoided when using the unified transform. Again the unified transform is very fast,
taking a couple of seconds for N = 120 (600 basis functions), with the two plate problems only
slightly slower.

4. Conclusion
In this paper, we use a new approach to solve mixed boundary condition problems usually
considered via the Wiener–data values allows one to obtain an approximation for the unknown
boundary values in a fast and accurate manner. This is the case even in situations where an
approximate Wiener–Hopf solution is very difficult to obtain, such as matrix problems arising
from multiple points at which the type of boundary condition changes. This new method,
illustrated for one-point and four-point problems with flat plates, can be adapted for any number
of finite or semi-infinite plates (not necessarily parallel) which is a topic of interest from a tradition
Wiener–Hopf approach [52,53] and a boundary element approach [54]. In addition to N plates, the
problem of N finite slits is also possible, such as that arising from a diffraction grating.

This new approach is seen to be highly accurate for the classic one-point problem where the
solution can be calculated analytically. When compared with typical boundary element methods,
this new spectral approach has the clear advantage of avoiding the evaluation of singular
integrals. When compared with other spectral methods, this new approach shows similar rates of
convergence and accuracy but is faster to implement in the case of complicated geometries (such
as four-point problems) and can deal with singularities which cannot always be transformed
away. Another advantage of being a boundary basis is that it can easily treat solutions with
different scales/decay rates without the need to model boundary layers. We also found that the
method was faster and more accurate for large k0 when compared with the other methods.

We have also discussed suitable basis functions to capture the relevant singularities/decay at
infinity as well as having easily computable Fourier transforms. This was crucial in gaining the
exponential convergence of the method. One further case merits mentioning which is that of a
finite edge with root singularities different from that discussed in §3b. Experimentation suggests
that Jacobi polynomials multiplied by their respective weight are a good choice in this case (whose
Fourier transforms can be represented by the confluent hypergeometric function). The methods
presented here open up the possibility of using the unified transform for studying more general
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exterior problems with a suitable decomposition of the unbounded domain. Future work will also
aim at extending the method to three-dimensional problems.
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