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When you listen to a piece of music, the sound signal 
consists of a sum of indi-
vidual simple frequencies or 

oscillatory components. Mathemati-
cally, these different components can 
be revealed by applying the Fou-
rier transform, named after the French 
mathematician Joseph Fourier. Fourier 
introduced the idea of representing temperature as a sum of sim-
pler oscillatory components in his fundamental study of heat. 
This representation allowed the system to be split into simpler 
parts and analysed. 

More generally, this idea of decomposition or diagonalisation 
is applied to linear operators, a type of mathematical mapping 
that permeates mathematical analysis and applications. Just as a 
sound signal can be broken down into a set of simple frequen-
cies, an operator can be decomposed into simple constituent 
parts via its ‘spectrum’.

Nowadays, spectral theory is ubiquitously used throughout the 
sciences to solve complex problems. For systems described by 
a finite number of parameters, this problem is mathematically 
equivalent to finding the zeroes of a polynomial. In general, 
the problem can only be solved computationally, thanks to the 
insolvability of the quintic.1 Here, the most famous algorithm is 
the QR algorithm [1], hailed as one of the ten algorithms with 
the most significant influence on science, numerical analysis 
and engineering in the 20th century [2]. However, often the 

problems encountered involve an infinite number of parameters 
or coordinates – they are infinite-dimensional, typically leading 
to an infinite spectrum.2 

Famous examples of spectral theory include the energy levels 
of systems in quantum mechanics, partial differential equations 

(equations measuring rates of change), 
vibrations in structure analysis, study-
ing fluid stability, describing transmis-
sion in wave and acoustic problems. 
Due to the continual advance in 
computing and the desire for realistic 
modelling in applications, the follow-

ing question is fundamental: How do we approximate spectra 
for infinite-dimensional problems on a (necessarily) finite 
computer?

This problem has a rich history that dates back at least 60 
years and involves a who’s who of leading mathematicians and 
physicists, with many triumphs for computational mathematics 
and theoretical physics. 

Yet, in general, spectral computations in infinite dimensions 
have remained notoriously difficult. When we apply a computa-
tional method, fundamental challenges include (a) missing parts 
of the spectrum and (b) approximating points that we think are 
close to the spectrum but actually are not (this is known as ‘spec-
tral pollution’). Overcoming these two issues in the general case 
is a long-standing problem in computational mathematics [3]. 

Even if we have a method that avoids these pitfalls, we are 
still left with the question of determining which parts of an ap-
proximation to trust. Ideally, not only do we wish to approximate 
spectra, but also compute ‘error bounds’ telling us how close our 
approximation is to the true solution. This makes computations 

… How do we approximate 
spectra for infinite-dimensional 
problems … 

Figure 1: Top – (a) Infinite aperiodic Penrose tile generated from rhombi. (b) Finite truncation of tile to n sites. (c) Finite truncation with interactions 
shown as green arrows (our method). Bottom – The corresponding sparsity patterns (non-zero entries of the infinite matrix of the operator H). The 
boxes show the different types of truncations of the operator. In (c), f(n) is chosen to include all of the interactions of the first n sites.
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reliable and useful in applications, and can also be used in areas 
of pure mathematics such as computer-assisted proofs [4].

As an example of our resolution of the above question (see 
[5]), consider quasicrystals. Quasicrystals are non-repeating 
(aperiodic3) structures with a long-range, self-similar nature (see 
Figure 1(a)). More generally, systems with long-range order and 
short-range disorder are abundant in nature.4 Currently, aperi-
odic systems are not nearly as well understood as their periodic 
cousins.5 

We might ask, then: what are the physics of aperiodic systems? 
Understanding spectral properties is key to answering these 
types of questions. However, the aperiodic nature of quasicrys-
tals, which makes them so interesting to study in the first place, 
also makes it a considerable challenge to approximate spectra 
associated with these systems!

We took a Penrose tile, a canonical model of a quasicrystal in 
2D, and generated the lattice shown in Figure 1(a) by consider-
ing a lattice ‘site’ to exist at each vertex (the black dots) and 
tunnelling bonds along the edges of the tiles. The model taken 
is that of a charged particle, which can exist on the set of sites 
and can tunnel between the sites along the bonds. We then apply 
a perpendicular magnetic field, which modifies the tunnelling 
strengths to enforce the usual circular motion of a free charged 
particle in a magnetic field. The operator in this scenario is a 
Hamiltonian H which, in matrix form, is given by

with summation over sites connected by an edge. Here akj is a 
phase factor that is given in terms of the strength of the magnetic 
field and y denotes the wave function.

The most common approach to computing spectra is to trun-
cate the operator. Physically, in our example, this corresponds 
to truncating the tile and studying the interactions of a finite 
number of sites within the truncation (Figure 1(b)). Mathemati-
cally, this corresponds to studying a finite section of the operator 
and computing spectra of the corresponding finite-dimensional 
system (eigenvalues of finite square matrices shown as a red box 
in Figure 1). 

In this model, the dimension of this finite-dimensional system 
is precisely the number of sites included in the truncation. Figure 
2(a) shows the output of this approach, where the approximation 
of the spectrum is plotted for different magnetic field strengths. 
We have labelled portions of this picture as ‘spectral pollution’ 
(recall the fundamental challenge (b) mentioned above, where 
points in the approximation have nothing to do with the true 
spectrum). This approach does not approximate the correct solu-
tion and does not provide any form of error bounds.6 

Instead, we truncate the operator differently [5]. Physically, in 
our example, we truncate the tile as before, but now also include 
the interactions of the finite truncation with the rest of the tile 
(Figure 1(c)). Mathematically, in this example, this method cor-
responds to studying a rectangular finite section/matrix of the 
operator (shown as a green box in Figure 1). 

When written as a matrix, the Hamiltonian H in this example 
is ‘sparse’, meaning it has finitely many non-zero entries in 
each column. For each site included in the truncation, the cor-
responding column of the matrix lists the interactions with other 
sites. The rectangular truncation simply includes the rows of the 
matrix with non-zero interactions. We can think of this as a tool 
for studying the full infinite-dimensional operator directly, even 
on a finite computer. 

Leveraging this idea, we can now approximate spectra in such 
a way that (i) our approximations approach the correct solution 
as our truncation size increases (overcoming challenges (a) and 
(b) above), and (ii) such that we can explicitly bound the error of 
any computed approximation. The practitioner can now provide 
a desired error bound, which our algorithm will then adaptively 
realise. 

Figure 2(b) shows the output of this approach for our exam-
ple. We now (i) have the correct gaps in the spectrum, (ii) ap-
proximate the correct spectrum and, for this example, (iii) have 
a guaranteed error bound of 0.01. With this technique in hand, 
we can reliably probe the bulk physical properties of such aperi-
odic systems. Indeed, this technique is already allowing for the 
discovery and investigation of new physics in quasicrystalline 
systems, including their transport and topological properties.

The above approach can be extended far beyond this exam-
ple. Other types of operators that can be treated include non-
local interactions (for readers familiar with the term, we can 
treat non-sparse matrices), partial differential equations and even 
non-Hermitian operators. The idea of treating operators directly 
can also be applied to other problems such as computing approxi-
mate states/eigenvectors (Figure 3), spectral projections and spec-
tral measures7 [6,7] and a whole zoo of spectral properties [8]. 

Going one step further, we can classify these problems in a 
computational hierarchy8 [8]. This measures the intrinsic dif-
ficulty of computational problems and provides proofs of the 
optimality of algorithms, realising limits of what computers can 
achieve. For example, and rather surprisingly, computing spectra 
of operators similar to the above example is strictly easier than 
for compact operators,9 which is itself easier than computing 
spectra of general self-adjoint operators. 

Beyond spectral theory, this framework is now being applied to 
optimisation, machine learning and artificial intelligence, solving 
partial differential equations and computer-assisted proofs. As 
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quasicrystals. Quasicrystals are non-repeating (aperiodic3) structures with
a long-range, self-similar nature (see Figure 1a). More generally, systems
with long-range order and short-range disorder are abundant in nature.4

Currently, aperiodic systems are not nearly as well understood as their
periodic cousins.5 We might ask, then: what are the physics of aperiodic
systems? Understanding spectral properties is key to answering these types
of questions. However, the aperiodic nature of quasicrystals, which makes
them so interesting to study in the first place, also makes it a considerable
challenge to approximate spectra associated with these systems!

We took a Penrose tile, a canonical model of a quasicrystal in 2D, and
generated the lattice shown in Figure 1a by considering a lattice ‘site’ to
exist at each vertex (the black dots) and tunnelling bonds along the edges
of the tiles. The model taken is that of a charged single-particle, which
can exist on the set of sites and can tunnel between the sites along the
bonds. We then apply a perpendicular magnetic field, which modifies the
tunnelling strengths to enforce the usual circular motion of a free charged
particle in a magnetic field. The operator in this scenario is a Hamiltonian
H which, in matrix form, is given by

(Hψ)j = −
∑
〈j,k〉

eiαkjψk,

with summation over sites connected by an edge. Here αkj is a phase factor
that is given in terms of the strength of the magnetic field and ψ denotes
the wave function.

The most common approach to computing spectra is to truncate the
operator. Physically, in our example, this corresponds to truncating the
tile and studying the interactions of a finite number of sites within the
truncation (Figure 1b). Mathematically, this corresponds to studying a
finite section of the operator and computing spectra of the corresponding
finite-dimensional system (eigenvalues of finite square matrices shown as a
red box in Figure 1). In this model, the dimension of this finite-dimensional

3This means that shifting the structure by any finite distance, without rotation,
cannot produce the same structure.

4Fractals (structures that exhibit similar patterns at different scales) are another
example.

5The reason for this is not being able to apply a result known Bloch’s theorem.
Bloch’s theorem gives the form of solutions to Schrödinger’s equation with a periodic
potential. For example, in a periodic crystal, the wave function can be decomposed
as ψ(r) = eik·rp(r) for periodic function p (with the same periodicity as the crystal).
The ‘local’ approach discussed below circumvents the need for Bloch’s theorem or other
results that rely on forms of symmetry.

Figure 2: Computation of spectra using (a) finite section (most common 
method) and (b) the proposed method.

(a) (b)

Figure 3: Examples of approximate states/eigenvectors for the example 
problem in this article (finite portion of infinite tile shown). The corre-
sponding points (E) in the spectrum and error bounds are shown. The 
colour shows the logarithm of absolute value.

E = -3.0429415 ± 10-7 E = -1.395230 ± 2 × 10-6
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science and society become increasingly reliant on computations, 
it is essential to understand what is computationally possible and 
design algorithms that are optimal and achieve these bounds.

We hope that further studies of infinite-dimensional spectral 
computations will lead to advancements in this fascinating sub-
ject, as well as the foundations of computation in other areas of 
mathematics. We end with a fitting quotation from one of the 
heroes of spectral theory, David Hilbert (1925): 

The infinite! No other question has ever moved so pro-
foundly the spirit of humankind; no other idea has so 
fruitfully stimulated the intellect; yet no other concept 
stands in greater need of clarification.

Matthew Colbrook 
University of Cambridge

Notes
1  This result, known as the Abel–Ruffini theorem, states that 

for degree higher than four, there is no formula for the zeroes 
of a general polynomial in terms of arithmetic operations and 
root extraction applied to the coefficients.

2  The name ‘spectral theory’ was first introduced by David Hil-
bert in his study of quadratic forms in infinitely many variables.

3  This means that shifting the structure by any finite distance, 
without rotation, cannot produce the same structure.

4  Fractals (structures that exhibit similar patterns at different 
scales) are another example.

5  The reason for this is not being able to apply a result known 
as Bloch’s theorem, which gives the form of solutions to 
Schrödinger’s equation with a periodic potential. For example, 
in a periodic crystal, the wave function can be decomposed as 
y(r) = ei k.rp(r) for periodic function p (with the same perio-
dicity as the crystal). The ‘local’ approach discussed below 
circumvents the need for Bloch’s theorem or other results that 
rely on forms of symmetry.

6  For this particular model and method of finite section, states 
corresponding to spectral pollution are known as ‘edge states’. 

Physically, an important problem is to distinguish between 
these edge states and points that are in the spectrum of the 
full infinite tile.

7  One can think of spectral measures as describing the ‘shape’ 
of the operator. This is particularly important for operators 
with continuous spectra which, going back to the analogy of 
music, can be thought of as a continuum of frequencies.

8  This is the Solvability Complexity Index (SCI) hierarchy, 
which has roots in the work of Smale [9,10], and his pro-
gramme on the foundations of computational mathematics 
and scientific computing, though it is quite distinct.

9  These are operators that, in their totality, can be approximated 
by finite-dimensional operators.
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