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WARPd: A Linearly Convergent First-Order Primal-Dual Algorithm for Inverse
Problems with Approximate Sharpness Conditions∗

Matthew J. Colbrook†

Abstract. Sharpness conditions directly control the recovery performance of restart schemes for first-order op-
timization methods without the need for restrictive assumptions such as strong convexity. However,
they are challenging to apply in the presence of noise or approximate model classes (e.g., approxi-
mate sparsity). We provide a first-order method: weighted, accelerated, and restarted primal-dual
(WARPd), based on primal-dual iterations and a novel restart-reweight scheme. Under a generic
approximate sharpness condition, WARPd achieves stable linear convergence to the desired vector.
Many problems of interest fit into this framework. For example, we analyze sparse recovery in com-
pressed sensing, low-rank matrix recovery, matrix completion, TV regularization, minimization of
∥Bx∥l1 under constraints (l1-analysis problems for general B), and mixed regularization problems.
We show how several quantities controlling recovery performance also provide explicit approximate
sharpness constants. Numerical experiments show that WARPd compares favorably with special-
ized state-of-the-art methods and is ideally suited for solving large-scale problems. We also present a
noise-blind variant based on a square-root LASSO decoder. Finally, we show how to unroll WARPd
as neural networks. This approximation theory result provides lower bounds for stable and accurate
neural networks for inverse problems and sheds light on architecture choices. Code and a gallery of
examples are available online as a MATLAB package.
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networks
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1. Introduction. Reconstruction from sampled measurements is a key problem in signal
and image processing, machine learning, statistics, computer vision, and a variety of other
fields. In this paper, we consider the following canonical linear inverse problem:1

(1.1) Given measurements b = Ax+ e ∈ Y∗
1 , recover x ∈ X .

Here X and Y1 are (real or complex) Banach spaces, A : X → Y∗
1 is a bounded linear operator

that represents a sampling model, and e ∈ Y∗
1 models noise or perturbations. The dual space

(the space of all continuous linear functionals) of a Banach space Z is denoted by Z∗.
Over the last few decades there has been an explosion in nonlinear reconstruction tech-

niques for (1.1) (see [6, 12, 16, 21, 32, 40, 43, 47, 58, 67, 71, 91, 105, 111, 116] for a very small
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1We have used the notation x to avoid confusion with x used to denote a dummy variable.
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1540 MATTHEW J. COLBROOK

sample). For example, the field of compressed sensing shows that, under certain conditions,
accurate reconstruction is possible if x is (approximately) sparse [33, 34, 50]. More generally,
a popular approach for recovering x is to solve an optimization problem of the form2

(1.2) min
x∈X

J (x) + F(Bx) such that ∥Ax− b∥Y∗
1
≤ ϵ.

Here, J : X → R ∪ {+∞} and F : Y∗
2 → R ∪ {+∞} are proper, lower semicontinuous,

convex functions, Y2 is a Banach space, and B : X → Y∗
2 is a bounded linear operator. We

assume that the sum J (x) + F(Bx) is bounded below and, without loss of generality, non-
negative. We use ∥ · ∥Z to denote the norm of a Banach space Z, ⟨·, ·⟩ for the bilinear form on
Z∗ × Z, and ⟨·, ·⟩R for the real part of ⟨·, ·⟩. For a space Z, we use a Bregman distance [54]
DZ associated with a 1-strongly convex (with respect to ∥ · ∥Z) continuously differentiable
function. In particular, DZ(z, ẑ) ≥ 1

2∥z − ẑ∥2Z . If Z is a Hilbert space, the most common
choice is DZ(z, ẑ) = 1

2∥z − ẑ∥2Z . We let g1, g2 : R>0 → R>0 ∪ {∞} be functions such that for
all η > 0 and all x ∈ X ,

sup
{y1∈Y1:∥y1∥Y1

≤η}
DY1(y1, 0) ≤ g1(η),(1.3)

ηF(Bx) = sup
{y2∈Y2:DY2

(y2,0)≤g2(η)}
⟨Bx, y2⟩R − ηF∗(y2/η),(1.4)

where f∗ denotes the convex conjugate of a function f . We make assumptions on the finiteness
of g1 and g2 for fixed specific inputs. These are explicitly given in (1.6) and (2.20). In
particular, we do not assume that the domain of the Bregman function DZ is all of Z.3

Example 1.1 (finite-dimensional Hilbert spaces). A concrete example that the reader should
keep in mind is when X = CN , Y1 = Cm, and Y2 = Cq, all with the usual inner product.
Here, x ∈ CN could also correspond to a vectorized pixelated image or matrix. In the
undersampled regime, A ∈ Cm×N with m < N . A common choice of J is a regularizer that
depends on prior assumptions about the signal x, such as J (x) = ∥x∥l1 , which promotes
sparsity (see section 3), or the nuclear norm of matrices, which promotes matrices of low-rank
(see section 4). If F(x) = ∥x∥l1 , then F(Bx) = ∥Bx∥l1 could correspond to the popular
TV-seminorm ∥x∥TV [38] (see subsection 6.1.2) or a sum ∥Wx∥l1 +λ∥x∥TV for general W (see
subsection 6.2). Note that if DZ(z, ẑ) = 1

2∥z − ẑ∥2l2 , then we can take g1(η) = η2/2, and if
F(x) = ∥x∥l1 , then we can take g2(η) = qη2/2.

Due to the great interest in solving (1.2) and similar problems, there is a long list of
algorithms (see section SM1), with a particular emphasis on first-order methods4 for large-

2The formulation in (1.2) with the constraint ∥Ax − b∥Y∗
1
≤ ϵ is often theoretically preferred over other

variations (e.g., ∥Ax− b∥2Y∗
1
in the objective function) because a reasonable estimate of ϵ may be known [17].

The case of unknown ϵ and replacing the constraint ∥Ax− b∥Y∗
1
≤ ϵ by an additional term λ−1∥Ax− b∥Y∗

1
in

the objective function, where λ scales independently of the noise, is treated in subsection 2.4.
3Note that if {y2 ∈ Y2 : DY2(y2, 0) ≤ g2(η)} is bounded and the supremum is realized, then (1.4) implies

at most linear growth of F on the image of B. It may be possible to get around this assumption by a careful
continuation argument of the dual variables in our restart scheme, but we do not pursue this further.

4Due to their dimensionality, many large-scale optimization models have rendered second-order methods
computationally impractical (typically large systems of linear equations are solved to compute Newton steps).
Thus, efficient and accelerated first-order algorithms have become essential for tackling numerous problems.
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scale problems. The goal is to design simple schemes (e.g., matrix/vector multiplications
in the case of Example 1.1) that produce approximate solutions efficiently. Solving (1.2) is
a notoriously difficult challenge, with common issues being nonsmoothness of J , the term
F(Bx) (e.g., the analysis term in Example 1.1), the constraint ∥Ax − b∥Y∗

1
≤ ϵ, etc. First-

order methods typically need a very large number of iterations when high accuracy is required
(see [98] for optimal convergence rates for different classes of objective functions). There are
also many works on the limits of recovering x via solutions of (1.2), and this is intimately
linked to numerical performance. It has been observed that recovery problems (1.1) that are
easier to solve theoretically (e.g., larger m in Example 1.1) often lead to optimization problems
(1.2) that are easier/more efficient to solve numerically [9, 42, 51]. In some cases, this has led
to algorithms with accelerated convergence guarantees [109].

This paper provides a general framework for the accelerated (linear) convergence and
stable solution of (1.1). Our only assumption is an inequality of the form

(1.5)
√

2DX (x, x̂)≤C1

[
J(x̂)+F(Bx̂)−J(x)−F(Bx)︸ ︷︷ ︸

objective function difference

+C2

(
∥Ax̂− b∥Y∗

1
−ϵ
)︸ ︷︷ ︸

feasibility gap

+c(x, b)︸ ︷︷ ︸
approx. term

]
∀x̂∈X.

Though we have written (1.5) in a global form over x̂, we only need it to hold for x̂ sufficiently
close to x for a suitable initial vector of our iteration scheme. For brevity, we omit the details.
Here C1 and C2 are constants and c(x, b) should be understood as a small approximation
term. For example, for sparse recovery considered in section 3, c(x, b) measures the distance
of x to sparse vectors and contains a term proportional to the noise level ϵ (see Theorem 3.3).
We further assume that

(1.6) g1(C2) <∞, g2(1) <∞,

where g1 and g2 are the functions in (1.3) and (1.4). The assumption (1.5) is much weaker
than typical assumptions for acceleration such as strong convexity and can be considered an
approximate  Lojasiewicz-type inequality or “approximate sharpness” [110]. We discuss its
links to other error bounds in section SM1. A key difference between (1.5) and sharpness,
and hence also between the restart scheme of this paper and others, is that we only assume
approximate control of the distance via the objective function difference—this is reflected by
the parameter δ in Theorem 1.2 and the term c(x, b) in (1.5). For the type of problems we
consider, this gives us greater generality and allows us to tackle the case of noisy measure-
ments, as well as prove robustness of our results (e.g., when considering sparse recovery, we
cover approximately sparse vectors). However, it also means that the vector x can only be re-
covered approximately to order δ. Curiously, numerical experiments below demonstrate that
we continue to achieve linear convergence in the objective function values. In sections 3 to 6,
we provide an analysis that verifies (1.5) for a range of important examples.

Given (1.5), we provide an iterative algorithm, weighted, accelerated, and restarted primal-
dual (WARPd), based on primal-dual iterations and a novel restart-reweight scheme. Our
main convergence result is summarized in the following theorem.

Theorem 1.2 (stable recovery with linear convergence). Let LA and LB be upper bounds for
∥A∥ and ∥B∥, respectively, and δ > 0. Then for any n ∈ N and any pair (x, b) ∈ X ×Y∗

1 such
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1542 MATTHEW J. COLBROOK

that ∥Ax− b∥Y∗
1
≤ ϵ, (1.5) holds, and c(x, b) ≤ δ,

(1.7) ∥ϕn(b) − x∥X ≤
√

2DX (x, ϕn(b)) ≤ C1

(
δ

1 − e−1
+ e−n

[
J (0) + F(0) + C2∥b∥Y∗

1

])
,

where ϕn(b) denotes the output of WARPd (Algorithm 2.3).

The total number of inner iterations scales linearly with n. Only

(1.8) ∼ C1

(
LA

√
g1(C2) + LB

√
g2(1)

)
log
([
J (0) + F(0) + C2∥b∥Y∗

1

]
/δ
)

total inner iterations are required to balance the two terms on the right-hand side of (1.7). In
other words, Theorem 1.2 demonstrates linear (or exponential) convergence down to the error
bound ∼ C1δ. Note that the barrier C1δ between solutions of (1.2) and x in (1.1) is to be
expected from the c(x, b) term in (1.5) when the objective function difference and feasibility
gap vanish. The convergence result is stable with respect to perturbations of x or b, with
stability governed by c(x, b) ≤ δ. Finally, each iteration of WARPd only requires applying
appropriate proximal maps. In the case of Example 1.1, we only need the proximal map of
J and a few matrix-vector multiplications. In particular, we do not assume anything on the
matrices A and B (e.g., we do not assume that A∗A is an orthogonal projector or that B is
diagonal). Together with the acceleration, this makes WARPd very computationally efficient.

Many problems of interest satisfy a version of (1.5) and there is great flexibility in our
framework. To be concrete, we explicitly analyze the following examples:
Section 3: Sparse recovery, using the robust null space property (in levels) to obtain (1.5).
Section 4: Low-rank matrix recovery, using the Frobenius-robust rank null space property

to obtain (1.5).
Section 5: Matrix completion, using approximate dual certificates to obtain (1.5).
Section 6: Examples with nontrivial matrix B including l1-analysis with frames (using a

generalization of the restricted isometry property to obtain (1.5)) and total vari-
ation (TV) minimization (using the restricted isometry property to obtain (1.5)).
Similar results can be proven using the robust null space property for frames.

Comprehensive numerical experiments demonstrate that WARPd compares favorably with
state-of-the-art methods. We also consider a variant WARPd-SR in subsection 2.4 that covers
the case of unknown ϵ and replaces the constraint ∥Ax− b∥Y∗

1
≤ ϵ by a term λ−1∥Ax− b∥Y∗

1

in the objective function, where λ scales independently of the noise.

1.1. Accurate and stable neural networks. Given the current interest in deep learning
(DL), it is not surprising that numerous DL-based methods are now being proposed for the
above and similar problems (see [12, 26, 66, 71, 75, 92, 122] for a small sample). There is ample
evidence that DL has the potential to achieve state-of-the-art results in numerous applications.
However, a current challenge is that many DL-based methods lack theoretical foundations
regarding reconstruction guarantees, convergence rates, stability analysis, and other basic
numerical analysis questions. The stability question is particularly alarming, with empirical
evidence that current DL techniques can lead to unstable methods for inverse problems (e.g.,
“adversarial attacks”) [11, 59, 69]. For example, this is a problem in real-world clinical practice.
Facebook and NYU’s 2019 FastMRI challenge reported that networks that performed well in
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standard image quality metrics were prone to false negatives, failing to reconstruct small but
physically relevant image abnormalities [74]. Subsequently, the 2020 FastMRI challenge [94]
focused on pathologies and “AI-generated hallucinations.” AI-generated hallucinations pose
a serious danger in applications such as medical imaging. The big problem, therefore, is to
compute/train neural networks (NNs) that are both accurate and stable [4, 46, 48].

In light of this, we consider unrolling WARPd as an NN. Unrolling iterative algorithms as
NNs is an increasingly popular method [68, 92, 93] and is particularly well suited to scenarios
where it is difficult to collect large training samples. Without stronger assumptions on the
objective function, naive unrolling of first-order iterative methods typically provides slow
O(δ + n−1) convergence guarantees in the number of hidden layers n.5 Instead, we gain
O(δ + e−n) convergence, providing lower bounds on what is achievable in terms of stability
and accuracy of an NN. The following theorem provides the approximation theory result.

Theorem 1.3. Suppose we are in the setting of Example 1.1 and that F(Bx) = ∥Bx∥l1.
Let LA and LB be upper bounds for ∥A∥ and ∥B∥, respectively, and δ > 0. Suppose that (1.5)
holds and that the proximal map of J can be approximated to the required accuracy described
by (2.26) via an NN of width bounded by a constant times N+m+q and depth M . We provide
a NN ϕ of width bounded by a constant times N + m + q and depth bounded by a constant
times MC1(LAC2 + LB

√
q) · log

([
J (0) + C2∥b∥l2

]
/δ
)
such that the following stable recovery

guarantee holds. For any pair (x, b) ∈ CN × Cm such that ∥Ax− b∥l2 ≤ ϵ and c(x, b) ≤ δ,

(1.9) ∥ϕ(b) − x∥l2 ≲ C1δ.

The key points are (a) the total number of parameters and depth of the NN only de-
pend logarithmically on the error tolerance δ (accuracy and efficiency), and (b) the recovery
guarantee is stable in the l2-norm (in terms of the data b and the bound c(x, b) ≤ δ) for the
model class described by c(x, b) ≤ δ (stability). This result provides lower bounds for what is
achievable in terms of stable and accurate NNs.

Regarding the approximation of the proximal map of J , for the examples in sections 3
and 6 this can be achieved exactly using a fixed depth (M = O(1) in Theorem 1.3). For
the examples of low-rank matrix recovery and matrix completion in sections 4 and 5, the
proximal map is computed via a partial singular value decomposition (SVD). This is typically
achieved via iterative methods, which can be unrolled as recurrent NNs. The precise number of
iterations needed depends on the matrix and singular values/vectors that are sought. Finally,
one can obtain similar results when the matrices A and B are only known approximately, and
the layers of the NN are only applied approximately (see subsection 2.5).

1.2. Notation. In addition to the notation introduced in the first subsection of the paper,
we use ∥·∥lp to denote the standard lp-norm of vectors in Cn. Given a bounded linear operator
A between Banach spaces, we denote the operator norm of A by ∥A∥. Given a lower semi-
continuous convex function f from a Hilbert space H to [−∞,∞], we use the proximal operator

5There are some exceptions. For example, [62] ensures that the iterations are contractive. Another example
is [45, 85] for LISTA (a learned version of ISTA) that ensures the existence of NN with linear convergence
toward the minimizer. However, neither [45] nor [85] uses the theoretically correct weights, as these can only
be computed as solutions of intractably large optimization problems. It is also unclear whether the needed
assumptions on the measurement operator A hold in practice.
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proxf (v) = argminx∈Hf(x) + 1
2∥v − x∥2H. Throughout, a ≲ b will mean there is a constant C

(independent of all relevant parameters) such that a ≤ Cb. Given a matrix M with singular
values σ1(M) ≥ σ2(M) ≥ · · · ≥ σr(M), we denote by ∥M∥p the Schatten p-norm of M , which
is the lp-norm of the sequence of singular values {σj(M)}. We let χS denote the indicator
function of a set S, taking the value 0 on S and +∞ otherwise. Finally, BZ denotes the unit
ball of a Banach space Z and PZ denotes the standard projection onto BZ .

1.3. Outline of paper. In section 2, we introduce WARPd, prove its convergence proper-
ties (e.g., Theorem 1.2), discuss its computational complexity and practice, provide a variation
(WARPd-SR) suitable for noise-blind recovery problems (unknown ϵ), and prove Theorem 1.3.
Section 3 analyzes the example of sparse recovery, section 4 analyzes the example of (approx-
imately) low-rank matrix recovery, section 5 analyzes the example of matrix completion, and
section 6 analyzes the examples of l1-analysis and TV minimization. Numerical examples are
given throughout the paper, and code is available at https://github.com/MColbrook/WARPd.
For brevity, proofs of the theoretical results we derive in sections 3 to 6 as well as of Theo-
rem 2.3 are given in the supplementary materials (M145500 01.pdf [local/web 460KB]), which
also contains an expanded section on connections with previous work. We conclude the paper
with a discussion, including future work, in section 7.

2. The accelerated algorithm. We begin with the primal-dual iterations in subsection 2.1
(general case) and subsection 2.2 (Hilbert space case), and then describe the restart scheme in
subsection 2.3. Theorem 1.2 provides the error bounds for WARPd described in Algorithm 2.3.
In subsection 2.4, we provide a variation, WARPd-SR, based on replacing the constraint
∥Ax − b∥Y∗

1
≤ ϵ in (1.2) with an additional data fitting term ∥Ax − b∥Y∗

1
in the objective

function. This is well suited to noise-blind recovery problems (unknown ϵ) and provides an
elegant means to bound dual variables for warm restarts. Computational considerations are
given in subsection 2.5 and we prove Theorem 1.3 in subsection 2.6.

2.1. Primal-dual iterations: The general case. The following provide useful characteri-
zations of the constraint ∥Ax− b∥Y∗

1
≤ ϵ and the F(Bx) term appearing in (1.2):

(2.1) χ{x̂:∥Ax̂−b∥Y∗
1
≤ϵ}(x) = sup

y1∈Y1

⟨Ax−b, y1⟩R−ϵ∥y1∥Y1 , F(Bx) = sup
y2∈Y2

⟨Bx, y2⟩R−F∗(y2).

It follows that the problem (1.2) is equivalent to the saddle point problem

(2.2) inf
x∈X

sup
y1∈Y1,y2∈Y2

[
L(x, y1, y2) := ⟨Ax− b, y1⟩R + ⟨Bx, y2⟩R + J (x) − ϵ∥y1∥Y1 −F∗(y2)

]
.

To solve (2.2), we use a primal-dual algorithm [39, 41], with iterates summarized in Algo-
rithm 2.1. The quantities τ1, τ2, τ3 > 0 denote proximal step sizes. Letting τττ = (τ1, τ2, τ3), we
use PDτττ to denote the updates in (2.5) so that

(2.3) (x(j+1), y
(j+1)
1 , y

(j+1)
2 ) = PDτττ (x(j), y

(j)
1 , y

(j)
2 ).

We assume that the proximal maps appearing in the updates can be efficiently executed to
sufficient accuracy. Further discussion of this point is delayed until subsection 2.5.
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Algorithm 2.1 Inner iterations (primal-dual updates) that are used in WARPd. At any one
time, only the current ergodic average, two primal and two dual variables need to be stored.

Input: Initial vector x0 ∈ X , proximal step sizes τ1 > 0, τ2 > 0, and τ3 > 0, number of
iterations k ∈ N, data b ∈ Y∗

1 , ϵ > 0, J , F∗, A, and B.

1: Initiate with x(0) = x0, y
(0)
1 = 0 ∈ Y1, y

(0)
2 = 0 ∈ Y2, and X0 = 0 ∈ X .

2: For j = 0, . . . , k − 1 compute

x(j+1) = argminx∈X J (x) + ⟨Ax, y(j)1 ⟩R + ⟨Bx, y(j)2 ⟩R +
1

τ1
DX (x, x(j)),

y
(j+1)
1 = argminy1∈Y1

ϵ∥y1∥Y1 − ⟨A(2x(j+1) − x(j)) − b, y1⟩R +
1

τ2
DY1(y1, y

(j)
1 ),

y
(j+1)
2 = argminy2∈Y2

F∗(y2) − ⟨B(2x(j+1) − x(j)), y2⟩R +
1

τ3
DY2(y2, y

(j)
2 ),

(2.5)

and update the ergodic average Xj+1 = 1
j+1

(
jXj + x(j+1)

)
.

Output: InnerIt (x0, τ1, τ2, τ3, k; b, ϵ,J ,F∗, A,B) = Xk.

For notational convenience, we define

(2.4) Gη(x̂, x, b) := J (x̂) + F(Bx̂) − J (x) −F(Bx)︸ ︷︷ ︸
objective function difference

+η
(
∥Ax̂− b∥Y∗

1
− ϵ
)︸ ︷︷ ︸

feasibility gap

for a multiplier η ≥ 0. Note that the inequality (1.5) allows us to bound
√

2DX (x, x̂) in
terms of GC2(x̂,x, b) and c(x, b). Hence we would like to control the size of GC2(x̂,x, b). As a
first step, Proposition 2.1 provides an explicit bound for Gη (see (2.6)) for exact primal-dual
updates without restarts.

Proposition 2.1 (bounds on Gη for primal-dual updates). Suppose that the step sizes τ1, τ2,

and τ3 satisfy τ1(τ2∥A∥2 + τ3∥B∥2) < 1. Let x0 ∈ X , y
(0)
1 = 0 ∈ Y1, y

(0)
2 = 0 ∈ Y2, and

(x(j+1), y
(j+1)
1 , y

(j+1)
2 ) = PDτττ (x(j), y

(j)
1 , y

(j)
2 ), j = 0, . . . , k − 1.

Define the ergodic averages

Xk =
1

k

k∑
j=1

x(j), [Yk]1 =
1

k

k∑
j=1

y
(j)
1 , [Yk]2 =

1

k

k∑
j=1

y
(j)
2 .

Then for any η ≥ 0 and any feasible x ∈ X (i.e., such that ∥Ax− b∥Y∗
1
≤ ϵ),

(2.6) Gη(Xk, x, b) ≤
2

k

(
DX (x, x(0))

τ1
+
g1(η)

τ2
+
g2(1)

τ3

)
,

where g1 and g2 satisfy (1.3) and (1.4), respectively.
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1546 MATTHEW J. COLBROOK

Proof. Recall the definition of L in (2.2). Since τ1(τ2∥A∥2 + τ3∥B∥2) < 1, a simple adap-
tation of [41, Theorem 1, Remark 2] shows that for any x ∈ X , y1 ∈ Y1, and y2 ∈ Y2,

(2.7) L (Xk, y1, y2) − L (x, [Yk]1, [Yk]2) ≤
2

k

(
DX (x, x(0))

τ1
+
DY1(y1, 0)

τ2
+
DY2(y2, 0)

τ3

)
.

Let x be feasible and y1 = ηy′1, where y′1 is any unit-norm vector such that ∥AXk − b∥Y∗
1

=
⟨AXk − b, y′1⟩R. Writing out the difference on the left-hand side of (2.7), and recalling (1.3),

η
(
∥AXk − b∥Y∗

1
− ϵ
)

+ J (Xk) − J (x)

− ⟨Ax− b, [Yk]1⟩R + ϵ∥[Yk]1∥Y1 −F∗(y2)

+ ⟨BXk, y2⟩R − ⟨Bx, [Yk]2⟩R + F∗([Yk]2) ≤
2

k

(
DX (x, x(0))

τ1
+
g1(η)

τ2
+
DY2(y2, 0)

τ3

)
.

(2.8)

We now take the supremum of the left-hand side of (2.8) over y2 with DY2(y2, 0) ≤ g2(1)
and recall that F satisfies (1.4). Moreover, x is feasible so that ∥Ax − b∥Y∗

1
≤ ϵ and hence

0 ≤ −⟨Ax− b, [Yk]1⟩R + ϵ∥[Yk]1∥Y1 . It follows from (2.8) that

η
(
∥AXk − b∥Y∗

1
− ϵ
)

+ J (Xk) + F(BXk)

− J (x) − ⟨Bx, [Yk]2⟩R + F∗([Yk]2) ≤
2

k

(
DX (x, x(0))

τ1
+
g1(η)

τ2
+
g2(1)

τ3

)
.

(2.9)

Since −F(Bx) ≤ −⟨Bx, [Yk]2⟩R + F∗([Yk]2), (2.9) yields (2.6).

2.2. Primal-dual iterations: The Hilbert space case. In the case that X , Y1, and Y2

are Hilbert spaces and that DZ(z, ẑ) = ∥z − ẑ∥2Z/2 for Z = X , Y1, and Y2, the primal-dual
iterations are simplified. In particular, we can absorb the bilinear forms into the Bregman
distances in (2.5). Algorithm 2.2 summarizes the iterations, where

(2.10) γρ(y1) := y1 − ρPY1(y1/ρ) = proxρ∥·∥Y1
(y1),

and we recall that PZ denotes the projection onto the unit ball of Z. Moreover, we can bound
the error (see (2.12)) due to inexact primal-dual updates without restarts. We treat inexact
updates to provide stability results, cover the case of inexact information regarding A and B,
and cover cases where the proximal map of J is applied approximately (see subsection 5.2).

Proposition 2.2 (perturbation bound for inexact primal-dual updates). Suppose that X , Y1,
and Y2 are Hilbert spaces and that the step sizes τ1, τ2, and τ3 satisfy τ1(τ2∥A∥2 + τ3∥B∥2) < 1.

Let x0 ∈ X and set x̃(0) = x(0) and ỹ
(0)
i = y

(0)
i = 0 ∈ Yi for i = 1, 2. Suppose that x̃(j) ∈ X ,

ỹ
(j)
1 ∈ Y1, and ỹ

(j)
2 ∈ Y2 are such that

(2.11)
∥∥∥(x̃(j), ỹ

(j)
1 , ỹ

(j)
2 ) − PDτττ (x̃(j−1), ỹ

(j−1)
1 , ỹ

(j−1)
2 )

∥∥∥
X⊕Y1⊕Y2

≤ δj , j = 0, . . . , k − 1.

In other words, the jth primal-dual iterate is approximately computed to accuracy δj. Let

(x(j+1), y
(j+1)
1 , y

(j+1)
2 ) = PDτττ (x(j), y

(j)
1 , y

(j)
2 ), j = 0, . . . , k − 1,
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Algorithm 2.2 Inner iterations (primal-dual updates) that are used in WARPd for the Hilbert
space case. At any one time, only the current ergodic average, two primal and two dual
variables need to be stored. The function γρ is defined in (2.10).

Input: Initial vector x0 ∈ X , proximal step sizes τ1 > 0, τ2 > 0 and τ3 > 0, number of
iterations k ∈ N, data b ∈ Y∗

1 , ϵ > 0, J , F∗, A, and B.

1: Initiate with x(0) = x0, y
(0)
1 = 0 ∈ Y1, y

(0)
2 = 0 ∈ Y2 and X0 = 0.

2: For j = 0, . . . , k − 1 compute

x(j+1) = proxτ1J (x(j) − τ1A
∗y

(j)
1 − τ1B

∗y
(j)
2 ),

y
(j+1)
1 = γτ2ϵ

(
y
(j)
1 + τ2A(2x(j+1) − x(j)) − τ2b

)
,

y
(j+1)
2 = proxτ3F∗(y

(j)
2 + τ3B(2x(j+1) − x(j))),

and update the ergodic average Xj+1 = 1
j+1

(
jXj + x(j+1)

)
.

Output: InnerIt (x0, τ1, τ2, τ3, k; b, ϵ,J ,F∗, A,B) = Xk.

denote the exact primal-dual iterates and define the ergodic averages

Xk =
1

k

k∑
j=1

x(j), X̃k =
1

k

k∑
j=1

x̃(j), Yk =
1

k

k∑
j=1

(y
(j)
1 , y

(j)
2 ), Ỹk =

1

k

k∑
j=1

(ỹ
(j)
1 , ỹ

(j)
2 ).

Then

(2.12)
∥∥∥(Xk, Yk)−(X̃k, Ỹk)

∥∥∥
X⊕Y1⊕Y2

≤

√
max{τ1, τ2, τ3} [1 + τ1(τ2∥A∥2 + τ3∥B∥2)]
min{τ1, τ2, τ3} [1 − τ1(τ2∥A∥2 + τ3∥B∥2)]

k∑
j=1

j∑
i=1

δi
k
.

Proof. Let v = (x, y1, y2), and define the following operators acting on X ⊕ Y1 ⊕ Y2:

Mτττ =

 1
τ1
IX −A∗ −B∗

−A 1
τ2
IY1 0

−B 0 1
τ3
IY2

 , Pτττ =

 IX −A∗√τ1τ2 −B∗√τ1τ3
−A√τ1τ2 IY1 0
−B√

τ1τ3 0 IY2

 ,

where IZ denotes the identity operator on Z. The operators Mτττ and Pτττ are related via
Pτττ = DτττMτττDτττ , where Dτττ =

√
τ1IX ⊕ √

τ2IY1 ⊕ √
τ3IY2 . An application of the AM–GM

inequality shows that ∥Pτττ − I∥ ≤ τ1(τ2∥A∥2 + τ3∥B∥2). In particular, a Neumann series ar-
gument shows that ∥P±1

τττ ∥ ≤ (1 ± τ1(τ2∥A∥2 + τ3∥B∥2))±1. Since τ1(τ2∥A∥2 + τ3∥B∥2) <
1, it follows that Mτττ is positive definite (as well as being bounded) and thus induces a

norm ∥v∥τττ := ∥M1/2
τττ v∥X⊕Y1⊕Y2 . Moreover, since ∥Dτττ∥2 = max{τ1, τ2, τ3} and ∥D−1

τττ ∥2 =
max{τ−1

1 , τ−1
2 , τ−1

3 },

∥v∥τττ ≤
√

max{τ−1
1 , τ−1

2 , τ−1
3 } [1 + τ1(τ2∥A∥2 + τ3∥B∥2)] · ∥v∥X⊕Y1⊕Y2 and

∥v∥X⊕Y1⊕Y2 ≤
√

max{τ1, τ2, τ3} [1 − τ1(τ2∥A∥2 + τ3∥B∥2)]−1 · ∥v∥τττ .
(2.13)
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1548 MATTHEW J. COLBROOK

We can write the iterations defined by PDτττ as

0 ∈ T v(j+1) + (v(j+1) − v(j)) with T := M−1
τττ

∂J A∗ B∗

−A ∂h∗ 0
−B 0 ∂F∗

 ,

where h∗(y1) = ϵ∥y1∥Y1 + ⟨b, y1⟩R. It follows that v(j+1) = [I + T ]−1 v(j). The operator T
is maximal monotone with respect to the inner product induced by Mτττ [108], and hence the
iterations are nonexpansive in the norm ∥ · ∥τττ . It follows that

∥v(j) − ṽ(j)∥τττ ≤ ∥ṽ(j) − PDτττ (ṽ(j−1))∥τττ + ∥PDτττ (v(j−1)) − PDτττ (ṽ(j−1))∥τττ
≤ ∥ṽ(j) − PDτττ (ṽ(j−1))∥τττ + ∥v(j−1) − ṽ(j−1)∥τττ

≤ δj

√
max{τ−1

1 , τ−1
2 , τ−1

3 } [1 + τ1(τ2∥A∥2 + τ3∥B∥2)] + ∥v(j−1) − ṽ(j−1)∥τττ ,

where we have used the triangle inequality in the first inequality, the fact that the iterates
are nonexpansive in ∥ · ∥τττ in the second inequality, and (2.13) in the final inequality. Iterating
and using (2.13) once more, we have

∥v(j) − ṽ(j)∥X⊕Y1⊕Y2 ≤

√
max{τ1, τ2, τ3}

[1 − τ1(τ2∥A∥2 + τ3∥B∥2)]
∥v(j) − ṽ(j)∥τττ

≤

√
max{τ1, τ2, τ3} [1 + τ1(τ2∥A∥2 + τ3∥B∥2)]
min{τ1, τ2, τ3} [1 − τ1(τ2∥A∥2 + τ3∥B∥2)]

j∑
i=1

δi.

Summing this bound for the ergodic averages reduces to (2.12).

For different notions of inexact primal-dual iterations and their effect on convergence rates
in the Hilbert space case, see [103]. Our scenario is different since we only use a fixed number
of iterations per restart and provide convergence to order δ > 0 in (1.7), thus allowing the δj
to be bounded below. In particular, we do not require a decay of errors (see (2.26)).

2.3. The restart scheme. We now describe the accelerated scheme. The idea is to take
advantage of the different proximal step sizes on the right-hand side of (2.6). Together with
(1.5), this allows a decrease in the relevant gap Gη (defined in (2.4)) by a constant factor for a
fixed number of iterations. An interpretation is that we reweight the sizes of the proximal steps
at each restart as DX (x, x) decreases. The full algorithm is described in Algorithm 2.3, where,
for simplicity, we have written the algorithm for exact primal-dual iterations. Theorem 1.2
summarizes the convergence result.

Proof of Theorem 1.2. We prove the theorem under the more general conditions of in-
exact primal-dual iterations. Consider the setup in the statement of Theorem 1.2. Let
ψk = InnerIt(x0, τ1, τ2, τ3, k) denote the exact updates described in Algorithm 2.1 (or Algo-
rithm 2.2). Suppose that the initial starting vector x0 satisfies

√
2DX (x, x0) ≤ C1(δ + ω) for

some ω > 0. Combining this with (2.6) for the choice η = C2, we have

(2.14) GC2(ψk,x, b) ≤
1

k

(
C2
1 (δ + ω)2

τ1
+

2g1(C2)

τ2
+

2g2(1)

τ3

)
.
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Algorithm 2.3 (WARPd) Accelerated algorithm for the solution of (1.2) and recovery of
desired vector. The updates in (2.15) correspond to restarted primal-dual iterations performed
by the routine InnerIt in Algorithm 2.1 (general case) or Algorithm 2.2 (Hilbert space case).

Input: C1 and C2 such that (1.5) holds, g1 such that (1.3) holds, g2 such that (1.4) holds,
LA and LB (upper bounds for ∥A∥ and ∥B∥, respectively), τ ∈ (0, 1), ϵ > 0, δ > 0, J , F∗, A,
B, b ∈ Y∗

1 , and n ∈ N.

1: Set ω0 = J (0) + F(0) + C2∥b∥Y∗
1

(or an upper bound) and compute ωj = e−1 (δ + ωj−1)
for j = 1, . . . , n− 1.

2: Set k = ⌈2C1e(LA

√
2g1(C2) + LB

√
2g2(1))/τ⌉.

3: For j = 0, . . . , n− 1 compute

τ
(j)
1 =

τC1(δ + ωj)

LA

√
2g1(C2) + LB

√
2g2(1)

, τ
(j)
2 =

τ
√

2g1(C2)

LAC1(δ + ωj)
, τ

(j)
3 =

τ
√

2g2(1)

LBC1(δ + ωj)
.

4: Set ϕ0(b) = 0 (or any other initial approximation) and for j = 1, . . . , n, compute

(2.15) ϕj(b) = InnerIt
(
ϕj−1(b), τ

(j−1)
1 , τ

(j−1)
2 , τ

(j−1)
3 , k; b, ϵ,J ,F∗, A,B

)
.

Output: ϕn(b) ∈ X .

Let τ ∈ (0, 1), and suppose that τ1(τ2L
2
A + τ3L

2
B) = τ2. In this case, the optimal choices of

τ1, τ2, and τ3 that minimize the right-hand side of (2.14) are

τ1(ω) =
τC1(δ + ω)

LA

√
2g1(C2) + LB

√
2g2(1)

, τ2(ω) =
τ
√

2g1(C2)

LAC1(δ + ω)
, τ3(ω) =

τ
√

2g2(1)

LBC1(δ + ω)
.

With this choice, we have that

(2.16) GC2(ψk,x, b) ≤
2C1

k

(
LA

√
2g1(C2) + LB

√
2g2(1)

τ

)
(δ + ω).

For ν ∈ (0, 1) that we optimize later, set k = ⌈2C1(LA

√
2g1(C2) + LB

√
2g2(1))/(ντ)⌉ so that

(2.16) implies that GC2(ψk,x, b) ≤ ν(δ + ω).
Suppose now that instead of ψk, we compute Ψk = Ψk (x0, τ1, τ2, τ3) ∈ X with

(2.17)
√

2DX (x,Ψk) ≤
√

2DX (x, ψk) + αC1δν

for some accuracy parameter α > 0. Since c(x, b) ≤ δ, it follows from (1.5) that√
2DX (x,Ψk) ≤ C1(δ + ν(δ + αδ + ω)).

We now describe the restart scheme. From (1.5) and the assumption that J (·)+F(B·) ≥ 0,

GC2(0,x, b) = J (0) + F(0) − J (x) −F(Bx) + C2(∥b∥Y∗
1
− ϵ) ≤ J (0) + F(0) + C2∥b∥Y∗

1
.
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1550 MATTHEW J. COLBROOK

It follows from (1.5) that
√

2DX (x, 0) ≤ C1(δ+ω0) with ω0 = J (0) +F(0) +C2∥b∥Y∗
1
. Given

n ∈ N, set ωj = ν (δ + αδ + ωj−1) for j = 1, . . . , n − 1. By summing a geometric series, this

implies that ωn ≤ νδ(1+α)
1−ν + νn[J (0) + F(0) + C2∥b∥Y∗

1
]. We define ϕn(b) iteratively via

ϕ1(b) = Ψk (0, τ1(ω0), τ2(ω0), τ3(ω0)) , ϕj(b) = Ψk (ϕj−1(b), τ1(ωj−1), τ2(ωj−1), τ3(ωj−1)) ,

for j = 1, . . . , n. The choice of ωj and the above argument inductively show that√
2DX (x, ϕn(b)) ≤ C1(δ + ωn) ≤ C1

(
δ +

νδ(1 + α)

1 − ν
+ νn

[
J (0) + F(0) + C2∥b∥Y∗

1

])
.

For T = kn inner iterations, the error term νn is equal to exp(Tk−1 log(ν)). If we ignore the
ceiling function in the choice of k, the optimal choice of ν = e−1 is found via differentiation.
This choice yields (1.7) in the limit α ↓ 0 (i.e., for exact primal-dual iterations).

2.4. Noise-blind recovery: Replacing the constraint with a data fitting term. We now
discuss a variation of WARPd based on the following unconstrained optimization problem:

(2.18) min
x∈X

λ
[
J (x) + F(Bx)

]
+ ∥Ax− b∥Y∗

1
(with λ > 0).

The optimization problem in (2.18) differs from its LASSO-type cousin by replacing the con-
ventional ∥Ax − b∥2Y∗

1
term with ∥Ax − b∥Y∗

1
. In the case of sparse recovery (for the finite-

dimensional Hilbert spaces X = CN and Y1 = Cm, J (x) = ∥x∥l1w , F = 0) in section 3,
this is known as the square-root LASSO (SR-LASSO) decoder. SR-LASSO was introduced
in [19]; see also [1, 20]. In particular, SR-LASSO allows an optimal parameter choice for
λ that is independent of the noise level [6, Table 6.1] and is therefore well suited to noise-
blind recovery problems. This property also holds for the algorithm we describe, WARPd-SR.
Moreover, there is an additional benefit. Using (2.18) allows an elegant bound on the size of
dual variables, and hence allows an easier analysis with additional dual variable restarts (see
the discussion at the end of subsection 2.5 and in section SM2).

Throughout this section, we replace the assumption (1.5) by
(2.19)√

2DX (x, x̂)≤ Ĉ1

[
J (x̂) + F(Bx̂) − J (x)−F(Bx)+Ĉ2

(
∥Ax̂− b∥Y∗

1
−∥Ax− b∥Y∗

1

)
+ĉ(x, b)

]
.

In practice, the assumptions (1.5) and (2.19) are equivalent up to a change in c(x, b) and
ĉ(x, b). For example, if (1.5) holds, then (2.19) holds with Cj = Ĉj and ĉ(x, b) = c(x, b) +
C2(∥Ax− b∥Y∗

1
− ϵ). The similarity is also reflected in the proofs for the examples we give in

later sections—we typically prove (1.5) via (2.19). We further assume that

(2.20) g1(1) <∞, g2(1/Ĉ2) <∞,

where g1 and g2 are the functions in (1.3) and (1.4). To analyze the problem, we proceed as
in subsection 2.1. The problem (2.18) is equivalent to the saddle point problem
(2.21)

inf
x∈X

sup
y1∈Y1,y2∈Y2

[
L̂(x, y1, y2) := ⟨Ax− b, y1⟩R + ⟨Bx, y2⟩R + λJ (x) − χBY1

(y1) − λF∗(y2/λ)
]
,
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Algorithm 2.4 Inner iterations (primal-dual updates) that are used in WARPd-SR. At any
one time, only the current ergodic average, two primal and two dual variables need to be
stored.
Input: Initial vector x0 ∈ X , proximal step sizes τ1 > 0, τ2 > 0, and τ3 > 0, number of
iterations k ∈ N, data b ∈ Y∗

1 , λ > 0, J , F∗, A, and B.

1: Initiate with x(0) = x0, y
(0)
1 = 0 ∈ Y1, y

(0)
2 = 0 ∈ Y2, and X0 = 0 ∈ X .

2: For j = 0, . . . , k − 1 compute

x(j+1) = argminx∈X λJ (x) + ⟨Ax, y(j)1 ⟩R + ⟨Bx, y(j)2 ⟩R +
1

τ1
DX (x, x(j)),

y
(j+1)
1 = argminy1∈Y1

χBY1
(y1) − ⟨A(2x(j+1) − x(j)) − b, y1⟩R +

1

τ2
DY1(y1, y

(j)
1 ),

y
(j+1)
2 = argminy2∈Y2

λF∗(y2/λ) − ⟨B(2x(j+1) − x(j)), y2⟩R +
1

τ3
DY2(y2, y

(j)
2 ),

(2.22)

and update the ergodic average Xj+1 = 1
j+1

(
jXj + x(j+1)

)
.

Output: InnerIt-SR (x0, τ1, τ2, τ3, k; b, λ,J ,F∗, A,B) = Xk.

Algorithm 2.5 Inner iterations (primal-dual updates) that are used in WARPd-SR for the
Hilbert space case. At any one time, only the current ergodic average, two primal and two
dual variables need to be stored. PY1 denotes the projection onto the unit ball of Y1.

Input: Initial vector x0 ∈ X , proximal step sizes τ1 > 0, τ2 > 0, and τ3 > 0, number of
iterations k ∈ N, data b ∈ Y∗

1 , λ > 0, J , F∗, A, and B.

1: Initiate with x(0) = x0, y
(0)
1 = 0 ∈ Y1, y

(0)
2 = 0 ∈ Y2, and X0 = 0 ∈ X .

2: For j = 0, . . . , k − 1 compute

x(j+1) = proxλτ1J

(
x(j) − τ1A

∗y
(j)
1 − τ1B

∗y
(j)
2

)
,

y
(j+1)
1 = PY1

(
y
(j)
1 + τ2A(2x(j+1) − x(j)) − τ2b

)
,

y
(j+1)
2 = proxτ3[λF ]∗

(
y
(j)
2 + τ3B(2x(j+1) − x(j))

)
,

and update the ergodic average Xj+1 = 1
j+1

(
jXj + x(j+1)

)
.

Output: InnerIt-SR (x0, τ1, τ2, τ3, k; b, λ,J ,F∗, A,B) = Xk.

where we recall that BZ denotes the unit ball of a Banach space Z. The primal-dual iterations
for this saddle point problem are described in Algorithm 2.4 (general case) and Algorithm 2.5
(Hilbert space case). The accelerated restart scheme is summarized in Algorithm 2.6 with
λ = 1/Ĉ2. The following theorem describes the convergence. Note that WARPd-SR does not
need any ϵ (noise level) parameter as an input.

Theorem 2.3. Let LA and LB be upper bounds for ∥A∥ and ∥B∥, respectively, and δ > 0.
Then for any n ∈ N and any pair (x, b) ∈ X × Y∗

1 such that (2.19) holds with ĉ(x, b) ≤ δ, the
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1552 MATTHEW J. COLBROOK

Algorithm 2.6 (WARPd-SR): Accelerated algorithm for the solution of (2.18) and recovery
of desired vector. The updates in (2.23) correspond to restarted primal-dual iterations per-
formed by the routine InnerIt-SR in Algorithm 2.4 (general case) or Algorithm 2.5 (Hilbert
space case).

Input: Ĉ1 and Ĉ2 such that (2.19) holds, g1 such that (1.3) holds, g2 such that (1.4) holds,
LA and LB (upper bounds for ∥A∥ and ∥B∥, respectively), τ ∈ (0, 1), δ > 0, J , F∗, A, B,
b ∈ Y∗

1 , and n ∈ N.

1: Set ω0 = J (0) + F(0) + Ĉ2∥b∥Y∗
1

(or an upper bound) and compute ωj = e−1 (δ + ωj−1)
for j = 1, . . . , n− 1.

2: Set k = ⌈2eĈ1Ĉ2(LA

√
2g1(1) + LB

√
2g2(1/Ĉ2))/τ⌉.

3: For j = 0, . . . , n− 1 compute

τ
(j)
1 =

τĈ1(δ + ωj)

LA

√
2g1(1) + LB

√
2g2(1/Ĉ2)

, τ
(j)
2 =

τ
√

2g1(1)

LAĈ1(δ + ωj)
, τ

(j)
3 =

τ

√
2g2(1/Ĉ2)

LBĈ1(δ + ωj)
.

4: Set ϕ0(b) = 0 (or any other initial approximation) and for j = 1, . . . , n, compute

(2.23) ϕj(b) = InnerIt-SR
(
ϕj−1(b), τ

(j−1)
1 , τ

(j−1)
2 , τ

(j−1)
3 , k; b, 1/Ĉ2,J ,F∗, A,B

)
.

Output: ϕn(b) ∈ X .

following recovery bound holds:

(2.24) ∥ϕn(b) − x∥X ≤
√

2DX (x, ϕn(b)) ≤ Ĉ1

(
δ

1 − e−1
+ e−n

[
J (0) + F(0) + Ĉ2∥b∥Y∗

1

])
,

where ϕn(b) denotes the output of WARPd-SR in Algorithm 2.6.

Proof. See section SM2.

2.5. Computational complexity and remarks. We analyze the computational cost of
WARPd in the setting of Example 1.1, where Algorithm 2.2 is used. Let CA, CA∗, CB, and
CB∗ denote the computational cost of applying A, A∗, B, and B∗, respectively, and let CJ
and CF∗ denote the cost of applying the proximal maps of J and F∗, respectively. The cost
per inner iteration is

CA + CA∗ + CB + CB∗ + CJ + CF∗ + O(N +m+ q).

If F(x) = ∥x∥l1 , then

(2.25) proxτ3F∗(y3) = ς1(y3), where [ςρ(z)]j = min {1, ρ/|zj |} zj .

It follows that CF∗ = O(q). For simple J , such as those considered in section 3, CJ = O(N).
In compressed sensing applications, it is common for A to be a submatrix of a (rescaled)
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unitary operator that admits a fast transform for matrix-vector products. Similarly, in l1-
analysis problems, B and B∗ often admit fast transforms. In this case, the cost per iteration
is bounded by a small multiple of N (and possibly logarithmic factors). Hence, each iteration
is extremely fast. In the more general case, such as the nuclear norm in sections 4 and 5, where
an SVD needs to be computed to apply proxτ1J , CJ can be larger than O(N). However, the
algorithm is still scalable to large problems and competitive with state-of-the-art methods
(see subsections 4.2 and 5.4).

In the Hilbert space case, with 2DX (x,Ψk) = ∥x − Ψk∥X , Proposition 2.2 shows that
(2.17) is achieved if each of the errors δj in (2.11) is bounded with δj ≤ µ for some

(2.26) µ ∼ δατ
√

1 − τ2

LA

√
2g1(C2) + LB

√
2g2(1)

√
min{τ1(ω), τ2(ω), τ3(ω)}
max{τ1(ω), τ2(ω), τ3(ω)}

.

The values of ω in the proof of Theorem 1.2 are bounded above and below for given inputs.
It follows that µ can be chosen as a constant that scales as µ ∼ δ2. This is useful in scenarios
where the proximal map of J can only be applied approximately. Moreover, in certain cases,
we may not know the matrices A or B exactly, or they have been stored to a finite precision.
We can absorb this additional error into the error bounds for inexact computation in Propo-
sition 2.2. Similarly, all of the algorithms in this paper can be executed on a Turing machine
with almost identical error bounds. This is important for the computability of solutions of
(1.2) to a given accuracy (e.g., see [15] and its numerical experiments). However, we have
taken the usual convention throughout of proving results in exact arithmetic and providing
stability bounds such as (2.12).

The following sections discuss how to select the constants C1 and C2 in different scenarios.
For cases where ∥A∥ and ∥B∥ are unknown, we use the power method (applied to A∗A and
B∗B) to find suitable LA and LB. This computation incurs a one-off upfront cost which is
usually only as expensive as a few iterations of InnerIt. Practically, we found that Algo-
rithm 2.3 performed better if the initial dual variables in InnerIt were selected as the final
dual variables of the previous operation of InnerIt (as opposed to zero). Proposition 2.1
can be adapted accordingly by bounding the dual variables (the only change is to the final
term on the right-hand side of (2.6)). We omit the details and instead discuss this point for
WARPd-SR in section SM2, where the dual variables are bounded using the dual of the data
fitting term ∥Ax− b∥Y∗

1
.

2.6. Unrolling Algorithm 2.3 as a stable and accurate NN. We now consider the setting
of Example 1.1 with F(Bx) = ∥Bx∥l1 and prove Theorem 1.3. To capture standard archi-
tectures used in practice, such as skip connections, we consider the following definition of an
NN. Without loss of generality and for ease of exposition, we also work with complex-valued
NNs. Real-valued NNs can realize such networks by splitting into real and imaginary parts.
An NN is a mapping ϕ : Cm → CN that can be written as a composition

ϕ(y) = [VT ◦ ρT−1 ◦ VT−1 ◦ · · · ◦ V2 ◦ ρ1 ◦ V1](y), where

• each Vj is an affine map CNj−1 → CNj given by Vj(x) = Wjx+bj(y) where Wj ∈ CNj×Nj−1

and bj(y) = Rjy + cj are affine functions of the input y;
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1554 MATTHEW J. COLBROOK

• each ρj : CNj → CNj is one of two forms;
(i) There exists an index set Ij ⊂ {1, . . . , Nj} such that ρj applies a nonlinear function

fj : C → C elementwise on the input vector’s components with indices in Ij :

ρj(x)k =

{
fj(xk) if k ∈ Ij ,

xk otherwise.

(ii) There exists a function fj : C → C such that, after decomposing the input vector x as
(x0, X

⊤, Y ⊤)⊤ for scalar x0 and X ∈ Cmj , Y ∈ CNj−1−mj , we have

ρj :

x0X
Y

→

 0
fj(x0)X

Y

 .

The affine dependence of bj(y) on y allows skip connections from the input to the current level,
as in definitions of feed-forward NNs [114, p. 269], and the above architecture has become
standard [48, 66, 71]. The use of nonlinear functions of the form (ii) may be reexpressed using
nonlinear functions of the form (i) and the following standard elementwise squaring trick:

fj(x0)X =
1

2

[
[fj(x0)1 +X]2−fj(x0)21−X2

]
,

where 1 denotes a vector of ones of the same size as X. The key observation is that the basic
operations of Algorithm 2.2 can be unrolled as NNs. For example, γρ can be executed via

x
L−→
(
x
x

)
NL−−→


|x1|2

...
|xm|2
x

 L−→
(∑M

j=1 |xj |2
x

)
NL−−→

(
0

max
{

0, 1− ρ
∥x∥l2

}
x

)
L−→max

{
0, 1− ρ

∥x∥l2

}
x,

where “L” denotes affine maps and “NL” nonlinear maps. The second arrow applies pointwise
modulus squaring (type (i) above), and the penultimate arrow applies a nonlinear map (type
(ii) above). Similarly, ςρ defined in (2.25) can be unrolled as an NN of fixed depth and width
of order O(N +m+ q).

Proof of Theorem 1.3. Under the assumptions, we see that each iteration in Algorithm 2.2
(now with the appropriate change of parameters to encompass inexact primal-dual iterates as
in the proof of Theorem 1.2) can be executed by an NN of width O(N + m + q) and depth
O(M). This follows via the unrolling of γρ and ςρ, the approximation of the proximal map of
J , and concatenation of NNs. Similarly, the operations and restarting in Algorithm 2.3 can
be combined into an NN. The result now follows from Theorem 1.2 and the bound (1.8) on
the number of inner iterations required to achieve (1.9).

3. Sparse recovery. We consider the setup of Example 1.1 with DZ(z, ẑ) = 1
2∥z − ẑ∥2l2 ,

and sparse recovery via the (weighted) l1-norm

(3.1) J (x) = ∥x∥l1w :=

N∑
j=1

wj |xj |, wj ≥ 0 (and take F = 0),
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for which (1.2) becomes the famous basis pursuit denoising problem. This is a ubiquitous
problem in many fields, including machine learning, compressed sensing, and image processing
[30, 33, 34, 50]. The assumption (1.5) holds for matrices A that have a (weighted) robust null
space property (in levels) defined in Definition 3.2, allowing the recovery of vectors x that
are approximately sparse (in levels).6 Our result is presented explicitly in Theorem 3.3. This
setting is very general, for example, encompassing both classical and structured compressed
sensing. Examples in imaging for Fourier and Walsh measurements are given in subsection 3.2.

3.1. A general result. We consider sparsity in levels [7], which has been shown to play a
key role in the quality of image recovery in compressed sensing via the so-called flip test [7, 14].
For many imaging modalities, sparsity in levels is crucial in demonstrating that sparse regu-
larization is near-optimal for image recovery [3, 14, 72]. It is needed to account for the good
recovery often found in practice for problems such as the Fourier-wavelet problem.7 For ex-
ample, [87] observed both poor recovery from uniform random sampling and the improvement
offered by variable density sampling for magnetic resonance imaging (MRI). For further works
on structured compressed sensing, see [23, 24, 56, 79, 81, 83, 119]. The following definitions
also encompass classical compressed sensing.

Definition 3.1 (sparsity in levels). Let M = (M1, . . . ,Mr) ∈ Nr, 1 ≤M1 < · · · < Mr = N ,
and s = (s1, . . . , sr) ∈ Nr, where sk ≤Mk−Mk−1 for k = 1, . . . , r (M0 = 0). A vector x ∈ CN

is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, . . . ,Mk}| ≤ sk, k = 1, . . . , r.

The total sparsity is s = s1 + · · · + sr. We denote the set of (s,M)-sparse vectors by Σs,M.
We also define the measure of distance of a vector x to Σs,M by

σs,M(x)l1w = inf
{
∥x− z∥l1w : z ∈ Σs,M

}
.

In section 6, we will drop the M subscript when considering a single level. For simplicity,
we assume that wi = w(j) > 0 if Mj−1 + 1 ≤ i ≤ Mj . If an image c is compressible in a
wavelet basis with coefficients x, then σs,M(x)l1w is expected to be small whenever the levels
correspond to wavelet levels [91, Chapter 9]. In general, the weights are a prior on the
anticipated approximate support of the vector [61]. We also define the following quantities:

ξ = ξ(s,M, w) :=

r∑
k=1

w2
(k)sk, ζ = ζ(s,M, w) := min

k=1,...,r
w2
(k)sk, κ = κ(s,M, w) := ξ/ζ.

Definition 3.2 (weighted rNSP in levels [14]). Let (s,M) be local sparsities and sparsity
levels, respectively. For weights {wi}Ni=1 (wi > 0), we say that A ∈ Cm×N satisfies the weighted
robust null space property in levels (weighted rNSPL) of order (s,M) with constants 0 < ρ < 1
and γ > 0 if for any (s,M) support set ∆,

∥x∆∥l2 ≤ ρ∥x∆c∥l1w/
√
ξ + γ∥Ax∥l2 ∀ x ∈ CN .

Here, xS denotes the vector with [xS ]j = xj if j ∈ S and [xS ]j = 0 otherwise.

6This is a weaker assumption than the restricted isometry property [60, Theorem 6.13].
7In this example, the main problem for sparsity in one level is that the Fourier-wavelet matrix is coherent [7].
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With these definitions in hand, the following provides the reconstruction guarantee.

Theorem 3.3. Suppose that A has the weighted rNSPL of order (s,M) with constants 0 <
ρ < 1 and γ > 0. Then the approximate sharpness condition (1.5) holds for any x ∈ CN with

C1 =

(
ρ+

(1 + ρ)κ1/4

2

)
1 + ρ√
ξ(1 − ρ)

, C2 =
γ

C1
· 2 + 2ρ+ (3 + ρ)κ1/4

2(1 − ρ)
, and

c(x, b) = 2σs,M(x)l1w + C2 (∥Ax− b∥l2 + ϵ) .

Let ϵ > 0, LA be an upper bound for ∥A∥, τ ∈ (0, 1), δ > 0. Then for any n ∈ N and any pair
(x, b) ∈ CN × Cm such that ∥Ax− b∥ ≤ ϵ and c(x, b) ≤ δ,

∥ϕn(b) − x∥l2 ≤C1

 δ

1 − exp(−1)
+C2∥b∥l2 · exp

−T (n)

⌈
2eLAγ

2 + 2ρ+ (3 + ρ)κ1/4

2τ(1 − ρ)

⌉−1
,

∥ϕn(b) − x∥l1w ≤ 1 + ρ

1 − ρ

 δ

1 − exp(−1)
+C2∥b∥l2 · exp

−T (n)

⌈
2eLAγ

2 + 2ρ+ (3 + ρ)κ1/4

2τ(1 − ρ)

⌉−1
,

where ϕn(b) denotes the output of WARPd (Algorithm 2.3) and T (n) = nk denotes the total
number of inner iterations.

Proof. See section SM3.

In summary, if A satisfies the robust null space property (in levels), then WARPd provides
accelerated recovery. The condition c(x, b) ≤ δ means that both the measurement error
∥Ax − b∥l2 + ϵ and the distance of x to Σs,M (measured by σs,M(x)l1w) are small. Moreover,
the rate of convergence is directly related to ρ, γ, and κ.

3.2. Example in compressive imaging. We consider the case that A is a multilevel
subsampled unitary matrix [7] with respect to U = VΨ∗, where Ψ denotes the db2 wave-
let transform and V is the discrete Fourier (Fourier sampling) or Walsh–Hadamard trans-
form (binary sampling). A and A∗ are implemented rapidly using the fast Fourier trans-
form or fast Walsh–Hadamard transform, and the discrete wavelet transform. Note that
[proxτ1J (x)]i = max{0, 1 − τ1wi/|xi|}xi. Hence, the cost per inner iteration is O(N log(N)).
Fourier sampling arises in numerous applications such as MRI, nuclear magnetic resonance,
and radio interferometry, while binary sampling arises in optical imaging modalities such as
lensless imaging, infrared imaging holography, and fluorescence microscopy. Further details
on the bases used, sampling structure, and results that A has the weighted rNSPL are given
in section SM3. Figure 1 (left) shows the test image used in this section.

As a benchmark, we compare to the algorithm NESTA [17] (available at https://statweb.
stanford.edu/∼candes/software/nesta/), which applies a smoothing technique and an accel-
erated first-order algorithm [99]. NESTA is widely regarded as a state-of-the-art method
for basis pursuit, is widely used for solving large-scale compressed sensing reconstruction
problems, and compares favorably with other state-of-the-art methods (see, for example, the
extensive numerical tests in [17, section 5]). We run two versions of NESTA to solve (1.2),
both with default parameters and acceleration through continuation. For the first version,
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Test Image WARPd NESTA

Figure 1. Left: 1024× 1024 test image with pixel values scaled to [0, 1]. Middle: Recovered image from 5%
binary measurements using WARPd and 30 matrix-vector products. Right: Recovered image from 5% binary
measurements using NESTA and 150 matrix-vector products.

we take a smoothing parameter µ = 0.001. For the second version, we perform a grid-based
search for optimal smoothing parameters, and for each number of iterations, we report the
error for an optimal smoothing parameter. As an error metric for an iterate x, we take

(3.2) Error(x) =
(∣∣∥x∥l1w − ∥x∗∥l1w

∣∣+ C2 |∥Ax− b∥l2 − ϵ|
)
/∥x∗∥l1w ,

where x∗ (approximately) minimizes (1.2) and is computed using several hundred thousand
iterations to be sure of convergence. This error directly measures the objective function
optimality gap and the feasibility gap (also note that Error(x∗) = 0). It also controls the
recovery of the sought-for image x (see the proof of Theorem 3.3). In what follows, we present
this error metric as a function of the number of matrix-vector products (A or A∗) used.

We first consider 15% subsampling and corrupt the measurements with 5% Gaussian noise.
The constants C1 and C2 are taken from the discussion in section SM3. The sparsities and
weights are estimated by thresholding the wavelet coefficients of a Shepp–Logan phantom. In
particular, we do not choose or tune any parameters based on the image we use to test the
algorithm. We take ϵ = 0.06∥b∥l2 , δ = C2ϵ, and τ = 1. Figure 2 (left and middle) shows
the convergence for our algorithm using ergodic iterates and nonergodic iterates in the inner
iterations. We have also shown results for nonrestarted primal-dual iterations (labeled PD).
The benefit of acceleration is clear, and our algorithm converges at a much faster rate than
NESTA. The nonergodic version of our algorithm performs better than Algorithm 2.3. We
do not have a theoretical explanation for this, but this kind of behavior (and its reverse, i.e.,
ergodic iterates performing better) has been observed for nonrestarted primal-dual iterations
[41]. The case of binary sampling also converges slightly faster (this is to be expected from the
sampling bounds mentioned in section SM3). We found similar behavior for different images,
subsampling rates, higher-order wavelets, etc.

We now consider the difference between the reconstruction and the image itself. From The-
orem 3.3, we expect that this error will decrease linearly down to the intrinsic bound ∼ C1δ,
which corresponds to the distance from the image to the set of solutions of (1.2). Figure 2
(right) shows the relative mean square error (MSE) between the reconstruction and the image
for Fourier sampling at different sampling rates. In all cases, the level of noise was chosen so
that it contributes an error comparable to solving (1.2). We see the expected behavior, where
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Figure 2. Left: Convergence for Fourier 15% sampling. Middle: Convergence for binary 15% sampling.
Right: Convergence for Fourier sampling and different sampling rates (relative MSE).

the final error is due to the fact that the image’s wavelet coefficients are only approximately
sparse (for example, the error for a standard phantom image was of the order 10−12), and, as
expected, is smaller for the larger sampling rate, with a faster rate of convergence. Similar
behavior occurs for binary sampling. For example, Figure 1 (middle, right) shows the recon-
struction using 5% sampling and 30 matrix-vector products for WARPd, as well as 150 matrix-
vector products for NESTA. Again, this demonstrates the faster convergence of WARPd.

4. Low-rank matrix recovery. We consider the setup of Example 1.1 with DZ(z, ẑ) =
1
2∥z − ẑ∥2l2 , where X = Cn1×n2 (so that the vectorized l2-norm is the Frobenius norm). We
consider the problem of recovering an approximately low-rank matrix x ∈ Cn1×n2 via (1.2)
with the nuclear norm regularizer

(4.1) J (M) = ∥M∥1 :=

min{n1,n2}∑
j=1

σj(M) (and take F = 0),

where σj(M) denotes the singular values of M ∈ Cn1×n2 . Low-rank matrix recovery is a non-
commutative version of recovery of (approximately) sparse vectors. The low-rank assumption
means that the matrix x

∗
x is sparse in its eigenbasis. There are numerous instances where

nuclear norm minimization and related problems provably recover the desired low-rank matrix
from considerably fewer than n1n2 measurements [32, 63, 77, 80, 86, 105].8

We consider measurement maps of the form (tr denotes trace)

(4.2) A(M) =
m∑
j=1

tr(MA∗
j )ej ∈ Cm, A∗(y) =

m∑
j=1

yjAj ∈ Cn1×n2 ,

where Aj ∈ Cn1×n2 are measurement matrices and the {ej}mj=1 are the canonical basis vectors
of Cm. The assumption (1.5) holds for measurement maps A that satisfy the Frobenius-
robust rank null space property in Definition 4.1, which is analogous to Definition 3.2. This is
a weaker assumption than the rank restricted isometry property [60, Theorem 6.13]9 (another

8Similar to the relationship between l1 and l0 minimization, the nuclear norm is a convex relaxation of the
rank operator and the rank minimization problem is NP-hard in general.

9The cited theorem is for the analogous properties of sparse recovery of vectors. The adaptation of the
proof for the case of recovery of low-rank matrices is straightforward using the relevant Schatten p-norms.
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common property used to prove recovery results [31, 105]) and allows the recovery of matrices
M that are approximately low-rank. Theorem 4.2 gives our result and, as an example, we
consider Pauli measurements in quantum state tomography.

4.1. A general result. The following definition is analogous to Definition 3.2 for a single
level and unweighted l1-norm,10 but now the relevant norms are replaced by their Schatten
p-norm counterparts. We use ∥Mc∥1 to denote

∑
j>r σj(M) for a given r.

Definition 4.1 (Frobenius-robust rank null space property [73]). We say that A : Cn1×n2 →
Cm satisfies the Frobenius-robust rank null space property of order r with constants ρ ∈ (0, 1)
and γ > 0 if for all M ∈ Cn1×n2, the singular values of M satisfy√

σ1(M)2 + · · · + σr(M)2 ≤ ρ∥Mc∥1/
√
r + γ∥A(M)∥l2 .

The following provides the reconstruction guarantee.

Theorem 4.2. Suppose that A : Cn1×n2 → Cm satisfies the Frobenius-robust rank null space
property of order r with constants ρ ∈ (0, 1) and γ > 0. Then the approximate sharpness
condition (1.5) holds for any x ∈ Cn1×n2 with

C1=
(1 + ρ)2

(1 − ρ)r
1
2

, C2=
γ(3 + ρ)r

1
2

(1 + ρ)2
, c(x, b)=2∥xc∥1+

γ(3 + ρ)r
1
2

(1 + ρ)2
(∥A(x) − b∥l2 +ϵ) .(4.3)

Let ϵ > 0, LA be an upper bound for ∥A∥, τ ∈ (0, 1), δ > 0, and let C1, C2 and c(·, ·) be given
by (4.3). Then for any n ∈ N, and p ∈ [1, 2], and any pair (x, b) ∈ Cn1×n2 × Cm such that
∥A(x) − b∥ ≤ ϵ, and c(x, b) ≤ δ, the following uniform recovery bounds hold:

∥ϕn(b)−x∥p≤
(1 + ρ)2

(1 − ρ)

[
δr

1−p
p

1 − exp(−1)
+
γ(3 + ρ)r

1
p
− 1

2

(1 + ρ)2
∥b∥l2 · exp

(
−T (n)

⌈
2eLAγ

τ

(3 + ρ)

(1 − ρ)

⌉−1
)]
,

where ϕn(b) denotes the output of WARPd (Algorithm 2.3) and T (n) = nk denotes the total
number of inner iterations.

Proof. See section SM4.

In summary, if A satisfies the Frobenius-robust rank null space property, then WARPd
provides accelerated recovery. The condition c(x, b) ≤ δ means that both the measurement
error ∥A(x) − b∥l2 + ϵ and the distance of x to low-rank matrices (i.e., ∥xc∥1) are small.
Moreover, the convergence rate is directly related to ρ and γ.

4.2. Example: Pauli measurements and quantum state tomography. An important
application of matrix recovery in physics, known as quantum state tomography (QST), is
reconstructing a finite n-dimensional quantum mechanical system. Such a system is fully
characterized by its density operator ρ, an n × n positive semidefinite matrix with trace 1.
For example, QST is now a routine task for designing, testing, and tuning qubits in the quest
of building quantum information processing devices [88]. A key structural property, for which

10It is possible to consider a weighted version of the nuclear norm. However, the associated optimization
problem is very difficult and nonconvex [65].
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the quantum system is called “almost pure,” is that ρ be well approximated by a low-rank
matrix. Under this assumption, QST becomes a low-rank matrix recovery problem [63, 64, 86].
QST requires a measurement process that is experimentally realizable and efficient.

In this example, we consider Pauli measurements, where the Aj are constructed from
randomly sampling tensor products of the usual Pauli matrices. Pauli measurements lead
to efficient recovery of low-rank density operators [63, 64] and are especially easy to carry
out experimentally [107, 112]. It was shown in [86] that sets of O(rn · poly(log(n))) Pauli
measurements satisfy the rank restricted isometry property, and hence satisfy the Frobenius-
robust rank null space property in Definition 4.1. We can thus apply Theorem 4.2.

In the general case of (4.1), the proximal map of J is computed using the SVD. Namely,
if M = Udiag(σ(M))V ∗ ∈ Cn1×n2 , then [27, Theorem 2.1]

(4.4) proxτ1J (M) = Uϕτ1(diag(σ(M)))V ∗, ϕα(z) = max {0, 1 − α/|z|} z,

where ϕτ1 is applied elementwise to the diagonal matrix diag(σ(M)). Naively, the cost of
applying proxτ1J is dominated by the O(n1n2 min{n1, n2}) cost of computing the SVD [120,
Chapter 31]. In this example, since the measurement matrix is sparse and, due to the thresh-
olding, we only need the dominant eigenvalues (the matrices are Hermitian so the SVD re-
duces to an eigenvalue decomposition), we found it beneficial to use methods for computing
eigenvalue decompositions based on matrix-vector products (see subsection 5.2). In general,
reducing the number of iterations through accelerated methods such as WARPd is particularly
important in low-rank matrix recovery since the cost of applying A may be large for large n1
and n2 (e.g., for Gaussian measurements used in phase retrieval [115]).11

As a benchmark, we compare to TFOCS [18] (available at http://cvxr.com/tfocs/), which
has become a de facto method for matrix retrieval problems such as PhaseLift [29, 35, 58] and
other related techniques. TFOCS applies an optimal first-order method [13] to a smoothed
version of the dual problem. We use the default parameters (apart from the tolerance, which
we decrease to achieve higher accuracy), accelerated continuation, and a smoothing parameter
µ = 1 (relative to ∥A∥). In this case, the smoothing term is µ

2∥ · −M0∥22, with M0 updated at

each restart. As an error metric for an iterate M̃ , we take the relative error

(4.5) Error(M) =
(∣∣∥M∥1 − ∥M∗∥1

∣∣+ C2

∣∣∥A(M) − b∥ − ϵ
∣∣)/∥M∗∥1,

where M∗ (approximately) minimizes (1.2), and is computed using a much larger number of
iterations.

For our example, we set r = 10 and n = 210 (corresponding to 10 qubits). We gen-
erate two independent complex standard Gaussian matrices ML,MR ∈ Cn×r and set M =
MLM

∗
RMRM

∗
L, x = M/tr(M). We then use 10% subsampling and corrupt the measurements

with 2% Gaussian noise. We take ϵ = 0.03∥b∥l2 , δ = C2ϵ (C1 and C2 are selected based on
the theorem in [86]), and τ = 1. Figure 3 shows the results. We see the clear benefit of
acceleration and that WARPd converges at a much faster rate than TFOCS.

11For Gaussian measurements and general measurement matrices Aj in (4.2), CA = O(n1n2m) with m ≳
n1 + n2 so there is little benefit gained by using an approximate SVD.
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Figure 3. Errors for Pauli measurements example.

5. Matrix completion and nonuniform recovery guarantees. In this section, we consider
the problem of matrix completion. Given an approximately low-rank matrix x ∈ Cn1×n2

and an index set Ω ⊂ {1, . . . , n1} × {1, . . . , n2} with |Ω| = m < n1n2, we recover x from
measurements b where

[PΩ(M)]i,j =

{
Mi,j if (i, j) ∈ Ω,

0 otherwise,
and b− e = A(x) = vect(PΩ(x)) ∈ C|Ω|.

This can be viewed as a special case of the problem considered in section 4 and we consider

(5.1) min
M∈Cn1×n2

∥M∥1 such that ∥vect(PΩ(M)) − b∥l2 ≤ ϵ.

However, we treat the problem separately for at least three reasons. First, there are obvious
rank-one matrices in the kernel of the measurement operator, and hence the Frobenius-robust
rank null space property we made use of in subsection 4.1 cannot hold. The lack of such a
global property renders matrix completion a more challenging problem. However, if certain
conditions on the left and right singular vectors of the underlying low-rank matrix are imposed,
essentially requiring that such vectors are uncorrelated with the canonical basis, then the
matrix can be recovered with sufficiently many measurements [32, 36, 63, 104]. Such conditions
lead to nonuniform recovery guarantees. We show how such results fall within our framework of
(1.5). Similar arguments also hold for the nonuniform recovery of sparse vectors. Second, this
problem has distinct algorithmic challenges when dealing with large-scale problems, discussed
in subsection 5.2. Third, (approximately) low-rank matrices pervade data science [121] and
matrix completion has received much attention with applications ranging from recommender
systems [76, 106], inferring camera motion [44, 118], multiclass learning [10, 57], and many
more in statistics, machine learning, and signal processing.

5.1. A general result. We show that (1.5) holds for the problem of matrix completion
under the existence of an approximate dual certificate. The existence of an approximate dual
certificate is a predominant method of proving that solutions of optimization problems such
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1562 MATTHEW J. COLBROOK

as (5.1) approximate x. We take DZ(z, ẑ) = ∥z − ẑ∥2Z/2, where Z is the appropriate Hilbert
space (the l2-norm for vectors and Frobenius norm for matrices).

Let x ∈ Cn1×n2 and let x = UΣV ∗ denote its SVD. Here Σ ∈ Rr×r is diagonal (with r ≤
min{n1, n2}), and U ∈ Cn1×r, V ∈ Cn2×r are partial isometries (so that U∗U = V ∗V = Ir).
To state the conditions for accelerated recovery, we first introduce a few objects associated
with x. The tangent space of the variety of rank r matrices at the point x is given by

Tx = {UB∗
1 +B2V

∗ : B1 ∈ Cn2×r, B2 ∈ Cn1×r}.

We denote by PTx , the (Hilbert–Schmidt) orthogonal projection onto the tangent space and
set PT⊥

x

= I − PTx . Let P = UU∗ and Q = V V ∗. One can easily check that

PT⊥
x

: M → P⊥MQ⊥, PTx : M → PM +MQ− PMQ.

With these in hand, we provide the following two definitions. These are slightly weaker than
those usually used in the literature (for example, it is common to assume a restricted isometry
property instead of Definition 5.2), but they suffice to prove Theorem 5.3.

Definition 5.1. Given a measurement operator A : Cn1×n2 → Cm, a vector z ∈ Cm, with
matrix Y = A∗(z) ∈ Cn1×n2, is an approximate dual certificate at x if upon defining

(5.2) α1 = ∥UV ∗ − PTxY ∥2 and α2 = ∥PT⊥
x

Y ∥, it holds that α2 < 1.

Definition 5.2. We say that A is bounded below on Tx with constant γ > 0 if

(5.3) γ∥Z∥2 ≤ ∥A(Z)∥l2 ∀Z ∈ Tx.

Theorem 5.3. Let x ∈ Cn1×n2 and suppose that A is bounded below on Tx with constant
γ > 0 and z ∈ Cm is an approximate dual certificate at x (so that (5.2) holds). If α1∥A∥ <
(1 − α2)γ, then for any M̂ ∈ Cn1×n2,
(5.4)

∥M̂ − x∥2 ≤
γ + ∥A∥

(1 − α2)γ − α1∥A∥

[
∥M̂∥1−∥x∥1+

(
α1 + 1 − α2

γ + ∥A∥
+ ∥z∥l2

)∥∥∥A(M̂ − x

)∥∥∥
l2

]
.

It follows that (1.5) is satisfied for the problem (4.1) with

C1 =
γ + ∥A∥

(1 − α2)γ − α1∥A∥
, C2 =

(
α1 + 1 − α2

γ + ∥A∥
+ ∥z∥l2

)
, c(x, b) = C2(ϵ+ ∥A(x) − b∥l2).

Proof. See section SM4.

The existence of (approximate) dual certificates for matrix completion has been studied
extensively [32, 36, 63, 104]. We follow [49], which gives the current state-of-the-art sample
complexity. The observation indices Ω are chosen randomly such that P((i, j) ∈ Ω) = p ∈ [0, 1)
for all (i, j) independently. Using the standard basis {eje∗k}

n1,n2

j=1,k=1, the coherence of x is

µ(x) = max

{
n1
r

max
i∈{1,...,n1}

∥U∗ei∥2l2 ,
n2
r

max
i∈{1,...,n2}

∥V ∗ei∥2l2
}

∈
[
1,

max{n1, n2}
r

]
.
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It was shown in [49]12 that if

p ≳ µ(x)r log(µ(x)r)log(max{n1, n2})/min{n1, n2},

then with high probability,13 there is an approximate dual certificate at x with α1 ≤ p/4 and
α2 ≤ 1/2, and ∥PTxp

−1PΩPTx − PTx∥ ≤ 1/2. Let Z ∈ Tx; then

(5.5) ∥PΩZ∥22 = p⟨Z,PTxp
−1PΩPTxZ⟩ ≥ p∥Z∥22(1 − ∥PTxp

−1PΩPTx − PTx∥) ≥ p

2
∥Z∥22.

Hence, we take γ =
√
p/2 in (5.3) with A = PΩ (treating outputs as vectors PΩ(M) ∈ C|Ω|).

Corollary 5.4. If p ≳ µ(x)r log(µ(x)r) log(max{n1,n2})
min{n1,n2} , then with high probability the condi-

tions of Theorem 5.3 hold with C1 ≲ p−1/2 and C2 bounded independently of all parameters.
It follows that the conclusions of Theorems 1.2 and 1.3 hold.

Ignoring logarithmic factors, the above has a dimension scaling C1C2 ∼
√

min{n1, n2}.
In general, it is impossible to eliminate this dimensional scaling [77, Theorem 3.5].

5.2. Algorithmic considerations. For matrix completion, the main computational burden
of our algorithm is the step

M (j+1) = proxτ1∥·∥1
(
M (j)︸ ︷︷ ︸

low-rank

− τ1A
∗z

(j)
1︸ ︷︷ ︸

sparse

)
,

which requires the application of the singular value thresholding (SVT) operator in (4.4). To
reduce memory consumption, we store the iterates in low-rank factored SVD form M (j) =
U (j)Σ(j)V (j). The chosen rank of this factored form will be close to the approximate rank

of x when using our update rule below. The matrix A∗z
(j)
1 is sparse and its nonzero entries

correspond to the indices in Ω. It follows that M (j)−τ1A∗z
(j)
1 is a sum of a low-rank factorized

matrix and a sparse matrix. Hence both it and its adjoint can be applied rapidly to vectors.
We, therefore, make use of the PROPACK package [82], which uses iterative methods based on
Lanczos bidiagonalization with partial reorthogonalization for computing the first r′ singular
vectors/values.14 PROPACK only uses matrix-vector products and has been found to be an
efficient and stable package for computing the dominant singular values and singular vectors
of large matrices. To use PROPACK in this scenario, we must supply a prediction of the
dimension of the principal singular space whose singular values are larger than the given
threshold. We provide an initial starting guess r′ (5 in our experiments), and at each iteration,
we increase r′ by one for the following iteration if the dimension of the principal singular space
is too small, or decrease by one if it is too large.

12 [49] considers real matrices but the result can be easily extended to complex matrices.
13Meaning with probability at least 1− c1(n1 + n2)

−c2 for constants c1, c2 > 0.
14There are very efficient direct matrix factorization methods for calculating the SVD of matrices of moderate

size (at most a few thousand). When the matrix is sparse, larger problems can be solved; however, the
computational cost depends heavily upon the sparsity structure of the matrix. In general, for large matrices
one has to resort to indirect iterative methods for calculating the leading singular vectors/values.
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1564 MATTHEW J. COLBROOK

Following the arguments in subsection 5.1, we use the parameters C1 =
√
n1n2/|Ω| and

C2 = 1 (as well as τ = 1). The choice C2 = 1 is based on empirical testing and has not
been tuned. Smaller values of these constants will undoubtedly yield faster convergence for
certain problems. We could use L = 1 as a bound for ∥A∥, but following (5.5) under an
incoherence assumption, we expect a local bound to scale as

√
|Ω|/(n1n2). We therefore take

L = min{1.4
√
|Ω|/(n1n2), 1}. Finally, the nonergodic version of WARPd converged faster

than the ergodic version for the following, and so we report computational results for the
nonergodic version.

5.3. Current state-of-the-art methods. Below we provide a brief summary of four state-
of-the-art methods for matrix completion based on nuclear norm minimization, to which
we compare our algorithm in subsection 5.4. We do not claim that this is a complete list.
Rather, we selected these methods for comparison based on their effectiveness, the variation
of approaches, their popularity, and the availability of well-documented code.15

5.3.1. Nuclear norm regularized linear least squares (NNLS). NNLS [117] (see also [70]
for a similar approach) can be considered a generalization of the fast iterative shrinkage-
thresholding algorithm (FISTA; see [16]) to matrix problems. The algorithm considers the
problem minµ∥M∥1 + ∥A(M) − b∥22/2 with linesearch, continuation for different µ, and SVD
truncations for efficiency. The partial SVD is computed using PROPACK, with an update
rule for the approximate rank. The code can be found at https://blog.nus.edu.sg/mattohkc/
softwares/nnls/ and we use the default parameters throughout.

5.3.2. Singular value thresholding (SVT). SVT [27] performs shrinkage iterations to
solve a smoothed problem (addition of an ∥M∥22 term), taking advantage of the sparsity and
low rankness of the matrix iterates for approximation of the SVT operator. The algorithm
uses low-rank SVD factorizations to reduce memory consumption and PROPACK. The code
can be found at https://statweb.stanford.edu/∼candes/software/svt/code.html and we use the
default parameters suggested by [27] throughout. These parameters are based on empirical
testing in [27]—we found the alternative parameters with guaranteed convergence (related to
a smaller step size) to perform worse than the results we report.

5.3.3. Fixed point continuation with approximate SVD (FPCA). FPCA [90] has some
similarities with SVT in that it makes use of shrinkage operations. However, the Lagrangian
form of the problem, minµ∥M∥1 + ∥A(M)− b∥22/2, is solved with continuation for a sequence
of parameters µ. For the shrinkage operator, an approximate SVD is computed using a
fast Monte Carlo algorithm [52]. The code can be found at https://www.math.ucdavis.edu/
∼sqma/FPCA.html, and we use the given routine that selects parameters throughout.

5.3.4. Augmented Lagrange multiplier method (ALM). ALM [84] is based on the aug-
mented Lagrangian function ∥M∥1 + ⟨Y, PΩ(M) −M − E⟩ + µ∥PΩ(M) −M − E∥22/2 (E is
the difference between M and PΩ(M) and Y is a dual variable). The general method of
augmented Lagrange multipliers [22] applies simple updates rules for M , Y , and E for a

15The listed methods are all first-order methods. While nuclear norm minimization can be reformulated as
a semidefinite program and solved by off-the-shelf interior point solvers, typically such methods have difficulty
treating matrices larger than n ∼ 100 because the complexity of computing each step grows quickly with n
(due to reliance on second-order information of the objective function). To overcome this scalability issue, the
literature has focused on first-order methods.
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Table 1
Computational times for a wide variety of parameter values for the low-rank random matrix recovery

problem. All times are averaged over five runs and the best average for each experiment is shown in green. We
report an “NC” if convergence was not obtained after 5,000 iterations or after 100,000s.

n r p
Time (s), tol = 10−4 Time (s), tol = 10−6

WARPd NNLS SVT FPCA ALM WARPd NNLS SVT FPCA ALM

1000

10 0.14 1.2 3.5 2.6 1.9 4.5 2.2 6.3 3.8 2.8 9.0

30 0.40 3.8 5.2 7.2 4.6 7.0 6.3 8.8 10.9 6.4 8.1

60 0.57 6.3 10.9 14.3 8.4 8.5 11.3 25.4 24.2 12.1 11.5

5000

10 0.02 4.3 8.9 335.0 1093.5 203.7 9.5 18.0 NC NC 465.7

30 0.08 17.9 20.7 50.4 69.2 165.7 39.6 47.7 83.7 129.5 345.9

60 0.19 58.2 67.1 156.0 81.3 194.5 100.5 116.1 257.3 189.0 443.0

10000

10 0.01 12.6 15.1 356.7 NC 1335.7 14.3 28.0 NC NC 1787.1

30 0.04 57.8 45.0 1132.9 7312.0 1237.9 108.0 87.0 1810.2 NC 1639.4

60 0.10 159.8 134.9 496.5 432.8 1160.7 298.2 281.7 836.2 507.9 1614.1

20000

10 0.005 27.6 32.7 9114.3 NC 4085.8 40.7 50.5 NC NC NC

30 0.020 158.6 122.7 384.0 NC 3732.3 236.6 174.8 1283.7 NC 9349.2

60 0.049 430.3 279.3 1296.8 NC 6704.4 753.6 614.2 4461.5 NC 9597.1

sequence of increasing µ’s. In the case of matrix completion, a numerical difficulty is that for
large µ, the thresholding procedure (computed via an SVD) becomes numerically expensive.
An inexact version of ALM was developed in [84] to overcome this issue and was shown to
converge (the inexactness precludes a convergence rate analysis). The code can be found at
https://zhouchenlin.github.io/, and we use the default parameters throughout. The code uses
PROPACK and a simple update rule for the number of desired singular values.

5.4. Numerical examples. As our first experiment, we perform the following benchmark
test often used in the literature [27, 84, 90]. We generate two independent standard Gaussian
matrices ML ∈ Rn×r, MR ∈ R(n+20)×r and set x = MLM

∗
R ∈ Rn×(n+20). Given p ∈ (0, 1),

we then sample as described in subsection 5.1. We measure the time taken by each algorithm
to achieve a relative error below tol, measured in the Frobenius norm. Table 1 shows the
results, where we have taken the average time over five runs for each parameter selection
and we report NC (highlighted in red) if convergence was not obtained after 5,000 iterations
or 100,000s. For each parameter selection, we have highlighted the best average in green.
Experiments were run on a modest desktop computer with a 3.4 GHz CPU. We have chosen
a high accuracy tolerance tol = 10−6, as well as a moderate accuracy tolerance tol = 10−4.

For moderate n < 10,000, WARPd is the fastest method. For large r when n is large,
NNLS is faster than WARPd, but the two methods are roughly comparable. A possible
reason for the NCs is the chosen value of p—larger p generally gives an easier problem with
better convergence properties, though sometimes larger computational times due to the larger
number of nonzero entries in the sparse matrices. We have deliberately shown results for
varied p to probe the robustness of algorithms for more challenging problems. In summary,
Table 1 shows clear benefits of the acceleration and demonstrates the speed and robustness
of WARPd across a broad range of matrix sizes, ranks, and sampling ratios.

We now consider a real data example and an approximately low-rank matrix. We took
the data set https://dataportal.orr.gov.uk/statistics/usage/estimates-of-station-usage/ of the
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Figure 4. Results for the experiment with real data. Left: Relative error in the Frobenius norm. Right:
Relative singular values (singular values normalized by the largest singular value) for each matrix.

locations of all 2,569 railway stations in Great Britain. We considered two matrices, M (1) ∈
R2569×2569 corresponding to the geodesic distance between all pairs of stations (rounded to
the nearest 10m) and M (2) corresponding to the distance squared, both with p = 0.07 (so that
only approximately 7% of the entries are sampled). Figure 4 (left) shows the convergence for
WARPd with ϵ = 10−10 and δ = C2ϵ. The accuracy of solutions of (1.2) is achieved in around
100 and 60 iterations, respectively, with linear convergence down to this bound. Figure 4
(right) shows the singular values of both matrices and explains why recovering M (2) is easier
than M (1). For example, the best rank six approximations of each matrix satisfy

∥M (1)
6 −M (1)∥2/∥M (1)∥2 ≈ 0.0359 and ∥M (2)

6 −M (2)∥2/∥M (2)∥2 ≈ 1.16 × 10−5.

6. Examples with nontrivial matrix B. Our final section consider examples of Exam-
ple 1.1 with DZ(z, ẑ) = 1

2∥z − ẑ∥2l2 , F(·) = ∥ · ∥l1 , and nontrivial matrix B. We provide
theorems for two common scenarios: l1-analysis and TV regularization. We end with a nu-
merical example involving shearlets and total generalized variation (TGV), combined with an
iterative reweighting of the l1-norm.

6.1. Two example theorems.

6.1.1. l1-analysis with tight frames. We consider the problem (with J = 0)

(6.1) min
x∈CN

∥D∗x∥l1 such that ∥Ax− b∥l2 ≤ ϵ,

where the columns of D provide a tight frame.16 Common examples of D include oversampled
DFT, Gabor frames, curvelets, shearlets, concatenations of orthonormal bases, etc. Without
loss of generality, we assume that DD∗ is the identity. See [53, 55, 95, 113] for examples where
an analysis approach (6.1) has advantages over a synthesis approach such as (3.1).

The following definition (which imposes no incoherence restriction on the dictionary) is a
natural generalization of the well-known restricted isometry property.

16Our results can be extended to frames that are not tight, but the analysis is more complicated.
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Definition 6.1 ([28]). Let s ∈ N and let Σs denote the union of all subspaces spanned by
all subsets of s columns of D. We say that the measurement matrix A obeys the restricted
isometry property adapted to D (D-RIP) with constant δs = δs(A,D) if

(6.2) (1 − δs)∥v∥2l2 ≤ ∥Av∥2l2 ≤ (1 + δs)∥v∥2l2 ∀v ∈ Σs.

For explicit examples where Definition 6.1 holds, see [28]. This definition yields the fol-
lowing theorem, whose proof is partly based on the arguments of [28].

Theorem 6.2. Let t > s and set ρ = s/t < 1. Suppose that

ω(A,D) := 1 − ρ−
√
ρ(1 + δt(A,D))√
1 − δs+t(A,D)

> 0.

Then the approximate sharpness condition (1.5) holds for (6.1) for any x ∈ CN with

C1 =
1 +

√
ρ2 + ρ− ω(A,D)

ω(A,D)
√
s

, C2 =

√
s
(

1 +
√
ρ2 + ρ− ω(A,D)

)−1

√
1 − δs+t(A,D)

,

c(x, b) = 2σs(D
∗
x)l1 + C2(∥Ax− b∥l2 + ϵ).

(6.3)

It follows that the conclusions of Theorems 1.2 and 1.3 hold.

Proof. See section SM5.

In summary, if A satisfies the D-RIP, then WARPd provides accelerated recovery via (6.1).

Using δt < δs+t, the condition ω(A,D) > 0 is satisfied if δs+t(A,D) < 1+ρ2−3ρ
1+ρ2−ρ

.

6.1.2. Total variation minimization. TV minimization [111] is widely used for image
restoration tasks such as denoising, deblurring, and inpainting [25, 37, 38, 101], as well as

compressed sensing [33, 87]. We consider a two-dimensional signal X ∈ CN̂×N̂ . For vectorized
x = vect(X) ∈ CN , N = N̂2, ∇ ∈ C2N×N is given by ∇ = (∇1 ∇2)

⊤ with

[∇1X]i1,i2 = Xi1+1,i2 −Xi1,i2 , [∇2X]i1,i2 = Xi1,i2+1 −Xi1,i2 ,

where XN̂+1,i2
= X1,i2 , Xi1,N̂+1 = Xi1,1. The periodic anisotropic TV-seminorm is given by

∥X∥TV = ∥x∥TV = ∥∇x∥l1 =
N̂∑

i1,i2=1

|Xi1+1,i2 −Xi1,i2 | + |Xi1,i2+1 −Xi1,i2 |.

We consider the problem (with J = 0 and B = ∇)

(6.4) min
x∈CN

∥x∥TV such that ∥Ax− b∥l2 ≤ ϵ.

For accurate and stable recovery guarantees for this problem, see [96, 97], which exploit the
connection between the TV-seminorm and Haar wavelet coefficients. For sampling strategies
for Fourier and binary measurements, see [5, 78, 102]. It is beyond the scope of this paper to
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discuss how all of these results fit into our framework, and so we consider the following general
setting. Recall that a matrix A ∈ Cm×N satisfies the restricted isometry property (RIP) of
order s if there exists δs(A) ∈ (0, 1) such that for any s-sparse vector z ∈ CN ,

(1 − δs(A))∥z∥2l2 ≤ ∥Az∥2l2 ≤ (1 + δs(A))∥z∥2l2 .

The following theorem [6, Theorem 17.17]17 provides a version of (1.5) (it is possible to chase
down the explicit constants by studying the proof), and, to facilitate Corollary 6.4, we have
stated the conclusion slightly differently to [6].

Theorem 6.3 ([6]). Let N̂ ≥ s ≥ 2, Φ ∈ RN̂2×N̂2
be the matrix of the two-dimensional

discrete Haar wavelet sparsifying transform and A ∈ Cm×N̂2
. Suppose that AΦ has the RIP

of order t ≳ s log(N̂) log2(2N̂2/s) with constant δt(AΦ) ≤ 1/2. Then for any x, x̂ ∈ CN̂2
,

∥x̂− x∥l2 ≲ (∥x̂∥TV − ∥x∥TV + σs(∇x)l1) /
√
s log(N̂) + (∥Ax̂− b∥l2 − ϵ) + (∥Ax− b∥l2 + ϵ).

The following shows WARPd allows accelerated recovery via (6.4) if AΦ satisfies the RIP.

Corollary 6.4. Suppose that the conditions of Theorem 6.3 hold. Then the approximate

sharpness condition (1.5) holds for any x ∈ CN̂2
, with

C1 ≲ 1/

√
s log(N̂), C2 ≲

√
s log(N̂), c(x, b) = σs(∇x)l1 + C2(∥Ax− b∥l2 + ϵ),

for the problem (6.4). It follows that the conclusions of Theorems 1.2 and 1.3 hold.

6.2. A numerical example involving shearlets and TGV. The goal of this final numerical
example is to demonstrate the flexibility of our algorithm, rather than promote a particular
transform or regularizer. Figure 5 (left) shows the used test image. We let A be a DFT,
15% subsampled according to an inverse square law density [79]. This sampling pattern has
recently been shown to be optimal for TV reconstruction [5]. The measurements are corrupted
with 5% Gaussian noise. We first use WARPd to reconstruct the image via (6.4); the results
are shown in Figure 5 (middle). While convergence to a solution of (6.4) was rapid, the
reconstruction shows the typical artifacts of TV regularization such as staircasing. Next, we
replace the TV regularizer with the (discrete) TGV regularizer [25]

(6.5) TGV2
α(x) = min

v∈C2N
α1∥∇x− v∥ + α0

∥∥∥∥( ∇1vx
1
2 (∇2vx + ∇1vy)

1
2 (∇2vx + ∇1vy) ∇2vy

)∥∥∥∥
1

,

which has been proposed to improve on these issues by involving higher-order derivatives.
The improved results are shown in Figure 5 (right). Again, convergence to a solution of the
optimization problem was rapid.

To improve the reconstruction further, we consider

(6.6) min
x∈CN

∥WD∗x∥l1 + TGV2
α(x) such that ∥Ax− b∥l2 ≤ ϵ,

17The result of [6] considered the isotropic version of the TV-seminorm. Both versions are equivalent up to
a factor of

√
2 and hence the theoretical result is the same. We have considered the anisotropic version to fit

into (1.2). It is straightforward to adapt WARPd to the isotropic case by adapting the proximal maps.
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Test Image TV Recon., PSNR=27.9 TGV Recon., PSNR=29.8

Figure 5. Left: 512×512 test image with pixel values scaled to [0, 1]; the red box shows a zoomed in section.
Middle: Converged reconstruction using TV. Right: Converged reconstruction using TGV (using α0 = 0.4 and
α1 = 0.2; see (6.5) for meaning of parameters). Both reconstructions were computed using WARPd.

where W denotes a diagonal scaling matrix and D corresponds to a shearlet frame. We used
the MATLAB ShearLab package in this example, which can be found at https://shearlab.
math.lmu.de/. Throughout this paper, we have so far only discussed numerical examples for
WARPd, since the results of WARPd-SR are similar (if not better). For completeness, in
this example we also consider WARPd-SR to demonstrate that it sometimes leads to better
reconstructions. The weight matrix W is updated after each call to InnerIt in Algorithm 2.3
(or InnerIt-SR in Algorithm 2.6) according to

(6.7) Wjj =
1

max{[D∗x]jj , 10−5}
×
∑

k∈I(j) max{[D∗x]kk, 10−5}
|I(j)|

,

where I(j) denotes the set of indices corresponding to the shearlet scale containing the index
j, and x is the current reconstruction. We initialized the weights according to (6.7) with
x = A∗b. The update rule takes into account the difference in magnitudes of the shearlet
coefficients of an image at different scales—see [8, 89] and [6, section 4.6] for the motivation of
similar update rules. Figure 6 shows the reconstruction using WARPd (left) and WARPd-SR
(middle), which show a marked improvement on the results of Figure 5. Moreover, WARPd-
SR shows a better reconstruction of the fine details of the image. Figure 6 (right) plots the
relative MSE error between the reconstruction and the image against the number of inner
iterations. We also show the MSE for nonrestarted primal-dual iterations (dashed lines).
The benefit of acceleration is clear with WARPd and WARPd-SR converging in under 40
iterations. This example demonstrates that WARPd and WARPd-SR can easily handle more
complicated mixed regularization problems such as (6.6).

7. Concluding remarks. We have provided an accelerated algorithm for the recovery prob-
lem (1.1) via the optimization problem (1.2), under the assumption (1.5) of approximate
sharpness. Linear convergence is achieved, down to the approximation term in (1.5). We also
translated this result into a statement about the complexity of stable and accurate NNs. Our
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WARPd, PSNR=31.4 WARPd-SR, PSNR=33.1

0 20 40 60 80 100
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Inner iterations

Figure 6. Left: Reconstruction using WARPd and (6.6). Middle: Reconstruction using WARPd-SR. Right:
The relative MSE as a function of the number of inner iterations. The dashed lines correspond to nonrestarted
primal-dual iterations.

framework was demonstrated on several important problems, and it was shown that WARPd
compares favorably with specialized state-of-the-art methods.

There are many further lines of work that could build on these results. Straightforward
extensions of the algorithm include optimization problems with additional terms similar to
those in (1.2), and also restrictions to convex sets (e.g., if x represents a matrix, we may
want to enforce that it is Hermitian). The rapid solution of (1.2) could also lend itself to
bilevel optimization problems, where small computational cost is essential. Such problems
are increasingly relevant to learning-based methods. It is likely that other methods based on
similar restart techniques and assumptions similar to (1.5) could be developed using different
first-order methods [100]. For example, Table 1 suggests that an acceleration scheme based
on FISTA may be faster for some problems. Additionally, it may be possible to treat more
general discrepancy terms, such as the Kullback–Leibler divergence or Wasserstein metric.
In the case of primal-dual iterations for a saddle point representation of the optimization
problem, such generalizations may require specific structures to enable error bounds similar
to Proposition 2.1. Finally, we assumed some prior knowledge of suitable constants appearing
in (1.5). It may be possible to develop methods that learn suitable constants for (1.5) and
when to restart. Another option is the use of logarithmic grids to search for parameters [109].

Added note. While this paper was being finalized, WARPd was used for recovering
high-dimensional, Hilbert-valued functions from limited samples [2]. Here a weighted robust
null space property allows the proof of an approximate sharpness inequality and accelerated
convergence.
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SUPPLEMENTARY MATERIALS: WARPd: A Linearly Convergent First-Order
Primal-Dual Algorithm for Inverse Problems with Approximate Sharpness

Conditions∗

Matthew J. Colbrook†

SM1. Connections with previous work. Additional to this section, we provide connec-
tions with previous work that are specific to each of sections 3 to 6 throughout the paper. We
do not cover here the vast literature on NN techniques, discussed in subsection 1.1.

First-order methods: There are numerous specialized algorithms for various instances
of (1.2) and related problems [SM10, SM11, SM26, SM29, SM50], as well as general-purpose
solvers [SM12]. A common approach is to apply some form of smoothing and use Nesterov’s
acceleration [SM42], which achieves an objective function suboptimality of δ in O(δ−1/2)
steps for the smoothed problem, in combination with techniques such as continuation for the
smoothing parameter. Increasing the smoothing typically improves the numerical performance
of underlying solvers but at the expense of accuracy, and balancing this precise trade-off is
difficult [SM12]. We will not attempt to survey this vast area but point the reader to [SM22,
SM9]. The complexity of first-order methods is usually controlled by smoothness assumptions
on the objective function, such as Lipschitz continuity of its gradient. Additional assumptions
on the objective function such as strong and uniform convexity provide, respectively, linear
and faster polynomial rates of convergence [SM41]. For example, using variants of the classical
strong convexity assumption, linear convergence results have been obtained for LASSO [SM5,
SM52]. However, strong or uniform convexity are often too restrictive in many applications.
For results on asymptotic linear convergence of standard methods (e.g., proximal gradient
methods) for certain continuously differentiable (but non strongly convex) objective functions,
see [SM35, SM39, SM51].

 Lojasiewicz-type inequalities: Achieving linear convergence for restarted first-order
methods typically requires a  Lojasiewicz-type or “sharpness” inequality such as

(SM1.1) γd(x̂, X∗)β ≤ f(x̂) − f∗,

also known as a Hölderian error bound, with knowledge of γ and β [SM31, SM47, SM48].1 Here
f is the objective function (with optimal value f∗) and d(·, X∗) denotes the distance to the
set of minimizers. For example, Nemirovskii and Nesterov [SM40] linked a “strict minimum”
condition similar to (SM1.1) with faster convergence rates using restart schemes for smooth
objective functions. Hölderian error bounds were first introduced by Hoffman [SM33] to
study systems of linear inequalities, and extended to convex optimization in [SM46, SM37,
SM8, SM18, SM17].  Lojasiewicz showed that (SM1.1) holds generically for real analytic
and subanalytic functions [SM36], and Bolte, Daniilidis, and Lewis extended this result to

∗Supplementary material for SIIMS MS#M145500.
https://doi.org/10.1137/21M1455000

†Centre Sciences des Données, École Normale Supérieure, Paris, France (m.colbrook@damtp.cam.ac.uk).
1See [SM45] for a restart technique where the sharpness parameters are not learned or assumed known.

SM1
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nonsmooth subanalytic convex functions [SM14]. As noted in the main text, a key difference
between (1.5) and (SM1.1), and hence also between the restart scheme of this paper and
the above cited work is that we only assume approximate control of the distance via the
objective function difference. This gives us greater generality and allows us to tackle the case
of noisy measurements, as well as prove robustness of our results (e.g., when considering sparse
recovery, we cover approximately sparse vectors).

For further use of  Lojasiewicz-type inequalities for first-order methods (e.g., assessing
asymptotic rates of convergence), see [SM16, SM15, SM7, SM30]. Further works on restart
schemes include [SM28], which showed that generic restart schemes can offer linear convergence
given a rough estimate of the behavior of the function around its minimizers, and [SM43],
which developed a heuristic analysis for restarts based on ripples or bumps in the trace of the
objective value.

The example of sparse recovery: The use of (1.5) is closely related to [SM13], who
were one of the first to realize how key assumptions in compressed sensing – such as the robust
nullspace property – help bound the error of the approximation to a minimizer (produced by
an optimization algorithm) in terms of error bounds on the approximation to the objective
function. For example, [SM47] achieves linear convergence, using the restarted NESTA algo-
rithm [SM11], for exact recovery (noiseless) of real-valued sparse vectors if A ∈ Rm×N satisfies
the null space property of order s. Under this assumption, if x is s-sparse and Ax̂ = Ax, then
one has

(SM1.2) ∥x̂− x∥l2 ≲ ∥x̂∥l1 − ∥x∥l1 .

The restart scheme in [SM47] is based on a careful reduction in the smoothing parameter,
chosen by analyzing a combination of the error bounds for NESTA and (SM1.2). Though
our methods are entirely different (e.g., we do not rely on smoothing, and we must take into
account the additional error term owing to the approximate sharpness), for the specific case of
sparse recovery discussed in section 3, our results can be considered a generalization of [SM47]
to allow measurement noise, approximate sparsity, and structured compressed sensing.

Finally, the author of the current paper developed a restart scheme similar to WARPd-SR
(see subsection 2.4) based on the Square-Root LASSO decoder for the specific case of sparse
recovery (B = 0 and J (x) = ∥x∥l1w , see section 3) from Fourier and binary measurements
in [SM24]. The outcome was stable and accurate NNs, where unrolled iterations led to Fast
Iterative REstarted NETworks (FIRENETs). Theorem 1.3 continues in this direction and
provides foundations for stable and accurate NNs for a much broader class of problems. It
was also shown in [SM24] that there are fundamental computability barriers for solving l1

minimization if certain conditions, such as (1.5), are not met (here, we mean computing a
minimizing vector as opposed to vectors that nearly minimize the objective function).

Primal-dual algorithms: WARPd uses iterations of Chambolle and Pock’s primal-dual
algorithm [SM23, SM21] and a novel restart scheme. The primal-dual hybrid gradient (PDHG)
algorithm is a popular method to solve saddle point problems [SM27, SM44, SM20]. The linear
convergence of primal-dual methods under different conditions is widely studied. For example,
see [SM25] for bilinear problems (with a focus on training GANs) and [SM49] for partially
strongly convex functions. Recently, [SM6] developed an adaptive restart scheme for PDHG
applied to linear programming and showed linear convergence.
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SM2. Proof of Theorem 2.3. For η > 0, define

Ĝη(x̂, x, b) := J (x̂) + F(Bx̂) + η∥Ax̂− b∥Y∗
1
− J (x) −F(Bx) − η∥Ax− b∥Y∗

1︸ ︷︷ ︸
objective function difference with λ = η−1

.

Analogous to (2.3), we use P̂Dτττ to denote the exact updates. The following theorem bounds
the gap ĜĈ2

for exact primal-dual updates with λ = 1/Ĉ2. A version of Proposition 2.2 for
WARPd-SR also holds in the Hilbert space case, whose proof is almost identical and hence
omitted.

Proposition SM2.1 (Bounds on ĜĈ2
for primal-dual updates). Suppose that the step sizes

τ1, τ2 and τ3 satisfy τ1(τ2∥A∥2 + τ3∥B∥2) < 1. Let x0 ∈ X , y
(0)
1 = 0 ∈ Y1, y

(0)
2 = 0 ∈ Y2, and

(x(j+1), y
(j+1)
1 , y

(j+1)
2 ) = P̂Dτττ (x(j), y

(j)
1 , y

(j)
2 ), j = 0, . . . , k − 1.

Define the ergodic averages

Xk =
1

k

k∑
j=1

x(j), [Yk]1 =
1

k

k∑
j=1

y
(j)
1 , [Yk]2 =

1

k

k∑
j=1

y
(j)
2 .

Then for any x ∈ X ,

(SM2.1) ĜĈ2
(Xk, x, b) /Ĉ2 ≤

2

k

(
DX (x, x(0))

τ1
+
g1(1)

τ2
+
g2(1/Ĉ2)

τ3

)
,

where g1 and g2 satisfy (1.3) and (1.4), respectively.

Proof. Recall the definition of L̂ in (2.21). Since τ1(τ2∥A∥2 + τ3∥B∥2) < 1, a simple
adaptation of [SM23, Theorem 1, Remark 2] shows that for any x ∈ X , y1 ∈ Y1 and y2 ∈ Y2,

(SM2.2) L̂ (Xk, y1, y2) − L̂ (x, [Yk]1, [Yk]2) ≤
2

k

(
DX (x, x(0))

τ1
+
DY1(y1, 0)

τ2
+
DY2(y2, 0)

τ3

)
.

Let x be feasible and y1 be any unit norm vector such that ∥AXk − b∥Y∗
1

= ⟨AXk − b, y1⟩R.
Writing out the difference on the left-hand side of (SM2.2), and recalling (1.3),

J (Xk)/Ĉ2 − ⟨Bx, [Yk]2⟩R + F∗(Ĉ2[Yk]2)/Ĉ2

+ ∥AXk − b∥Y∗
1
− J (x)/Ĉ2 + ⟨BXk, y2⟩R

−F∗(Ĉ2y2)/Ĉ2−⟨Ax− b, [Yk]1⟩R+χBY1
([Yk]1) ≤

2

k

(
DX (x, x(0))

τ1
+
g1(1)

τ2
+
DY2(y2, 0)

τ3

)
.

(SM2.3)

The left-hand side must be finite. It follows that ∥[Yk]1∥Y1 ≤ 1 and hence that −∥Ax−b∥Y∗
1
≤

−⟨Ax− b, [Yk]1⟩R. We now take the supremum of the left-hand side of (SM2.3) over y2 with
DY2(y2, 0) ≤ g2(1/Ĉ2) and recall that F satisfies (1.4). It follows from (SM2.3) that



SM4 MATTHEW J. COLBROOK

J (Xk)/Ĉ2 + F(BXk)/Ĉ2 + ∥AXk − b∥Y∗
1
− J (x)/Ĉ2

− ⟨Bx, [Yk]2⟩R + F∗(Ĉ2[Yk]2) − ∥Ax− b∥Y∗
1
≤ 2

k

(
DX (x, x(0))

τ1
+
g1(1)

τ2
+
g2(1/Ĉ2)

τ3

)
.

(SM2.4)

Since −F(Bx)/Ĉ2 ≤ −⟨Bx, [Yk]2⟩R + F∗(Ĉ2[Yk]2), (SM2.4) yields (SM2.1).

A careful study of the proof shows that ∥[Yk]1∥Y1 ≤ 1. In addition, if we are in the
setting of Example 1.1 with F(Bx) = ∥Bx∥l1 , then ∥[Yk]2∥l∞ ≤ 1/Ĉ2. This provides a way of
bounding the dual variables for warm restarts. For brevity, we omit the details.

Proof of Theorem 2.3. Consider the setup in the statement of Theorem 2.3. Let ψk =
InnerIt-SR(x0, τ1, τ2, τ3, k) denote the exact updates described in Algorithm 2.4 (or Algo-
rithm 2.5) for λ = 1/Ĉ2. Suppose that the initial starting vector x0 satisfies

√
2DX (x, x0) ≤

Ĉ1(δ + ω) for some ω > 0. Combining this with (SM2.1), we have

(SM2.5) ĜĈ2
(ψk,x, b) ≤

Ĉ2

k

(
Ĉ2
1 (δ + ω)2

τ1
+

2g1(1)

τ2
+

2g2(1/Ĉ2)

τ3

)
.

Let τ ∈ (0, 1), and suppose that τ1(τ2L
2
A + τ3L

2
B) = τ2. In this case, the optimal choices of

τ1, τ2 and τ3 that minimize the right-hand side of (SM2.5) are

τ1(ω) =
τĈ1(δ + ω)

LA

√
2g1(1) + LB

√
2g2(1/Ĉ2)

, τ2(ω) =
τ
√

2g1(1)

LAĈ1(δ + ω)
, τ3(ω) =

τ

√
2g2(1/Ĉ2)

LBĈ1(δ + ω)

With this choice, we have that

(SM2.6) ĜĈ2
(ψk,x, b) ≤

2Ĉ1Ĉ2

k

LA

√
2g1(1) + LB

√
2g2(1/Ĉ2)

τ

 (δ + ω).

For ν ∈ (0, 1) that we optimize later, set k = ⌈2Ĉ1Ĉ2(LA

√
2g1(1) + LB

√
2g2(1/Ĉ2))/(ντ)⌉ so

that (SM2.6) implies that ĜĈ2
(ψk,x, b) ≤ ν(δ + ω).

We now describe the restart scheme. From (2.20) and the assumption J (·) + F(B·) ≥ 0,

ĜĈ2
(0,x, b) = J (0)+F(0)+Ĉ2∥b∥Y∗

1
−J (x)−F(Bx)−Ĉ2∥Ax−b∥Y∗

1
≤ J (0)+F(0)+Ĉ2∥b∥Y∗

1
.

It follows from (1.5) that
√

2DX (x, 0) ≤ Ĉ1(δ+ω0) with ω0 = J (0) +F(0) + Ĉ2∥b∥Y∗
1
. Given

n ∈ N, for j = 1, . . . , n− 1 set ωj = ν (δ + ωj−1) . By summing a geometric series, this implies
that ωn ≤ νδ

1−ν + νn[J (0) + F(0) + Ĉ2∥b∥Y∗
1
]. We define ϕn(b) iteratively via

ϕ1(b) = ψk (0, τ1(ω0), τ2(ω0), τ3(ω0)) , ϕj(b) = ψk (ϕj−1(b), τ1(ωj−1), τ2(ωj−1), τ3(ωj−1)) ,
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for j = 1, . . . , n. The choice of ωj and the above argument inductively show that

√
2DX (x, ϕn(b)) ≤ Ĉ1(δ + ωn) ≤ Ĉ1

(
δ +

νδ

1 − ν
+ νn

[
J (0) + F(0) + Ĉ2∥b∥Y∗

1

])
.

For T = kn inner iterations, the error term νn is equal to exp(Tk−1 log(ν)). If we ignore the
ceiling function in the choice of k, the optimal choice of ν = e−1 is found via differentiation.
This choice yields (1.7).

SM3. Proofs of results and further details for section 3. We begin with the proof of
results from section 3. The following two lemmas are taken from the compressed sensing
literature [SM1].

Lemma SM3.1 (rNSPL implies l1w distance bound). Suppose that A has the weighted
rNSPL of order (s,M) with constants 0 < ρ < 1 and γ > 0. Let x, x̂ ∈ CN , then

(SM3.1) ∥x̂− x∥l1w ≤ 1 + ρ

1 − ρ

(
2σs,M(x)l1w + ∥x̂∥l1w − ∥x∥l1w

)
+

2γ

1 − ρ

√
ξ∥A(x̂− x)∥l2 .

Lemma SM3.2 (rNSPL implies l2 distance bound). Suppose that A has the weighted
rNSPL of order (s,M) with constants 0 < ρ < 1 and γ > 0. Let x, x̂ ∈ CN , then

(SM3.2) ∥x̂− x∥l2 ≤

(
ρ+

(1 + ρ)κ1/4

2

)
∥x̂− x∥l1w√

ξ
+

(
1 +

κ1/4

2

)
γ∥A(x̂− x)∥l2 .

Combining these two lemmas, we can prove Lemma SM3.3.

Lemma SM3.3. Suppose that A has the weighted rNSPL of order (s,M) with constants
0 < ρ < 1 and γ > 0. Then the assumption (1.5) holds with

C1 =

(
ρ+

(1 + ρ)κ1/4

2

)
1 + ρ√
ξ(1 − ρ)

,

C2 =

(
1 + κ1/4

2

)
γ +

(
ρ+ (1+ρ)κ1/4

2

)
2γ

(1−ρ)

C1
=

γ

C1
· 2 + 2ρ+ (3 + ρ)κ1/4

2(1 − ρ)
,

c(x, b) = 2σs,M(x)l1w + C2 (∥Ax− b∥l2 + ϵ) .

Moreover,

(SM3.3) ∥x̂− x∥l1w ≤ 1 + ρ

1 − ρ
(GC2(x̂,x, b) + c(x, b)) .

Proof of Lemma SM3.3. We first substitute (SM3.1) into the right-hand side of (SM3.2)
to obtain (for x = x)

∥x̂− x∥l2 ≤ C1

(
∥x̂∥l1w − ∥x∥l1w

)
+ 2C1σs,M(x)l1w + C1C2∥A(x̂− x)∥l2 .
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Using ∥A(x̂− x)∥l2 ≤ ∥Ax̂− b∥l2 − ϵ+ ∥Ax− b∥l2 + ϵ, and rearranging, we arrive at (1.5) for
the stated choice of C1, C2 and c. For the final part, note that

2γ

1 + ρ

√
ξ =

(
ρ+ (1+ρ)κ1/4

2

)
2γ

(1−ρ)

C1
≤ C2.

Combining this with (SM3.1), we see that

∥x̂− x∥l1w ≤ 1 + ρ

1 − ρ

(
2σs,M(x)l1w + ∥x̂∥l1w − ∥x∥l1w + C2∥A(x̂− x)∥l2

)
.

Again, using ∥A(x̂− x)∥l2 ≤ ∥Ax̂− b∥l2 − ϵ+ ∥Ax− b∥l2 + ϵ, we arrive at (SM3.3).

Proof of Theorem 3.3. The only result that does not follow directly from Theorem 1.2 and
Lemma SM3.3 is the bound on ∥ϕn(b)−x∥l1w . However, the proof of Theorem 1.2 shows that

GC2 (ϕn(b),x, b) + c(x, b) ≤ δ

1 − exp(−1)

+ C2∥b∥l2 · exp

−T (n)

⌈
2eLAγ

2 + 2ρ+ (3 + ρ)κ1/4

2τ(1 − ρ)

⌉−1
 .

Combining this with (SM3.3) gives the required result.

For completeness, we now describe the sampling setup for the example in subsection 3.2.
We first recall the concept of multilevel random subsampling.

Definition SM3.4 (Multilevel random subsampling [SM4]). Let N = (N1, . . . , Nl) ∈ Nl,
where 1 ≤ N1 < · · · < Nl = N and m = (m1, . . . ,ml) ∈ Nl with mk ≤ Nk − Nk−1 for k =
1, . . . , l, and N0 = 0. For each k = 1, . . . , l, let Ik = {Nk−1+1, . . . , Nk} if mk = Nk−Nk−1 and
if not, let tk,1, . . . , tk,mk

be chosen uniformly and independently from the set {Nk−1+1, . . . , Nk}
(with possible repeats), and set Ik = {tk,1, . . . , tk,mk

}. If I = IN,m = I1 ∪ · · · ∪ Il we refer to
I as an (N,m)-multilevel subsampling scheme.

Definition SM3.5 (Multilevel subsampled unitary matrix). A matrix A ∈ Cm×N is an
(N,m)-multilevel subsampled unitary matrix if A = PIDU for a unitary matrix U ∈ CN×N

and (N,m)-multilevel subsampling scheme I. Here, D is a diagonal scaling matrix with

Dii =

√
Nk −Nk−1

mk
, i = Nk−1 + 1, . . . , Nk, k = 1, . . . , l

and PI denotes the projection onto the span of the basis vectors indexed by I.
Let Q = 2r for r ∈ N, and consider vectors on CQ or d-dimensional tensors on CQ×···×Q. To

keep notation consistent with the main text, we set N = Qd so that the objective is to recover
a vectorized x ∈ CN .2 Let V ∈ CN×N be either the matrix F (d) or W (d), corresponding

2The following can also be generalized to rectangles (i.e., C2r1×···×2rd with possibly different r1, . . . , rd) or
dimensions that are not powers of two.
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to the d-dimensional discrete Fourier or Walsh–Hadamard transform. In the Fourier case,
we divide the different frequencies {−Q/2 + 1, . . . , Q/2}d into dyadic bands. For d = 1, we
let B1 = {0, 1} and Bk = {−2k−1 + 1, . . . ,−2k−2} ∪ {2k−2 + 1, . . . , 2k−1} for k = 2, . . . , r.
In the binary case, we define the frequency bands B1 = {0, 1} and Bk = {2k−1, . . . , 2k − 1}
for k = 2, . . . , r in the one-dimensional case. In the general d-dimensional case for Fourier

or binary sampling, we set B
(d)
k = Bk1 × . . . × Bkd for k = (k1, . . . , kd) ∈ Nd. To recover a

sparse representation, we consider the Haar wavelet coefficients for simplicity, though similar
statements can be made for higher order Daubechies wavelets [SM3] and [SM38, Table 1].
We denote the discrete Haar Wavelet transform by Φ∈ CN×N . We consider a multilevel
subsampled unitary matrix (Definition SM3.5), with U = VΨ∗. Given {mk=(k1,...,kd)}

r
k1,...,kd=1,

we use multilevel random sampling with mk measurements chosen from B
(d)
k according to

Definition SM3.4. This corresponds to l = rd and the Ni’s can be chosen given a suitable
ordering of the Fourier/Walsh basis. The sparsity in levels structure (Definition 3.1) is chosen
to correspond to the r wavelet levels. Finally, we define

MF =

∥k∥l∞∑
j=1

sj

d∏
i=1

2−|ki−j| +
r∑

j=∥k∥l∞+1

sj2
−2(j−∥k∥l∞ )

d∏
i=1

2−|ki−j|, MW =s∥k∥l∞

d∏
i=1

2−|ki−∥k∥l∞ |.

The following result was proven in [SM24].

Theorem SM3.6. Consider the above setup of recovering a d-dimensional tensor c ∈ CQd

(N = Qd) from subsampled Fourier or binary measurements V c, such that A is a multilevel
subsampled unitary matrix with respect to U = VΨ∗. Let ϵP ∈ (0, 1) and L = d · r2 · log(2m) ·
log2 (s · κ(s,M, w)) + log(ϵ−1

P ). Suppose that:
(a) In the Fourier case, mk ≳ κ(s,M, w) · MF (s,k) · L.
(b) In the binary case, mk ≳ κ(s,M, w) · MW(s,k) · L.

Then with probability at least 1 − ϵP, A satisfies the weighted rNSPL of order (s,M) with
constants ρ = 1/16 and γ =

√
3/2.

The sampling conditions are optimized by minimizing κ(s,M, w). Up to a constant scale,
this corresponds to the choice w(j) =

√
s/sj . Up to log-factors, the measurement condition

then becomes equivalent to the currently best-known oracle estimator (where one assumes
apriori knowledge of the support of the vector) [SM2, Prop. 3.1]. Theorem SM3.6 gives us an
immediate example of being able to apply Theorem 3.3, as is done in the main text.

SM4. Proofs of results in section 4 and section 5. We first consider the uniform recovery
guarantees in section 4, for which we make use of the following theorem that generalizes
Lemma SM3.3.

Theorem SM4.1 ([SM34, Theorem 3.2]). Let p ∈ [1, 2] and suppose that A : Cn1×n2 → Cm

satisfies the Frobenius-robust rank null space property of order r with constants ρ ∈ (0, 1) and

γ > 0. Then for any M, M̂ ∈ Cn1×n2,
(SM4.1)

∥M̂ −M∥p ≤
(1 + ρ)2

(1 − ρ)r
p−1
p

(
2∥Mc∥1 + ∥M̂∥1 − ∥M∥1

)
+
γ(3 + ρ)

1 − ρ
r

1
p
− 1

2 ∥A(M̂ −M)∥l2 .
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In particular, taking the p = 2 case in (SM4.1) and using ∥A(M̂ −M)∥l2 ≤ ∥A(M̂) −
b∥l2 − ϵ+ ∥A(M) − b∥l2 + ϵ, we see that (1.5) is satisfied with (for M = x)

C1=
(1 + ρ)2

(1 − ρ)r
1
2

, C2=
γ(3 + ρ)r

1
2

(1 + ρ)2
, c(x, b)=2∥xc∥1+

γ(3 + ρ)r
1
2

(1 + ρ)2
(∥A(x) − b∥l2 +ϵ) .

We can now finish the proof of Theorem 4.2.

Proof of Theorem 4.2. The proof of Theorem 1.2 shows that

GC2 (ϕn(b),x, b) + c(x, b) ≤ δ

1 − exp(−1)
+ C2∥b∥l2 · exp

(
−T (n)

⌈
2eLAγ

τ

(3 + ρ)

(1 − ρ)

⌉−1
)
,

where we have used C1C2 = γ(3+ρ)
1−ρ . The result now follows from (SM4.1) in Theorem SM4.1.

We now turn to the non-uniform recovery guarantees in section 5 for matrix completion.
We will need the following non-symmetric pinching lemma.

Lemma SM4.2 ([SM32]). Let P1 ∈ Cn1×n1 and P2 ∈ Cn2×n2 be two orthogonal projection
matrices. Then for any M ∈ Cn1×n2,

(SM4.2) ∥M∥1 ≥ ∥P1MP2∥1 + ∥P⊥
1 MP⊥

2 ∥1.

We are now ready to prove Theorem 5.3. We use the following convention for the Hilbert–
Schmidt inner product:

tr(M∗
2M1) = ⟨M2,M1⟩.

Proof of Theorem 5.3. Let M̂ ∈ Cn1×n2 and ∆ = M̂ − x. Using Lemma SM4.2 and
P⊥

xQ⊥ = 0,

∥M̂∥1 ≥ ∥PM̂Q∥1 + ∥P⊥M̂Q⊥∥1 = ∥PM̂Q∥1 + ∥P⊥∆Q⊥∥1.

Let ∆⊥
T = P⊥∆Q⊥ and ∆T = ∆ − ∆⊥

T . Using the fact that PM̂Q = x+ P∆Q, we have

(SM4.3) ∥M̂∥1 ≥ ∥x+ P∆Q∥1 + ∥∆⊥
T ∥1.

Since ∥UV ∗∥ ≤ 1 and ⟨UV ∗,x⟩ = ∥x∥1, we have that

(SM4.4) ∥x∥1 − |⟨UV ∗, P∆Q⟩| ≤ |⟨UV ∗,x+ P∆Q⟩| ≤ ∥x+ P∆Q∥1 .

Writing out the inner product in terms of the trace, we see that

⟨UV ∗, P∆Q⟩ = tr (V U∗UU∗∆V V ∗) = tr (V U∗∆) = ⟨UV ∗,∆⟩ ,

where we use the cyclic property of tr and U∗U = V ∗V = Ir. We then use the decomposition

(SM4.5) ⟨UV ∗,∆⟩ = ⟨Y,∆⟩ + ⟨UV ∗ − Y,∆⟩ .
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Using the definition of the adjoint, the first inner product on the right-hand side of (SM4.5)
is equal to ⟨z,A(∆)⟩. The second inner product can be written as

⟨UV ∗ − Y,∆⟩ = ⟨UV ∗ − Y,∆T ⟩ − ⟨PT⊥
x

Y,∆⊥
T ⟩,

where we have used the fact that ∆⊥
T = PT⊥

x

∆⊥
T and PT⊥

x

UV ∗ = 0. Note also that

|⟨UV ∗ − Y,∆T ⟩| = |⟨UV ∗ − PTxY,∆T ⟩| ≤ α1∥∆T ∥2.

We then combine these arguments and use (5.2) to obtain

|⟨UV ∗, P∆Q⟩| ≤ ∥z∥l2∥A(∆)∥l2 + α1∥∆T ∥2 + α2∥∆⊥
T ∥2.

Combining this with (SM4.3) and (SM4.4) yields

∥M̂∥1 ≥ ∥x∥1 + ∥∆⊥
T ∥1 − ∥z∥l2∥A(∆)∥l2 − α1∥∆T ∥2 − α2∥∆⊥

T ∥2.

Since ∥ · ∥2 ≤ ∥ · ∥1 and α2 < 1, we obtain the inequality

(SM4.6) (1 − α2)∥∆⊥
T ∥2 − α1∥∆T ∥2 ≤ ∥M̂∥1 − ∥x∥1 + ∥z∥l2∥A(∆)∥l2 .

We now note that
∥A(∆T )∥l2 − ∥A(∆⊥

T )∥l2 ≤ ∥A(∆)∥l2 .

Due to (5.3) and the fact that ∆T ∈ Tx, it follows that

(SM4.7) γ∥∆T ∥2 − ∥A∥∥∆⊥
T ∥2 ≤ ∥A(∆)∥l2 .

Combining (SM4.6) and (SM4.7), we have

∥∆T ∥2 + ∥∆⊥
T ∥2≤

γ + ∥A∥
(1 − α2)γ−α1∥A∥

[
∥M̂∥1−∥x∥1+

(
α1 + 1 − α2

γ + ∥A∥
+ ∥z∥l2

)∥∥∥A(M̂ − x

)∥∥∥
l2

]
.

The inequality (5.4) now follows. Finally, using

∥A(M̂ − x)∥l2 ≤ ∥A(M̂) − b∥l2 − ϵ+ ϵ+ ∥A(x) − b∥l2 ,

(1.5) is satisfied with the given values of C1, C2 and c(x, b).

SM5. Proof of Theorem 6.2. We first need some results that follow from straightfor-
ward adaptations of the arguments laid out in [SM19, Section 2]. For completeness, we have
provided the details of the necessary modifications. In what follows, we let x, x̂ ∈ CN and set
h = x − x̂. Let T0 denote the set of the largest s coefficients of D∗

x in magnitude, and let
DT denote the matrix D restricted to the columns indexed by T . We divide the coordinates
T c
0 into sets of size t (chosen later) in order of decreasing magnitude of D∗

T c
0
h. Call these sets

T1, T2, . . . and set T01 = T0 ∪ T1. We also collapse the notation δs(A,D) to δs.
First, an application of the triangle inequality yields

∥D∗
x−D∗h∥l1 ≤ ∥D∗

x∥l1 + (∥D∗x̂∥l1 − ∥D∗
x∥l1),
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which implies that

(SM5.1) ∥D∗
T c
0
h∥l1 ≤ 2∥D∗

T c
0
x∥l1 + ∥D∗

T0
h∥l1 + (∥D∗x̂∥l1 − ∥D∗

x∥l1).

The following lemma is a direct generalization of [SM19, Lemma 2.2], and we have omitted the
proof since it simply makes use of (SM5.1) instead of [SM19, Lemma 2.1] (which assumes that
x̂ solves (6.1) so that the bracketed term on the right-hand side of (SM5.1) can be dropped).

Lemma SM5.1. Setting ρ = s/t and η = 2∥D∗
T c
0
x∥l1/

√
s, we have

(SM5.2)
∑
j≥2

∥D∗
Tj
h∥l2 ≤ √

ρ(∥D∗
T0
h∥l2 + η) +

1√
t
(∥D∗x̂∥l1 − ∥D∗

x∥l1).

The next result we tweak is [SM19, Lemma 2.4], where the following is proven via the
same string of inequalities, but with Lemma SM5.1 replacing [SM19, Lemma 2.2].

Lemma SM5.2. As a consequence of D-RIP, the following holds:
(SM5.3)√

1 − δs+t∥DT01D
∗
T01
h∥l2 −

√
ρ(1 + δt)(∥h∥l2 + η) ≤ ∥Ah∥l2 +

√
1 + δt√
t

(∥D∗x̂∥l1 − ∥D∗
x∥l1).

Similarly, we obtain the following by adapting the proof of [SM19, Lemma 2.5].

Lemma SM5.3. The vector h satisfies

(SM5.4) ∥h∥2l2 ≤ ∥h∥l2∥DT01D
∗
T01
h∥l2 +

[
√
ρ(∥D∗

T0
h∥l2 + η) +

1√
t
(∥D∗x̂∥l1 − ∥D∗

x∥l1)

]2
.

Using these results, we now depart from the argument in [SM19] and prove Theorem 6.2.

Proof of Theorem 6.2. To simplify the notation, we set

E1 = η +
1√
ρt

(∥D∗x̂∥l1 − ∥D∗
x∥l1).

If h = 0, then there is nothing to prove, so we assume that ∥h∥l2 > 0. The inequality (SM5.4)
together with ∥D∗

T0
h∥l2 ≤ ∥h∥l2 then implies that

(SM5.5) ∥h∥l2 ≤ ∥DT01D
∗
T01
h∥l2 + ρ∥h∥l2 + 2ρE1 + ρ

E2
1

∥h∥l2
.

If ∥h∥l2 ≥ (ρ+
√
ρ2 + ρ)E1, then we must have

2ρE1 + ρ
E2

1

∥h∥l2
≤ (ρ+

√
ρ2 + ρ)E1.

Combining with (SM5.5), it follows, even in the case ∥h∥l2 < (ρ+
√
ρ2 + ρ)E1, that

(SM5.6) ∥h∥l2 ≤ ∥DT01D
∗
T01
h∥l2 + ρ∥h∥l2 + (ρ+

√
ρ2 + ρ)E1.
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Combining Lemma SM5.2 and (SM5.6),

(SM5.7) ∥h∥l2 ≤

(√
ρ(1 + δt)√
1 − δs+t

+ ρ

)
∥h∥l2 +

∥Ah∥l2√
1 − δs+t

+

(
ρ+

√
ρ2 + ρ+

√
ρ(1 + δt)√
1 − δs+t

)
E1.

We then use ∥Ah∥l2 ≤ ∥Ax̂− b∥l2 − ϵ+ ∥Ax− b∥l2 + ϵ. Rearranging (SM5.7) gives (1.5) with
the parameters in (6.3).
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