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Notation

We use the following notation and further notation will be introduced whenever appropriate.

H separable Hilbert space

B(H) set of bounded linear operators onH
Br(x) closed ball (in a metric space) of radius r centred at x

Dr(x) open ball (in a metric space) of radius r centred at x

cl(S) closure of a set S in a topological space

dH(S, T ) Hausdorff distance between compact sets S and T
Re(z) real part of complex number z

Im(z) imaginary part of complex number z

z conjugate of complex number z

σinf(C) smallest singular value of rectangular matrix C, extended to operators in (3.2.1)

A∗ adjoint of operator A (when defined on a Hilbert space)

D(A) domain of operator A

R(z,A) resolvent operator of operator A defined as (A− zI)−1 for z /∈ Sp(A)

Sp(A) spectrum of operator A defined as {z ∈ C : R(z,A) does not exist as a bounded operator}
Spε(A) pseudospectrum of operator A defined as cl({z ∈ C : ‖(A− zI)−1‖ > 1/ε}) for ε > 0

Spd(A) discrete spectrum of operator A (evals. of finite multiplicity isolated from rest of Sp(A))

Spess(A) essential spectrum of operator A which we define as {z ∈ C : A− zI is not Fredholm}
ress(A) essential numerical radius of operator A defined as sup{|z| : z ∈ Spess(A)}
W (A) numerical range of operator A defined as {〈Aξ, ξ〉 : ‖ξ‖ = 1}
We(A) essential numerical range of operator A defined as

⋂
K compact cl(W (A+K))

If A ∈ B(H), then the pseudospectrum can equivalently be defined as

Spε(A) = {z ∈ C : ‖R(z,A)‖−1 ≤ ε},

where we use the convention that ‖S−1‖ = ∞ and ‖S−1‖−1 = 0 if S−1 does not exist. We also remind

the reader that the Hausdorff distance between S and T is

dH(S, T ) = max

{
sup
λ∈S

dist(λ, T ), sup
λ∈T

dist(λ,S)

}
,

where dist(λ, T ) = infρ∈T |ρ− λ|. Finally, when considering decision problems, we will use the discrete

metric on {0, 1}, with 1 interpreted as ‘yes’ and 0 interpreted as ‘no’.
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Chapter 1

Introduction

Given a suitable linear operator A on some Hilbert spaceH, the spectrum of A is defined by

Sp(A) := {z ∈ C : (A− zI)−1 does not exist as a bounded operator}

This set includes the familiar notion of eigenvalues, but in general is much richer! For example we

might have continuous spectra. It is hard to overestimate the importance of computing spectra of infinite-

dimensional operators in applied mathematics, quantum chemistry/mechanics, matter physics, statistical

mechanics, optics and many other fields. Amongst its uses, the spectrum allows scientists to conduct sta-

bility, vibrational and asymptotic analysis, compute the energy levels of physical systems, diagonalise or

decompose operators for analysis, perform data-driven analysis of systems, and compute solutions to PDEs.

The problem of computing spectra is one of the most studied areas of computational mathematics over the

last half-century, investigated by mathematicians and physicists alike since the 1950s. However, the many

applications and theoretical studies of spectra depend on computations which are infamously difficult.

Computational approaches to obtain spectral information date back to leading mathematicians and

physicists such as Anderson [And58], Goldstine [GMvN59], Kato [Kat49], Murray [GMvN59], Schrödinger

[Sch40], Schwinger [Sch60b, Sch60a] and von Neumann [GMvN59]. For example, Schwinger introduced

finite-dimensional approximations to quantum systems in infinite-dimensional spaces that allow for spec-

tral computations, ideas which were already present in the work of Weyl [Wey50]. In [DVV94], Digernes,

Varadarajan, and Varadhan proved convergence of spectra of Schwinger’s finite-dimensional discretisation

matrices for Schrödinger operators with continuous potentials bounded below and diverging at infinity (the

resolvents of which are compact). We will solve this problem in a much more general setting in Chapter 3.

From an operator point of view, the computational spectral problem goes back as far as Szegő’s work

[Sze20] on finite section approximations. Since then, it has been studied intensely by both mathemati-

cians [Aro51, Kat49, DLT85, Böt94, Böt96, LS96, BS99, BCN01, Zwo99, BBIN10, BIN11, Zwo13] and

physicists [Sch40, And58, BC71, Hof76, Lie05, DS06b]. For instance, the seminal work of Fefferman and

Seco [FS90, FS92, FS93, FS94b, FS94c, FS95, FS96b, FS96a, FS94a] on proving the Dirac–Schwinger

conjecture is a striking example of computations used in order to obtain complete information about the

asymptotic behaviour of the ground state of a family of Schrödinger operators.

The corresponding literature is vast (see [Col20a] for further discussion). However, whilst the above

results undoubtedly represent triumphs for computational mathematics and theoretical physics, they only

partially solve the problem and only hold for specific cases.

1



1.1. The goal CHAPTER 1. Introduction

1.1 The goal

A reliable algorithm computing the spectrum should converge locally on compact subsets of C. In other

words, it should converge to the full spectrum and have no limiting points that are not in the spectrum.

Moreover, we wish to have a guarantee that any point in the output is close to the spectrum, up to a chosen

error tolerance. A key question is: do such algorithms exist? Despite more than 90 years of quantum theory,

the answer to this question has been unknown, even for the case of general Schrödinger operators and even

when also excluding the additional property of error control. Arveson, who helped develop the combination

of spectral computations and C∗-algebra techniques1 [Arv93a, Arv93b, Arv94a, Arv94b], summarises this

open question for the problem of computing spectra of general self-adjoint operators,2

“Most operators that arise in practice are not presented in a representation in which they are

diagonalized, and it is often very hard to locate even a single point in the spectrum... Thus, one

often has to settle for numerical approximations [to the spectrum], and this raises the question

of how to implement the methods of finite dimensional numerical linear algebra to compute the

spectra of infinite dimensional operators. Unfortunately, there is a dearth of literature on this

basic problem and, so far as we have been able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley [Arv94b]

It is precisely the computational spectral problem, encapsulated in Arveson’s question and dating back

to the work of Schwinger in the 1960s [Sch60b, Sch60a], that this course addresses. The boundaries of

what computers can achieve in computational spectral theory and mathematical physics remain largely

unknown, leaving many open questions that have been unsolved for decades. Our goal is to solve some of

these long-standing problems. Determining these computational boundaries means two things:

• Developing new algorithms that can handle problems previously out of reach,

• Providing mathematical proofs that the new algorithms are optimal.

In this course, we will do both for a range of infinite-dimensional spectral problems.

1.2 A motivating example

The spectrum of a general operator on a separable Hilbert space cannot be computed in finitely many

operations. This holds even in the finite-dimensional case (which is mathematically equivalent to polyno-

mial root-finding), and, in general, finite-dimensional spectral problems are solved numerically via iterative

methods.3 We must, therefore, give a precise meaning to a ‘computational spectral problem’. For instance,

1This combination can be traced back to the work of Böttcher and Silbermann [BS83].
2There is, of course, a rich literature on using finite-dimensional algorithms to compute the spectrum of infinite-dimensional

operators. Arveson is referring to the existence of a procedure that converges in general, using, for example, matrix elements of the
operator with respect to an orthonormal basis.

3Computing the eigenvalues and eigenvectors of finite-dimensional matrices dates back to Wilkinson [Wil65] with guaranteed
convergence for self-adjoint matrices via Wilkinson shifts, see [Par98].

2



1.2. A motivating example CHAPTER 1. Introduction

suppose our operator is bounded and acts on l2(N). We can represent A by an infinite matrix

A =


a11 a12 a13 . . .

a21 a22 a23 . . .

a31 a32 a33 . . .
...

...
...

. . .

 , (1.2.1)

with respect to the canonical basis. Consider the case that an ‘algorithm’ can access matrix elements of A,

which is natural for many Hamiltonian operators in physics. The algorithm uses a finite number of matrix

elements, though it can adaptively choose which ones to use, and produces an output Γn(A) ⊂ C. For

example, if each aij is rational (or a rational approximation of a complex number), we could consider the

output being produced by a Turing machine [Tur36]. If we allow real number arithmetic, then we could

consider a Blum–Shub–Smale (BSS) [BCSS98] machine. At the very least, we should enforce consistency4

in how the algorithm reads information and produces an output (see Definition 2.1.1 in Chapter 2). The

algorithm is written with a subscript n because it is usual in numerical analysis to have a sequence of

approximations (or even a sequence of different algorithms) that converge as n → ∞. For example, in

finite dimensions, n could correspond to the number of iterations of the famous QR algorithm, which

converges under favourable conditions (see [CH19] for the infinite-dimensional version). The question is:

do algorithms exist that converge in infinite dimensions? Surprisingly, the answer to this question is ‘no’

for many important problems, regardless of one’s model of computation.

1.2.1 A ‘three limit’ algorithm

In [Han11] it was shown that, without any structural assumptions, it is possible to build an algorithm

depending on three parameters, so that for general bounded operators acting on the canonical Hilbert space

l2(N) the following holds with respect to the Hausdorff metric

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1
(A) = Sp(A).

In other words, the process uses three successive limits. The algorithm roughly works as follows:

• For given n1, n2 ∈ N, define the function

γn2,n1(z) = min {σinf(Pn1(A− zI)Pn2), σinf(Pn1(A∗ − zI)Pn2
)} .

[DRAW PICTURE ON BOARD]

• One can prove that as n1 →∞,

γn2,n1(z) ↑ γn2(z) := min {σinf((A− zI)Pn2), σinf((A
∗ − zI)Pn2)} .

Similarly, as n2 →∞,

γn2
(z) ↓ γ(z) := min {σinf(A− zI), σinf(A

∗ − zI)} = ‖(A− zI)−1‖−1 =: ‖R(z,A)‖−1
,

with locally uniform convergence (uniform on compact subsets of C).

Exercise: Prove these statements and that Sp(A) = {z ∈ C : γ(z) = 0} .

4Our discussion can also be extended to the case of random algorithms, though we do not discuss this topic in this course.

3



1.2. A motivating example CHAPTER 1. Introduction

• Define

Γn3,n2,n1
(A) =

{
z ∈ Gn2

: γn2,n1
(z) ≤ 1

n3

}
,

where Gn = Bn(0) ∩ 1
n (Z + iZ). Then

lim
n1→∞

Γn3,n2,n1
(A) = Γn3,n2

(A) :=

{
z ∈ Gn2

: γn2
(z) ≤ 1

n3

}
.

And

lim
n2→∞

Γn3,n2(A) = Γn3(A) :=

{
z ∈ C : γ(z) ≤ 1

n3

}
.

This set is called the (n−1
3 -)pseudospectrum ofA. The final limit then shrinks this set to the spectrum.

Exercise: Prove that limn3→∞ Γn3
(A) = Sp(A).

[DRAW PICTURE ON BOARD]

Question: Can we do away with the three limits?

Answer: No! Three successive limits turns out to be sharp if we consider the whole class of bounded

operators. This means it is impossible to compute spectra of completely general operators using two limits

(i.e., for all operators, without further information, even though standard algorithms can converge for dif-

ferent classes of operators) in any model of computation. This is most easily proven by embedding certain

combinatorial problems of descriptive set theory within this problem - see Chapter 2.

This result gives rise to the solvability complexity index (SCI). Informally, the SCI is the number of

successive limits needed to solve a computational problem, a measure of its difficulty. We will make this

precise in Chapter 2. The SCI covers many areas in computational mathematics, extending beyond the spec-

tral problem. It also has roots in the work of Smale [Sma81, Sma97], and his programme on the foundations

of computational mathematics and scientific computing, though it is quite distinct. The notions of Turing

computability [Tur36] and computability in the Blum–Shub–Smale (BSS) [BCSS98] sense become special

cases, and impossibility results that are proven in the SCI hierarchy hold in all models of computation.

1.2.2 A ‘one limit’ algorithm with error control

The fact that general spectral problems require three limits poses a severe problem in applications: how

can we guarantee that the outputs of numerical simulations converge and are sound? Fortunately, there is

another class in the SCI hierarchy: Σ1. This is the class of problems which require only one limit and for

which there exists a convergent algorithm whose output is guaranteed to be included in the ε-neighbourhood

of the spectrum, for an arbitrarily small ε. In other words, given an output, we know that it is sound, but we

do not know if we have approximated all of the spectrum yet (though we must eventually converge to all of

the spectrum).

Under very general assumptions,5 there exists an algorithm Γn(A) such that

lim
n→∞

dH(Γn(A),Sp(A)) = 0,

with dH the usual Hausdorff metric on non-empty compact subsets of C. We also obtain error control, in

the sense that the algorithm computes an error bound En(A; z) such that

dist(z,Sp(A)) ≤ En(A; z) ∀z ∈ Γn(A) and lim
n→∞

sup
z∈Γn(A)

En(A; z) = 0. (1.2.2)

5The assumptions hold in the majority of applications. See §3.1.1 and §3.1.2 for the precise details.
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Figure 1.1: The ground ‘state’ for the Penrose Laplacian from [CRH19] and an approximate state corre-
sponding to energy nearest −5. The algorithm allows us to choose which states to compute without direct
diagonalisation. It should be emphasised that we are not necessarily approximating eigenvectors since the
spectrum may not consist solely of eigenvalues.

This notion of error control, denoted by Σ1, is discussed in detail in §2.2, along with its dual notion Π1. The

constructed algorithm is parallelisable and can also be extended to compute quantities such as approximate

states (see Figure 1.1). The results hold when considering infinite matrix representations of operators, and

also for partial differential operators when sampling the coefficients.

However, stricter error control, in the sense of computing En with

dH(Γn(A),Sp(A)) ≤ En(A) (1.2.3)

is in general impossible (we denote this stricter sense of error control by ∆1) in any model of computation.

As a very simple example, consider the class of all bounded diagonal operators A ∈ B(l2(N)) of the form

A =


a1

a2

a3

. . .

 , aj ∈ C. (1.2.4)

Since an algorithm can only deal with a finite amount of information at any one time (i.e., finitely many

of the ai), it is clear that the problem of computing the spectrum Sp(A) cannot be done with error control

in the sense of (1.2.3). However, one can simply choose an algorithm Γn to collect {aj}nj=1 and then one

trivially has that Γn(A)→ Sp(A) as n→∞. We also clearly have the extra feature that

Γn(A) ⊂ Sp(A), n ∈ N.

In particular, we have convergence from below, and this is much stronger than just convergence, since

Γn(A) always produces a correct output. Such a type of convergence is incredibly important, since it gives

a guarantee of reliability. We extend this type of convergence (up to an arbitrarily small user-chosen error

tolerance given by the En in (1.2.2)) to a vast number of spectral problems. In some sense, given the

above simple example, we show that the computational spectral problem is not harder than computing the

spectrum of a diagonal operator.

5



1.2. A motivating example CHAPTER 1. Introduction

An example from physics

Suppose that A is sparse, meaning that it has only finitely many non-zero entries in each column, and sup-

pose also that A∗ = A (self-adjoint). As an example, we consider Schrödinger operators on quasicrystals.

Quasicrystals are non-repeating (aperiodic) structures with a long-range, self-similar nature. More gener-

ally, systems with long-range order and short-range disorder are abundant in nature. Currently, aperiodic

systems are not nearly as well understood as their periodic cousins. We might ask, then: what are the

physics of aperiodic systems? Understanding spectral properties is key to answering these types of ques-

tions. However, the aperiodic nature of quasicrystals, which makes them so interesting to study in the first

place, also makes it a considerable challenge to approximate spectra associated with these systems!

We consider a Penrose tile, a canonical model of a quasicrystal in 2D, and generated the lattice shown

in Figure 1.2a by considering a lattice ‘site’ to exist at each vertex (the black dots) and tunnelling bonds

along the edges of the tiles. The model taken is that of a charged single-particle, which can exist on the set

of sites and can tunnel between the sites along the bonds. We then apply a perpendicular magnetic field,

which modifies the tunnelling strengths to enforce the usual circular motion of a free charged particle in a

magnetic field. The operator in this scenario is a Hamiltonian A which, in matrix form, is given by

(Aψ)j = −
∑
〈j,k〉

eiαkjψk,

with summation over sites connected by an edge. Here αkj is a phase factor that is given in terms of the

strength of the magnetic field and ψ denotes the wave function.

The most common approach to computing spectra is to truncate the operator. Physically, in our example,

this corresponds to truncating the tile and studying the interactions of a finite number of sites within the

truncation (Figure 1.2b). Mathematically, this corresponds to studying a finite section of the operator and

computing spectra of the corresponding finite-dimensional system (eigenvalues of finite square matrices

shown as a red box in Figure 1.2). In this model, the dimension of this finite-dimensional system is precisely

the number of sites included in the truncation. Figure 1.3a shows the output of this approach, where the

approximation of the spectrum is plotted for different magnetic field strengths. We have labelled portions

of this picture as ‘spectral pollution’. This approach does not approximate the correct solution and does not

provide any form of error bounds.

Instead, we can compute spectra as follows, by reducing the number of limits in the above algorithm:

• Since A is sparse, we have access to f : N→ N such that (I − Pf(n))APn = 0.

Exercise: Prove that γn2(z) = γn2,f(n2)(z).

• Since A is self-adjoint, we can avoid the final shrinking step.

Exercise: Prove that γ(z) = dist(z,Sp(A)).

• We will see later how to compute γn2
(z) and use a local optimisation routine to compute Sp(A)!

Physically, the rectangular truncation Pf(n)APn corresponds to including the interactions of the fi-

nite truncation with the rest of the tile (Figure 1.2c). We can think of this as a tool for studying the full

infinite-dimensional operator directly, even on a finite computer. Leveraging this idea, we can now approx-

imate spectra in such a way that (i) our approximations approach the correct solution as our truncation size

increases, and (ii) such that we can explicitly bound the error of any computed approximation. The practi-

tioner can now provide a desired error bound, which our algorithm will then adaptively realise. Figure 1.3b

6
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(a) (b) (c)

Figure 1.2: Top: (a) Infinite aperiodic Penrose tile. (b) Finite truncation of tile to n sites. (c) Finite
truncation with interactions shown as green arrows (proposed method). Bottom: The corresponding sparsity
patterns (non-zero entries of the infinite matrix of the operator A). The boxes show the different types of
truncations of the operator. In (c), f(n) is chosen to include all of the interactions of the first n sites.

(a) (b)

Figure 1.3: Computation of spectra using (a) finite section and (b) the proposed method.
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shows the output of this approach for our example. We now (i) have the correct gaps in the spectrum, (ii) ap-

proximate the correct spectrum, and, for this example, (iii) have a guaranteed error bound of 0.01. With this

technique in hand, we can reliably probe the bulk physical properties of such aperiodic systems. Indeed,

this technique is already allowing for the discovery and investigation of new physics in quasicrystalline

systems, including their transport and topological properties [JCN+21].
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Chapter 2

The Solvability Complexity Index

This chapter discusses the Solvability Complexity Index (SCI) hierarchy. We use this to show that the

algorithms in this course realise the boundary of what computers can achieve. All of the results concerning

the hierarchy itself are placed in one chapter. For further discussion on the hierarchy, the reader is advised

to consult [Col20a, BACH+20]. For extensions to randomised algorithms, see [CAH22a].

Disclaimer: This is not a course on logic or descriptive set theory. This chapter is quite dense but

is largely self-contained. However, once completed, we will have the tools to tackle infinite-dimensional

spectral computations.

2.1 The Basic SCI Hierarchy

First, we define a computational problem. The four basic objects of a computational problem are:

• Ω: some set, called the primary set,

• Λ: a set of complex-valued functions on Ω, called the evaluation set,

• M: a metric space,

• Ξ : Ω→M : the problem function.

Ω is the class of objects that give rise to our computational problem. The problem function Ξ : Ω→M is

the map we wish to compute. The set Λ is the collection of functions that provide us with the information

we are allowed access to. The collection {Ξ,Ω,M,Λ} is referred to as a computational problem.

For example, we could have Ω = B(l2(N)) and Ξ the problem function that takes A ∈ Ω and maps it

to its spectrum Sp(A). Since the spectrum is a non-empty compact subset of C (in this case), we can let

M be the set of non-empty compact subsets of C equipped with the Hausdorff metric. In this case, Λ could

correspond to the evaluation of matrix entries of a given A ∈ Ω.

Occasionally we will consider a function Ξ such that for A ∈ Ω we have that Ξ(A) ⊂M. In this case,

we still require that algorithms produce a single-valued output. However, we replace the metric in order to

define convergence. In particular, Γn(A)→ Ξ(A) as n→∞ means infy∈Ξ(A) dM(Γn(A), y)→ 0.

9
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Definition 2.1.1 (General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm

is a mapping Γ : Ω→M such that for each A ∈ Ω

(i) there exists a (non-empty) finite subset of evaluations ΛΓ(A) ⊂ Λ,

(ii) the action of Γ on A only depends on {Af}f∈ΛΓ(A) where Af := f(A),

(iii) for every B ∈ Ω such that Bf = Af for every f ∈ ΛΓ(A), it holds that ΛΓ(B) = ΛΓ(A).

The three properties of a general algorithm are the most basic natural properties we would expect any

deterministic computational device to obey. The first condition says that the algorithm can only take a finite

amount of information, though it is allowed adaptively to choose, depending on the input, the finite amount

of information it reads. The second condition ensures that the algorithm’s output only depends on its input,

or rather the information that it has accessed. The final condition is very important and ensures that the

algorithm produces outputs and accesses information in a consistent manner. In other words, if it sees the

same information for two different inputs, then it cannot behave differently for those inputs.

Note that the definition of a general algorithm allows a stronger form of computation than the definition

of a Turing machine [Tur36] (digital computer) or a Blum–Shub–Smale (BSS) machine [BCSS98] (analog

computer). A general algorithm has no restrictions on the operations allowed. Whilst complete generality

seem to be at odds with practical computation, we use this model for two primary reasons:

(i) Strongest lower bounds (and complementary strongest upper bounds): Since Definition 2.1.1 is com-

pletely general, the lower bounds hold in any model of computation, such as a Turing machine or a

Blum–Shub–Smale machine. This is not an issue for practical computation since the algorithms in

this course can be made to work using only arithmetic operations over the rationals. Hence, we obtain

the strongest possible lower bounds and the strongest possible upper bounds.

(ii) Focus on information: Using the concept of a general algorithm considerably simplifies the proofs

of lower bounds. The proven lower bounds are due to the problem at hand being inherently non-

computable. It is not a question of the type of operations allowed being too restrictive, but rather that

the information about each input available to the algorithm is insufficient to solve the problem.

With a definition of a general algorithm, we can define the concept of towers of algorithms.

Definition 2.1.2 (Tower of algorithms). Given a computational problem {Ξ,Ω,M,Λ}, a tower of algo-

rithms of height k for {Ξ,Ω,M,Λ} is a collection of sequences of functions

Γnk : Ω→M, Γnk,nk−1
: Ω→M, . . . ,Γnk,...,n1 : Ω→M,

where nk, . . . , n1 ∈ N and the functions Γnk,...,n1
at the lowest level in the tower are general algorithms in

the sense of Definition 2.1.1. Moreover, for every A ∈ Ω,

Ξ(A) = lim
nk→∞

Γnk(A),

Γnk(A) = lim
nk−1→∞

Γnk,nk−1
(A),

...

Γnk,...,n2
(A) = lim

n1→∞
Γnk,...,n1

(A),

with convergence in the metric spaceM.

10



2.2. Error Control Extensions of the SCI Hierarchy CHAPTER 2. The Solvability Complexity Index

Throughout this course, a general tower will refer to the very general definition in Definition 2.1.2

specifying that there are no further restrictions. This will be denoted by α = G. When we specify the type

of tower, we specify requirements on the functions Γnk,...,n1
in the hierarchy, in particular, what kind of

operations may be allowed. A tower of algorithms for a computational problem is the toolbox allowed.

Definition 2.1.3 (Arithmetic tower). Given a computational problem {Ξ,Ω,M,Λ}, an arithmetic tower of

algorithms of height k for {Ξ,Ω,M,Λ} is a tower of algorithms where the lowest functions Γ = Γnk,...,n1 :

Ω → M satisfy the following: For each A ∈ Ω the action of Γ on A consists of only performing finitely

many arithmetic operations and comparisons on {Af}f∈ΛΓ(A), where we remind the reader that Af =

f(A). For arithmetic towers we let α = A.

Definition 2.1.4 (Solvability Complexity Index). A computational problem {Ξ,Ω,M,Λ} is said to have

Solvability Complexity Index SCI(Ξ,Ω,M,Λ)α = k, with respect to a tower of algorithms of type α, if k

is the smallest integer for which there exists a tower of algorithms of type α of height k. If no such tower

exists then SCI(Ξ,Ω,M,Λ)α = ∞. If there exists a tower {Γn}n∈N of type α and height one such that

Ξ = Γn1
for some n1 <∞, then we define SCI(Ξ,Ω,M,Λ)α = 0.

With the definition of the SCI, we can define the SCI hierarchy. Without any extra structure on the

metric spaceM, the ∆α
k classes are the finest refinement we can obtain in terms of the SCI. However, as

described below, when more structure is allowed, the hierarchy becomes much richer.

Definition 2.1.5 (The Solvability Complexity Index hierarchy). Consider a collection C of computational

problems and let T be the collection of all towers of algorithms of type α for the computational problems

in C. Define

∆α
0 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α = 0}

∆α
m+1 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α ≤ m}, m ∈ N,

as well as

∆α
1 := {{Ξ,Ω} ∈ C | ∃ {Γn}n∈N ∈ T s.t. ∀A ∈ Ω d(Γn(A),Ξ(A)) ≤ 2−n}.

2.2 Error Control Extensions of the SCI Hierarchy

When there is extra structure on the metric spaceM, sayM = R orM = {0, 1} with the standard metrics

(or more generally, a totally ordered set), one may be able to define convergence of functions from above

or below. This is an extra form of structure that allows for a type of error control. Such error control is

important, for example, in computer-assisted proofs, and of course, crucial in scientific computing.

Definition 2.2.1 (The SCI Hierarchy for a Totally Ordered Set). Given the set-up in Definition 2.1.5 and

suppose in addition thatM is a totally ordered set. Define

Σα0 = Πα
0 = ∆α

0 ,

Σα1 = {{Ξ,Ω} ∈ ∆2 | ∃ {Γn} ∈ T s.t. Γn(A)↗ Ξ(A) ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆2 | ∃ {Γn} ∈ T s.t. Γn(A)↘ Ξ(A) ∀A ∈ Ω},

where↗ and↘ denotes convergence from below and above respectively, as well as, for m ∈ N,

Σαm+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ {Γnm+1,...,n1
} ∈ T s.t. Γnm+1

(A)↗ Ξ(A) ∀A ∈ Ω},

Πα
m+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ {Γnm+1,...,n1

} ∈ T s.t. Γnm+1
(A)↘ Ξ(A) ∀A ∈ Ω}.
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If the metric spaceM = {0, 1}, it is clearly a totally ordered set and hence, from Definition 2.2.1, we

obtain the SCI hierarchy for arbitrary decision problems. We want to generalise the above notions of error

control to scenarios suitable for spectral computations. In the case whereM is the collection of non-empty

compact subsets of another metric spaceM′, it is custom to equipM with the Hausdorff metric

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

In the case whereM is the collection of non-empty closed subsets ofM′, we use the Attouch–Wets metric

dAW(C1, C2) =

∞∑
n=1

2−n min
{

1, supdM′ (x0,x)≤n |dist(x,C1)− dist(x,C2)|
}
,

where C1 and C2 are non-empty closed subsets of C, x0 ∈ M′ is some fixed element ofM′ and where

d(x,C) is the usual distance between the point x and a set C. Note that dAW(C1, C2) ∈ [0, 1]. In the

case that M′ = C with the usual metric, we take x0 = 0 without loss of generality. One should view

the Attouch–Wets metric as a generalisation of the familiar Hausdorff metric on compact subsets. In other

words, we seek local uniform convergence. In fact, both metrics can be viewed in terms of metrics on

spaces of continuous functions [Bee93].

The following provides the generalisation and we remark on the intuition behind this definition below.

Definition 2.2.2 (The SCI Hierarchy (Attouch–Wets/Hausdorff metric)). Given the set-up in Definition

2.1.5 and suppose in addition that (M, d) is the Attouch–Wets or the Hausdorff metric induced by another

metric spaceM′. Define for m ∈ N

Σα0 = Πα
0 = ∆α

0 ,

Σα1 = {{Ξ,Ω} ∈ ∆2 | ∃ {Γn} ∈ T , {Xn(A)} ⊂ M s.t. Γn(A) ⊂
M′

Xn(A),

lim
n→∞

Γn(A) = Ξ(A), d(Xn(A),Ξ(A)) ≤ 2−n ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆2 | ∃ {Γn} ∈ T , {Xn(A)} ⊂ M s.t. Ξ(A) ⊂

M′
Xn(A),

lim
n→∞

Γn(A) = Ξ(A), d(Xn(A),Γn(A)) ≤ 2−n ∀A ∈ Ω},

where ⊂M′ means inclusion in the metric spaceM′. Moreover,

Σαm+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ {Γnm+1,...,n1} ∈ T , {Xnm+1(A)} ⊂ M s.t. Γnm+1(A) ⊂
M′

Xnm+1(A),

lim
nm+1→∞

Γnm+1
(A) = Ξ(A), d(Xnm+1

(A),Ξ(A)) ≤ 2−nm+1 ∀A ∈ Ω},

Πα
m+1 = {{Ξ,Ω} ∈ ∆m+2 | ∃ {Γnm+1,...,n1} ∈ T , {Xnm+1(A)} ⊂ M s.t. Ξ(A) ⊂

M′
Xnm+1(A),

lim
nm+1→∞

Γnm+1
(A) = Ξ(A), d(Xnm+1

(A),Γnm+1
(A)) ≤ 2−nm+1 ∀A ∈ Ω}.

Intuitively, this captures convergence from below or above respectively, up to a small error parameter

2−n. Note that to build a Σ1 algorithm in the Hausdorff case, it is enough (by taking subsequences of n)

to construct Γn(A) such that Γn(A) ⊂ Ξ(A) + BEn(A)(0) with some computable En(A) that converges

to zero. A visual demonstration of these classes for the Hausdorff metric is shown in Figure 2.1. The SCI

hierarchy gives rise to the following structure:
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Figure 2.1: Meaning of Σ1 and Π1 convergence for problem function Ξ computed in the Hausdorff metric.
The red area represents Ξ(A), whereas the green areas represent the output of the algorithm Γn(A). Σ1

convergence means convergence as n → ∞ but each output point in Γn(A) is at most distance 2−n from
Ξ(A). Similarly, in the case of Π1, we have convergence as n → ∞ but any point in Ξ(A) is at most
distance 2−n from Γn(A). The same notion holds for Σ1 and Π1 in the Attouch–Wets topology, but now
when restricting to arbitrary compact balls (see Lemma 3.2.2).
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Note, it is precisely the classes Σα1 and Πα
1 that are crucial in computer-assisted proofs.

To say a bit more about the structure, we need the following definition (which holds for standard spaces

such as {0, 1} or R with the usual metric).

Definition 2.2.3. Given a totally ordered metric space (M, d), we say that the metric is order respecting if

for any a, b, c ∈M with a ≤ b ≤ c we have d(a, b) ≤ d(a, c).

The following proposition gives some insight into the extended SCI hierarchy as defined above, and

shows that the results of later chapters are sharp.

Proposition 2.2.4 (Properties of the SCI hierarchy II). Given the above set-up, let (M, d) be either the

Hausdorff or Attouch–Wets metric or a totally ordered metric space with order respecting metric. Let

k = 1, 2 or 3, then we have the following.

(i) ∆G
k = ΣGk ∩ ΠG

k . In particular, if for a problem Ξ : Ω →M we have ∆G
k 63 {Ξ,Ω} ∈ Xα

k , where

X = Σ or Π and α denotes any type of tower, then {Ξ,Ω} 6∈ Y αk , where Y = Π or Σ respectively.

(ii) Suppose for a computational problem Ξ : Ω → M we have a corresponding convergent ΣAk tower

Γ1
nk,...,n1

and a corresponding convergent ΠA
k tower Γ2

nk,...,n1
. Suppose also that we can compute for

every A ∈ Ω the distance d(Γ1
nk,...,n1

(A),Γ2
nk,...,n1

(A)) to arbitrary precision using finitely many

arithmetic operations and comparisons. Then {Ξ,Ω} ∈ ∆A
k .

Exercise (hard): Prove Proposition 2.2.4.

Throughout this course, we will prove results of the form ∆G
k 63 {Ξ,Ω} ∈ Xα

k . Part (i) says that this

is an optimal classification in the SCI hierarchy if k ≤ 3. It is an open problem whether part (i) of the

proposition extends to larger k (the proof for k = 3 is already very technical).
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2.3 A Link with Descriptive Set Theory

Next, we shall link the SCI hierarchy in a particular specific case to the Baire hierarchy (on a suitable

topological space). As well as being interesting in its own right, this link provides canonical problems high

up in the SCI hierarchy. In particular, the results proven here hold for towers of general algorithms, without

restrictions such as arithmetic operations or notions of recursivity. This fact will be used extensively in the

proofs of lower bounds for spectral problems that have SCI > 2, where we typically reduce the problems

discussed in this section to the given spectral problem.

It is beyond the scope of this course to provide an extensive discussion of descriptive set theory, but

we refer the reader to [KL87, Mos09] for excellent introductions that cover the main ideas.1 It should be

stressed that such a link to existing hierarchies only exists in special cases (when Ω andM are particularly

well-behaved). Even when such a link exists, the induced topology on Ω is often too complicated, unnat-

ural or strong to be useful from a computational viewpoint. We also take the view that for problems of

scientific interest, the mappings Λ and metric spaceM are often given to us apriori from the corresponding

applications and may not be compatible with topological viewpoints of computation.

2.3.1 Some results from descriptive set theory

We briefly state the definition of the Borel hierarchy as well as some well-known theorems from descriptive

set theory. Let X be a metric space and define

Σ0
1(X) = {U ⊂ X : U is open}, Π0

1(X) =∼Σ0
1(X) = {F ⊂ X : F is closed},

where for a class U , ∼U denotes the class of complements (in X) of elements of U . Inductively define

Σ0
ξ(X) = {∪n∈NAn : An ∈ Π0

ξn , ξn < ξ}, if ξ > 1,

Π0
ξ(X) =∼Σ0

ξ(X), ∆0
ξ(X) = Σ0

ξ(X) ∩Π0
ξ(X).

The full Borel hierarchy extends to all ξ < ω1 (ω1 being the first uncountable ordinal) by transfinite induc-

tion but we do not need this here.

Definition 2.3.1 ([KL87]). Given a class of subsets, U , of a metric spaceX and given another metric space

Y , we say that the function f : X → Y is U-measurable if f−1(U) ∈ U for every open set U ⊂ Y .

Given metric spaces X and Y , the Baire hierarchy is defined as follows. A function f : X → Y is

of Baire class 1, written f ∈ B1, if it is Σ0
2(X)-measurable. For 1 < ξ < ω1, a function f : X → Y

is of Baire class ξ, written f ∈ Bξ, if it is the pointwise limit of a sequence of functions fn in Bξn with

ξn < ξ. The following theorem is well-known (see for example [KL87] section 24) and provides a useful

link between the Borel and Baire hierarchies.

Theorem 2.3.2 (Lebesgue, Hausdorff, Banach). Let X,Y be metric spaces with Y separable and 1 ≤
ξ < ω1. Then f ∈ Bξ if and only if it is Σ0

ξ+1(X) measurable. Furthermore, if X is zero-dimensional

(Hausdorff with a basis of clopen (closed and open) sets) and f ∈ B1, then f is the pointwise limit of a

sequence of continuous functions.

1The reader wishing to assimilate the bare minimum quickly will find Chapter 2 of [KL87] sufficient for this section.
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The assumption thatX is zero-dimensional in the last statement is important. Without any assumptions,

the final statement of the theorem is false, as is easily seen by considering X = R. Examples of zero-

dimensional spaces include products of the discrete space {0, 1} or the Cantor space. Any such space is

necessarily totally disconnected, meaning that the connected components in the space are the one-point sets

(the converse is true for locally compact Hausdorff spaces). Our primary interest will be the cases when Y

is equal to {0, 1} or [0, 1], both with their natural topologies.

2.3.2 Linking the SCI hierarchy to the Baire hierarchy in a special case

The following definition will be used as a sufficient criterion for a topology to exist on Ω such that ∆1

problems are precisely the continuous functions from Ω toM.

Definition 2.3.3. Given the triple {Ω,M,Λ}, a class of algorithms A is closed under search with respect

to {Ω,M,Λ} if whenever

1. I is an index set,

2. {ni}i∈I a family of natural numbers,

3. {Γi,l : Ω→M}i∈I,l≤ni ⊂ A,

4. {Ui,l}i∈I,l≤ni family of basic open sets inM with ∪i∈I ∩l≤ni Γ−1
i,l (Ui,l) = Ω, where Γ−1

i,l (Ui,l) =

{x ∈ Ω : Γi,l(x) ∈ Ui,l},

5. {ci}i∈I a family of points in some arbitrary dense subset ofM,

then there is some Γ ∈ A such that for every x ∈ Ω there exists some i ∈ I with Γ(x) = ci and for all

l ≤ ni we have Γi,l(x) ∈ Ui,l.

Proposition 2.3.4. Suppose that A is closed under search with respect to {Ω,M,Λ}, then there exists a

topology T on Ω such that ∆A1 is precisely the set of continuous functions from (Ω, T ) toM.

Proof. Let T be the topology generated by {Γ−1(B) : Γ ∈ A, B ⊂ M basic open}. Now, clearly any

Γ ∈ A is continuous with respect to this topology. The fact that uniform limits of continuous functions into

metric spaces are also continuous shows that any function in ∆A1 is continuous with respect to T .

For the other direction, suppose that f : (Ω, T ) →M is continuous. Choose {ci}i∈I ⊂ M such that

M ⊂ ∪i∈ID(ci, 2
−n). Continuity of f implies that f−1(D(ci, 2

−n)) are open. This implies that there

is an index set J , natural numbers {ni,j}j∈J , a family {Γi,j,l}i∈I,j∈J ,l≤ni,j (in A) and a family of basic

open sets {Ui,j,l}i∈I,j∈J ,l≤ni,j with the property that

f−1(D(ci, 2
−n)) =

⋃
j∈J

⋂
l≤ni,j

Γ−1
i,j,l(Ui,j,l).

It follows that ⋃
i∈I,j∈J

⋂
l≤ni,j

Γ−1
i,j,l(Ui,j,l) = Ω.

Since A is closed under search, there exists fn ∈ A such that for every x ∈ Ω there exists some i ∈ I and

j ∈ J with fn(x) = ci and for all l ≤ ni,j

x ∈ Γ−1
i,j,l(Ui,j,l).

But this implies that d(fn(x), f(x)) < 2−n. Since n was arbitrary, we have f ∈ ∆A1 .
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The generated topology can be very perverse and not every class of algorithms is closed under search.

However, we do have the following useful theorem when Ω (and Λ) is a particularly simple discrete space,

which shows that the SCI corresponds to the Baire hierarchy index.

Theorem 2.3.5. Suppose that Ω = {0, 1}N = {{ai}i∈N : ai ∈ {0, 1}} with the set of evaluation functions

Λ equal to the set of pointwise evaluations {λj(a) := aj : j ∈ N} and letM be an arbitrary separable

metric space with at least two separated points. Endow Ω with the product topology, T̃ , induced by the

discrete topology on {0, 1} and consider the Baire hierarchy, {Bξ((Ω, T̃ ),M) = Bξ}ξ<ω1
, of functions

f : Ω→M. Then for any problem function Ξ : Ω→M and m ∈ N,

{Ξ,Ω,Λ} ∈ ∆G
m+1 ⇔ Ξ ∈ Bm.

In other words, the SCI corresponds to the Baire hierarchy index.

Remark 2.3.6. The proof will make clear that we can replace Ω by {0, 1}N×N or any other such prod-

uct space (induced by discrete topology) of the form AB with A,B countable, with Λ the corresponding

component-wise evaluations, as long asM has at least |A| jointly separated points and is separable.

Proof. First we show that general algorithms are closed under search and that the topology T in Proposition

2.3.4 is equal to the product topology T̃ . Without loss of generality we can assume that I is well-ordered

by ≺. Given x ∈ Ω, let k ∈ N be minimal such that there exists i ∈ I with x ∈ ∩l≤niΓ−1
i,l (Ui,l)

and ΛΓi,l(x) ⊂ {λj : j ≤ k} for l ≤ ni. Let i0 be the ≺-least index such that this holds for k and

define Γ(x) = ci0 . The well-ordering of I implies that Γ is a general algorithm and it clearly satisfies the

requirements in the definition of closed under search. Note that this part of the proof only uses countability

of Λ.

To equate the topologies, suppose that Γ ∈ ∆G
0 is a general algorithm. For each a ∈ Ω, ΛΓ(a) is finite

and we can assume without loss of generality that it is equal to {λj : j ≤ I(a)} for some finite I(a). In

particular, there exists an open set Ua such that any b ∈ Ua has λj(b) = λj(a) for j ≤ I(a) and hence

Γ(b) = Γ(a). Then for any open set B ⊂M

Γ−1(B) =
⋃

a∈Γ−1(B)

Ua

is open. Hence each Γ is continuous with respect to the product topology on Ω. It follows that T ⊂ T̃ .

To prove the converse, we must show that each projection map λj is continuous with respect to T . Let

x1, x2 be separated points inM and consider f : {0, 1} → M with f(0) = x1 and f(1) = x2. Then the

composition f ◦ λj is a general algorithm and hence continuous with respect to T . But this implies that λj

is continuous. It follows from Proposition 2.3.4 that {Ξ,Ω,Λ} ∈ ∆G
1 if and only if Ξ is continuous.

Now the space (Ω, T ) is zero-dimensional andM is separable, hence by Theorem 2.3.2, any element

of B1 is a limit of continuous functions. The converse holds in greater generality. It follows that Ξ ∈ Bm if

and only if there are fnm,...,n1
∈ ∆G

1 with

Ξ(a) = lim
nm→∞

... lim
n1→∞

fnm,...,n1
(a). (2.3.1)

If this holds then there exists general algorithms Γnm,...,n1 such that for all a ∈ Ω,

d(Γnm,...,n1(a), fnm,...,n1(a)) ≤ 2−n1
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and hence

lim
nm→∞

... lim
n1→∞

Γnm,...,n1
(a) = Ξ(a)

so that {Ξ,Ω,Λ} ∈ ∆G
m+1. Conversely if {Ξ,Ω,Λ} ∈ ∆G

m+1 with tower of algorithms Γnm,...,n1
, then

since each general algorithm is continuous, (2.3.1) holds with fnm,...,n1(a) = Γnm,...,n1 .

2.3.3 Combinatorial problems high up in the SCI hierarchy

We can now combine the results of the previous two subsections and obtain combinatorial array prob-

lems high up in the SCI hierarchy. Let k ∈ N≥2 and let Ωk denote the collection of all infinite arrays

{am1,...,mk}m1,...,mk∈N with entries am1,...,mk ∈ {0, 1}. As usual Λk is the set of component-wise evalua-

tions/projections. Consider the formulas

P (a,m1, ...,mk−2) =

1, if ∃i ∀j ∃n > j s.t. am1,...,mk−2,n,i = 1

0, otherwise
,

Q(a,m1, ...,mk−2) =

1, if ∀∞i∀j ∃n > j s.t. am1,...,mk−2,n,i = 1

0, otherwise
,

where ∀∞ means ‘for all but a finite number of’. In words, P decides whether the corresponding matrix has

a column with infinitely many 1’s, whereas Q decides whether the matrix has only finitely many columns

with only finitely many 1’s. For R = P,Q consider the problem function for a ∈ Ωk

Ξk,R(a) =

∃m1 ∀m2 ... ∀mk−2R(a,m1, ...,mk−2), if k is even

∀m1 ∃m2 ... ∀mk−2R(a,m1, ...,mk−2), otherwise
,

that is, so that all quantifier types alternate.

Theorem 2.3.7. LetM be either {0, 1} with the discrete metric or [0, 1] with the usual metric and consider

the above problems {Ξk,Ωk,M,Λk}. For k ∈ N≥2 and R = P,Q,

∆G
k+1 63 {Ξk,R,Ωk,M,Λk} ∈ ∆A

k+2.

In other words, we can solve the problem via a height k + 1 arithmetic tower but it is impossible to do so

with a height k general tower.

Proof. We will deal with the case of R = P since the case of R = Q is completely analogous. It is easy to

see that {Ξk,P ,Ωk,M,Λk} ∈ ∆A
k+2. First consider the case k = 2 and set

Γn3,n2,n1
(a) = max

j≤n3

χ(n2,∞)

(
n1∑
i=1

ai,j

)
.

This is the decision problem that decides whether there exists a column with index at most n3 such that

there are at least n2 1’s in the first n1 rows. This is clearly an arithmetic tower and it is straightforward

to show that this converges to Ξ2,P inM (in either of the {0, 1} and [0, 1] cases). For k > 2 we simply

alternate taking products (which corresponds to minima in this case) and maxima. Explicitly, we set

Γnk+1,...,n1
(a) =


max

m1≤nk+1

nk∏
m2=1

...

n4∏
mk−2=1

{
max
j≤n3

χ(n2,∞)

(
n1∑
i=1

am1,...,mk−2,i,j

)}
, if k is even

nk+1∏
m1=1

max
m2≤nk

...

n4∏
mk−2=1

{
max
j≤n3

χ(n2,∞)

(
n1∑
i=1

am1,...,mk−2,i,j

)}
, otherwise.
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Again, this is an arithmetic tower and it is straightforward to show that this converges to Ξk,P inM. It also

holds that {Ξk,P ,Ωk,M,Λk} ∈ ΣAk+1 if k is even and {Ξk,P ,Ωk,M,Λk} ∈ ΠA
k+1 if k is odd (not to be

confused with the notation for the Borel hierarchy).

Recall the topology T on Ωk form Theorem 2.3.5. For the lower bound we note that P is Σ0
3 complete

(in the literature it is known as the problem ‘S3’, see for example [KL87] section 23). This is terminology

from the Wadge hierarchy, but in our case since (Ωk, T ) is zero-dimensional, a theorem of Wadge implies

that this means that P is the indicator function of a set, also denoted by P , which lies in Σ0
3(Ωk) but not

Π0
3(Ωk). It also follows that Ξk,P is Σ0

k+1(Ωk) complete if k is even and Π0
k+1(Ωk) complete otherwise.

Now suppose for a contradiction that {Ξk,P ,Ωk,M,Λk} ∈ ∆G
k+1. But then Theorem 2.3.5 implies that

Ξk,P ∈ Bk(Ωk,M) and hence by Theorem 2.3.2, Ξk,P is Σ0
k+1(Ωk) measurable. Ξk,P is the indicator

function of set, also denoted by Ξk,P , which is either Σ0
k+1(Ωk) or Π0

k+1(Ωk) complete depending on the

parity of k. But 0 and 1 are separated inM and hence since Ξk,P is Σ0
k+1(Ωk) measurable, Ξk,P and its

complement both lie in Σ0
k+1(Ωk). It follows that Ξk,P ∈ Σ0

k+1(Ωk) ∩Π0
k+1(Ωk), contradicting the stated

completeness.

Throughout this course, we will make use of these theorem and analogous results for similar decision

problems. In particular, we will use Ω̃ to denote Ωk and consider

Ξ̃1 = Ξ2,P , Ξ̃2 = Ξ2,Q, Ξ̃3 = Ξ3,P , Ξ̃4 = Ξ3,Q.

We now have the framework and tools to study a range of infinite-dimensional spectral problems.
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Chapter 3

Computing Spectra with Error Control

In this chapter, we consider the problem of computing the spectrum. This chapter is based on [CRH19,

CHns]. The algorithms we develop compute spectra of a wide class of operators defined on separable

Hilbert spaces. Moreover, the algorithms have the following desirable properties:

• They converge to the entire spectral set and avoid spectral pollution.

• They can be efficiently implemented.

• They are local and hence inherently parallelisable.

• They provide bounds on the error of the output, which converge to zero.

• In the self-adjoint (or normal) case, they provide ‘approximate states’.

It has been a long-standing open problem to design such methods, even in the case of general one-

dimensional discrete self-adjoint Schrödinger operators. Previous methods aimed at tackling the general

problem either suffer from spectral pollution or do not converge to the full spectrum. Even in the cases

where the finite section method converges, it only gives a ∆2 algorithm (no error control). The problem

of detecting spectral pollution is very difficult (see §7.3.2 for classification in the SCI hierarchy). The

algorithms presented here are optimal in the sense of the SCI hierarchy described in Chapter 2, and can be

used directly in many models in the physical sciences [JCN+21, CHTW21].

The cases covered include unbounded operators on graphs and partial differential operators (PDOs),

where we consider the determination of the spectrum from the coefficients of the PDO. In the case that the

coefficients have locally bounded total variation on compact sets, we do this via point evaluations of the

coefficients. The main idea, as outlined in §3.1.3, is to approximate the reciprocal of the resolvent norm,

‖R(z,A)‖−1, uniformly on compact subsets of C, and use a local search routine.

3.1 Main Results

The spectrum (and pseudospectrum) of unbounded operators are closed but not necessarily bounded. When

approximating the spectrum, we assume the operator has non-empty spectrum (for the SCI of testing if the

spectrum intersected with a compact set is empty, see Theorem 3.1.6) and hence non-empty pseudospectra.

Hence, we must introduce a metric on the set of non-empty closed subsets of C, denoted by Cl(C).
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Definition 3.1.1 (Attouch–Wets topology). The Attouch–Wets metric is defined by

dAW(C1, C2) =

∞∑
n=1

2−n min

{
1, sup
|x|≤n

|dist(x,C1)− dist(x,C2)|

}
,

for C1, C2 ∈ Cl(C).

Throughout this section we take our metric space (M, d) to be (Cl(C), dAW). One should view this

metric as a generalisation of the familiar Hausdorff metric on compact subsets defined in. We must be

careful when defining the pseudospectrum, since the resolvent norm of an unbounded operator can be

constant on open sets [Sha08]. The following definition agrees with the usual one for bounded operators.

Definition 3.1.2. Let A be a closed and densely defined operator acting on a separable Hilbert space H
and ε > 0. We define the (ε−)pseudospectrum of A by

Spε(A) = cl
({
z ∈ C : ‖R(z,A)‖−1

< ε
})

,

the closure of the set of points with resolvent norm greater than 1/ε.

The pseudospectrum Spε(A) [KSTV15, TE05] is a generalisation of the spectrum (and measure of its

stability), which is popular for non-Hermitian problems. The main results of this chapter, Theorems 3.1.4

and 3.1.9 below, also hold true when restricting the classes of operators to Schrödinger operators (on lattice

systems in the discrete case and on L2(Rd) or similar domains in the continuous case) and hence our results

have direct implications within the computational boundaries in quantum mechanics [CRH19].

3.1.1 Spectra of unbounded operators on graphs

Consider a possibly unbounded operator A with domain D(A) ⊂ l2(N) and non-empty spectrum, and

Ξ1(A) = Sp(A) and Ξ2(A) = Spε(A).

We have to define the domain Ω and evaluation functions Λ. Let C(l2(N)) denote the set of closed, densely

defined operators on l2(N), and consider the following assumptions.

(1) The subspace span{en : n ∈ N} forms a core for both A and A∗ ({ej}j∈N is the canonical basis).

(2) Given any f : N→ N with f(n) ≥ n define

Df,n(A) := max
{∥∥(I − Pf(n))APn

∥∥,∥∥(I − Pf(n))A
∗Pn

∥∥}, (3.1.1)

where Pn is the projection onto the span of {e1, . . . , en}. We say that an operator has bounded

dispersion with respect to f if limn→∞Df,n(A) = 0. We will assume knowledge of a sequence

{cn}n∈N ⊂ Q that converges to zero with Df,n(A) ≤ cn.

(3) We assume knowledge of a sequence {gm} of strictly increasing continuous functions gm : R≥0 →
R≥0 vanishing at 0 and with limx→∞ gm(x) =∞ such that

gm(dist(z,Sp(A))) ≤ ‖R(z,A)‖−1
, ∀z ∈ Bm(0). (3.1.2)

In this case we say that A has resolvent bounded by {gm}. Note that this implicitly assumes that the

spectrum of A is non-empty (which always holds for bounded operators).

[DRAW PICTURE ON BOARD]
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Bounded dispersion in (3.1.1) generalises the notion of a banded or sparse matrix to knowledge of off-

diagonal decay. Given any operator with assumption (1), there exists an f such that limn→∞Df,n(A) = 0.

The function f will be used to construct certain rectangular truncations of our operators (see §3.1.3), which

is a key difference to previous methods that typically use square truncations.

To handle non-normal operators, we need to be able to control the resolvent as in (3.1.2). If A has

Sp(A) 6= ∅, then a simple compactness argument implies the existence of such a sequence of continuous

functions. Exercise: Prove this! Suppose that A is bounded and we can take g = gm, then we can view

the function g as a measure of stability of the spectrum of A through the formula

Spε(A) =
⋃

B∈B(l2(N)),‖B‖≤ε

Sp(A+B).

Hence, the functions {gm} generalise the notion of condition number in the problem of computing Sp(A).

Note that if our operator is normal, we can simply choose the functions gm(x) = g(x) = x through the

identity dist(z,Sp(A)) = ‖R(z,A)‖−1. Exercise: Prove this! There are examples where such functions

are known for non-normal operators, such as perturbations of self-adjoint operators [Gil03].

Defining Ω and Λ

Let f be as described in assumption (2) above, and Ω̂ be the class of all A ∈ C(l2(N)) such that (1) and (2)

hold and such that the spectrum is non-empty. Given a sequence as described in (3), let Ωg be the class of

all A ∈ Ω̂ such that (3.1.2) holds. We also let ΩD denote the operators in Ω̂ that are diagonal.

Operators on graphs: For operators on graphs, consider any connected, undirected graph G, such the set

of vertices V = V (G) is countably infinite. We consider operators on l2(V ) that are closed, densely defined

and of the form

A =
∑
v,w∈V

α(v, w) |v〉 〈w| , (3.1.3)

for some α : V × V → C. We have also used the classical Dirac notation in (3.1.3) and identified any

v ∈ V by the element in ψv ∈ l2(V ), such that ψv(v) = 1 and ψv(w) = 0 for w 6= v. When writing this,

we assume that the linear span of such vectors forms a core of both A and its adjoint. We also assume that

for any v ∈ V , the set of vertices w with α(v, w) 6= 0 or α(w, v) 6= 0 is finite. We then let ΩG be the class

of all such A with non-empty spectrum and ΩGg operators in ΩG of known {gm} such that (3.1.2) holds. We

also assume that with respect to some given enumeration {e1, e2, ...} of V , we have access to a function

S : N→ N such that if m > S(n) then α(en, em) = α(em, en) = 0.

Remark 3.1.3 (Defining Λ). For operators on l2(N), Λ contains the collection of matrix value evaluation

functions, the functions describing the dispersion, and the family of the functions {gm} controlling the

growth of the resolvent. For operators on l2(V ), Λ contains the functions α, the function S and, in the case

of ΩGg , the family gm for m ∈ N.

Theorem 3.1.4. Let Ξ1 be the problem function Sp(·) and Ξ2 be the problem function Spε(·) for ε > 0,

where these map into the metric space (Cl(C), dAW). Then

∆G
1 63 {Ξ1,ΩD} ∈ ΣA1 , ∆G

1 63 {Ξ1,Ωg} ∈ ΣA1 , ∆G
1 63 {Ξ1,Ω

G
g } ∈ ΣA1 ,

∆G
1 63 {Ξ2,ΩD} ∈ ΣA1 , ∆G

1 63 {Ξ2, Ω̂} ∈ ΣA1 , ∆G
1 63 {Ξ2,Ω

G} ∈ ΣA1 .

For Ξ2, the constructed algorithm’s output is always a subset of the true pseudospectrum.
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Remark 3.1.5. If any of the information given through the functions f or {gm} is missing, then the spectral

problem does not lie in ∆G
2 (i.e., it cannot be computed in one limit, regardless of the model of computa-

tion). Hence the above conditions give a characterisation of when the spectral problem can be solved

computationally in one limit. In other words, both types of information, the column decay structure and the

conditioning of the spectrum, are needed.

Finally, we consider two discrete problems which also include the case when the spectrum may be

empty. LetK be a non-empty compact set in C and denote the collection of such subsets byK(C). Consider

Ξ3 : (A,K)→ Is Sp(A) ∩K = ∅?

Ξ4 : (A,K)→ Is Spε(A) ∩K = ∅?

The information we consider available to the algorithms in the l2(N) (l2(V (G))) case is given by the matrix

elements of A (the functions α), the dispersion function f and dispersion bounds {cn} (the finite sets Sv),

and a sequence of finite sets Kn ⊂ Q + iQ, with the property that dH(Kn,K) ≤ 2−(n+1). For these

problems, we take (M, d) to be {0, 1} with the discrete metric (recall that 1 is interpreted as ‘yes’ and 0 as

‘no’). Although the pseudospectrum is easier to compute as a whole, the following shows that this is not the

case for testing on a given set. Note that these discrete problems are harder than computing the spectrum.

Theorem 3.1.6. We have the following classifications for j = 3, 4:

∆G
2 63 {Ξj , Ω̂×K(C)} ∈ ΠA

2 , ∆G
2 63 {Ξj ,ΩD ×K(C)} ∈ ΠA

2 ,

∆G
2 63 {Ξj ,ΩG ×K(C)} ∈ ΠA

2 .

Furthermore, the proof will make clear that the lower bounds also hold when we restrict the allowed com-

pact sets to any fixed compact subset of R.

3.1.2 Spectra of partial differential operators

In this section, we provide classification results for general differential operators. Under very general

assumptions, we obtain ΣA1 classifications for the spectrum. Moreover, the computational problem can

also be used for computer-assisted proofs. Finally, we establish how the problem makes a jump in the SCI

hierarchy. In particular, with slightly weaker assumptions, the spectral problem /∈ ΣG1 ∪ΠG
1 .

For N ∈ N, consider the operator formally defined on L2(Rd) by

Tu(x) =
∑

k∈Zd≥0
,|k|≤N

ak(x)∂ku(x), (3.1.4)

where we use multi-index notation with |k| = max{|k1| , ..., |kd|} and ∂k = ∂k1
x1
∂k2
x2
...∂kdxd . We will assume

that the coefficients ak(x) are complex-valued measurable functions on Rd. Suppose also that T can be

defined on an appropriate domain D(T ) such that T is closed and has a non-empty spectrum. Our aim is to

compute the spectrum and pseudospectrum from the functions ak.

Let Ω consist of all such T such that the following assumptions hold:

(1) The set C∞0 (Rd) of smooth, compactly supported functions forms a core of T and its adjoint T ∗.
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(2) The adjoint operator T ∗ can be initially defined on C∞0 (Rd) via

T ∗u(x) =
∑

k∈Zd≥0
,|k|≤N

ãk(x)∂ku(x),

where ãk(x) are complex-valued measurable functions on Rd.

(3) For each ak(x) and ãk(x), there exists a positive constant Ak and an integer Bk such that

|ak(x)| , |ãk(x)| ≤ Ak
(

1 + |x|2Bk
)
,

almost everywhere on Rd, that is, we have at most polynomial growth.

(4) As in §3.1.1, we have access to functions {gm} (see (3.1.2) and the assumptions on {gm}) such that

gm(dist(z,Sp(T ))) ≤ ‖R(z, T )‖−1
, ∀z ∈ Bm(0).

(5) Sp(T ) (and hence Spε(T )) is non-empty.

Hence we consider the operator T defined as the closure of T acting on C∞0 (Rd). The initial domain

C∞0 (Rd) is commonly encountered in applications, and it is straightforward to adapt our methods to other

initial domains such as Schwartz space.

Remark 3.1.7 (The open problem of computing spectra of differential operators). There is no existing gen-

eral theory or method guaranteeing convergence for PDOs (3.1.4), even when each ak is a polynomial. The

standard procedure is to discretise the differential operator via methods such as finite differences, truncate

and then handle the finite matrix with standard algorithms designed for finite-dimensional problems. Such

an approach does not always converge, and would at best give a ∆A
2 classification. Despite this, we prove

below that one can achieve Σ1 classification for a large class of operators.

In the numerical applications, we will demonstrate this on anharmonic oscillators of the form

H = −∆ +

d∑
j=1

(ajxj + bjx
2
j ) +

∑
|α|≤M

c(α)xα,

where aj , bj , c(α) ∈ R (as well as more general Schrödinger operators). The multi-indices α are chosen

such that
∑
|α|≤M c(α)xα is bounded from below. To the best of our knowledge, this algorithm is the first

that computes the spectrum of such operators with error control in the sense of ΣA1 . This has a wide number

of applications and the problem has received a lot of attention [BO13, Wen96, BW73, FMT89].

Remark 3.1.8. Throughout this section, the functions {gm} are not needed to compute the pseudospectrum.

We consider the computation of the spectra/pseudospectra of operators T ∈ Ω from evaluations of the

functions ak and ãk. For dimension d and r > 0 consider the space

Ar = {f ∈M([−r, r]d) : ‖f‖∞ + TV[−r,r]d(f) <∞},

where M([−r, r]d) denotes the set of measurable functions on the hypercube [−r, r]d and TV[−r,r]d the

total variation norm in the sense of Hardy and Krause (see [Nie92]). This space becomes a Banach algebra

when equipped with the norm

‖f‖Ar = ‖f‖∞ + σTV[−r,r]d(f)
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with σ = 3d + 1 (see [BT89]). We will assume that each of the (appropriate restrictions of) ak and ãk lie

in Ar for all r > 0 and that we are given a sequence of positive numbers such that

‖ak‖An , ‖ãk‖An ≤ cn, cn > 0, n ∈ N, |k| ≤ N. (3.1.5)

The extra readable information is completely analogous to using bounded dispersion for matrix problems,

and we shall see that it cannot be omitted if one wishes to gain error control in the sense of Σ1. Let

Ω1
TV = {T ∈ Ω | such that (1) – (5) and (3.1.5) hold}.

In this case, Λ1 contains functions that allow us to sample the functions {gm}m∈N,{ak, ãk}|k|≤N and the

constants {Ak, Bk}|k|≤N , {cn}n∈N. Consider the weaker assumption on Λ1 that we can evaluate bn > 0

(and not the Ak, Bk and the cn) such that

sup
n∈N

max{‖ak‖An , ‖ãk‖An : |k| ≤ N}
bn

<∞.

With a slight abuse of notation, we use Ω2
TV to denote the class of problems where we have this weaker

requirement. We can now define the mappings

Ξ1
j ,Ξ

2
j : Ω1

TV,Ω
2
TV 3 T 7→

Sp(T ) ∈MAW, j = 1

Spε(T ) ∈MAW, j = 2.

Theorem 3.1.9. Let Ξ1
j ,Ξ

2
j ,Ω

1
TV and Ω2

TV be as above. Then for j = 1, 2

∆G
1 63 {Ξ1

j ,Ω
1
TV} ∈ ΣA1 ,

ΣG1 ∪ΠG
1 63 {Ξ2

j ,Ω
2
TV} ∈ ∆A

2 .

3.1.3 Idea of the algorithms

To explain the idea of the algorithms, consider the case of computing the spectrum of a sparse self-adjoint

A ∈ Ωg , such that the function f , which bounds the dispersion, also describes the sparsity structure in the

sense that Ai,j = 0 if j > f(i) or i > f(j). Given z, we consider the rectangular matrix Pf(n)(A −
zI)Pn. This was discussed in Section 1.2.2. In the case of finite range lattice models in condensed matter

physics, which we can view as sparse matrices acting on l2(N), there is a nice physical interpretation. The

rectangular truncation Pf(n)APn contains all of the interactions of the first n sites without needing to apply

boundary conditions. Using this, we approximate

En(z) ≈ σinf(Pf(n)(A− zI)|Pn(l2(N))).

This corresponds to an estimate of the distance of z to the spectrum and physically corresponds to approxi-

mating the square root of the ground state energy of the folded Hamiltonian Pn(A− zI)∗(A− zI)Pn. We

prove that our approximation converges uniformly to the resolvent norm ‖R(z, T )‖−1
= dist(z,Sp(A)),

on compact subsets of the complex plane. The convergence is also from above, meaning that we gain the

rigorous error bound dist(z,Sp(A)) ≤ En(z). It is precisely the use of the rectangular truncation that

leads to convergence from above, and, in general, taking a square truncation will not even converge. In the

non-normal case, we use the functions {gm} to relate the approximation of ‖R(z, T )‖−1 to dist(z,Sp(A)).

Given a region R ⊂ C of interest, the other ingredient of the algorithm is a search routine that seeks

to approximate the spectrum locally on R. We consider a grid of points GR(n) of spacing δ(n) → 0 as
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n→∞. The resolution δ(n)−1 (which can be viewed as a discretisation parameter) can be changed to allow

one to vary the number of computed solutions. In our experiments, we chose δ(n) to ensure approximately

n solutions for fair comparisons with other methods. The first step is to compute En(·) over GR(n), which

can be done in parallel. Given z ∈ GR(n), we let Iz be the points in GR(n) at distance most En(z) away

from z. We then letMz be the minimisers of En(·) over the local set Iz . Since En(·) bounds the distance to

the spectrum and converges to the true distance, Mz approximates the spectrum near the point z. This is a

completely different approach to most previous methods, which typically seek to solve a finite-dimensional

(linear and, in some cases, nonlinear) eigenvalue problem approximating the operator.

When dealing with PDOs, we construct an appropriate matrix representation of the operator with respect

to a basis {ψn} by sampling the coefficients. Our results rigorously indicate the sampling size and strategy

needed, using the theory of quasi-Monte Carlo integration. We approximate inner products of the form

〈(T − zI)ψm, (T − zI)ψn〉

directly, which allows us to compute a convergent upper bound of ‖R(z, T )‖−1. Once this is obtained, we

can use a local search routine as before.

3.2 Proofs: Unbounded Operators on Graphs

We will now prove the theorems in §3.1.1. The following argument shows that it is sufficient to consider

the l2(N) case. Given the graph G and enumeration {e1, e2, ...} of the vertices, consider the induced iso-

morphism l2(V (G)) ∼= l2(N). This induces a corresponding operator on l2(N), where the functions α now

become matrix values. For the lower bounds, we can consider diagonal operators in ΩG (that is, α(v, w) = 0

if v 6= w) with the trivial choice of S(n) = n. Hence lower bounds for ΩD translate to lower bounds for ΩG

and ΩGg . For the upper bounds, the construction of algorithms for l2(N) will make clear that given the above

isomorphism, we can compute a dispersion bounding function f for the induced operator on l2(N) simply

by taking f(n) = S(n). This has Df,n(A) = 0. Note that any of the functions in Λ for the relevant class of

operators on l2(N) can be computed via the above isomorphism using functions in Λ for the relevant class

of operators on l2(V (G)). For instance, to evaluate matrix elements, we use α(ei, ej).

There is a useful characterisation of the Attouch–Wets topology. For any closed non-empty sets C and

Cn, the convergence dAW(Cn, C)→ 0 holds if and only if dK(Cn, C)→ 0 for any compactK ⊂ C where

dK(C1, C2) = max

{
sup

a∈C1∩K
dist(a,C2), sup

b∈C2∩K
dist(b, C1)

}
,

with the convention that the supremum over the empty set is 0. This occurs if and only if for any δ > 0 and

K, there exists N such that if n > N then Cn ∩K ⊂ C +Bδ(0) and C ∩K ⊂ Cn +Bδ(0). Furthermore,

it is enough to consider K of the form Bm(0), the closed ball of radius m about the origin for m ∈ N, for

m large. Throughout this section we take our metric space (M, d) to be (Cl(C), dAW).

Remark 3.2.1 (A note on the empty set). There is a slight subtlety regarding the empty set. It could be

the case that the output of our algorithm is the empty set and hence Γn(A) does not map to the required

metric space. However, the proofs will make clear that for large n, Γn(A) is non-empty and we gain

convergence (this is also very rarely a problem in practice for n & 10). By successively computing Γn(A)

and outputting Γm(n)(A), wherem(n) ≥ n is minimal with Γm(n)(A) 6= ∅, we see that this does not matter

for the classification, but the algorithm in this case is adaptive.
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The following lemma is a useful criterion for determining ΣA1 error control in the Attouch–Wets topol-

ogy and will be used in the proofs without further comment.

Lemma 3.2.2. Suppose that Ξ : Ω → (Cl(C), dAW) is a problem function and Γn is a sequence of

arithmetic algorithms with each output a finite set such that

lim
n→∞

dAW(Γn(A),Ξ(A)) = 0, ∀A ∈ Ω.

Suppose also that there is a function En provided by Γn (and defined over the output of Γn), such that

lim
n→∞

sup
z∈Γn(A)∩Bm(0)

En(z) = 0

for all m ∈ N and such that

dist(z,Ξ(A)) ≤ En(z), ∀z ∈ Γn(A).

Then:

1. For each m ∈ N and given Γn(A), we can compute in finitely many arithmetic operations and

comparisons a sequence of non-negative numbers amn → 0 (as n→∞) such that

Γn(A) ∩Bm(0) ⊂ Ξ(A) +Bamn (0).

2. Given Γn(A), we can compute in finitely many arithmetic operations and comparisons a sequence of

non-negative numbers bn → 0 such that

Γn(A) ⊂ An

for some An ∈ Cl(C) with dAW(An,Ξ(A)) ≤ bn.

Hence we can convert Γn to a ΣA1 tower using the sequence {bn} by taking subsequences if necessary.

Exercise: Prove Lemma 3.2.2.

To build our algorithms, we need to characterise the reciprocal of the resolvent norm in terms of the

injection modulus. For A ∈ C(l2(N)) define the injection modulus as

σinf(A) = inf{‖Ax‖ : x ∈ D(A), ‖x‖ = 1}, (3.2.1)

and define the function

γ(z,A) = min{σinf(A− zI), σinf(A
∗ − z̄I)}.

Lemma 3.2.3. For A ∈ C(l2(N)), γ(z,A) = 1/ ‖R(z,A)‖, where R(z,A) denotes the resolvent (A −
zI)−1 and we adopt the convention that 1/ ‖R(z,A)‖ = 0 if z ∈ Sp(A).

Exercise: Prove Lemma 3.2.3.

Suppose we have a sequence of functions γn(z,A) that converge uniformly to γ(z,A) on compact

subsets of C. Define the grid

Grid(n) =
1

n
(Z + iZ) ∩Bn(0). (3.2.2)

For a strictly increasing continuous function g : R≥0 → R≥0, with g(0) = 0 and limx→∞ g(x) = ∞, for

n ∈ N and y ∈ R≥0 define

CompInvg(n, y, g) = min{k/n : k ∈ N, g(k/n) > y}. (3.2.3)
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Note that CompInvg(n, y, g) can be computed from finitely many evaluations of the function g. We

now build the algorithm converging to the spectrum step by step using the functions in (3.1.2). For each

z ∈ Grid(n), let

Υn,z = BCompInvg(n,γn(z,A),gd|z|e)(z) ∩ Grid(n).

If γn(z,A) >
(
|z|2 + 1

)−1

then set Mz = ∅, otherwise set

Mz = {w ∈ Υn,z : γn(w,A) = min
v∈Υn,z

γn(v,A)}.

Finally define Γn(A) = ∪z∈Grid(n)Mz . It is clear that if γn(z,A) can be computed in finitely many

arithmetic operations and comparisons from the relevant functions in Λ for each problem, then this defines

an arithmetic algorithm. If A ∈ C(l2(N)) with non-empty spectrum then there exists z ∈ Bm(0) with

γ(z,A) ≤ (m2 + 1)−1/2 and, for large n, zn ∈ Grid(n) sufficiently close to z with γ(zn, A) ≤ (|zn|2 +

1)−1. Hence, by computing successive Γn(A), we can assume that Γn(A) 6= ∅ without loss of generality

(see Remark 3.2.1).

Proposition 3.2.4. Suppose A ∈ C(l2(N)) with non-empty spectrum and we have a function γn(z,A) that

converges uniformly to γ(z,A) on compact subsets of C. Suppose also that (3.1.2) holds, namely

gm(dist(z,Sp(A))) ≤ ‖R(z,A)‖−1
, ∀z ∈ Bm(0).

Then Γn(A) converges in the Attouch–Wets topology to Sp(A) (assuming Γn(A) 6= ∅ without loss of

generality).

Proof. We use the characterisation of the Attouch–Wets topology. Suppose that m ∈ N is large such

that Bm(0) ∩ Sp(A) 6= ∅. We must show that given δ > 0, there exists N such that if n > N then

Γn(A) ∩ Bm(0) ⊂ Sp(A) +Bδ(0) and Sp(A) ∩ Bm(0) ⊂ Γn(A) +Bδ(0). Throughout the rest of the

proof we fix such anm. Let εn = ‖γn(·, A)− γ(·, A)‖∞,Bm+1(0), where the notation means the supremum

norm over the set Bm+1(0).

We deal with the second inclusion first. Suppose that z ∈ Sp(A) ∩ Bm(0), then there exists some

w ∈ Grid(n) such that |w − z| ≤ 1/n. It follows that

γn(w,A) ≤ γ(w,A) + εn ≤ dist(w,Sp(A)) + εn ≤ εn + 1/n.

By choosing n large, we can ensure that εn < (2m2+2)−1 and that 1/n ≤ (2m2+2)−1 so that γn(w,A) <

(|w|2 + 1)−1. It follows that Mw is non-empty. If y ∈Mw then

|y − z| ≤ |w − z|+ |y − w| ≤ 1/n+ 1/n+ g−1
dwe(γn(w,A)).

But the gk’s are non-increasing in k, strictly increasing continuous functions with gk(0) = 0. Since

γn(w,A) ≤ εn + 1/n, it follows that

|y − z| ≤ 2/n+ g−1
m+1(εn + 1/n). (3.2.4)

There exists N1 such that if n ≥ N1 then (3.2.4) holds and 2/n+ g−1
m+1(εn + 1/n) ≤ δ and this gives the

second inclusion.

For the first inclusion, suppose for a contradiction that this is false. Then there exists nj → ∞, δ > 0

and znj ∈ Γnj (A)∩Bm(0) such that dist(znj ,Sp(A)) ≥ δ. Then znj ∈Mwnj
for somewnj ∈ Grid(nj).

Let

I(j) = BCompInvg(nj ,γnj (wnj ,A),gd|wnj |e
)(wnj ) ∩ Grid(nj),
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the set over which we compute minima of γnj . Let ynj ∈ Sp(A) be of minimal distance to wnj (such

a ynj exists since the spectrum restricted to any compact ball is compact). It follows that
∣∣ynj − wnj ∣∣ ≤

g−1
d|wnj |e

(γ(wnj , A)). A simple geometrical argument (which also works when we restrict everything to the

real line for self-adjoint operators), shows that there must be a vnj in I(j) so that∣∣vnj − ynj ∣∣ ≤ 4

nj
+ g−1

d|wnj |e
(γ(wnj , A))− g−1

d|wnj |e
(γnj (wnj , A)).

Since znj minimises γnj over I(j) and Mwnj
is non-empty, it follows that

γ(znj , A) ≤ γnj (znj , A) + εnj ≤ min

{
1∣∣wnj ∣∣2 + 1

, γnj (vnj , A)

}
+ εnj .

This implies that

δ ≤ dist(znj ,Sp(A)) ≤ g−1
m

(
min

{
1∣∣wnj ∣∣2 + 1

, γnj (vnj , A)

}
+ εnj

)
, (3.2.5)

where we recall that g−1
m is continuous. It follows that the wnj must be bounded and hence so are the vnj .

Due to the local uniform convergence of γn to γ, it follows that

4

nj
+ g−1

d|wnj |e
(γ(wnj , A))− g−1

d|wnj |e
(γnj (wnj , A))→ 0, as nj →∞.

But then

γ(vnj , A) ≤ dist(vnj ,Sp(A)) ≤
∣∣vnj − ynj ∣∣→ 0.

Again the local uniform convergence implies that γnj (vnj , A)→ 0, which contradicts (3.2.5) and completes

the proof.

Next, given such a sequence γn, we would like to provide an algorithm for computing the pseudospec-

trum. However, care must be taken in the unbounded case since the resolvent norm can be constant on open

subsets of C [Sha08]. Simply taking

Grid(n) ∩ {z : γn(z,A) ≤ ε}

is not guaranteed to converge, as can be seen in the case that γn is identically γ and A is such that

‖R(z,A)‖−1
= ε has non-empty interior. To get around this, we will need an extra assumption on the

functions γn.

Lemma 3.2.5. SupposeA ∈ C(l2(N)) with non-empty spectrum and let ε > 0. Suppose we have a sequence

of functions γn(z,A) that converge uniformly to ‖R(z,A)‖−1 on compact subsets of C. Set

Γεn(A) = Grid(n) ∩ {z : γn(z,A) < ε}.

For large n, Γεn(A) 6= ∅ so we can assume this without loss of generality. Suppose also ∃N ∈ N (pos-

sibly dependent on A but independent of z) such that if n ≥ N then γn(z,A) ≥ ‖R(z,A)‖−1. Then

dAW(Γεn(A),Spε(A))→ 0 as n→∞.

Proof. Since the pseudospectrum is non-empty, for large n, Γεn(A) 6= ∅ so by our usual argument of

computing successive Γεn (see Remark 3.2.1) we may assume that this holds for all n without loss of

generality. We use the characterisation of the Attouch–Wets topology. Suppose that m is large such that

28



3.2. Proofs: Unbounded Operators on Graphs CHAPTER 3. Computing Spectra with Error Control

Bm(0) ∩ Spε(A) 6= ∅. ∃N ∈ N such that if n ≥ N then γn(z,A) ≥ ‖R(z,A)‖−1 and hence Γεn(A) ∩
Bm(0) ⊂ Spε(A). Hence we must show that given δ > 0, there exists N1 such that if n > N1 then

Spε(A) ∩ Bm(0) ⊂ Γεn(A) +Bδ(0). Suppose for a contradiction that this were false. Then there exists

znj ∈ Spε(A) ∩ Bm(0), δ > 0 and nj → ∞ such that dist(znj ,Γ
ε
nj (A)) ≥ δ. Without loss of generality,

we can assume that znj → z ∈ Spε(A) ∩ Bm(0). There exists some w with ‖R(w,A)‖−1
< ε and

|z − w| ≤ δ/2. Assuming nj > m + δ, there exists ynj ∈ Grid(nj) with
∣∣ynj − w∣∣ ≤ 1/nj . It follows

that

γnj (ynj , A) ≤
∣∣γnj (ynj , A)− γ(ynj , A)

∣∣+
∣∣γ(w,A)− γ(ynj , A)

∣∣+ ‖R(w,A)‖−1
.

But γ is continuous and γnj converges uniformly to γ on compact subsets. Hence for large nj , it follows

that γnj (ynj , A) < ε so that ynj ∈ Γεnj (A). But
∣∣ynj − z∣∣ ≤ |z − w|+ ∣∣ynj − w∣∣ ≤ δ/2 + 1/nj , which is

smaller than δ for large nj . This gives the required contradiction.

Now suppose thatA ∈ Ω̂ and letDf,n(A) ≤ cn. The following shows that we can construct the required

sequence γn(z,A), each function output requiring finitely many arithmetic operations and comparisons of

the corresponding input information.

Theorem 3.2.6. Let A ∈ Ω̂ and define the function

γ̃n(z,A) = min{σinf(Pf(n)(A− zI)|Pn(l2(N))), σinf(Pf(n)(A
∗ − z̄I)|Pn(l2(N)))}.

We can compute γ̃n up to precision 1/n using finitely many arithmetic operations and comparisons. We

call this approximation γ̂n and set

γn(z,A) = γ̂n(z,A) + cn + 1/n.

Then γn(z,A) converges uniformly to γ(z,A) on compact subsets of C and γn(z,A) ≥ γ(z,A).

Proof. We will first prove that σinf((A − zI)|Pn(l2(N))) ↓ σinf(A − zI) as n → ∞. It is trivial that

σinf((A − zI)|Pn(l2(N))) ≥ σinf(A − zI) and that σinf((A − zI)|Pn(l2(N))) is non-increasing in n. Using

Lemma 3.2.3, let ε > 0 and x ∈ D(A) such that ‖x‖ = 1 and ‖(A− zI)x‖ ≤ σinf(A − zI) + ε. Since

span{en : n ∈ N} forms a core of A, APnjxnj → Ax and Pnjxnj → x for some nj → ∞ and some

sequence of vectors xnj that we can assume have norm 1. It follows that for large nj

σinf((A− zI)|Pnj (l2(N))) ≤
∥∥(A− zI)Pnjxnj

∥∥∥∥Pnjxnj∥∥ → ‖(A− zI)x‖ ≤ σinf(A− zI) + ε.

Since ε > 0 was arbitrary, this shows the convergence of σinf((A− zI)|Pn(l2(N))). The fact that span{en :

n ∈ N} forms a core of A∗ can also be used to show that σinf((A− zI)∗|Pn(l2(N))) ↓ σinf(A
∗ − zI).

Next we will use the assumption of bounded dispersion. For any bounded operators B,C, it holds that

|σinf(A)− σinf(B)| ≤ ‖A−B‖ . The definition of bounded dispersion now implies that∣∣γ̃n(z,A)−min{σinf((A− zI)|Pn(l2(N))), σinf((A− zI)∗|Pn(l2(N)))}
∣∣ ≤ cn.

The monotone convergence of min{σinf((A − zI)|Pn(l2(N))), σinf((A − zI)∗|Pn(l2(N)))}, together with

Dini’s theorem, imply that γ̃n(z,A) converges uniformly to the continuous function γ(z,A) on compact

subsets of C with γ̃n(z,A) + cn ≥ γ(z,A).
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The proof will be complete if we can show that we can compute γ̃n(z,A) to precision 1/n using finitely

many arithmetic operations and comparisons. To do this, consider the matrices

Bn(z) = Pn(A− zI)∗Pf(n)(A− zI)Pn, Cn(z) = Pn(A− zI)Pf(n)(A− zI)∗Pn.

By an interval search routine, we can determine the smallest l ∈ N such that at least one ofBn(z)−(l/n)2I

or Cn(z)− (l/n)2I has a negative eigenvalue. We then output l/n to get the 1/n bound.

Note that by taking successive minima, υn(z,A) = min1≤j≤n γn(z,A), we can obtain a sequence of

functions υn that converge uniformly on compact subsets of C to γ(z,A) monotonically from above. Hence

without loss of generality, we will always assume that γn have this property.

Proof of Theorem 3.1.4. By considering bounded diagonal operators, it is straightforward to see that none

of the problems (spectra or pseudospectra) lie in ∆G
1 . We first deal with convergence of height one arith-

metical towers. For the spectrum, we use the function γn described in Theorem 3.2.6 together with Propo-

sition 3.2.4 and its described algorithm. For the pseudospectrum, we use the same function γn described in

Theorem 3.2.6 and convergence follows from using the algorithm in Proposition 3.2.5.

We are left with proving that our algorithms have ΣA1 error control. For any A ∈ Ω̂, the output of

the algorithm in Proposition 3.2.5 is contained in the true pseudospectrum since γn(z,A) ≥ γ(z,A) =

‖R(z,A)‖−1. Hence we need only show that the algorithm in Proposition 3.2.4 provides ΣA1 error control

for input A ∈ Ωg . Denote the algorithm by Γn and set

En(z) = CompInvg(n, γn(z,A), g−1
d|z|e)

on Γn(A) and zero on C\Γn(A). Since γn(z,A) ≥ ‖R(z,A)‖−1, the assumptions on {gm} imply that

dist(z,Sp(A)) ≤ En(z), ∀z ∈ Γn(A).

Suppose for a contradiction that En does not converge uniformly to zero on compact subsets of C. Then

there exists some compact set K, some ε > 0, a sequence nj → ∞ and znj ∈ K such that Enj (znj ) ≥ ε.

It follows that znj ∈ Γnj (A). Without loss of generality, znj → z. By convergence of Γnj (A), z ∈ Sp(A)

and hence γnj (znj , A)→ γ(z,A) = 0. Now choose M large such that K ⊂ BM (0). But then

Enj (znj ) ≤ g−1
M (γnj (znj , A)) +

1

nj
→ 0,

the required contradiction.

Remark 3.2.7. The above makes it clear that En(z) converges uniformly to the function g−1
d|z|e(γ(z,A)) as

n→∞ on compact subsets of C.

Finally, we consider the decision problems Ξ3 and Ξ4.

Proof of Theorem 3.1.6. It is clearly enough to prove the lower bounds for ΩD×K(C) and the existence of

towers for Ω̂×K(C). The proof of lower bounds for ΩD ×K(C) can also be trivially adapted to the more

restrictive versions of the problem described in the theorem.

Step 1: {Ξ3,ΩD × K(C)} 6∈ ∆G
2 . Suppose this were false, and Γn is a height one tower solving the

problem. For every A and n there exists a finite number N(A,n) ∈ N such that the evaluations from

ΛΓn(A) only take the matrix entries Aij = 〈Aej , ei〉 with i, j ≤ N(A,n) into account. Without loss of

30



3.3. Proofs: Partial Differential Operators CHAPTER 3. Computing Spectra with Error Control

generality (by shifting our argument), we assume that K ∩ [0, 1] = {0}. We will consider the operators

Am = diag{1, 1/2, ..., 1/m} ∈ Cm×m, Bm = diag{1, 1, ..., 1} ∈ Cm×m and C = diag{1, 1, ...}. Set

A =
⊕∞

m=1(Bkm ⊕Akm), where we choose an increasing sequence km inductively as follows.

Set k1 = 1 and suppose that k1, ..., km have been chosen. Sp(Bk1
⊕ Ak1

⊕ ...⊕ Bkm ⊕ Akm ⊕ C) =

{1, 1/2, ..., 1/m} and hence

Ξ3(Bk1
⊕Ak1

⊕ ...⊕Bkm ⊕Akm ⊕ C) = 0,

so there exists some nm ≥ m such that if n ≥ nm then

Γn(Bk1
⊕Ak1

⊕ ...⊕Bkm ⊕Akm ⊕ C) = 0.

Now let km+1 ≥ max{N(Bk1 ⊕ Ak1 ⊕ ... ⊕ Bkm ⊕ Akm ⊕ C, nm), km + 1}. By assumption (iii) in

Definition 2.1.1 it follows that ΛΓnm
(Bk1

⊕ Ak1
⊕ ... ⊕ Bkm ⊕ Akm ⊕ C) = ΛΓnm

(A) and hence by

assumption (ii) in the same definition that Γnm(A) = Γnm(Bk1
⊕Ak1

⊕ ...⊕Bkm ⊕Akm ⊕C) = 0. But

0 ∈ Sp(A) and so must have limn→∞ Γn(A) = 1, a contradiction.

Step 2: {Ξ4,ΩD} 6∈ ∆G
2 . The same proof as step 1, but replacing A by A+ εI works in this case.

Step 3: {Ξ3, Ω̂ × K(C)} ∈ ΠA
2 . Recall that we can compute, with finitely many arithmetic operations

and comparisons, a function γn that converges monotonically down to ‖R(z,A)‖−1 uniformly on compacts.

Set

Γn2,n1
(A) = Does there exist some z ∈ Kn2

such that γn1
(z,A) < 1/2n2?

It is clear that this is an arithmetic algorithm since each Kn is finite and that

lim
n1→∞

Γn2,n1(A) = Does there exist some z ∈ Kn2 such that ‖R(z,A)‖−1
< 1/2n2? =: Γn2(A).

If K ∩ Sp(A) = ∅, then ‖R(z,A)‖−1 is bounded below on the compact set K and hence for large n2,

Γn2
(A) = 0. However, if z ∈ Sp(A) ∩K then let zn2

∈ Kn2
minimise the distance to z. Then

‖R(zn2
, A)‖−1 ≤ dist(zn2

,Sp(A)) < 1/2n2

and hence Γn2
(A) = 1 for all n2. This also shows the ΠA

2 classification.

Step 4: {Ξ4, Ω̂×K(C)} ∈ ΠA
2 . Set

Γn2,n1
(A) = Does there exist some z ∈ Kn2

such that γn1
(z,A) < 1/2n2 + ε?,

then the same argument used in step 3 works in this case.

3.3 Proofs: Partial Differential Operators

Here we shall prove Theorem 3.1.9. The constructed algorithms involve technical error estimates with

parameters depending on these estimates. In the construction of the algorithms, our strategy will be to

reduce the problem to one handled by the proofs in §3.2. To do so, we must first select a suitable basis and

then compute matrix values.
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3.3.1 Construction of algorithms

We begin with the description for d = 1 and comment how this can easily be extended to arbitrary dimen-

sions. As an orthonormal basis of L2(R) we choose the Hermite functions

ψm(x) = (2mm!
√
π)−1/2e−x

2/2Hm(x),m ∈ Z≥0,

where Hn denotes the n-th Hermite polynomial defined by

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2).

These obey the recurrence relations

ψ′m(x) =

√
m

2
ψm−1(x)−

√
m+ 1

2
ψm+1(x) (3.3.1)

xψm(x) =

√
m

2
ψm−1(x) +

√
m+ 1

2
ψm+1(x). (3.3.2)

We let CH(R) = span{ψm : m ∈ Z≥0}. Note that since the Hermite functions decay like e−x
2/2 (up to

polynomials) and the functions ak and ãk can only grow polynomially, the formal differential operator T

and its formal adjoint T ∗ make sense as operators from CH(R) to L2(R). The next proposition says that

we can use the chosen basis.

Proposition 3.3.1. Consider an operator T ∈ Ω. Then CH(R) forms a core of both T and T ∗.

Exercise: Prove Proposition 3.3.1.

The above analysis holds in higher dimensions by considering tensor products

CH(Rd) := span{ψm1
⊗ ...⊗ ψmd |m1, ...,md ∈ Z≥0}

of Hermite functions. We will abuse notation and write ψm = ψm1 ⊗ ... ⊗ ψmd . It will be clear from

the context when we are dealing with the multi-dimensional case. In order to build the required algorithms

with ΣA1 error control, we need to select an enumeration of Zd≥0 in order to represent T as an operator

acting on l2(N). A simple way to do this is to consider successive half spheres Sn = {m ∈ Zd≥0 :

|m| ≤ n}. We list S1 as {e1, ..., er1} and given an enumeration {e1, ..., ern} of Sn, we list Sn+1\Sn
as {ern+1, ..., ern+1}. We will then list our basis functions as e1, e2, ... with ψm = eh(m). In practice,

it is often more efficient (especially for large d) to consider other orderings such as the hyperbolic cross

[Lub08b], or, in the semiclassical regime, to use Hagedorn functions [LL20]. Now that we have a suitable

basis, the next question to ask is how to recover the matrix elements of T . In §3.2 the key construction is a

function, that can be computed from the information given to us, γn(z, T ), which also converges uniformly

from above to ‖R(z, T )‖−1 on compact subsets of C. Such a sequence of functions is given by

Ψn(z, T ) := min{σinf((T − zI)|Pn(l2(N))), σinf((T
∗ − z̄I)|Pn(l2(N)))}

as long as the linear span of the basis forms a core of T and T ∗. In §3.2 we used the notion of bounded

dispersion to approximate this function. Here we have no such notion, but we can use the information given

to us to replace this. It turns out that to approximate γn(z, T ), it suffices to use the following.
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Lemma 3.3.2. Let ε > 0 and n ∈ N, and suppose that we can compute, with finitely many arithmetic

operations and comparisons, the matrices

{Wn(z)}ij = 〈(T − zI)ej , (T − zI)ei〉+ En,1ij (z)

{Vn(z)}ij = 〈(T − zI)∗ej , (T − zI)∗ei〉+ En,2ij (z)

for 1 ≤ i, j ≤ n where the entrywise errors En,1i,j and En,2i,j have magnitude at most ε. Then∣∣Ψn(z, T )2 −min{σinf(Wn), σinf(Vn)}
∣∣ ≤ nε.

It follows that if ε is known, we can compute Ψn(z, T )2 to within 2nε. If ε is unknown, then for any δ > 0,

we can compute Ψn(z, T )2 to within nε + δ. (In each case with finitely many arithmetic operations and

comparisons.)

Proof. Given {Wn(z)}ij , note that ({Wn(z)}ij + {Wn(z)}ji)/2 still has an entrywise absolute error

bounded by ε. Hence without loss of generality we can assume that the approximations Wn(z) and Vn(z)

are self-adjoint. Call the matrices with no errors W̃n(z) and Ṽn(z) then note that

min{σinf((T − zI)|Pn(l2(N))), σinf((T
∗ − z̄I)|Pn(l2(N)))}2 = min{σinf(W̃n), σinf(Ṽn)}

and∣∣∣min{σinf(W̃n), σinf(Ṽn)} −min{σinf(Wn), σinf(Vn)}
∣∣∣ ≤ max

{∥∥∥Wn − W̃n

∥∥∥ ,∥∥∥Vn − Ṽn∥∥∥} . (3.3.3)

But for a finite matrix M , we can bound ‖M‖ by its Frobenius norm
√∑

|Mij |2. Hence the right hand

side of (3.3.3) is at most nε. In order to use finitely many arithmetic operations and comparisons, we note

that given a self-adjoint positive semi-definite matrix M , we can compute σinf(M) to arbitrary precision

using finitely many arithmetic operations and comparisons via the argument in the proof of Theorem 3.2.6.

The lemma now follows.

Finally, we will need some results from the subject of quasi-Monte Carlo numerical integration, which

we use to build the algorithm. Note that with either no prior information concerning the coefficients or for

large d, this is the type of approach one would use in practice. We start with some definitions and theorems

which we include here for completeness. An excellent reference for these results is [Nie92].

Definition 3.3.3. Let {t1, ..., tj} be a sequence in [0, 1]d and let K denote all subsets of [0, 1]d of the form∏d
k=1[0, yk) for yk ∈ (0, 1]. Then we define the star discrepancy of {t1, ..., tj} to be

D∗j ({t1, ..., tj}) = sup
K∈K

∣∣∣∣∣1j
j∑

k=1

χK(tj)− |K|

∣∣∣∣∣ ,
where χK denotes the characteristic function of K.

Definition 3.3.4 ([Hal60]). For any integer b ≥ 2, the radical-inverse function ηb is defined on Z≥0 by

ηb(n) =

∞∑
j=0

aj(n)b−j−1,

where n =
∑∞
j=0 aj(n)bj is the (necessarily terminating) digit expansion of n. Given integers b1, ..., bs ≥

2, the Halton sequence {xn}n∈N ⊂ [0, 1]s in the bases b1, ..., bs is defined by

xn = (ηb1(n− 1), ηb2(n− 1), ..., ηbs(n− 1)).
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Theorem 3.3.5 ([Hal60]). If {tk}k∈N is the Halton sequence in [0, 1]d in the pairwise relatively prime

bases q1, ..., qd, then

D∗j ({t1, ..., tj}) <
d

j
+

1

j

d∏
k=1

(
qk − 1

2 log(qk)
log(j) +

qk + 1

2

)
.

Note that given d (and suitable q1,..., qd), we can easily compute in finitely many arithmetic operations

and comparisons a constant C(d) such that the above implies

D∗j ({t1, ..., tj}) < C(d)
(log(j) + 1)d

j
. (3.3.4)

The following theorem says why this is useful.

Theorem 3.3.6 (Koksma–Hlawka inequality [Nie92]). If f has bounded variation TV[0,1]d(f) on the hy-

percube [0, 1]d then for any t1, ..., tj in [0, 1]d∣∣∣∣∣1j
j∑

k=1

f(tk)−
∫

[0,1]d
f(x)dx

∣∣∣∣∣ ≤ TV[0,1]d(f)D∗j ({t1, ..., tj}).

By re-scaling, if f has bounded variation TV[−r,r]d(f) and sk = 2rtk − (r, r, ..., r)T then we obtain∣∣∣∣∣ (2r)dj
j∑

k=1

f(sk)−
∫

[−r,r]d
f(x)dx

∣∣∣∣∣ ≤ (2r)d · TV[−r,r]d(f)D∗j ({t1, ..., tj}).

Finally, in order to deal with our choice of basis, we need the following.

Lemma 3.3.7. Consider the tensor product ψm(x) := ψm1(x1) · ... · ψm1(xd) in d dimensions and let

r > 0. Then

TV[−r,r]d(ψm) ≤
(

1 + 2r
√

2(|m|+ 1)
)d
− 1.

Exercise: Prove Lemma 3.3.7.

Proposition 3.3.8. Given T ∈ Ω1
TV and ε > 0, we can approximate the matrix values

〈(T − zI)ψm, (T − zI)ψn〉 and 〈(T − zI)∗ψm, (T − zI)∗ψn〉

to within ε using finitely many arithmetical operations and comparisons of the relevant information (cap-

tured by Ξ1
j in §3.1.2) given to us in each class.

Proof. Let T ∈ Ω1
TV and ε > 0. Recall that

T =
∑
|k|≤N

ak(x)∂k, T ∗ =
∑
|k|≤N

ãk(x)∂k,

so by expanding out the inner products and also considering the case ak = 1, it is sufficient to approximate

〈ak∂kψm, aj∂jψn〉 and 〈ãk∂kψm, ãj∂jψn〉

for all relevant k, j,m and n. Due to the symmetry in the assumptions of T and T ∗, we only need to

show that one can compute the first inner product, the proof for the second one is identical. Note that

by the specific choice of the basis functions ψm, it follows that ∂kψm can be written as a finite linear

combination of tensor products of Hermite functions using the recurrence relations (the coefficients in the

linear combinations are thus recursively defined as a function of k). Hence, in the inner product, we can
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assume that there are no partial derivatives. In doing this, we have assumed that we can compute square

roots of integers (which occur in the coefficients) to arbitrary precision (recall we want an arithmetic tower)

which can be achieved by a simple interval bisection routine. It follows that we only need to consider

approximations of inner products of the form 〈akψm, ajψn〉.
To do so let R > 1 then, by Hölder’s inequality and the assumption of polynomially bounded growth

on the coefficients ak, we have∫
|xi|≥R

|akaj | |ψmψn| dx

≤ AkAj

(∫
|xi|≥R

(
1 + |x|2Bk

)2 (
1 + |x|2Bj

)2

ψm(x)2dx

)1/2(∫
|xi|≥R

ψn(x)2dx

)1/2

.

The first integral on the right hand side can be bounded by

16

∫
Rd
|x|2B ψm(x)2dx ≤ 16

∫
Rd

(
x2

1 + ...+ x2
d

)B
ψm(x)2dx,

for B = 4(Bk + Bj), since we restrict to |xi| ≥ R with R > 1 and |x| ≤ ‖x‖2. B is even so we can

expand out the product (x2
1 + ... + x2

d)
B/2ψm using the recurrence relations for the Hermite functions. In

one dimension this gives

xψm(x) =

√
m

2
ψm−1(x) +

√
m+ 1

2
ψm+1(x),

x2ψm(x) =

√
m

2
xψm−1(x) +

√
m+ 1

2
xψm+1(x),

=

√
m

2

(√
m− 1

2
ψm−2(x) +

√
m

2
ψm(x)

)
+

√
m+ 1

2

(√
m+ 1

2
ψm(x) +

√
m+ 2

2
ψm+2(x)

)
,

and so on. We can do the same for tensor products of Hermite functions. In particular, multiplying a tensor

product of Hermite functions, ψm, by (x2
1 + ...+x2

d) induces a linear combination of at most 4d such tensor

products, each with a coefficient of magnitude at most (|m| + 2)2 and index with l∞ norm bounded by

|m|+ 2 (allowing repetitions). It follows that (x2
1 + ...+ x2

d)
B/2ψm can be written as a linear combination

of at most (4d)B/2 such tensor products, each with a coefficient of magnitude at most (|m|+B)B . Squaring

this and integrating, the orthogonality and normalisation of the tensor product of Hermite functions implies

that

16

∫
Rd

(x2
1 + ...+ x2

d)
Bψm(x)2dx ≤ 16(4d)B/2(|m|+B)2B =: p1(|m|).

For the other integral, define p2(|n|) := 4d(|n|+ 2)4. We then have∫
|xi|≥R

ψ2
ndx ≤

1

R4

∫
Rd
|x|4 ψ2

ndx ≤
p2(|n|)
R4

,

by using the same argument as above but with B = 2.

So given δ > 0 and n,m,B,Ak, Aj , (and d) we can choose r ∈ N large such that∫
|xi|≥r

|akaj | |ψmψn| dx ≤ AkAj
p1(|m|)1/2p2(|n|)1/2

r2
≤ δ.

We now have to consider the cases T ∈ Ω1
TV or T ∈ Ω1

AN separately, noting that it is sufficient to approxi-

mate the integral
∫
|xi|≤r akajψmψndx to any given precision. For notational convenience, let

Lr(m) =

[
1 + σ

((
1 + 2r

√
2(|m|+ 1)

)d
− 1

)]
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so that with σ = 3d + 1 as in the definition of ‖·‖Ar , we have via Lemma 3.3.7 that ‖ψm‖Ar ≤ Lr(m).

Given k, j,m, n, δ and r ∈ N as above, choose M large such that

(2r)d ·
C(d)

(
log(M) + 1

)d
M

· c2r · Lr(m) · Lr(n) ≤ δ/2, (3.3.5)

where C(d) is as (3.3.4) and cr controls the total variation as in (3.1.5). Again, note that such an M can

be chosen in finitely many arithmetic operations and comparisons with the given data and assuming that

logarithms and square roots can be computed to arbitrary precision (say by a power series representation

and bound on the remainder). Using the fact that Ar is a Banach algebra (in particular we can bound the

norms of product of functions by the product of their norms) and Theorem 3.3.6, it follows that∣∣∣∣∣ (2r)dM

M∑
l=1

ak(sl)aj(sl)ψm(sl)ψn(sl)−
∫
|xi|≤r

akajψmψndx

∣∣∣∣∣ ≤ δ/2,
where sl = 2rtl − (r, r, ..., r)T are the rescaled Halton points. Hence it is enough to show that each

product ak(sl)aj(sl)ψm(sl)ψn(sl) can be computed to a given accuracy using finitely many arithmetic

operations and comparisons. Since each sl ∈ Qd we can evaluate ak(sl)aj(sl). Note that we can compute

exp(−x2/2) to arbitrary precision with finitely many arithmetic operations and comparisons (again say by

a power series representation and bound on the remainder) and that we can compute the coefficients of the

polynomials Qm with ψm(x) = Qm(x) exp(−x2/2), using the recursion formulae to any given precision,

it follows that we can compute ψm(sl)ψn(sl) to a given accuracy using finitely many arithmetic operations

and comparisons. Using the bounds on the ak and aj and Cramér’s inequality, we can bound the error in

the product and hence the result follows.

We can now prove the positive parts of Theorem 3.1.9.

Proof of inclusions in Theorem 3.1.9. Step 1: {Ξ1
1,Ω

1
TV} ∈ Σ1

A. The proof of this simply strings together

the above results. The linear span of {e1, e2, ...} (the reordered Hermite functions) is a core of T and T ∗

by Proposition 3.3.1. By Proposition 3.3.8, we can compute the inner products 〈(T − zI)ej , (T − zI)ei〉
and 〈(T − zI)∗ej , (T − zI)∗ei〉 up to arbitrary precision with finitely many arithmetic operations and

comparisons. Using Lemma 3.3.2, given z ∈ C, we can compute some approximation υn(z, T ) in finitely

many arithmetic operations and comparisons such that∣∣υn(z, T )2 −min{σinf((T − zI)|Pn(l2(N))), σinf((T
∗ − z̄I)|Pn(l2(N)))}2

∣∣ ≤ 1

n2
.

We now set

γn(z, T ) = υn(z, T ) + 1/n. (3.3.6)

Then γn satisfies the hypotheses of Proposition 3.2.4. The proof of Theorem 3.1.4 also makes clear that we

have error control since γn(z, T ) ≥ ‖R(z, T )‖−1.

Step 2: {Ξ1
2,Ω

1
TV} ∈ Σ1

A. Consider the sequence of functions γn defined by equation (3.3.6). These

converge uniformly to ‖R(z, T )‖−1 on compact subsets of C and satisfy γn(z, T ) ≥ ‖R(z, T )‖−1. We can

now apply Proposition 3.2.5.

Step 3: {Ξ2
1,Ω

2
TV}, {Ξ2

2,Ω
2
TV} ∈ ∆A

2 . Let T ∈ Ω2
TV. Our strategy will be to compute the inner

products 〈(T − zI)ej , (T − zI)ei〉 and 〈(T − zI)∗ej , (T − zI)∗ei〉 to an error which decays rapidly
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enough as we let the cut-off parameter r tend to∞. We follow the proof of Proposition 3.3.8 closely. Recall

that given n,m, we can choose r ∈ N large such that∫
|xi|≥r

|akaj | |ψmψn| dx ≤ AkAj
p1(|m|)1/2p2(|n|)1/2

r2
,

with the crucial difference that now we do not assume we can compute Ak, Aj , p1 or p2. It follows that

there exists some polynomial p3, with coefficients not necessarily computable from the given information,

such that ∫
|xi|≥r

|akaj | |ψmψn| dx ≤
p3(|m| , |n|)

r2
,

for all |j| , |k| ≤ N . Now we use the sequence br to bound the error in the integral over the compact

cube asymptotically. We assume without loss of generality that br is increasing monotonically to∞ with

r. Using Halton sequences and the same argument in the proof of Proposition 3.3.8, we can approximate∫
|xi|≤r akajψmψndx, with an error that, asymptotically up to some unknown constant, is bounded by

rd ·
(

log(M) + 1
)d

M
· b2r · Lr(m) · Lr(n), (3.3.7)

where M is the number of Halton points. We can let M depend on r, n and m such that (3.3.7) is bounded

by a constant times 1/r2. It follows that we can bound the total error in approximating 〈akψm, ajψn〉 for

any j, k by p3(|m| , |n|)/r2, by making the coefficients of p3 larger if necessary. We argue similarly for the

adjoint and note that 〈(T − zI)ψm, (T − zI)ψn〉 and 〈(T − zI)∗ψm, (T − zI)∗ψn are both approximated

to within

(1 + |z|2)
P (|m| , |n|)

r2
,

for some unknown polynomial P . Hence we can apply Lemma 3.3.2 (the form where we do not know

the error in inner product estimates), changing the polynomial P to take into account the basis mapping

from Zd≥0 to N to some polynomial Q, to gain some approximation υn(z, T ) in finitely many arithmetic

operations and comparisons such that

∣∣υn(z, T )2 −min{σinf((T − zI)|Pn(l2(N))), σinf((T
∗ − z̄I)|Pn(l2(N)))}2

∣∣ ≤ n(1 + |z|2)Q(n)

r(n, z)2
+

1

n3
.

(3.3.8)

We now choose r(z, n) larger if necessary such that r(z, n) ≥ (1 + |z|2) exp(n). We now set γn(z, T ) =

υn(z, T ) + 1/n. Then γn satisfies the hypotheses of Proposition 3.2.4 and Proposition 3.2.5 since the

error in (3.3.8) decays faster than 1/n2. We can use these propositions to build the required arithmetical

algorithm.

3.3.2 Proofs of impossibility results

Recall the maps

Ξ1
j ,Ξ

2
j : Ω1

TV,Ω
2
TV 3 T 7→

Sp(T ) ∈MAW j = 1

Spε(T ) ∈MAW j = 2,

We split up the arguments to deal with Ω1
TV and then Ω2

TV.

Proof that {Ξj ,Ω1
TV} /∈ ∆G

1 . Suppose first for a contradiction that a height one tower, Γn, exists for the

problem {Ξ1,Ω
1
TV} such that dAW(Γn(T ),Ξ1(T )) ≤ 2−n. We will deal with the one-dimensional case and
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higher dimensions are similar. Let ρ(x) be any smooth bump function with maximum value 1, minimum

value 0 and support [0, 1]. Let ρn denote the translation of ρ to have support [n, n + 1]. We will consider

the two (self-adjoint and bounded) operators

(T0u)(x) = 0, (Tmu)(x) = ρm(x)u(x),

which have spectra {0} and [0, 1] respectively. For these we can take the polynomial bound (the {Ak} and

{Bk}) to be 1 and the total variation bound to be cr = 1+σTV[0,1](ρ). When we compute Γ2(T0), we only

use finitely many evaluations of the coefficient function a0(x) = 0 (as well as the other given information).

We can then choose m large such that the support of ρm does not intersect the points of evaluation. By

assumptions (ii) and (iii) in Definition 2.1.1, Γ2(Tm) = Γ2(T0). But this contradicts the triangle inequality

since dAW({0}, [0, 1]) ≥ 1

To argue for the pseudospectrum let ε > 0 and note that 2ε /∈ Spε(T0) but 2ε ∈ Spε(εTm). We now

alter the given cr to ε(1 + σTV[0,1](ρ)) and the polynomial bound to ε. The argument is now exactly as

before. Namely, we choose n large such that

dAW(Γn(T0), [−ε, 2ε]) > 2−n

then choose m large such that Γn(T0) = Γn(εTm).

Exercise: Prove that {Ξj ,Ω2
TV} /∈ ΣG1 ∪ΠG

1 .

3.4 Numerical Examples and Applications

We now demonstrate the broad applicability of the algorithm(s) of this chapter by a few test examples.

Examples of discrete operators are given first, including quasicrystals, the NSA Anderson model and open

systems in optics. We end with a selection of examples of PDOs.

3.4.1 Quasicrystals

We first revisit the quasicrystal example from Chapter 1. The free Hamiltonian H0 (Laplacian) is given by

(H0ψ)i =
∑
i∼j

(ψj − ψi) , (3.4.1)

with the notation i ∼ j meaning sites i and j are connected by an edge and hence summation is over nearest

neighbour sites (vertices). Previous numerical methods study the eigenvalues of the Hamiltonian restricted

to a finite portion of the tiling with a choice of boundary conditions at the edges (finite section method).

However, this causes additional eigenvalues (spectral pollution or ‘edge states’) to appear, which are not in

the spectrum of H0 acting on the infinite tiling. We will compare our method to finite section with open

boundary conditions (truncating the tile and the corresponding matrix without applying additional boundary

conditions), and the method of approximating an aperiodic tiling by periodic approximants [TFUT91].

Figure 3.1 (left) shows the output of the algorithm of this chapter for n = 105 and the two finite section

methods, with n the number of vertices used in the computation. It is important to note that the new

algorithm uses the same number of vertices of the tile as the finite section method for a given n. The error

estimate, computed for both the new algorithm as well as the finite section methods using the method in
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Figure 3.1: Left: Large scale experiment with n = 105 for the algorithm of this chapter and finite section
with open boundary conditions and periodic approximants, applied to the operator H0 in (3.4.1). The top
row shows a magnified section of the approximation provided by the new algorithm and the high resolution
obtained. The approximation computed with the finite section methods produces spurious points in band
gaps with large errors ∼ 0.2. Right: The maximum errors as well as time of outputs for the algorithm of
this chapter (blue) and finite section methods (red for open BCs, green for periodic).

the proof of Theorem 3.2.6, is also shown. This error estimate converges uniformly to the true error on

compact subsets of R. Finite section methods produce spurious points in the gaps of the spectrum, and the

frequency of spectral pollution is lower for the periodic approximants. The hat shape of the error function

in the figure also suggests that our error estimate has converged in the gaps of the spectrum.

The time taken for our algorithm and for the finite section methods to reach the final output (shown in

Figure 3.1) suggests a speed-up of about 20 times. Moreover, the time for the finite section method appears

to grow ∼ O(n2.9), O(n3.0) for open and periodic boundary conditions respectively, whereas the time for

our algorithm grows ∼ O(n2.1). This predicts even larger differences in computation time for larger n, and

meant we were able to compute the spectrum for very large n only using the new algorithm.

3.4.2 Superconductors and the non-Hermitian Anderson model

Hatano and Nelson initiated the study of the non-Hermitian Anderson model in the context of vortex pinning

in type-II superconductors [HN96]. Their model showed that an imaginary gauge field in a disordered one-

dimensional lattice can induce a delocalisation transition. While synthesising such an imaginary vector

potential is a challenge in condensed-matter physics, this phenomenon has been investigated in the field

of optics [LGDV15]. From a computational point of view, non-Hermitian Hamiltonians pose a serious

challenge, as no previous algorithm converges to the pseudospectra of infinite-dimensional non-Hermitian

operators nor provides error bounds.1 The operator on l2(Z) can be written as

(Hx)n = e−τxn−1 + eτxn+1 + Vnxn,

where τ > 0 and V is a random potential.

1Computations of spectra of non-normal operators are also well-known to suffer from numerical instability, even in finite dimen-
sions. For finite section computations, we checked answers using extended precision. This was not an issue for our pseudospectra
calculations which are stable (pseudospectra also behave continuously under perturbations).
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contours of the resolvent norm ‖(Hn−zI)−1‖ for n = 106. Similar plots for periodic boundary conditions,
the new algorithm with and without varying p. Bounds on the spectrum are shown in green and the set
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Spectral computations of H are delicate. Once truncated to a finite lattice of size n, the spectrum and

pseudospectrum of the finite section Hn depend on the boundary conditions imposed. Non-periodic bound-

ary conditions (standard finite section) yield an entirely real spectrum, completely ignoring the instability

of the model and utterly different from the complex spectrum of H . Hatano and Nelson argued that a more

physical model would be periodic boundary conditions. In our case, periodic boundary conditions lead to

spectra that converge to a curve in the complex plane strictly contained in the spectrum [GK98].

If (Vn)n∈Z are i.i.d. random variables, then Sp(H) and Spε(H) only depend on the support of the

potential, M , almost surely. We consider the Bernoulli case M = {±1} where Vn = 1 with probability

p ∈ (0, 1). This choice ensures the spectrum has a hole in it by a standard series argument. Defining the

ellipse E = {eτ+iθ + e−τ−iθ : θ ∈ [0, 2π)}, we also have E ± 1 ⊂ Sp(H) which is contained in the

convex hull of E+[−1, 1]. Figure 3.2 shows the result of the finite section, i.e. the pseudospectra of Hn for

n = 106 (corresponding to a matrix size of 2n+ 1) and the new algorithm with τ = 1/2 and p = 1/2. The

spectra of finite sections with non-periodic boundary conditions give the wrong set in the limit n → ∞,

filling the hole in the spectrum and converging to the interval [−3, 3] (this can be proven). Pseudospectra

for periodic boundary conditions fare much better, as proven for a large class of operators in [Col20b].

We can take advantage of the fact that, ignoring round-off errors, our algorithm has zero error in its

output and that the pseudospectrum is invariant under changes in p ∈ (0, 1). Thus, we have also shown the

output over a union of varying p. This gives an excellent estimate of the spectrum and the pseudospectrum.

3.4.3 Open systems in optics

Open systems typically yield non-Hermitian Hamiltonians as there is no guaranteed energy preservation.

However, non-Hermitian Hamiltonians can posses real spectra when they respect parity–time (PT ) symme-

try [BB98, KGM08, Ben07]. A Hamiltonian H = p2/2 +V (x) is said to be PT -symmetric if it commutes

with the action of the operator PT where P is the parity operator x̂ → − x̂, p̂ → − p̂ and T the time

operator p̂→ − p̂, i→ − i. Many PT -symmetric Hamiltonians possess the remarkable property that their

spectra are real for small enough Im(V ) but that the spectrum becomes complex above a certain threshold.

This phase transition is known as symmetry breaking.

Detecting when symmetry breaking occurs poses a substantial challenge since it is very sensitive to

surface/edge states arising from standard truncations. We discuss PT -symmetry breaking for the case of an
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Figure 3.3: Left: Pseudospectra of H computed with the new algorithm and finite sections with different
BCs (in magenta). We can easily detect edge modes with the new algorithm, whereas the finite section
approach produces incorrect solutions (edge modes). In the periodic case we have no edge, and rather these
modes are due to the jump in the potential between the two end sites. Right: Fragile PT -symmetric phase
as we increase the system size due to edge states with complex eigenvalues, which verifies the failure of
finite sections.

aperiodic potential on a discrete lattice:

(Hx)n = xn−1 + xn+1 + Vnxn

acting on l2(Z) where Vn = cos(n) + iγ sin(n) and γ ≥ 0. Here the aperiodicity occurs due to the

incommensurability of the potential and lattice. We stress that the new algorithm can handle any type of

potential (such as additional defects modelled by random potentials).

In the limit of increasing system size, the critical parameter γPT depends on the boundary conditions

imposed, often decreasing as the number of sites increases with a fragile PT -symmetric phase. This limit

can differ from the value γPT on the infinite lattice due to surface/edge states [BFKS09]. Using our algo-

rithm gives an estimate for γPT in the infinite lattice case avoiding this fragility, suggesting that symmetry

breaking occurs at γPT ≈ 1 ± 0.05. This allows us to detect edge states rigorously (spectral pollution)

and the corresponding edge modes. Figure 3.3 shows pseudospectral plots generated by our algorithm for

γ = 1, 2 as well as the plots for finite chains of length 2001 for open and periodic boundary conditions. We

can easily use the new algorithm to separate bulk states from edge states. We have also shown the values of

γPT for the finite chains showing the fragility of the PT -symmetric phase.

3.4.4 Partial differential operators

We demonstrate the algorithms of this chapter on PDOs on L2(Rd). For the examples with polynomial

coefficients in this section, all error bounds and results were verified rigorously with interval arithmetic.

We also consider non-polynomial coefficients in §3.4.4.
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Anharmonic oscillators

First, consider operators of the form

H = −∆ + V (x) = −∆ +

d∑
j=1

(ajxj + bjx
2
j ) +

∑
α∈Zd≥0

,|α|≤M

c(α)xα,

where aj , bj , c(α) ∈ R and the multi-indices α are chosen such that
∑
|α|≤M c(α)xα is bounded from

below. The Faris–Lavine theorem [RS75, Theorem X.28] shows that such operators are self-adjoint.

We begin with comparisons to some known results in one dimension:

V1(x) = x2 − 4x4 + x6 E0 = −2

V2(x) = 4x2 − 6x4 + x6 E1 = −9

V3(x) = (105/64)x2 − (43/8)x4 + x6 − x8 + x10 E0 = 3/8

V4(x) = (169/64)x2 − (59/8)x4 + x6 − x8 + x10 E1 = 9/8.

These examples have discrete spectra and, following the physicists’ convention, we list the energy levels as

E0 ≤ E1 ≤ E2 ≤ .... We found that the grid resolution of the search routine and the search accuracy for

the smallest singular values, not the matrix size, were the main deciding factors in the error bound. Clearly,

once we know roughly where the eigenvalues are, we can speed up computations using the fact that the

algorithm is local. Furthermore, the search routine’s computational time only grows logarithmically in its

precision. Hence we set the grid spacing and the spacing of the search routine to be 105n. Table 3.1 shows

the results and all values were computed rapidly using a local search grid.

Potential Exact n = 500 n = 1000

V1 −2 −2± 2× 10−8 −2± 10−8

V2 −9 −9± 2× 10−8 −9± 10−8

V3 0.375 0.375± 1.6192× 10−4 0.375± 1× 10−7

V4 1.125 1.125± 6.013× 10−4 1.125± 2.4× 10−7

Table 3.1: Test run of algorithm on some potentials with known eigenvalues. Note that we quickly converge
to the eigenvalue with error bounds computed by the algorithm and using interval arithmetic.

Next, we consider the operator

H1 = −∆ + x2
1x

2
2,

on L2(R2), which is a classic example of a potential that does not blow up at∞ in every direction, yet still

induces an operator with compact resolvent and hence discrete spectrum [Sim83]. Figure 3.4 shows the

convergence of the estimate of ‖R(z,H1)‖−1 from above as well as finite section estimates. As expected

from variational methods, the finite section method produces eigenvalues converging to the true eigenvalues

from above (there is no essential spectrum and the operator is positive). Furthermore, the areas where

DistSpec has converged correspond to areas where finite section has converged. One expects that the time

taken for finite section grows somewhere between quadratically and cubically, whereas the new algorithm

grows at most O(n2.75) up to logarithmic factors (if one does not take advantage of previous estimates

and compact resolvent to reduce the interval length of searches). This is also shown in Figure 3.4, where

we found that the finite section method grew roughly cubically whereas our algorithm grew roughly as
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Figure 3.4: Two-dimensional example. Left: The convergence of our algorithm (shown as DistSpec)
and finite section to the true eigenvalues on the interval [0, 10]. Note that points with reliable finite section
eigenvalues correspond to points where the estimate of the resolvent norm is well-resolved. Right: Time
taken (when not using interval arithmetic) for both methods over a range of n (100 cores) showing near
cubic growth for finite section and O(n2.25) growth for our algorithm (reference lines).

O(n2.25) (both shown as reference lines). The speed-up for our algorithm, compared with O(n2.75), was

due to the AMD basis ordering used.

Schrödinger operator with constant magnetic field

In this example, we demonstrate that the algorithm of this chapter for computing the spectrum does not

suffer from spectral pollution, which is often found in other methods used for self-adjoint operators when

there is a gap in the essential spectrum. We will demonstrate this on the Schrödinger operator with constant

magnetic field (B ∈ R, B 6= 0) in R2,

HB =

(
−i∂x1

− Bx2

2

)2

+

(
−i∂x2

+
Bx1

2

)2

,

which is essentially self-adjoint [RS75] and plays an important role in superconductivity theory [FH10]. It

can be shown via unitary transformations that

Sp(HB) = {(2k − 1) |B| : k ∈ N},

(see [Hel13]) with each element of the spectrum being an eigenvalue of infinite multiplicity (so that the

above agrees with the essential spectrum). Figure 3.5 (left) shows the output of finite section over a range

of n and B = 1. As expected, there is no spectral pollution below the essential spectrum, but there is heavy

spectral pollution in the gaps of the essential spectrum. Figure 3.5 (right) shows the output of our algorithm.

This avoids spectral pollution whilst converging to the true spectrum.

This is a simple example since one can analytically diagonalise the operator. However, given an oper-

ator, it can be hard to choose an appropriate basis such that finite section avoids spectral pollution (in fact

this is, in general, impossible in a precise sense - see §7.1) and the above example demonstrates that we

do not have to worry about this when using our algorithm. This will also be revisited for Dirac operators

[STY+04] in §4.6.2, where we compute highly oscillatory bounded modes.
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Potential V E0 E1 E2 E3 E4

cos(x) 1.7561051579 3.3447026910 5.0606547136 6.8649969390 8.7353069954

tanh(x) 0.8703478514 2.9666370800 4.9825969775 6.9898951678 8.9931317537

exp(−x2) 1.6882809272 3.3395578680 5.2703748823 7.2225903394 9.1953373991

(1 + x2)−1 1.7468178026 3.4757613534 5.4115076464 7.3503220313 9.3168983920

Table 3.2: Computed eigenvalues for different potentials (first five shown). Each eigenvalue En, computed

with an error bound at most 10−9 via DistSpec, is a shift of the harmonic oscillator eigenvalue 2n+ 1

General coefficients: perturbed harmonic oscillator

As a simple set of examples, we consider

T = −∆ + x2 + V (x),

on L2(R), where V is a bounded potential (for more examples with general coefficients, see [CHns]). Such

operators have discrete spectra, however, the perturbation V causes the eigenvalues to shift relative to the

classical harmonic oscillator (whose spectrum is the set of odd positive integers). Table 3.2 shows the first

five eigenvalues for a range of potentials, computed with an error bound at most 10−9.

Pseudospectra and PT -symmetry

We now turn to the pseudospectrum and consider PT -symmetric non-self-adjoint operators T . The first

example is the imaginary cubic oscillator defined formally (in one dimension) by

H2 = −d2/dx2 + ix3.

This operator is the most studied example of a PT -symmetric operator (a concept met previously in §3.4.3)

[BB98, BBJ02], as well as appearing in statistical physics and quantum field theory [Fis78]. It is known

that the resolvent is compact [CGM80] with all eigenvalues simple and residing in R≥0 [DDT01, Tai06].
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Figure 3.6: Left: Calculated pseudospectrum for the imaginary cubic oscillator. Note the clear presence of
eigenvalues. Right: Calculated pseudospectrum for imaginary Airy operator. Both figures were produced
with n = 1000.

The eigenvectors are complete but do not form a Riesz basis [SK12]. Figure 3.6 shows the pseudospectrum

computed using n = 1000. This demonstrates the instability of the spectrum of the operator.

Next, we consider the imaginary Airy operator

H3 = −d2/dx2 + ix,

since this is known to have empty spectrum [Hel13], demonstrating that the algorithm is effective in this

case. Note that any finite section method will overestimate the pseudospectrum due to the presence of

false eigenvalues. H3 is PT -symmetric and has compact resolvent. The resolvent norm ‖R(z,H3)‖ only

depends on the real part of z and blows up exponentially as Re(z) → +∞. We have shown the computed

pseudospectrum for n = 1000 in Figure 3.6.
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Chapter 4

Computing Spectral Measures

Any normal operatorA has an associated projection-valued measure, EA, whose existence is guaranteed by

the spectral theorem and whose support is Sp(A) [KR97a, KR97b, RS80]. This allows the representation

of the operator A as an integral over Sp(A), analogous to the finite-dimensional case of diagonalisation:

Ax =

∫
Sp(A)

λdEA(λ)x, ∀x ∈ D(A),

where D(A) denotes the domain of A. For example, if A is compact, then EA corresponds to projections

onto eigenspaces, familiar from the finite-dimensional setting. However, in general, the situation is more

complicated with different types of spectra. The computation of EA, along with its various decompositions

and their supports, is of great applicative and theoretical interest. For example, spectral measures are

related to the autocorrelation function in signal processing, resonance phenomena in scattering theory, and

stability analysis for fluids and many other quantities [KM71, GS03, Ros91, ELOB07, ELO94, ELS19,

BP84, HHK72, LSY16, WC15, KS03, DN86, DS06a, TOD12]. Moreover, the computation of EA allows

computation of additional objects, such as the functional calculus and the Radon–Nikodym derivative of

the absolutely continuous component.

In this chapter, based on [Col21, CHT21], we provide algorithms for the computation of spectral mea-

sures for a large class of self-adjoint operators. We classify the computation of measures, measure de-

compositions, functional calculus and Radon–Nikodym derivatives in the SCI hierarchy. The central in-

gredient is the computation of the resolvent operator with error control. We also discuss how to improve

the convergence rates by using rational convolution kernels. For a given desired accuracy, one may eval-

uate the resolvent at a much larger distance from the spectrum than in the case of a first-order method.

The examples highlight that the new algorithms can easily be used in tandem with any numerical pro-

cedure that computes the action of the resolvent with asymptotic error control. This gives great flexibil-

ity to the methods. The reader is encouraged to explore the software package SpecSolve: https:

//github.com/SpecSolve/SpecSolve, which supports general ODEs, PDEs, integral operators

and lattice operators. Further examples of the use of these algorithms can be found in [JCN+21, CHTW21].

4.1 Background and Summary

We consider the canonical separable Hilbert space H = l2(N), the set of square summable sequences with

canonical basis {en}n∈N. By a choice of basis our results extend to any separable Hilbert space. For
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example, we can handle partial differential operators through spectral methods. The algorithms can be

made to work with any method that computes the resolvent with an asymptotic form of error control - a

matrix representation is not needed. Let C(l2(N)) be the set of closed densely defined linear operators A

such that span{en : n ∈ N} forms a core of A and A∗. The point spectrum (the set of eigenvalues) will be

denoted by Spp(A). We will focus on the subclass ΩN ⊂ C(l2(N)) of normal operators, those for which

D(A) = D(A∗) and ‖Ax‖ = ‖A∗x‖ for all x ∈ D(A). The subclass ⊂ ΩN of self-adjoint (again allowing

unbounded operators) operators will be denoted by ΩSA. Recall that for A ∈ ΩSA, Sp(A) ⊂ R.

Given A ∈ ΩN and a Borel set B, EAB will denote the projection EA(B). Given x, y ∈ l2(N), we can

define a bounded (complex-valued) measure µAx,y via the formula

µAx,y(B) = 〈EABx, y〉.

Via the Lebesgue decomposition theorem [Hal50], µAx,y can be decomposed into three parts

µAx,y = µAx,y,ac + µAx,y,sc + µAx,y,pp,

the absolutely continuous part of the measure (with respect to the Lebesgue measure), the singular con-

tinuous part (singular with respect to the Lebesgue measure and atomless) and the pure point part. When

considering ΩSA, we will consider Lebesgue measure on R and let

ρAx,y(λ) =
dµAx,y,ac

dm
(λ), (4.1.1)

the Radon–Nikodym derivative of µAx,y,ac with respect to Lebesgue measure. Of course this can be extended

to the unitary (and, more generally, normal) case. This naturally gives a decomposition of the Hilbert space

H = l2(N). For I = ac, sc and pp, we let HI consist of vectors x whose measure µAx,x is absolutely

continuous, singular continuous and pure point respectively. This gives rise to the orthogonal decomposition

H = Hac ⊕Hsc ⊕Hpp (4.1.2)

whose associated projections will be denoted by PAac, PAsc and PApp respectively. These projections commute

with A and the projections obtained through the projection-valued measure. Of particular interest is the

spectrum of A restricted to eachHI , which will be denoted by SpI(A). These different sets and subspaces

often, but not always, characterise different physical properties in quantum mechanics (such as the famous

RAGE theorem [Rue69, AG74, Ens78]), where a system is modelled by some Hamiltonian A ∈ ΩSA

[CFKS87, Com93, GKP91, Las96]. For example, pure point spectrum implies the absence of ballistic

motion for many Schrödinger operators [Sim90].

4.1.1 Algorithmic set-up

Given an operator A ∈ C(l2(N)), we can view it as an infinite matrix

A =


a11 a12 a13 . . .

a21 a22 a23 . . .

a31 a32 a33 . . .
...

...
...

. . .


through the inner products aij = 〈Aej , ei〉. To be precise about the information needed to compute spectral

properties, we define the class of evaluation functions Λ1 = {〈Aej , ei〉 : i, j ∈ N}. For discrete operators,
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this information is often given to us, for example, in tight-binding models in physics, and hence it is natural

to seek to compute spectral properties from matrix values. For partial differential operators, such informa-

tion is often given through inner products with a suitable basis, and, in this case, the inexact input model is

needed due to approximating the integrals.

We will be concerned with operators whose matrix representation has a known asymptotic rate of

column/off-diagonal decay. Namely, let f : N → N with f(n) > n and let α = {αn}n∈N, β = {βn}n∈N
be null sequences1 of non-negative real numbers. We then define

Ωf,α,β = {A ∈ ΩSA : ‖(Pf(n) − I)APn‖ = O(αn), as n→∞}

× {x ∈ l2(N) : ‖Pnx− x‖ = O(βn), as n→∞},
(4.1.3)

where Pn denotes the orthogonal projection onto span{e1, ..., en}. We will also use

Ωf,α = {A ∈ ΩSA : ‖(Pf(n) − I)APn‖ = O(αn), as n→∞}.

The collection of vectors in l2(N) satisfying ‖Pnx − x‖ = O(βn) will be denoted by Vβ . Finally, when

αn ≡ 0, we will abuse notation slightly in requiring the stronger condition

‖(Pf(n) − I)APn‖ = 0.

Thus Ωf,0 is the class of self-adjoint operators whose matrix sparsity structure is captured by the function f .

For example, if f(n) = n+1 we recover the class of self-adjoint tridiagonal matrices, the most studied class

of operators. When discussing classes that include vectors x ∈ l2(N), we extend Λ1 to include pointwise

evaluations of the coefficients of x.

4.1.2 A motivating example

Consider a Jacobi operator with matrix

J =


b1 a1

a1 b2 a2

a2 b3
. . .

. . . . . .


where aj , bj ∈ R and aj > 0. An enormous amount of work exists on the study of these operators, and the

correspondence between bounded Jacobi matrices and probability measures with compact support [Tes00,

Dei99]. The entries in the matrix provide the coefficients in the recurrence relation for the corresponding

orthonormal polynomials. To study the canonical measure µJ , one usually considers the principal resolvent

function defined on C\Sp(J) via

G(z) := 〈R(z, J)e1, e1〉 =

∫
R

dµJ(λ)

λ− z
,

and then takes z close to the real axis. The function G is also known in the differential equations and

Schrödinger communities as the Weyl m-function [Tes00, GS97a] and one can develop the discrete ana-

logue of what is known as Weyl–Titchmarsh–Kodaira theory for Sturm–Liouville operators. Going back

1We use the term ‘null sequence’ for a sequence converging to zero.
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Figure 4.1: Smoothed approximations of the Radon–Nikodym derivative for the Jacobi operator associated
to Jacobi polynomials with α = 1, β = 1/2. Here the measure is absolutely continuous and supported on
[−1, 1]. Left: Convolutions KH(u+ iε; J, e1) for different ε using the methods of this chapter. Right: The
associated Poisson kernel π−1ε/(ε2 + x2) which approaches a Dirac delta distribution as ε ↓ 0.

to the work of Stieltjes [Sti94] (see also [Akh65, Wal48]), there is a representation of G as a continued

fraction:

G(z) :=
1

−z + b1 − a2
1

−z+b2−...

. (4.1.4)

One can also approximate G via finite truncated matrices [Tes00].

However, there are two obstacles to overcome when using (4.1.4) and its variants as a means to com-

pute measures. First, this representation of the principal resolvent function is structurally dependent. For

example, (4.1.4) is valid for the restricted case of Jacobi operators and hence one is led to seek different

methods for different operators (such as tight-binding Hamiltonians on two-dimensional lattices, which

have a growing bandwidth when represented as an infinite matrix). Second, this would seem to give the

wrong classification of the difficulty of the problem in the SCI hierarchy, giving rise to a tower of algorithms

with two limits. One first takes a truncation parameter n to infinity to compute G(z) for Im(z) > 0, and

then a second limit as z approaches the real axis. One of the main messages of this chapter is that both of

these issues can be overcome. Measures can be computed in one limit via an algorithm Γn and for a large

class of operators. The only restriction is a known asymptotic decay rate of the off-diagonal entries.

Consider the Poisson kernel for the half-plane defined respectively by

PH(x, y) =
1

π

y

x2 + y2
,

where (x, y) denote the usual Cartesian coordinates. Let A be a normal operator, then for z /∈ Sp(A), we

have from the functional calculus that

R(z,A) =

∫
Sp(A)

1

λ− z
dEA(λ).

For self-adjoint A, z = u+ iv ∈ C\R (u, v ∈ R) and x ∈ l2(N) we define

KH(z;A, x) : =
1

2πi
[R(z,A)−R(z,A)]x

=
1

2πi

∫ ∞
−∞

[
1

λ− z
− 1

λ− z

]
dEA(λ)x =

∫ ∞
−∞

PH(u− λ, v)dEA(λ)x.
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We see that the computation of the resolvent with error control allows the computation of G(z) with

error control through taking inner products. By considering G(z) − G(z), this allows the computation of

the convolution of the measure µJ with the Poisson kernel PH . In other words, we can compute a smoothed

version of the measure µJ with error control. Figure 4.1 demonstrates this for a typical example. We will

see also in §4.5, that kernels different to the Poisson kernel allow improved rates of convergence.

4.2 Approximating the Resolvent

The algorithms built in this chapter rely on the ability to compute the action of the resolvent operator

R(z,A) = (A− z)−1 for z /∈ Sp(A) with error control.

Proposition 4.2.1. Let A ∈ ΩN, z ∈ C\Sp(A) and x ∈ l2(N). Suppose that the following hold for

constants C1 and C2 (that may depend on A and x and may be unknown), together with null sequences

{αn}n∈N and {βn}n∈N independent of A and x:

1. For f : N→ N with f(n) > n, ‖(I − Pf(n))APn‖ ≤ C1αn,

2. ‖Pnx− x‖ ≤ C2βn,

3. For δ > 0, dist(z,Sp(A)) ≥ δ.

Then there exists a sequence of arithmetic algorithms Γn(A, x, z) mapping into l2(N), each of which use

the evaluation functions in Λ1, such that each vector Γn(A, x, z) has finite support with respect to the

canonical basis for each n and Γn(A, x, z)→ R(z,A)x. Moreover, the following error bound holds

‖Γn(A, x, z)−R(z,A)x‖ ≤
C2βf(n) + C1αn‖Γn(A, x, z)‖+ ‖Pf(n)(A− zI)Γn(A, x, z)− Pf(n)x‖

δ
.

(4.2.1)

If a bound on C1 and C2 are known, this error bound can be computed to arbitrary accuracy using finitely

many arithmetic operations and comparisons. In the more general case for a fixed {αn}, {βn} and f , this

gives an asymptotic error bound holding for all A, x and z which satisfy the above assumptions.

Proof. We have that n = rank(Pn) = rank((A − zI)Pn) = rank(Pf(n)(A − zI)Pn) for large n since

σinf(A− zI) > 0 and ‖(I − Pf(n))(A− zI)Pn‖ ≤ C1αn → 0. Hence we can define

Γ̃n(A, x, z) :=

0, if σinf(Pn(A∗ − zI)Pf(n)(A− zI)|Pn(l2(N))) ≤ 1
n

[Pn(A∗ − zI)Pf(n)(A− zI)Pn]−1Pn(A∗ − zI)Pf(n)x, otherwise.

Suppose that n is large enough so that σinf(Pn(A∗−zI)Pf(n)(A−zI)|Pn(l2(N))) > 1/n. Then Γ̃n(A, x, z)

is a (least-squares) solution of the optimisation problem argminy‖Pf(n)(A−zI)Pny−x‖. The linear space

span{en : n ∈ N} forms a core of A and hence of A− zI . It follows by invertibility of A− zI that given

any ε > 0, there exists an m = m(ε) and a y = y(ε) with Pmy = y such that

‖(A− zI)y − x‖ ≤ ε.
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It follows that for all n ≥ m,

‖(A− zI)Γ̃n(A, x, z)− x‖ ≤ ‖Pf(n)(A− zI)Γ̃n(A, x, z)− x‖+ C1αn‖Γ̃n(A, x, z)‖

≤ ‖Pf(n)(A− zI)y − x‖+ C1αn‖Γ̃n(A, x, z)‖

≤ ‖Pf(n)(A− zI)y − Pf(n)x‖+ C2βf(n) + C1αn‖Γ̃n(A, x, z)‖

≤ ε+ C2βf(n) + C1αn‖Γ̃n(A, x, z)‖.

This implies that

‖Γ̃n(A, x, z)−R(z,A)x‖ ≤ ‖R(z,A)‖‖(A− zI)Γ̃n(A, x, z)− x‖

≤ ‖R(z,A)‖
(
ε+ C2βf(n) + C1αn‖Γ̃n(A, x, z)‖

)
.

In particular, since αn and βn are null, this implies that ‖Γ̃n(A, x, z)‖ is uniformly bounded in n. Since

ε > 0 was arbitrary, we also see that Γ̃n(A, x, z) converges to R(z,A)x.

Define the matrices

Bn = Pn(A∗ − zI)Pf(n)(A− zI)Pn, Cn = Pn(A∗ − zI)Pf(n).

Given the evaluation functions in Λ1, we can compute the entries of these matrices to any given accuracy

and hence also to arbitrary accuracy in the operator norm (say using the Frobenius norm to bound the

operator norm), using finitely many arithmetic operations and comparisons. Denote the approximations of

Bn and Cn by B̃n and C̃n respectively and assume that

‖Bn − B̃n‖ ≤ un, ‖Cn − C̃n‖ ≤ vn,

for null sequences {un}, {vn}. Note that B̃−1
n can be computed using finitely many arithmetic operations

and comparisons. So long as un is small enough, the resolvent identity implies that

‖B−1
n − B̃−1

n ‖ ≤
‖B̃−1

n ‖2un
1− un‖B̃−1

n ‖
=: wn.

By taking un and vn smaller if necessary (so that the algorithm is adaptive and it is straightforward to

bound the norm of a finite matrix from above), we can ensure that ‖B̃−1
n ‖vn ≤ n−1 and (‖C̃n‖+ vn)wn ≤

n−1. We can compute σinf(Pn(A∗ − zI)Pf(n)(A − zI)|Pn(l2(N))) to arbitrary accuracy using finitely

many arithmetic operations and comparisons. Suppose this is done to an accuracy 1/n2 and denote the

approximation via τn. We then define

Γn(A, x, z) :=

0, if τn ≤ 1
n

B̃−1
n C̃nx̃n, otherwise,

where x̃n = Pf(n)x. It follows that Γn(A, x, z) can be computed using finitely many arithmetic operations

and, for large n,

‖Γn(A, x, z)− Γ̃n(A, x, z)‖ ≤
(
‖B̃−1

n ‖vn + (‖C̃n‖+ vn)wn

)
‖x‖ → 0,

so that Γn(A, x, z) converges to R(z,A)x.

Furthermore, the following error bound holds (which also holds if τn ≤ 1/n)

‖Γn(A, x, z)−R(z,A)x‖ ≤ ‖R(z,A)‖‖(A− zI)Γn(A, x, z)− x‖

≤
C2βf(n) + C1αn‖Γn(A, x, z)‖+ ‖Pf(n)(A− zI)Γn(A, x, z)− Pf(n)x‖

dist(z,Sp(A))
,
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since A is normal so that ‖R(z,A)‖ = dist(z,Sp(A))−1. This bound converges to 0 as n→∞. If the C1

and C2 are known it can be approximated to arbitrary accuracy using finitely many arithmetic operations

and comparisons.

Note that if A is banded with bandwidth m, then we can take f(n) = n+m and the above computation

can be done in O(nm2) operations [GVL13].

Corollary 4.2.2. There exists a sequence of arithmetic algorithms

Γn : Ωf,α,β × C\R→ l2(N)

with the following properties:

1. For all (A, x) ∈ Ωf,α,β and z ∈ C\R, Γn(A, x, z) converges to R(z,A)x in l2(N) as n→∞.

2. For any (A, x) ∈ Ωf,α,β , there exists a constant C(A, x) such that for all z ∈ C\R,

‖Γn(A, x, z)−R(z,A)x‖ ≤ C(A, x)

|Im(z)|
[
αn + βn

]
.

Exercise: Prove Corollary 4.2.2 using Proposition 4.2.1.

Finally, we will need Stone’s famous formula.

Proposition 4.2.3 (Stone’s formula [Sto90]). Recalling the definition of KH in §4.1.2. Let A ∈ ΩSA. Then

for any −∞ ≤ a < b ≤ ∞ and x ∈ l2(N),

lim
ε↓0

∫ b

a

KH(u+ iε;A, x)du = EA(a,b)x+
1

2
EA{a,b}x.

Exercise: Prove Stone’s formula using the dominated convergence theorem.

4.3 Computation of Measures

We start by considering the computation of EAUx where U ⊂ R is a non-trivial open set. The collection of

these subsets will be denoted by U . To be precise, we assume that we have access to a finite or countable

collection am(U), bm(U) ∈ R ∪ {±∞} such that U can be written as a disjoint union

U =
⋃
m

(am(U), bm(U)) . (4.3.1)

With an abuse of notation, we add this information as evaluation functions to Λ1 to form Λ̃1.

Theorem 4.3.1 (Computation of measures on open sets). Given the above set-up, consider the map

Ξmeas : Ωf,α,β × U → l2(N)

(A, x, U)→ EAUx.

Then {Ξmeas,Ωf,α,β×U , Λ̃1} ∈ ∆A
2 . In other words, we can construct a convergent sequence of arithmetic

algorithms for the problem.
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Proof. Let A ∈ ΩSA and z1, z2 ∈ C\R. By the resolvent identity and self-adjointness of A,

‖R(z1, A)−R(z1, A)‖ ≤ |Im(z1)|−1 |Im(z2)|−1 |z1 − z2| .

Hence, for z = u+iεwith ε > 0, the vector-valued functionKH(u+iε;A, x) (considered with argument u)

is Lipschitz continuous with Lipschitz constant bounded by ε−2‖x‖/π. Now consider the class Ωf,α,β ×U
and let (A, x, U) ∈ Ωf,α,β×U . From Corollary 4.2.2, we can construct a sequence of arithmetic algorithms,

Γ̂n, such that

‖Γ̂n(A, u, z)−KH(u+ iε;A, x)‖ ≤ C(A, x)

ε
(αn + βn)

for all (A, x) ∈ Ωf,α,β . It follows from standard quadrature rules and taking subsequences if necessary

(using that {αn} and {βn} are null), that for −∞ < a < b <∞, the integral∫ b

a

KH

(
u+

i

n
;A, x

)
du

can be approximated to an accuracy Ĉ(A, x)/n using finitely many arithmetic operations and comparisons

and the relevant set of evaluation functions Λ̃1 (the constant C now becomes Ĉ due to not knowing the

exact value of ‖x‖).
Recall that we assumed the disjoint union

U =
⋃
m

(am, bm)

where am, bm ∈ R∪ {±∞} and the union is at most countable. Without loss of generality, we assume that

the union is over m ∈ N. We then let am,n, bm,n ∈ Q be such that am,n ↓ am and bm,n ↑ bm as n → ∞
with am,n < bm,n and hence (am,n, bm,n) ⊂ (am, bm). Let

Un =

n⋃
m=1

(am,n, bm,n),

then the proof of Stone’s formula in Proposition 4.2.3 (essentially an application of the dominated conver-

gence theorem) can be easily adapted to show that

lim
n→∞

∫
Un

KH

(
u+

i

n
;A, x

)
du = EAUx.

Note that we do not have to worry about contributions from endpoints of the intervals (am, bm) since we

approximate strictly from within. To finish the proof, we simply let Γn(A, x, U) be an approximation of

the integral ∫
Un

KH

(
u+

i

n
;A, x

)
du

to within accuracy Ĉ(A, x)/n (which by the above remarks can be computed using finitely many arithmetic

operations and comparisons and the relevant set of evaluation functions Λ̃1).

Recall from §4.1 that PAI denotes the orthogonal projection onto the space HAI , where I denotes a

generic type (ac, sc,pp, c or s). We have included the continuous and singular parts denoted by c or s which

correspond toHac⊕Hsc andHsc⊕Hpp respectively. These are often encountered in mathematical physics.

Theorem 4.3.2. Given the above set-up, consider the map

ΞI : Ωf,α,β × Vβ × U → C

(A, x, y, U)→ 〈PAI EAUx, y〉 = µAx,y,I(U),
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for I = ac, sc,pp, c or s. Then

∆G
2 63 {ΞI ,Ωf,α,β × Vβ × U , Λ̃1} ∈ ∆A

3 .

To prove this theorem, it is enough, by the polarisation identity, to consider x = y (note that all the

projections commute). We will split the proof into two parts - the ∆A
3 inclusion and the ∆G

2 exclusion.

Proof of inclusion in Theorem 4.3.2

Since PApp = I −PAc , PAac = I −PAs and PAsc = PAs −PApp, it is enough to consider only I = c and I = s.

Step 1: We first deal with I = c, where we shall use a similar argument to the proof of Theorem

4.4.1 (which is more general than what we need). We recall the RAGE theorem [Rue69, AG74, Ens78]

as follows. Let Qn denote the orthogonal projection onto vectors in l2(N) with support outside the subset

{1, ..., n} ⊂ N. Then for any x ∈ l2(N),

〈PAc EAUx, x〉 = ‖PAc EAUx‖2 = lim
n→∞

lim
t→∞

1

t

∫ t

0

∥∥Qne−iAsEAUx∥∥2
ds

= lim
n→∞

lim
t→∞

1

t

∫ t

0

∥∥Qne−iAsχU (A)x
∥∥2
ds.

The proof of Theorem 4.4.1 is easily adapted to show that there exists arithmetic algorithms Γ̃n,m using Λ̃1

such that

‖Qne−iAsχU (A)x− Γ̃n,m(A, x, U, s)‖ ≤ C(A, x, U)

m

for all (A, x, U, s) ∈ Ωf,α,β × U × R. Note that this bound can be made independent of s (as we have

written above) by sufficiently approximating the function exp(−its)χU (t) (it has known total variation for

a given s and uniform bound). We now define

Γn,m(A, x, U) =
1

m2

m2∑
j=1

‖Γ̃m,n(A, x, U, j/m)‖2.

Using the fact that for a, b ∈ l2(N),

|〈a, a〉 − 〈b, b〉| ≤ ‖a− b‖ (2‖a‖+ ‖a− b‖) , (4.3.2)

it follows that∣∣∣‖Qne−iAsχU (A)x‖2 − ‖Γ̃n,m(A, x, U, s)‖2
∣∣∣ ≤ C(A, x, U)

m

(
2‖x‖+

C(A, x, U)

m

)
.

Hence we have shown that∣∣∣∣Γn,m(A, x, U)− 1

m

∫ m

0

∥∥Qne−iAsχU (A)x
∥∥2
ds

∣∣∣∣ ≤ 1

m2

m2∑
j=1

C(A, x, U)

m

(
2‖x‖+

C(A, x, U)

m

)

+
1

m2

m2∑
j=1

∣∣∣∣∣gn(j/m)−m
∫ j

m

j−1
m

gn(s)ds

∣∣∣∣∣ ,
where gn(s) = ‖Qne−iAsχU (A)x‖2. Clearly the first term converges to 0 as m → ∞ so we only need to

consider the second. Using (4.3.2), it follows that for any ε > 0 that

|gn(s)− gn(s+ ε)| ≤ 4‖Qne−iAs(e−iAε − I)χU (A)x‖‖x‖ ≤ 4‖x‖‖(e−iAε − I)χU (A)x‖.
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But e−iAε − I converges strongly to 0 as ε ↓ 0 and hence the quantity∣∣∣∣∣gn(j/m)−m
∫ j

m

j−1
m

gn(s)ds

∣∣∣∣∣→ 0

as m→∞ uniformly in j. It follows that

lim
m→∞

Γn,m(A, x, U) = lim
t→∞

1

t

∫ t

0

∥∥Qne−iAsEAUx∥∥2
ds

and hence

lim
n→∞

lim
m→∞

Γn,m(A, x, U) = 〈PAc EAUx, x〉.

Step 2: Next we deal with the case I = s. Note that for z ∈ C\R, 〈R(z,A)x, x〉 is simply the Stieltjes

transform (also called the Borel transform) of the positive measure µAx,x

〈R(z,A)x, x〉 =

∫
R

1

λ− z
dµAx,x(λ).

The Hilbert transform of µAx,x is given by the limit

HµAx,x
(t) =

1

π
lim
ε↓0

Re (〈R(t+ iε, A)x, x〉) ,

with the limit existing (Lebesgue) almost everywhere. This object was studied in [PSZ10, Pol96], where

we shall use the result (since the measure is positive) that for any bounded continuous function f ,2

lim
s→∞

πs

2

∫
R
f(t)χ{w:|HµAx,x (w)|≥s}(t)dt =

∫
R
f(t)dµAx,x,s(t). (4.3.3)

Now let (A, x, U) ∈ Ωf,α,β × U with

U =
⋃
m

(am, bm)

where am, bm ∈ R ∪ {±∞} and the disjoint union is at most countable as in (4.3.1). Without loss of

generality, we assume that the union is over m ∈ N. Due to the possibility of point spectra at the endpoints

am, bm, we cannot simply replace f by χU in the above limit (4.3.3). However, this can be overcome in the

following manner.

Let ∂U denote the boundary of U defined by U\U and let ν denote the measure µAx,x|∂U . Let fs denote

a pointwise increasing sequence of continuous functions, converging everywhere up to χU , such that the

support of each fs is contained in

[−s, s]
⋂ dse⋃

m=1

(
am + 1/

√
s, bm − 1/

√
s
) .

Such a sequence exists (and can easily be explicitly constructed) precisely because U is open. We first

claim that

lim
s→∞

πs

2

∫
R
fs(t)χ{w:|HµAx,x (w)|≥s}(t)dt = µAx,x,s(U). (4.3.4)

To see this note that for any u ∈ R, the following inequalities hold

lim inf
s→∞

πs

2

∫
R
fs(t)χ{w:|HµAx,x (w)|≥s}(t)dt ≥ lim inf

s→∞

πs

2

∫
R
fu(t)χ{w:|HµAx,x (w)|≥s}(t)dt

=

∫
R
fu(t)dµAx,x,s(t).

2Note that this is stronger than weak∗ convergence which in this case means restricting to continuous functions vanishing at infinity.
That the result holds for arbitrary bounded continuous functions is due to the tightness condition that the result holds for the function
identically equal to 1.

55



4.3. Computation of Measures CHAPTER 4. Computing Spectral Measures

Taking u→∞ gives that

lim inf
s→∞

πs

2

∫
R
fs(t)χ{w:|HµAx,x (w)|≥s}(t)dt ≥ µAx,x,s(U), (4.3.5)

so we are left with proving a similar bound for the limit supremum. Note that any point in the support of

fs is of distance at least 1/
√
s from ∂U . It follows that there exists a constant C independent of t such that

for any t ∈ supp(fs),

|Hν(t)| ≤ C
√
s

Now let ε ∈ (0, 1). Then, for large s, s− C
√
s ≥ (1− ε)s and hence

supp(fs) ∩ {w : |HµAx,x
(w)| ≥ s} ⊂ supp(fs) ∩ {w : |HµAx,x−ν(w)| ≥ (1− ε)s}. (4.3.6)

Now let f be any bounded continuous function such that f ≥ χU . Then using (4.3.6),

lim sup
s→∞

πs

2

∫
R
fs(t)χ{w:|HµAx,x (w)|≥s}(t)dt

≤ lim sup
s→∞

1

1− ε
π(1− ε)s

2

∫
R
fs(t)χ{w:|HµAx,x−ν(w)|≥(1−ε)s}(t)dt

≤ lim sup
s→∞

1

1− ε
π(1− ε)s

2

∫
R
f(t)χ{w:|HµAx,x−ν(w)|≥(1−ε)s}(t)dt

=
1

1− ε

∫
R
f(t)d([µAx,x − ν]s)(t).

Now we let f ↓ χU , with pointwise convergence everywhere. This is possible since the complement of U

is open. By the dominated convergence theorem, and since ε was arbitrary, this yields

lim sup
s→∞

πs

2

∫
R
fs(t)χ{w:|HµAx,x (w)|≥s}(t)dt ≤ [µAx,x − ν]s(U) = µAx,x,s(U),

where the last equality follows from the definition of ν. The claim (4.3.4) now follows.

Let χn be a sequence of non-negative continuous piecewise affine functions on R, bounded by 1 and

such that χn(t) = 0 if t ≤ n− 1 and χn(t) = 1 if t ≥ n+ 1. Consider the integrals

I(n,m) =
πn

2

∫
R
fn(t)χn(|Fm(t)|)dt,

where Fm(t) is an approximation of

1

π
Re

(〈
R

(
t+

i

m
,A

)
x, x

〉)
to pointwise accuracy O(m−1) over t ∈ [−n, n]. Note that a suitable piecewise linear function fn can be

constructed using Λ̃1, as can suitable χn, and a suitable approximation function Fm can be pointwise eval-

uated using Λ̃1 (again by Corollary 4.2.2). It follows that there exists arithmetic algorithms Γn,m(A, x, U)

using Λ̃1 such that

|I(n,m)− Γn,m(A, x, U)| ≤ C(A, x, U)

m
.

The dominated convergence theorem implies that

lim
m→∞

Γn,m(A, x, U) = lim
m→∞

I(n,m) =
πn

2

∫
R
fn(t)χn(|HµAx,x

(t)|)dt.

Note that continuity of χn is needed to gain convergence almost everywhere and prevent possible oscilla-

tions about the level set {HµAx,x
(t) = n}. We also have

χ{w:|HµAx,x (w)|≥n+1}(t) ≤ χn(|HµAx,x
(t)|) ≤ χ{w:|HµAx,x (w)|≥n−1}(t)
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The same arguments used to prove (4.3.4), therefore show that

lim
n→∞

πn

2

∫
R
fn(t)χn(|HµAx,x

(t)|)dt = µAx,x,s(U).

Hence,

lim
n→∞

lim
m→∞

Γn,m(A, x, U) = µAx,x,s(U),

completing the proof of inclusion in Theorem 4.3.2.

Proof of exclusion in Theorem 4.3.2

To prove the exclusion, we need two results which will also be used in Chapter 5. Namely, a result connected

to Anderson localisation (Theorem 5.2.1) and a result concerning sparse potentials of discrete Schrödinger

operators (Theorem 5.3.3). We also introduce some notation which will also be used in Chapter 5. Consider

a connected, undirected graph G, such that the degree of each vertex is bounded by some constant CG and

such that the set of vertices V (G) is countably infinite. We also assume that there exists at most one edge

between two vertices and no edges from a vertex to itself. We use the abuse of notation by identifying each

x ∈ V with its canonical vector in l2(V (G)) ∼= l2(N). The notation x ∼ y means there is an edge in G

connecting vertices x and y. We will use |x− y| to denote the length of a shortest path between vertices

x, y (which always exists since the graph is connected), and ζ(x) to denote the valence of x. An arbitrary

base vertex x0 is chosen and we define |x| = |x− x0|.
The (negative) discrete Laplacian or free Hamiltonian H0 acts on ψ ∈ l2(V (G)) via

{H0ψ}(x) = −
∑
y∼x

[ψ(y)− ψ(x)].

Since the vertex degree is bounded, H0 is a bounded operator. We define a Schrödinger operator on G to

be an operator of the form

Hv = H0 + v,

where v is a bounded (real-valued) multiplication operator

{vψ}(x) = v(x)ψ(x).

Proof of exclusion in Theorem 4.3.2. Since PApp = I − PAc , PAac = I − PAs and PAsc = PAs − PApp, it is

enough, by Theorem 4.3.1, to consider I = pp, ac and sc. We restrict the proof to considering bounded

Schrödinger operators Hv acting on l2(N), which are clearly a subclass of Ωf,0 for f(n) = n + 1. In this

distinguished case, we truncate the operator naturally defined on l2(Z) and define

H0 =


2 −1

−1 2 −1

−1 2
. . .

. . . . . .


We also set x = e1, with the crucial properties that this vector is cyclic and hence µHve1,e1 has the same

support as Sp(Hv), and that x ∈ V0. Throughout, we also take U = (0, 4).

Step 1: We begin with PApp. Suppose for a contradiction that there does exist a sequence of general

algorithms Γn such that

lim
n→∞

Γn(Hv) = 〈PHvpp E
Hv
(0,4)e1, e1〉.
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We take a general algorithm, denoted Γ̂n, from Theorem 4.3.1 which has

lim
n→∞

Γ̂n(Hv) = µHve1,e1((0, 4)).

Since e1 is cyclic, this limit is non-zero if (0, 4) ∩ Sp(Hv) 6= ∅. We therefore define

Γ̃n(Hv) =

0 if Γ̂n(Hv) = 0

Γn(Hv)

Γ̂n(Hv)
otherwise.

We will use Theorem 5.2.1 and the following well-known facts:

1. If for any l ∈ N there exists ml such that v(ml + 1) = v(ml + 2) = ... = v(ml + l) = 0, then

(0, 4) ⊂ Sp(Hv).

2. If there exists N ∈ N such that v(n) is 0 for n ≥ N , then Sppp(Hv) ∩ (0, 4) = ∅ [Rem98], but

[0, 4] ⊂ Sp(Hv) (the potential acts as a compact perturbation so the essential spectrum is [0, 4]).

3. If we are in the setting of Theorem 5.2.1, then the spectrum of Hvω + A is pure point almost surely.

Moreover, if ρ = χ[−c,c]/(2c) for some constant c, then [−c, 4 + c] ⊂ Sppp(Hvω +A) almost surely.

The strategy will be to construct a potential v such that (0, 4) ⊂ Sp(Hv), yet Γ̃n(Hv) does not converge.

This is a contradiction since by our assumptions, for such a v we must have

Γ̃n(Hv)→
〈PHvpp E

Hv
(0,4)e1, e1〉

µHve1,e1((0, 4))
.

To do this, choose ρ = χ[−c,c]/(2c) for some constant c such that the conditions of Theorem 5.2.1 hold and

define the potential v inductively as follows.

Let v1 be a potential of the form vω (with the density ρ) such that Sp(Hv1) is pure point. Such a v1 exists

by Theorem 5.2.1 and we have 〈PHv1pp E
Hv1
(0,4)e1, e1〉 = µ

Hv1
e1,e1((0, 4)). Hence for large enough n it must hold

that Γ̃n(Hv1
) > 3/4. Fix n = n1 such that this holds. Then Γn1

(Hv1
) only depends on {v1(j) : j ≤ N1}

for some integer N1 by (i) of Definition 2.1.1. Define the potential v2 by v2(j) = v1(j) for all j ≤ N1 and

v2(j) = 0 otherwise. Then by fact (2) above, 〈PHv2pp E
Hv2
(0,4)e1, e1〉 = 0 but µHv2e1,e1((0, 4)) 6= 0, and hence

Γ̃n(Hv2) < 1/4 for large n, say for n = n2 > n1. But then Γn2(Hv2) only depends on {v2(j) : j ≤ N2}
for some integer N2.

We repeat this process inductively switching between potentials which induce Γ̃nk(Hvk) < 1/4 for k

even and potentials which induce Γ̃nk(Hvk) > 3/4 for k odd. Explicitly, if k is even then define a potential

vk+1 by vk+1(j) = vk(j) for all j ≤ Nk and vk+1(j) = vω(j) (with the density ρ) otherwise such that

the spectrum of Hvk is pure point. Such a ω exists from Theorem 5.2.1 applied with the perturbation A to

match the potential for j ≤ Nk. If k is odd then we define vk+1 by vk+1(j) = vk(j) for all j ≤ Nk and

vk+1(j) = 0 otherwise. We can then choose nk+1 such that the above inequalities hold and Nk+1 such that

Γnk+1
(Hvk+1

) only depends on {vk+1(j) : j ≤ Nk+1}. We also ensure that Nk+1 ≥ Nk + k.

Finally set v(j) = vk(j) for j ≤ Nk. It is clear from (iii) of Definition 2.1.1, that Γ̃nk(Hv) = Γ̃nk(Hvk)

and this implies that Γ̃nk(Hv) cannot converge. However, since Nk+1 ≥ Nk + k, for any k odd we

have v(Nk + 1) = v(Nk + 2) = ... = v(Nk + k) = 0. Fact (1) implies that (0, 4) ⊂ Sp(Hv), hence

µHve1,e1((0, 4)) 6= 0 and therefore Γ̃n(Hv) converges. This provides the required contradiction.

Step 2: Next we deal with I = ac. To prove that one limit will not suffice, our strategy will be to

reduce a certain decision problem to the computation of Ξac. Let (M′, d′) be the discrete space {0, 1}, let
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Ω′ denote the collection of all infinite sequence {aj}j∈N with entries aj ∈ {0, 1} and consider the problem

function

Ξ′({aj}) : Does {aj} have infinitely many non-zero entries?

In [Colns], it was shown that SCI(Ξ′,Ω′)G = 2 (where the evaluation functions consist in component-

wise evaluation of the array {aj}). Suppose for a contradiction that Γn is a height one tower of general

algorithms such that

lim
n→∞

Γn(Hv) = 〈PHvac EHv(0,4)e1, e1〉.

We will gain a contradiction by using the supposed tower to solve {Ξ′,Ω′}.
Given {aj} ∈ Ω′, consider the operator Hv , where the potential is of the following form:

v(m) =

∞∑
k=1

akδm,k!. (4.3.7)

Then by Theorem 5.3.3, 〈PHvac EHv(0,4)e1, e1〉 = µHve1,e1((0, 4)) if
∑
k ak < ∞ (that is, if Ξ′({aj}) = 0) and

〈PHvac EHv(0,4)e1, e1〉 = 0 otherwise. Note that in either case we have µHve1,e1((0, 4)) 6= 0. We follow Step 1

and take a general algorithm, denoted Γ̂n, from Theorem 4.3.1 which has

lim
n→∞

Γ̂n(Hv) = µHve1,e1((0, 4)).

Since e1 is cyclic, this limit is non-zero for Hv , where v is of the form (4.3.7). We therefore define

Γ̃n(Hv) =

0 if Γ̂n(Hv) = 0

Γn(Hv)

Γ̂n(Hv)
otherwise.

It follows that

lim
n→∞

Γ̃n(Hv) =

1 if Ξ′({aj}) = 0

0 otherwise.

GivenN we can evaluate any matrix value ofH using only finitely many evaluations of {aj} and hence

the evaluation functions Λ̃1 can be computed using component-wise evaluations of the sequence {aj}. We

now set

Γn({aj}) =

0 if Γn(Hv) >
1
2

1 otherwise.

The above comments show that each of these is a general algorithm and it is clear that it converges to

Ξ′({aj}) as n→∞, the required contradiction.

Step 3: Finally, we must deal with I = sc. The argument is the same as Step 2, but now with replacing

〈PHvac EHv(0,4)e1, e1〉 with 〈PHvsc EHv(0,4)e1, e1〉 and the resulting Γ̃n(Hv) with 1− Γ̃n(Hv).

4.4 Two Important Applications

Theorem 4.3.1 can be extended to computing the functional calculus. Recall that given a (possibly un-

bounded complex-valued) Borel function F , defined on C, and A ∈ ΩN, F (A) is defined by

F (A) =

∫
Sp(A)

F (λ)dEA(λ).
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F (A) is a densely defined closed normal operator with dense domain given by

D(F (A)) =

{
x ∈ l2(N) :

∫
Sp(A)

|F (λ)|2 dµAx,x(λ) <∞

}
.

For simplicity, we will only deal with the case that F is a bounded continuous function on R, that is,

F ∈ Cb(R). In this case D(F (A)) is the whole of l2(N) (the measures µAx,y are finite) and we can use

standard properties of the Poisson kernel. We assume that given F ∈ Cb(R) we have access to piecewise

constant functions Fn supported in [−n, n] such that ‖F − Fn‖l∞([−n,n]) ≤ n−1. Clearly other suitable

data also suffices and as usual we abuse notation slightly by adding this information to Λ1 to define Λ̃1.

Theorem 4.4.1 (Computation of the functional calculus). Consider the map

Ξfun : Ωf,α,β × Cb(R)→ l2(N)

(A, x, F )→ F (A)x.

Then {Ξfun,Ωf,α,β × Cb(R), Λ̃1} ∈ ∆A
2 .

Proof. Let (A, x, F ) ∈ Ωf,α,β × Cb(R) then by Fubini’s theorem,∫ n

−n
KH(u+ i/n;A, x)Fn(u)du =

∫ ∞
−∞

∫ n

−n
PH(u− λ, 1/n)Fn(u)du dEA(λ)x.

The inner integral is bounded since F is bounded and the Poisson kernel integrates to 1 along the real line.

It also converges to F (λ) everywhere. Hence by the dominated convergence theorem

lim
n→∞

∫ n

−n
KH(u+ i/n;A, x)Fn(u)du = F (A)x.

We now use the same arguments used to prove Theorem 4.3.1. Using Corollary 4.2.2, together with

‖KH(u + i/n;A, x)‖l∞(R) ≤ nC1 and the fact that KH(u + i/n;A, x) is Lipschitz continuous with Lip-

schitz constant n2C2 for some (possibly unknown) constants C1 and C2, we can approximate this integral

with an error that vanishes in the limit n→∞.

Recall the definition of the Radon–Nikodym derivative in (4.1.1) and note that ρAx,y ∈ L1(R) for A ∈
ΩSA. We consider its computation in L1 sense in the following theorem, where, as before, we assume

(4.3.1), adding the approximations of U to our evaluation set along with component-wise evaluations of a

given vector y to form Λ̃1. However, we must consider the computation away from the singular part of the

spectrum - this is also reflected in the results of §4.5.2.

Theorem 4.4.2 (Computation of the Radon–Nikodym derivative). Consider the map

ΞRN : Ωf,α,β × l2(N)× U → L1(R)

(A, x, y, U)→ ρAx,y|U .

We restrict this map to the quadruples (A, x, y, U) such that U is strictly separated from supp(µAx,y,sc) ∪
supp(µAx,y,pp) and denote this subclass by Ω̃f,α,β . Then {ΞRN, Ω̃f,α,β , Λ̃1} ∈ ∆A

2 . Furthermore, each

output Γn(A, x, y, U) consists of a piecewise linear function, supported in U with rational knots and taking

(complex) rational values at these knots.
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Proof. Let (A, x, y, U) ∈ Ω̃f,α,β . For u ∈ U we decompose as follows

〈KH(u+ iε;A, x), y〉 =
1

π

∫
R

ε

(λ− u)2 + ε2
ρAx,y(λ)dλ

+
1

π

∫
R\U

ε

(λ− u)2 + ε2
{
dµAx,y,sc(λ) + dµAx,y,pp(λ)

}
.

(4.4.1)

The first term converges to ρAx,y|U in L1(U) as ε ↓ 0 since ρAx,y|U ∈ L1(U). Since we assumed that U is

separated from supp(µAx,y,sc) ∪ supp(µAx,y,pp), it follows that the second term of (4.4.1) converges to 0 in

L1(U) as ε ↓ 0. Hence we are done if we can approximate 〈KH(u+ i/n;A, x), y〉 in L1(U) with an error

converging to zero as n→∞.

Recall that KH(u + i/n;A, x) is Lipschitz continuous with Lipschitz constant at most n2‖x‖/π. By

assumption, and using Corollary 4.2.2, we can approximate KH(u + i/n;A, x) to asymptotic precision

with vectors of finite support. Hence the inner product

fn(u) := 〈KH(u+ i/n;A, x), y〉

can be approximated to asymptotic precision (now with a possibly unknown constant also depending on

‖y‖) and fn is Lipschitz continuous with Lipshitz constant at most n2‖x‖‖y‖/π.

Recall that U can be written as the disjoint union

U =
⋃
m

(am, bm)

where am, bm ∈ R ∪ {±∞} and the union is at most countable. Without loss of generality, we as-

sume that the union is over m ∈ N. Given an interval (am, bm), let am < zm,1,n < zm,2,n < ... <

zm,rm,n < bm be such that we have zm,j,n ∈ Q and |zm,j,n − zm,j+1,n| ≤ (bm − am)−1n−3m−2 and

|am − zm,1,n| , |bm − zm,rm,n| ≤ n−1. We also let fm,n be a piecewise affine interpolant with knots

zm,1,n, ..., zm,rm,n supported on (zm,1,n, zm,rm,n) with the property that |fm,n(zm,j,n)− fn(zm,j,n)| <
C(bm−am)−1n−1m−2. Here C is some unknown constant which occurs from the asymptotic approxima-

tion of fn that arises from Corollary 4.2.2 and we can always compute such fm,n in finitely many arithmetic

operations and comparisons.

Let Γn(A, x, y, U) be the function that agrees with fm,n on (am, bm) for m ≤ n and is zero elsewhere.

Clearly the nodes of Γn(A, x, y, U) can be computed using finitely many arithmetic operations and com-

parisons and the relevant set of evaluation functions Λ̃1. A simple application of the triangle inequality

implies that∫
U

∣∣Γn(A,U, x, y)(u)− ρAx,y(u)
∣∣ du ≤ ∑

m>n

∫
(am,bm)

∣∣ρAx,y(u)
∣∣ du

+
∑
m≤n

∫
(am,bm)\(zm,1,n,zm,rm,n)

∣∣ρAx,y(u)
∣∣ du

+
∑
m≤n

∫
(zm,1,n,zm,rm,n)

∣∣ρAx,y(u)− fn(u)
∣∣ du+

C̃(x, y,A)

n

∑
m≤n

1

m2
,

where the last term is due to the piecewise linear interpolant. The bound converges to zero as required.

4.5 High-order Kernels
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4.5.1 Motivation

As an example, consider L2([−1, 1]) and the operator defined by

Lq(x) = xq(x) +

∫ 1

−1

e−(x2+y2)q(y) dy, x ∈ [−1, 1]. (4.5.1)

The operator L in (4.5.1) has continuous spectrum in [−1, 1], due to the multiplicative xq(x) term, and

discrete spectrum in R \ [−1, 1] from the integral that acts as a compact perturbation. We discretise L with

an N × N matrix corresponding to an adaptive Chebyshev collocation scheme. For efficient storage and

computation of the resolvent, we exploit low numerical rank structure in the discretisation of the smooth

kernel [TT13]. We apply a Clenshaw–Curtis quadrature rule to compute the inner products [Tre19] required

to sample the scalar spectral measures.

There are two limits to take: N → ∞ and ε ↓ 0. These two limits must be taken with considerable

care [Col21]. If N is kept fixed as one takes ε ↓ 0, then the computed samples get polluted by the discrete

spectrum of the discretisation. Instead, as one takes ε ↓ 0, one must appropriately increase N too. In

practice, we increase N by selecting it adaptively to ensure that we adequately approximate the resolvent.

Proposition 4.2.1 gives us a handle on how to choose N adaptively as ε ↓ 0. However, there is a numerical

trade-off. Ideally, we would like to take ε small to recover a more accurate approximation of the spectral

measure. On the other hand, we wish to evaluate the resolvent as far away from the spectrum as possible

since, typically, evaluating nearer the spectrum requires larger discretisation sizes.3

For example, Figure 4.3 (left) shows the discretisation sizes,N , needed to evaluate the Radon–Nikodym

derivative of the spectral measure convolved with the Poisson kernel accurately. Here, we evaluate at

x0 = 1/2 ∈ [−1, 1] and consider µLf,f with f(x) =
√

3/2x. For the operator in (4.5.1) and ε = 0.05, 0.01,

and 0.005, we need N = 400, 1700, and 3100, respectively. We have also shown (Figure 4.3 (right)) the

error in the convolution approximation of the Radon–Nikodym derivative, which is of order O(ε log(ε−1))

(see Theorem 4.5.2 below) for the Poisson kernel (m = 1). Unfortunately, to obtain samples of the spectral

measure that have two digits of relative accuracy, we require that ε ≈ 0.01. Since we require N ≈ 20/ε

for small ε > 0, it is computationally infeasible to obtain more than five or six digits of accuracy with the

Poisson kernel. We have also shown the relative errors when using the high-order kernels developed in this

section. The order is denoted bym, and the plot corresponds toO(εm log(ε−1)) whenm is odd and aO(εm)

when m is even. A sixth-order kernel enables us to achieve about 11 digits of accuracy without decreasing

ε below 0.01. Although using a sixth-order kernel requires six times as many resolvent evaluations as that

of the Poisson kernel (see below), this is typically favourable because the cost of evaluating the resolvent

near the continuous spectrum of L increases as ε ↓ 0.

4.5.2 High-order kernels, high-order convergence and error control

It is well-known in signal processing and statistics that the convergence rate of convolutions is determined

by the number of vanishing moments of the kernel. We therefore make the following definition:

Definition 4.5.1 (mth order kernel). Let m be a positive integer and K ∈ L1(R). We say that K is an mth

order kernel if it has the following three properties:
3Two reasons for this, explored in more detail in [CHT21], are the formation of interior layers and oscillatory behaviour of the

solutions of the corresponding linear systems. This problem of needing large discretisations is distinct from, though related to, the
problem of conditioning. If x0 ∈ Sp(A), then ‖R(x0 + iε, A)‖ = ε−1 and the shifted linear systems become increasingly ill-
conditioned as ε ↓ 0. This can limit the attainable accuracy and is also important if one solves the shifted linear systems using iterative
methods (more iterations may be required).
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Figure 4.2: Left: The smoothed approximation [Kε ∗ µLf,f ] (Kε denotes the rescaled Poisson kernel) for the
integral operator in (4.5.1) and different ε. The discretisation sizes for solving the shifted linear systems are
adaptively selected. Right: The same computation except with a fixed discretisation size of N = 500.
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Figure 4.3: Left: The relative error in the numerical approximation, denoted by µεf,N , corresponding to
discretisation size N , of the smoothed measure [Kε ∗ µLf,f ](x0) (Kε denotes the rescaled Poisson kernel)
for the operator in (4.5.1) with ε = 0.05, ε = 0.01, and ε = 0.005. Right: The pointwise relative error in
smoothed measures of the operator in (4.5.1) computed using the high-order kernels with poles in (4.5.21)
for 1 ≤ m ≤ 6 (Kε denotes the rescaled kernels). The relative errors are computed by comparing with
numerical solutions that are resolved to machine precision.
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(i) Normalised:
∫
RK(x)dx = 1.

(ii) Zero moments: K(x)xj is integrable and
∫
RK(x)xjdx = 0 for 0 < j < m.

(iii) Decay at ±∞: There is a constant CK , independent of x, such that

|K(x)| ≤ CK
(1 + |x|)m+1

, x ∈ R. (4.5.2)

We denote the rescaled kernel ε−1K(ε−1·) by Kε. For example, the Poisson kernel used previously in

this chapter is a first-order kernel and is not a second-order kernel. In contrast, the Gaussian kernel, h(x) =

(2π)−1/2e−x
2/2, is a second-order kernel which plays an important role in density of states calculations

[LSY16] and kernel density estimation [Sil18]. However, it is not particularly useful in our setting since

it is not clear how to approximate the convolutions hε ∗ µAx,y . We will see in §4.5.3 that rational kernels

are much more useful in this regard since we can compute the convolution by computing the action of the

resolvent with error control, just like we did for the Poisson kernel.

The results of this subsection are stated in terms of convergence of convolutions for probability mea-

sures. However, by rescaling and the polar identity, corresponding results for the spectral measures µAx,y
can easily be obtained. We let Ck,α(I) denote the Hölder space of functions that are k times continuously

differentiable on an interval I with an α-Hölder continuous kth derivative [Eva10]. For h1 ∈ C0,α(I) and

h2 ∈ Ck,α(I) we set

|h1|C0,α(I) = sup
x6=y∈I

|h1(x)− h1(y)|
|x− y|α

, ‖h2‖Ck,α(I) = |h(k)
2 |C0,α(I) + max

0≤j≤k
‖h(j)

2 ‖∞,I .

The following theorem describes the pointwise convergence rates.

Theorem 4.5.2. Let K be an mth order kernel, µ denote a probability measure on R and let ε, η > 0.

Suppose that x ∈ R is such that µ is absolutely continuous on the interval I = [x − η, x + η] with

Cn,α(I) Radon–Nikodym derivative ρ|I (with respect to Lebesgue measure), where n ∈ N≥0, α ∈ [0, 1)

and n+ α > 0. Then

(i) If n+ α < m, then, for a constant C(n, α) depending only on n and α,

|ρ|I(x)−Kε ∗ µ(x)| ≤ CKε
m

(ε+ η
2 )m+1

+C(n, α)‖ρ|I‖Cn,α(I)

∫
R
|K(y)||y|n+α

dy
(
1 + η−n−α

)
εn+α.

(ii) If n+ α ≥ m, then, for a constant C(m) depending only on m,

|ρ|I(x)−Kε ∗ µ(x)| ≤ CKε
m

(ε+ η
2 )m+1

+C(m)‖ρ|I‖Cm(I)

(
CK +

∫ η
ε

− ηε
|K(y)||y|m dy

)(
1 + η−m

)
εm.

Here, CK denotes the constant in (4.5.2).

Remark 4.5.3. If we fix η and consider small ε, then we obtain rates O(εn+α) and O(εm log(ε−1)) in

cases (i) and (ii) respectively. One can show that these rates are, in general, sharp. Note that the error

bound deteriorates when η becomes small (as expected).

Proof. We first decompose

ρ|I = g1 + g2,
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where g1, g2 ∈ Cn+α(I) are both non-negative, g1 is compactly supported in (x − η, x + η) and g2 is

identically zero on (x− η/2, x+ η/2). Moreover, we can select g1 so that in case (i) of the theorem,

1

n!

∣∣∣g(n)
1

∣∣∣
C0,α(I)

≤ C(n, α)‖ρ|I‖Cn,α(I)

(
1 + η−n−α

)
,

for some universal constant C(n, α) that only depends on n and α, whereas in case (ii),

2e
∥∥∥g(m)

1

∥∥∥
∞
≤ C(m)‖ρ|I‖Cm(I)

(
1 + η−m

)
,

for some universal constant C(m) that only depends on m. Existence of such decompositions follows from

standard arguments with cut-off functions.

First we deal with case (i) and assume that α > 0. The case of α = 0 is almost identical with some

changes of indices. We use the following form of Taylor’s theorem,

g1(x+ y)− g1(x) =

n∑
j=1

g
(j)
1 (x)

j!
yj +

∫ y

0

∫ t1

0

....

∫ tn−1

0

[
g

(n)
1 (tn + x)− g(n)

1 (x)
]
dt1...dtn.

For notational convenience, let

Mn(x, y; g1) =

∫ y

0

∫ t1

0

....

∫ tn−1

0

[
g

(n)
1 (tn + x)− g(n)

1 (x)
]
dt1...dtn.

Substituting this into the convolution equation yields

Kε ∗ g1(x)− g1(x) =

n∑
j=1

g
(j)
1 (x)

j!
ε−1

∫
R
K

(
−y
ε

)
yjdy + ε−1

∫
R
K

(
−y
ε

)
Mn(x, y; g1)dy. (4.5.3)

Using the Hölder condition and direct integration, we have that

|Mn(x, y; g1)| ≤ |y|n+α

(α+ 1) · · · (α+ n)

∣∣∣g(n)
1

∣∣∣
C0,α(I)

.

Hence, by a change of variables y → −y, the last integral in (4.5.3) is bounded by

ε−1
∣∣∣g(n)

1

∣∣∣
C0,α(I)

∫
R

∣∣∣K (y
ε

)∣∣∣ |y|n+α

(α+ 1) · · · (α+ n)
dy ≤

∫
R |K(y)| |y|n+α

dy

n!

∣∣∣g(n)
1

∣∣∣
C0,α(I)

· εn+α.

Since n < m (recall that α > 0 in the case we are dealing with), it follows that (again by a change of

variables y → −y) all the other integrals in (4.5.3) vanish and hence we have

|Kε ∗ g1(x)− g1(x)| ≤
∫
R |K(y)| |y|n+α

dy

n!

∣∣∣g(n)
1

∣∣∣
C0,α(I)

· εn+α. (4.5.4)

Due to the fact that g1 and g2 are non-negative, it follows that the measure µ − g1dx is non-negative,

supported on the closure of (x− η/2, x+ η/2)c and has total variation at most 1. Linearity of convolutions

now implies that

|ρ|I(x)−Kε ∗ µ(x)| ≤ CKε
m

(ε+ η
2 )m+1

+ |Kε ∗ g1(x)− g1(x)| .

Together with (4.5.4), this yields the result.

For case (ii), we use Taylor’s theorem to obtain∣∣∣∣∣∣g1(x+ y)−
m−1∑
j=0

g
(j)
1 (x)

j!
yj

∣∣∣∣∣∣ ≤ ‖g
(m)
1 ‖∞ |y|m

m!
.
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We then split the range of integration, noting that g1(x+ y) = 0 if |y| > η, to obtain

|Kε ∗ g1(x)− g1(x)| ≤ |g1(x)| ε−1

∣∣∣∣∣
∫
|y|≥η

K
(y
ε

)
dy

∣∣∣∣∣
+

m−1∑
j=1

∣∣∣g(j)
1 (x)

∣∣∣
j!

ε−1

∣∣∣∣∣
∫
|y|≤η

K
(y
ε

)
yjdy

∣∣∣∣∣+
‖g(m)

1 ‖∞
m!

ε−1

∫
|y|≤η

∣∣∣K (y
ε

)∣∣∣ |y|m dy.
Due to the vanishing moments condition and decay (4.5.2), if 1 ≤ j < m then

ε−1

∣∣∣∣∣
∫
|y|≤η

K
(y
ε

)
yjdy

∣∣∣∣∣ = ε−1

∣∣∣∣∣
∫
|y|≥η

K
(y
ε

)
yjdy

∣∣∣∣∣ ≤ 2CK
m− j

εj
(
ε

η

)m−j
,

where the last equality follows by a change of variables. We can write out g(j)
1 (x) as an iterated integral of

g
(m)
1 , to obtain |g(j)

1 (x)| ≤ ηm−j‖g(m)
1 ‖∞. It follows that

|Kε ∗ g1(x)− g1(x)| ≤ ‖g
(m)
1 ‖∞
m!

εm
∫
|y|≤ ηε

|K(y)| |y|m dy +

m−1∑
j=0

∣∣∣g(j)
1 (x)

∣∣∣
j!

· 2CK
m− j

· εj
(
ε

η

)m−j

≤ ‖g
(m)
1 ‖∞
m!

εm
∫
|y|≤ ηε

|K(y)| |y|m dy + 2eCK‖g(m)
1 ‖∞εm.

We now argue as before to finish the proof.

As well as pointwise error estimates, we can obtain Lp estimates which are useful when the Radon–

Nikodym derivative has integrable singularities or in applications where the spectral measure is a probability

measure (and hence L1 convergence is natural). The convergence in Lp is most easily studied through the

Fourier transform of the kernel, which in this section we define as

K̂(ω) =

∫
K(x) exp(2πixω)dx.

Lemma 4.5.4. Let K be an mth order kernel. Then K̂ is m − 1 times continuously differentiable, (K̂)(j)

is bounded for j = 0, ...,m− 1, and (K̂)(j)(0) = 0 for j = 1, ...,m− 1. Furthermore, for any α ∈ (0, 1),

K̂ ∈ Cm−1,α(R).

Exercise: Prove Lemma 4.5.4.

For an mth order kernel K, we define the function

Ĝm,K(ω) :=
K̂(ω)− 1

(2πiω)m
.

Lemma 4.5.4 shows that Ĝm,K ∈ L2(R) and we denote its inverse Fourier transform by Gm,K . The

following theorem gives the convergence rates of our smoothed approximation in the Lp sense.

Theorem 4.5.5. Let K be an mth order kernel, µ denote a probability measure on R and let ε, η > 0. Then

Gm,K is bounded and satisfies

|Gm,K(x)| ≤ CK
m!(1 + |x|)

. (4.5.5)

Let 1 ≤ p < ∞ and suppose that µ is absolutely continuous on the interval I = (a − η, b + η) for η > 0

and some a < b. Let ρ denote the Radon–Nikodym derivative of the absolutely continuous component of µ,
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and suppose that ρI := ρ|I ∈Wm,p(I). Then

‖ρI − [Kε ∗ µ]‖Lp,[a,b] ≤
CK(b− a)1/p

(ε+ η/2)m+1
εm

+ C(m)

∫ ((b−a)+2η)/ε

−((b−a)+2η)/ε

|Gm,K(x)| dx · (1 + η−m) · ‖ρI‖Wm,p(I) · εm,

(4.5.6)

where C(m) denotes a constant depending only on m. In particular, as ε ↓ 0

‖ρI − [Kε ∗ µ]‖Lp,[a,b] = O(εm log(1/ε)). (4.5.7)

If there exists δ > 0 such that |K(x)(1 + |x|)m+1+δ| is bounded, then |Gm,K(x)(1 + |x|)1+δ| is also

bounded and

‖ρI − [Kε ∗ µ]‖Lp,[a,b] = O(εm). (4.5.8)

Proof of Theorem 4.5.5. We first argue for convolutions with smooth compactly supported functions and

then take a limit. Let g ∈ C∞0 , the space of smooth compactly supported functions on R, and let L denote

the diameter of the support of g. For a function F ∈ L1(R), define the function

φF (x) =


∫ x
−∞ F (t)dt−

∫
R F (t)dt, if x > 0,∫ x

−∞ F (t)dt, otherwise,

which induces a map φ : F → φF . Note that φF is bounded and decays at infinity. We let φn,F denote

the n-fold iteration of φ applied to F (assuming that all of F , φF ,...,φn−1,F ∈ L1(R)). The purpose of this

map is that, in the sense of distributions, we have

F −
∫
R
F (t)dt · δ0 = φ′F

and hence

[F ∗ g](x)−
∫
R
F (t)dt · g(x) = [−φF ∗ g′](x).

Applying this to F = Kε, we see that

[Kε ∗ g](x)− g(x) = [−φKε ∗ g′](x)

Note that if

F (x) ≤ C

(1 + |x|)m+1
(4.5.9)

for some constant C, then

φF (x) ≤ C

m(1 + |x|)m
. (4.5.10)

Hence if m > 1, φKε ∈ L1(R) and we can apply the map again to obtain

[Kε ∗ g](x)− g(x) = [φ2,Kε ∗ g′′](x)−
∫
R
φKε(t)dt · g′(x).

Inductively, we can apply the above argument to obtain the expression

[Kε ∗ g](x)− g(x) = (−1)m[φm,Kε ∗ g(m)](x) +

m−1∑
j=1

(−1)j
∫
R
φj,Kε(t)dt · g(j)(x). (4.5.11)
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Note that sinceK is anmth order kernel, φm,Kε is bounded by a constant multiple of (1+ |x|)−1 and hence

φm,Kε ∈ L2(R). We can apply the convolution theorem, taking Fourier transforms, to obtain

(K̂ε(ω)− 1)ĝ(ω) = (−1)mφ̂m,Kε(ω)[−2πiω]mĝ(ω) +

m−1∑
j=1

(−1)j
∫
R
φj,Kε(t)dt[−2πiω]j ĝ(ω). (4.5.12)

Since g ∈ C∞0 (R) was arbitrary (and we can take ĝ(ω) 6= 0), it follows that

(−1)mφ̂m,Kε(ω) =
(K̂ε(ω)− 1)

(−2πiω)m
−
m−1∑
j=1

(−1)j
∫
R φj,Kε(t)dt

(−2πiω)m−j
.

Since φm,Kε ∈ L2(R), it follows that φ̂m,Kε ∈ L2(R). However, by Lemma 4.5.4, as ω → 0, |K̂ε(ω)−1| =
O(ωm−1+α) for any α ∈ (0, 1). It follows that∫

R
φj,Kε(t)dt = 0

for j = 1, ...,m − 1. Hence we have φm,K1
= φm,K = Gm,K . Iterating (4.5.9) and (4.5.10) implies

(4.5.5).

Now suppose that x lies in the support of g, then we can replace φm,Kε(x) by χ[−L,L](x)φm,Kε(x)

in (4.5.11), where χU denotes the indicator function of a set U . By Hölder’s inequality, χ[−L,L]φm,Kε ∈
L1(R) and hence, by Young’s convolution inequality, it follows that

‖Kε ∗ g − g‖Lp,supp(g) ≤
∥∥∥[χ[−L,L]φm,Kε ] ∗ g(m)

∥∥∥
Lp

(4.5.13)

≤
∫ L

−L
|φm,Kε(x)| dx · ‖g(m)‖Lp . (4.5.14)

Furthermore, we have by a simple change of variables that

φKε(x) = ε
(
ε−1φK(ε−1x)

)
.

Iterating, we see that φm,Kε(x) = εm−1φm,K(ε−1x) = εm−1Gm,K(ε−1x). By a change of variables in

the integral expression in (4.5.14), it follows that

‖Kε ∗ g − g‖Lp,supp(g) ≤ ε
m

∫ L/ε

−L/ε
|Gm,K(x)| dx · ‖g(m)‖Lp . (4.5.15)

We can pass to a limit of approximating functions to see that the bound in (4.5.15) also holds for any

g ∈Wm,p(R) of compact support, where L denotes the diameter of the support.

Let I ′ = (a − η/2, b + η/2). Since ρI ∈ Wm,p(I), we can decompose ρI = g1 + g2 such that g1 is

non-negative, supported in I with ‖g(m)
1 ‖Lp(R) ≤ C(m)‖ρI‖Wm,p(I)(1 + η−m) for some constant C(m)

(that depends only on m) and g2 is non-negative with support contained in R \ I ′. Therefore, ρI = g1 on

(a, b) and for almost any x ∈ (a, b)

|ρI(x)− [Kε ∗ µ](x)| ≤ ε−1 CK
(1 + η

2ε )
m+1

+ |[Kε ∗ g1](x)− g1(x)| .

By the triangle inequality, this implies that

‖ρI − [Kε ∗ µ]‖Lp,[a,b] ≤
CK(b− a)1/p

(ε+ η/2)m+1
εm +

∫ ((b−a)+2η)/ε

−((b−a)+2η)/ε

|Gm,K(x)| dx · ‖g(m)
1 ‖Lp · εm, (4.5.16)

since ∥∥∥∥ε−1 CK
(1 + η

2ε )
m+1

∥∥∥∥
Lp,[a,b]

=
CK(b− a)1/p

(ε+ η/2)m+1
εm.
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The bound (4.5.16) then implies (4.5.6).

Finally, (4.5.7) follows from (4.5.5) and (4.5.6) through bounding the integral∫ ((b−a)+2η)/ε

−((b−a)+2η)/ε

|Gm,K(x)| dx ≤
∫ ((b−a)+2η)/ε

−((b−a)+2η)/ε

CK
m!(1 + |x|)

dx = O(log(1/ε)).

If |K(x)|(1+ |x|)m+1+δ is bounded for δ > 0, then the same argument used for (4.5.9) and (4.5.10) implies

that |Gm,K(x)(1 + |x|)1+δ| is also bounded and hence Gm,K ∈ L1(R). The rate (4.5.8) follows since

lim
ε↓0

∫ ((b−a)+2η)/ε

−((b−a)+2η)/ε

|Gm,K(x)| dx <∞

and the other terms are O(εm).

As well as increasing the rate of convergence for computing Radon–Nikodym derivatives, high-order

kernels increase the rate of convergence for computing the functional calculus. However, no regularity

assumptions on µ are needed. Instead, one can apply Fubini’s theorem and (strictly speaking the proofs

of) Theorems 4.5.2 and 4.5.5 to obtain high-order convergence through regularity of the function F . For

example, if K is an mth order kernel and F ∈ Cn,α(R), then for any probability measure µ, regardless of

the regularity of µ, we have∣∣∣∣∫ F (x)dµ(x)−
∫
F (x)d [Kε ∗ µ] (x)

∣∣∣∣ = O(εn+α) +O(εm log(ε−1)).

As expected, when F is analytic, we can do even better.

4.5.3 Constructing rational kernels

Theorems 4.5.2 and 4.5.5 show that the convolution with the Poisson kernel has a pointwise and Lp local

rate of convergence ofO(ε log(ε−1)) for regular enough measures. In designing a kernel suitable for numer-

ical computations, we note that the results of §4.2 allow the computation of R(z,A)x with error control for

any z /∈ R and (A, x) ∈ Ωf,α,β assuming that we have explicit bounds on ‖(I −Pn)APn‖ and ‖Pnx−x‖.
To avoid compounding errors (and requiring larger n to solve the relevant systems), it is beneficial to avoid

evaluating squares and higher powers of the resolvent. This leads us to kernels of the form

K(u) =
1

2πi

n1∑
j=1

αj
u− aj

− 1

2πi

n2∑
j=1

βj
u− bj

, (4.5.17)

where a1, ..., an1
are distinct points in the upper half-plane and b1, ..., bn2

are distinct points in the lower

half-plane. We can then compute the convolution µAx,y ∗Kε with error control through the formula

µAx,y ∗Kε(u) =
−1

2πi

 n1∑
j=1

αj〈R(u− εaj , A)x, y〉 −
n2∑
j=1

βj〈R(u− εbj , A)x, y〉

 . (4.5.18)

By considering the Fourier transform of K at zero frequency and matching the left and right derivatives

of the Fourier transform, a straightforward calculation shows that the first m − 1 moments of K exist and

are zero (excluding the 0th order which must be 1 to achieve convergence), if and only if

1 1 · · · 1

a1 a2 · · · an1

a2
1 a2

2 · · · a2
n1

...
...

...

am−1
1 am−1

2 · · · am−1
n1




α1

α2

...

αn1

 =


1

0
...

0

 , (4.5.19)
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m πK(u)
∏m
j=1(u− aj)(u− aj) {α1, . . . , αdm/2e}

2 20
9

{
1+3i

2

}
3 − 5

4u
2 + 65

16 {−2 + i, 5}

4 − 3536
625 u

2 + 21216
3125

{−39−65i
24 , 17+85i

8

}
5 130

81 u
4 − 12350

729 u2 + 70720
6561

{
15−10i

4 , −39+13i
2 , 65

2

}
6 1287600

117649 u
4 − 34336000

823543 u2 + 667835200
40353607

{
725+1015i

192 , −2775−6475i
192 , 1073+7511i

96

}
Table 4.1: The numerators and residues of the first six rational kernels with equispaced poles (see (4.5.21)).
We give the first dm/2e residues because the others follow by the symmetry αm+1−j = αj .

with a similar system holding for the βj and bj . By considering the 2nd to (n1 +1)th rows, this (transposed)

Vandermonde system cannot have a solution if n1 < m. We therefore set n1 = n2 = m. In the case that

x = y, a further numerical saving can be made by letting bj = aj and noting that in this case

µAx,x ∗Kε(u) =
−1

π
Im

 m∑
j=1

αj〈R(u− εaj , A)x, x〉

 , (4.5.20)

meaning that we only need m resolvent evaluations per point of evaluation.

The location of the poles in the upper half-plane is entirely flexible. As a natural extension of the

Poisson kernel, whose two poles are at ±i, we consider the family of mth order kernels with equispaced

poles in the upper and lower half-planes given by

aj =
2j

m+ 1
− 1 + i, bj = aj , 1 ≤ j ≤ m. (4.5.21)

Empirically, the choice in (4.5.21) performed slightly better than other natural choices such as Chebyshev

points with an offset +i or rotated roots of unity. The ill-conditioning of the Vandermonde system does not

play a role for the values ofm used (typically at mostm = 10). Moreover, equispaced poles are particularly

useful when one wishes to sample the smoothed measure Kε ∗ µAx,y over an interval, since samples of the

resolvent can be reused for different points in the interval. The first ten kernels are plotted in Figure 4.4

(left) and the first six are explicitly written down in Table 4.1.

4.5.4 Jacobi operator examples

Let J be a Jacobi matrix

J =


b1 a1

a1 b2 a2

a2 b3
. . .

. . . . . .


with aj , bj ∈ R and aj > 0. Under suitable conditions, the probability measure µJ := µJe1,e1 is exactly the

probability measure associated with the orthonormal polynomials defined by

P−1(x) = 0, P0(x) = 1, xPk(x) = ak+1Pk+1(x) + bk+1Pk(x) + akPk−1(x).
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Figure 4.4: Left: Kernels used for convolution. Right: Convergence for Gaussian measure.
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Figure 4.5: Left: Pointwise errors for λ = −1, 0, 1 for m = 1 and α = 0.7, β = 0.3. Right: Pointwise
errors for λ = −0.99, 0, 1 for m = 10 and α = 0.7, β = −0.3.

As a simple example,consider ak =
√
k/2 and bk = 0, corresponding to the famous measure dµJ =

exp(−λ2)/
√
πdλ, which induces the Hermite polynomials. We have shown the convergence (measured via

the L1 error over [−1, 1]) of our method using §4.2, for different values of m in terms of the distance of

the poles to the real line (= ε) in Figure 4.4 (right). We can clearly see the convergence rates O(εm) (up to

logarithmic factors)4 from Theorems 4.5.2 and 4.5.5.

As a second example, consider the Jacobi polynomials defined for α, β > −1 which have

ak = 2

√
k(k + α)(k + β)(k + α+ β)

(2k + α+ β − 1)(2k + α+ β)2(2k + α+ β + 1)
, bk =

β2 − α2

(2k + α+ β)(2k − 2 + α+ β)

and measure on the interval [−1, 1] given by

dµJ =
(1− λ)α(1 + λ)β

N(α, β)
dλ = fα,β(λ)dλ,

where N(α, β) is a normalising constant, ensuring the measure is a probability measure. Figure 4.5 (left)

shows the pointwise convergence at λ = −1, 0, 1 for m = 1 and α = 0.7, β = 0.3. The approximation

converges at the expected rates (corresponding to the relevant Hölder regularity) from Theorem 4.5.2. Fig-

ure 4.5 (right) shows a similar plot for λ = −0.99, 0, 1 for m = 10 and α = 0.7, β = −0.3. The rate of
4There are no logarithmic factors when m is even. However, an extra log(ε−1) factor appears when m is odd (owing to the

non-integrability of umK(u)). More generally, by analysing the solution of the system (4.5.19), the logarithmic factors disappear
precisely when

∏m
j=1 aj =

∏m
j=1 bj .
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Figure 4.6: Left: Honeycomb structure of graphene as a bipartite graph. The spinor structure is shown via
circled lattice vertices. The arrow shows the perpendicular magnetic field B. Right: Sparsity structure of
the first 103 × 103 block of the infinite matrix, and the corresponding growing local bandwidth.

convergence is increased to order 10 for λ = −0.99 and λ = 0 where the measure is locally smooth, but

remains order α at λ = 1. The error at λ = −0.99 is larger than at λ = 0 due to being much nearer the

singularity at −1, which corresponds to a smaller η in Theorem 4.5.2.

4.6 Numerical Examples

4.6.1 Magneto-graphene Schrödinger operator

We apply the method to a magnetic tight-binding model of graphene, which involves a discrete graph

operator [AEG14]. Graphene is a two-dimensional material with carbon atoms situated at the vertices

of a honeycomb lattice (Figure 4.6), whose unusual properties are studied in condensed-matter physics

[NGP+09, Nov11]. Magnetic properties of graphene are well-studied and include experimental observa-

tions of the quantum Hall effect and Hofstadter’s butterfly [PGY+13], and twistronics [Cha19, LSY+19].

A honeycomb lattice can be decomposed into two bipartite sub-lattices (shown via the red and green

dots in Figure 4.6 (left)) and thus the wave function of an electron can be modelled as the spinor [AEG14]

ψm,n = (ψ[1]
m,n, ψ

[2]
m,n)T ∈ C2, ψ = (ψm,n) ∈ l2(Z2;C2) ∼= `2(N).

Here, (m,n) ∈ Z2 labels a position on the sub-lattices and `2(Z2;C2) denotes the space of square summable

C2-valued sequences indexed by Z2. To define the Hamiltonian, consider the following three magnetic

hopping operators T1, T2, T3 : `2(Z2;C2) → `2(Z2;C2) for a given magnetic flux per unit cell Φ (in

dimensionless units):

(T1ψ)m,n=

ψ[2]
m,n

ψ
[1]
m,n

, (T2ψ)m,n=

ψ[2]
m+1,n

ψ
[1]
m−1,n

 , (T3ψ)m,n=

e−2πiΦmψ
[2]
m,n+1

e2πiΦmψ
[1]
m,n−1

 .

After a suitable gauge transformation, the free Hamiltonian can be expressed as H0 = T1 + T2 + T3 and

has Sp(H0) ⊂ [−3, 3]. A suitable ordering of lattice points leads to a sparse discretisation of H0, where the

kth row contains O(
√
k) non-zero entries (see Figure 4.6 (right)). Therefore, for an approximation using

N basis sites, the action of the resolvent can be computed in O(N3/2) operations [TBI97].

Figure 4.7 shows how the spectral measure of H0, taken with respect to the vector e1 (the labelling

does not matter due to the translational invariance of the lattice), varies with Φ. For Φ ∈ Q, the spectrum
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Figure 4.7: Radon–Nikodym derivative ρH0
e1,e1 (log10 scale) of the measure for various magnetic field

strengths Φ. The axis label E (energy) stands for the spectral parameter. The Radon–Nikodym derivative is
computed to high precision using ε = 0.01 and a fourth-order kernel with poles corresponding to (4.5.21).
The spectrum is fractal for irrational Φ, which is approximated by rational Φ. The small gaps in the spectrum
are clearly visible (corresponding to the blue shaded regions) and the logarithmic scale shows the sharpness
of the approximation to ρH0

e1,e1 (which vanishes in these gaps).

is absolutely continuous, and hence we have plotted the Radon–Nikodym derivative of the measure µH0
e1,e1 .

The calculations, performed with a fourth-order kernel and ε = 0.01, show a sharp Hofstadter-type butterfly,

but now with the additional information of the spectral measure.

Figure 4.8 (left) shows an approximation of ρH0
e1,e1 when Φ = 1/4 using a fourth-order kernel and

ε = 0.01. We also show, as shaded vertical strips, the output of the algorithm in Chapter 3 [CRH19] which

computes the spectrum with error control (we used an error bound of 10−3) and without spectral pollution.5

The support of Kε ∗µH0
e1,e1 is the whole real line due to the non-compact support of the kernel K. However,

if λ 6∈ Sp(H0), then |[Kε ∗ µH0
e1,e1 ](λ)| ≤ CKε

m(ε + dist(λ, Sp(H0)))−(m+1), where CK is the constant

in (4.5.2) and m is the order of the kernel, so |[Kε ∗ µH0
e1,e1 ](λ)| decays rapidly off of the spectrum. We also

consider a multiplication operator (potential) perturbation, modeling a defect, of the form

V (x) =
cos(‖x‖2π)

(‖x‖2 + 1)2
, (4.6.1)

where x denotes the position of a vertex normalised so each edge has length 1. The perturbed operator is

thenH0+V . Since the perturbation is trace class, the absolutely continuous part of the spectrum remains the

same (though the measure changes) and the potential induces additional eigenvalues (see Figure 4.8 (right)).

Again, we see that |[Kε ∗ µH0+V
e1,e1 ](λ)| decays rapidly off of the spectrum. In particular, the measure is not

corrupted by spikes in the gaps in the essential spectrum or similar artefacts caused by spectral pollution.

4.6.2 Hunting eigenvalues of the Dirac operator

In this example, we show how the results of this chapter can be used as an effective tool to find eigenvalues

in gaps of the essential spectrum, whilst avoiding spectral pollution. This example also demonstrates that

the methods of this chapter apply to partial differential operators.
5With a non-periodic potential (4.6.1), this is a highly non-trivial problem since finite truncation methods typically suffer from

spectral pollution inside the convex hull in the essential spectrum.
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Figure 4.8: Left: Smoothed measure with no potential. We show the algorithm from Chapter 3 as shaded
strips (green) for comparison. Right: The same computation but with the added potential in (4.6.1). The
additional eigenvalues correspond to spikes in the smoothed measure.

We consider the Dirac operator (defined below) which often has discrete spectrum in the interval

(−1, 1). This interval forms a gap of the essential spectrum. It follows that standard finite section meth-

ods used to compute the discrete spectrum will suffer from spectral pollution within the gap (−1, 1) - i.e.

there exist accumulation points of the approximations which do not belong to the spectrum. There is a

rich literature on how to avoid this [DG81, Kut84, Tal86, Kut97, STY+04, LS14]. The majority of exist-

ing approaches work for certain classes of potentials and avoid spectral pollution on particular subsets of

(−1, 1). Even for simple Coulomb-type potentials, spectral pollution can be a difficult issue to overcome,

and computations typically achieve a few digits of precision for the ground state and a handful of the first

few excited states. A popular approach is the so-called kinetic balance condition, which does not always

work for Coulomb potentials [SH84, DFJ90, LS09]. Our approach does not suffer from spectral pollution

and can compute the first thousand eigenvalues to near machine precision accuracy. The problem of spectral

pollution is discussed further in §7.1 and Chapter 7.

The Dirac operator acts on L2(R3;C4) as [ELS08] D0 := −i
∑3
k=1 αk∂k + β, where

αj =

 0 σj

σj 0

 , β =

IC2 0

0 −IC2

 , σ1 =

0 1

1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0

0 −1

 ,

are the so-called Pauli matrices [Tha92]. For simplicity we have chosen units corresponding to m =

c = ~ = 1. The spectrum of D0 is equal to (−∞,−1] ∪ [1,∞) and an important problem in quantum

chemistry/physics is the computation of the spectrum of

DV := D0 + V,

where V is some (real-valued) potential. The addition of the potential can cause the appearance of eigen-

values in the gap (−1, 1), where, roughly speaking, positive eigenvalues correspond to bound states of a

relativistic quantum electron in the external field V and negative eigenvalues correspond to bound states of

a positron, the anti-particle of the electron. If V satisfies suitable conditions (precisely which conditions is

a broad topic - see [Tha92] for many potentials of physical interest), then DV is self-adjoint with essential

spectrum Sp(D0) = (−∞,−1] ∪ [1,∞).

We consider radially symmetric potentials V = V (r)IC4 . In this case, we can decompose our Hilbert

space as a sum of two-dimensional angular momentum subspaces Hmj ,kj [Tha92] for mj ∈ {−j, ..., j}
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and kj ∈ {±(j+1/2)} for j ∈ {(2l+1)/2 : l ∈ Z≥0}. The operatorDV |C∞0 (0,∞)⊗Hmj,kj is then unitarily

equivalent to

D
kj
V :=

1 + V (r) − d
dr +

kj
r

d
dr +

kj
r −1 + V (r)

 .

Again, under suitable conditions on the potential V , we have that Dkj
V |C∞0 (0,∞)2 are essentially self-adjoint

and the full spectrum and discrete spectrum can be recovered from

Sp(DV ) = cl
(⋃

Sp
(
D
kj
V

))
, Spd(DV ) =

⋃
Spd

(
D
kj
V

)
.

We treat the case of kj = −1 for simplicity and, with an abuse of notation, write Dkj
V as simply DV .

To compute the spectral measure of DV , we must be able to compute the resolvent and the corre-

sponding inner products to compute the scalar measures µDVf,g . This involves solving near singular PDEs

corresponding to the computation of the resolvent near the real axis. Letting r denote the variable on the

half-line, we first map to the interval (−1, 1) via

x =
r − L
r + L

, r = L

(
1 + x

1− x

)
.

The resolvent then gives rise to a singular variable coefficient ODE via the relations

d

dr
=

(1− x)2

2L

d

dx
,

1

r
=

1

L

1− x
1 + x

.

To solve these ODEs, we use the ultraspherical method [OT13], which is based on representations of the

solution in different ultraspherical polynomial bases. A full discussion of the ultraspherical method is

beyond the scope of this course. For us, the key point is that the ultraspherical method leads to a sparse

and well-conditioned linear system that can be solved in linear time up to log factors (and will compute the

correct solution bounded at infinity and zero). To compute inner products, we map the inner product over

the half-line to the interval (with a suitable Jacobian weight) and then use Clenshaw–Curtis quadrature. In

the method, L is a scaling parameter, which for our experiments we set to L = 10.

As mentioned above, the Dirac operator poses a serious challenge in terms of spectral computations,

owing to the gap in the essential spectrum. Let f ∈ L2(0,∞)⊕L2(0,∞) and define νεf (λ) := επ〈KH(λ+

iε;DV f), f〉. Then, denoting the orthogonal projection onto the eigenspace corresponding to eigenvalue

Ej by PEj , we have6

lim
ε↓0

νεf (λ) =

‖PEjf‖
2, if λ = Ej

0, otherwise
.

If f is not orthogonal to any of the eigenspaces, we expect the positions of the peaks of νεf to correspond to

the eigenvalues. To test this, we consider the case of the Coulombic potential

V (r) =
γ

r
, −

√
3/2 < γ < 0

for which the eigenvalues are known analytically and given by

Ej =

1 +
γ2(

j +
√

1− γ2
)2


−1/2

, j ∈ Z≥0.

6One can show that if there is no singular continuous spectra in a neighbourhood of λ and if λ is not an accumulation point of the
point spectrum then the difference between the values for positive ε and the limit areO(ε).

75



4.6. Numerical Examples CHAPTER 4. Computing Spectral Measures

10-6 10-4 10-2 100
10-20

10-15

10-10

10-5

100

3.1  10-7 3.2  10-7 3.3  10-7

1− λ

νεf (λ)

10-10 10-5 100

10-15

10-10

10-5

100

ε

Absolute Error

Figure 4.9: Left: The function νεf (x) for λ near 1. We have plotted the function against 1−λ to aid visability
of the accumulation at λ = 1. The sloped dashed line shows the algebraic decay of ‖PEjf‖2 (O(j−3)).
The magnified region shows the extreme clustering, where the vertical dashed line corresponding to E1000.
Right: The absolute error in the computed eigenvalues Ej for j = 0, 5, 10, 100, 500, 1000 as ε ↓ 0.

The eigenvalues accumulate at 1, meaning that, even ignoring the problem of spectral pollution, they are

very hard to compute for large j.

Figure 4.9 (left) shows νεf with ε = 10−10, f(r) = (
√

2re−r,
√

2re−r), and γ = −0.8. One can

robustly compute νεf for a fixed ε > 0 by using the ultraspherical method and adaptively selecting the

discretisation size. For ε = 10−10, we can accurately compute E1, . . . , E1000 by the location of the local

maxima of νεf . We can obtain a coarse estimate first using a few λ values and then refine our search as

we converge to an eigenvalue. Moreover, the size of the peaks correspond to ‖PEjf‖2, and the figure

shows that these decrease at an algebraic rate as j → ∞. If one is not satisfied with the accuracy of the

computed eigenvalues, then one can decrease ε at the expense of an increased computational cost. In Figure

4.9 (right), we show the absolute error in the computed eigenvalues Ej as ε ↓ 0. We can resolve hundreds

of eigenvalues, even when highly clustered, to an accuracy of essentially machine precision.

4.6.3 Matlab demo for radial Schrödinger operator

Consider the radial Schrödinger operator with a Hellmann potential and angular momentum `,

Lu(r) = −d
2u(r)

dr2
+

(
`(`+ 1)

r2
+

1

r
(e−r − 1)

)
u(r), r > 0. (4.6.2)

The spectral properties of L are of interest in quantum chemistry, where the Hellman potential models

atomic and molecular ionisation processes. Ionisation rates and related transition probabilities are usually

studied by computing bound and resonant states of L; however, we compute this information directly from

the spectral measure.

For example, if f(r) = Ce−(r−r0)2

(where C is chosen so that ‖f‖L2(R+) = 1) is the radial component

of the wave function of an electron interacting with an atomic core via the Hellmann potential in (4.6.2),

then we can calculate the probability that the electron escapes from the atomic core with energy E ∈ [a, b]

(with 0 < a < b) via

P(a ≤ E ≤ b) = µLf,f ([a, b]) ≈
∫ b

a

[Kε ∗ µLf,f ](y) dy, ε� 1. (4.6.3)
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Figure 4.10: Left: The smoothed approximation to the density on the absolutely continuous spectrum of L
in (4.6.2), with fr0(r) = Cr0e

−(r−r0)2

, for r0 = 2, r0 = 3, and r0 = 4 (Cr0 is a normalisation constant
so that ‖fu‖L2(R+) = 1). The shaded area under each curve corresponds to P(1/2 ≤ E ≤ 2) in (4.6.3) for
the particle with wave function fr0(r). Right: The L1((1/2, 2)) relative error in smoothed measures for
the radial Schrödinger operator in (4.6.2). The relative error is computed by comparing with a numerical
solution that is resolved to machine precision.

The error in this approximation is bounded via∣∣∣∣∣µLf,f ([a, b])−
∫ b

a

[Kε ∗ µLf,f ](y) dy

∣∣∣∣∣ ≤
∫ b

a

|ρLf,f (y)− [Kε ∗ µLf,f ](y)| dy = ‖ρLf,f −Kε ∗ µLf,f‖L1([a,b]).

We can compute P(1/2 ≤ E ≤ 2) for ` = 1 with a few lines of code calling Specfun:

normf = sqrt(pi/8)*(2-igamma(1/2,8)/gamma(1/2)); % Normalisation

f = @(r) exp(-(r-2).ˆ2)/sqrt(normf); % Measure wrt f(r)

v = {@(r) 3, @(r) (exp(-r)-1), @(r) 0}; % Radial potential

[xi, wi] = chebpts(50, [1/2 2]); % Quadrature rule

smooth_meas = rsMeas(v, f, xi, 0.01) % Smoothed measure

ion_prob = wi * smooth_meas; % Ionisation prob

This makes it easy to explore how the probability of ionisation changes as we adjust the problem parameters.

We can explore the effect of changing the angular momentum number, `, or the initial wave function, f (see

Figure 4.10 (left)). The L1 convergence for the approximation to the probabilities in (4.6.3) is shown in

Figure 4.10 (right), which agrees with the asymptotic rates implied by Theorem 4.5.5.

77



Chapter 5

Computing Spectral Type

This chapter, based on [Col21], complements Chapter 4 and classifies the computation of Spac(A), Spsc(A)

and Sppp(A) in the SCI hierarchy. These different sets often characterise different physical properties

in quantum mechanics (such as the famous RAGE theorem [Rue69, AG74, Ens78]), where a system is

modelled by some Hamiltonian A ∈ ΩSA [CFKS87, Com93, GKP91, Las96]. For example, pure point

spectrum implies the absence of ballistic motion for many Schrödinger operators [Sim90].

5.1 Computing Spectral Types as Sets - the Main Result

Define the problem functions ΞC
I(A) = SpI(A) for I = ac, sc or pp. Note also that Sppp(A) =

cl(Spp(A)), the closure of the set of eigenvalues. Since we are dealing with unbounded operators, we

use the Attouch–Wets metric, which we recall for the benefit of the reader,

dAW(C1, C2) =

∞∑
n=1

2−n min

{
1, sup
|x|≤n

|dist(x,C1)− dist(x,C2)|

}
,

for C1, C2 ∈ Cl(C), where Cl(C) denotes the set of closed non-empty subsets of C. When considering

bounded A, we let (M, d) be the set of all non-empty compact subsets of C provided with the Hausdorff

metric d = dH:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
,

where d(x, y) = |x−y| is the usual Euclidean distance. Recall that for compact sets, the topological notions

of convergence according to dH and dAW coincide. To allow the possibility that the spectral sets are empty,

we add the empty set to our metric space as a separated point (the space remains metrisable). This simply

means that Fn → ∅ if and only if Fn = ∅ eventually.

The main theorem of this chapter is the following:

Theorem 5.1.1. Given the above set-up (see also §4.1), it holds that

∆G
2 63 {ΞC

ac,Ωf,α,Λ1} ∈ ΣA2 , ∆G
2 63 {ΞC

sc,Ωf,α,Λ1} ∈ ΣA3 , ∆G
2 63 {ΞC

pp,Ωf,α,Λ1} ∈ ΣA2 .

If f(n)− n ≥
√

2n+ 1
2 , then the sharp lower bound {ΞC

sc,Ωf,0,Λ1} 6∈ ∆G
3 also holds.
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5.2 Anderson Localisation and the Fractional Moment Method

One of the tools we will use to prove the lower bounds in Theorem 5.1.1 is the Anderson model. We refer

the reader to [CL90, CFKS87, Kir07] for broader surveys of Anderson localisation.

We consider a connected, undirected graph G, such that the degree of each vertex is bounded by some

constant CG and such that the set of vertices V (G) is countably infinite. We assume that v = vω is a

random potential, where ω = {vx}x∈V (G) is a collection of independent identically distributed random

variables and the single-site probability distribution has a density ρ ∈ L1(R) with ‖ρ‖1 = 1 (with respect

to the standard Lebesgue measure). For such a potential, a measure of disorder is given by the quantity

‖ρ‖−1
∞ . The following theorem, proven in [Col20a], generalises the results of [Gra94] to certain finite rank

perturbations and more general graphs, and is used in the proof of Theorem 5.1.1.

Theorem 5.2.1 (Anderson Localisation for Perturbed Operator). There exists a constant δ(CG) > 0 such

that if ‖ρ‖∞ ≤ δ(CG) and ρ has compact support, then the operator Hv +W has only pure point spectrum

with probability 1 for any fixed self-adjoint operator W of the form

W =

M∑
j=1

αj
∣∣xmj〉 〈xnj ∣∣ . (5.2.1)

5.3 Proof of Theorem 5.1.1

5.3.1 Point spectra

Proof that {ΞC
pp,Ωf,α,Λ1} /∈ ∆G

2 . To prove this, it is enough to consider bounded Schrödinger operators

acting on l2(N), which are clearly a subclass of Ωf,0 for f(n) = n + 1. Suppose for a contradiction that

there does exist a sequence of general algorithms, Γn, with

lim
n→∞

Γn(Hv) = ΞC
pp(Hv).

We will construct a potential v such that Γn(Hv) does not converge. To do this, choose ρ = χ[−c,c]/(2c)

for some constant c such that the conditions of Theorem 5.2.1 hold. We will use Theorem 5.2.1 and the

following well-known facts:

1. If v has compact support then Sppp(Hv) ∩ (0, 4) = ∅ [Rem98], but [0, 4] ⊂ Sp(Hv) (the potential

acts as a compact perturbation so the essential spectrum is [0, 4]).

2. If we are in the setting of Theorem 5.2.1 with W = 0 then Sp(Hv) = [−c, 4 + c] almost surely (see

for example [KM82]). If W 6= 0 then since compact perturbations preserve the essential spectrum,

we still have [−c, 4 + c] ⊂ Sp(Hv +W ) almost surely.

We will define the potential v inductively as follows. Let v1 be a potential of the form vω (with density

ρ) such that [−c, 4 + c] ⊂ Sp(Hv1
) and Sp(Hv1

) is pure point. Such a v1 exists by Theorem 5.2.1 and fact

(2) above. Then for large enough n there exists zn ∈ Γn(Hv1
) such that |zn − 2| ≤ 1. Fix n1 such that this

holds. Then Γn1
(Hv1

) only depends on {v1(j) : j ≤ N1} for some integer N1 by (i) of Definition 2.1.1.

Define the potential v2 by v2(j) = v1(j) for all j ≤ N1 and v2(j) = 0 otherwise. Then by fact (1) above

Γn(Hv2) ∩ [1/2, 7/2] = ∅ for large n, say for n2. But then Γn2(Hv2) only depends on {v2(j) : j ≤ N2}
for some integer N2.
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We repeat this process inductively switching between potentials which induce Γnk(Hvk)∩ [1/2, 7/2] =

∅ for k even and potentials which induce Γnk(Hvk)∩ [1, 3] 6= ∅ for k odd. Explicitly, if k is even then define

a potential vk+1 by vk+1(j) = vk(j) for all j ≤ Nk and vk+1(j) = vω(j) (with the density ρ) otherwise

such that [−c, 4 + c] ⊂ Sp(Hvk+1
) and Sp(Hvk+1

) is pure point. Such a ω exists from Theorem 5.2.1 and

fact (2) above applied with the perturbationW to match the potential for j ≤ Nk. If k is odd then we define

vk+1 by vk+1(j) = vk(j) for all j ≤ Nk and vk+1(j) = 0 otherwise. We can then choose nk+1 such that

the above intersections hold and Nk+1 such that Γnk+1
(Hvk+1

) only depends on {vk+1(j) : j ≤ Nk+1}.
Finally set v(j) = vk(j) for j ≤ Nk. It is clear from (iii) of Definition 2.1.1, that Γnk(Hv) = Γnk(Hvk).

But then this implies that Γnk(Hv) cannot converge, the required contradiction.

Remark 5.3.1. The result can be extended to Schrödinger operators on Zd or much more general lattices.

It can also be extended to Schrödinger operators acting on L2(Rd) via Kato’s famous theorem regarding

potentials decaying faster than O(1/ |x|) (see for example [RS78]) and recent results on Anderson locali-

sation for Bernoulli random variables [BK05].

We now shift our attention to proving that ΞC
pp can be computed using a ΣA2 tower. The first step is the

following technical lemma, whose proof will also be used later when considering ΞC
ac.

Lemma 5.3.2. Let a < b with a, b ∈ R and consider the decision problem

Ξa,b,pp : Ωf,α → {0, 1}

A→

1, if Sppp(A) ∩ [a, b] 6= ∅

0, otherwise.

Then there exists a height two arithmetical tower Γn2,n1 (with evaluation functions Λ1) for Ξa,b,pp. Fur-

thermore, the final limit is from below in the sense that Γn2(A) := limn1→∞ Γn2,n1(A) ≤ Ξa,b,pp(A).

Proof. Step 1 of the proof of Theorem 4.3.2 yields a height two arithmetical tower Γ̂jn2,n1
(A) for the com-

putation of µAej ,ej ,c((a, b)). Note that the final limit is from above and using the fact that µAej ,ej ,c({a, b}) = 0

we obtain a height two tower for µAej ,ej ,c([a, b]). We can then use the height one tower for µAej ,ej ([a, b]),

denoted by Γ̃jn1
(A), and define

aj,n2,n1
(A) = Γ̃jn1

(A)− Γ̂jn2,n1
(A).

This provides a height two arithmetical tower for µAej ,ej ,pp([a, b]) with the final limit from below. Without

loss of generality (by taking successive maxima) we can assume that these towers are non-decreasing in n2.

Now set

Υn2,n1
(A) = max

1≤j≤n2

aj,n2,n1
(A).

Then it is clear that the limit limn1→∞Υn2,n1
(A) = Υn2

(A) exists. Furthermore, the monotonicity of

aj,n2,n1
(A) in n2 implies that

lim
n2→∞

Υn2
(A) = sup

n∈N
µAen,en,pp([a, b]),

with monotonic convergence from below. This limiting value is zero if Ξa,b,pp(A) = 0, otherwise it is a

positive finite number.
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To convert this to a height two tower for the decision problem Ξa,b,pp, that maps to the discrete space

{0, 1}, we use the following trick. Consider the intervals Jn2
1 = [0, 1/n2], and Jn2

2 = [2/n2,∞). Let

k(n2, n1) ≤ n1 be maximal such that Υn2,n1
(A) ∈ Jn2

1 ∪ J
n2
2 . If no such k exists or Υn2,k(A) ∈ Jn2

1

then set Γn2,n1(A) = 0. Otherwise set Γn2,n1(A) = 1. These can be computed using finitely many

arithmetic operations and comparisons using Λ1. The point of the intervals Jn2
1 and Jn2

2 is that we can

show limn1→∞ Γn2,n1
(A) = Γn2

(A) exists. This is because limn1→∞Υn2,n1
(A) = Υn2

(A) exists and

hence we cannot oscillate infinitely often between the separated intervals Jn2
1 and Jn2

2 . Now suppose that

Ξa,b,pp(A) = 0, then limn1→∞ Γ̂n2,n1
(A) = 0 and hence limn1→∞ Γn2,n1

(A) = 0 for all n2. Now

suppose that Ξa,b,pp(A) = 1, then for large enough n2 we must have that Υn2(A) > 2/n2 and hence

Γn2(A) = 1. Together, these prove the convergence and that Γn2(A) ≤ Ξa,b,pp(A).

Proof that {ΞC
pp,Ωf,α,Λ1} ∈ ΣA2 . Step 1: Construction of height two tower. To construct a height two

arithmetical tower for ΞC
pp we will use Lemma 5.3.2 repeatedly. Let Γ̂n2,n1

(·, I) denote the height two

tower constructed in the proof of Lemma 5.3.2 for the closed interval I (I = [a, b]), where without loss of

generality by taking successive maxima in n2, we can assume that this tower is non-decreasing in n2 (this

is where we use convergence from below in the final limit in the statement of the lemma). For a given n1

and n2, we construct Γn2,n1(A) as follows (we will use some basic terminology from graph theory).

Define the intervals I0
n2,n1,j

= [j, j + 1] for j = −n2, ..., n2 − 1 so that these form a cover of

the interval [−n2, n2]. Now suppose that Ikn2,n1,j
are defined for j = 1, ..., rk(n2, n1, A). Compute

each Γ̂n2,n1
(A, Ikn2,n1,j

) and if this is 1, bisect Ikn2,n1,j
via its midpoint into two equal halves consist-

ing of closed intervals. We then take all these bisected intervals and label them as Ik+1
n2,n1,j

for j =

1, ..., rk+1(n2, n1, k, A). This is repeated until we have no further bisections or the intervals In2
n2,n1,j

have

been computed. By adding the interval [−n2, n2] as a root with children I0
n2,n1,j

, this creates a finite binary

tree structure where a non-root interval I is a parent of two intervals precisely if those two intervals are

formed from its bisection and Γ̂n2,n1
(A, I) = 1. We then prune this tree by discarding all leaves I which

have Γ̂n2,n1
(A, I) = 0 to form the tree Tn2,n1

(A). Finally, we let Γn2,n1
(A) be the union of all the leaves

of Tn2,n1
(A). Clearly this can be computed using finitely many arithmetic operations and comparisons

using Λ1. The construction is shown visually in Figure 5.1.

In the above construction, the number of intervals considered (including those not in the tree Tn2,n1(A))

for a fixed n2 is n22n2+1 + 1 and hence independent of n1. It follows that Tn2,n1(A) and Γn2,n1(A) are

constant for large n1 (due to the convergence of the Γ̂n2,n1
(A, I) in {0, 1}). We denote these limiting values

by Tn2
(A) and Γn2

(A) respectively and also denote the corresponding intervals in the construction at the

m−th level of this limit by Imn2,j
. Note also that if ΞC

pp(A) = ∅ then Γn2
(A) = ∅.

Now suppose that z ∈ ΞC
pp(A), then there exists a sequence of nested intervals Im = Imn2,am,n2

contain-

ing z for m = 0, ..., n2 (where the notation means that these intervals are independent of n2). Fix m, then

for large n2 we must have that Γ̂n2(A, Ij) = 1 for j = 1, ...,m. It follows that Im has a descendent interval

In2,m contained in Γn2
(A) and hence we must have dist(z,Γn2

(A)) ≤ 2−m. Since m was arbitrary it

follows that dist(z,Γn2
(A)) converges to 0 as n2 →∞.

Conversely, suppose that zmj ∈ Γmj (A) with mj → ∞, then we must show that all limit points of

{zmj} lie in ΞC
pp(A). Suppose this were false, then by taking a subsequence if necessary, we can assume

that zmj → z and dist(zmj ,Ξ
C
pp(A)) ≥ δ for some δ > 0. We claim that it is sufficient to prove that the

maximum length of the leaves of Tn2(A) intersecting a fixed compact subset of R, converges to zero as
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n2 → ∞. Suppose this has been shown, then zmj ∈ Imj for some leaf Imj of Tmj (A). It follows that

Imj ∩ ΞC
pp(A) 6= ∅ and

∣∣Imj ∣∣→ 0. But this contradicts zmj being positively separated from ΞC
pp(A).

To prove convergence, we are thus left with proving the claim regarding the lengths of leaves. Suppose

this were false, then there exists a compact set K ⊂ R and leaves Ij in Tbj (A) such that the lengths of Ij

do not converge to zero and Ij intersect K. By taking subsequences if necessary, we can assume that the

lengths of each Ij are constant. Then by the compactness of K and taking subsequences if necessary again,

we can assume that each of the Ij are equal to a common interval I . It follows that Γ̂bj (A, I) = 1 but that

Γ̂bj (A, I1) = Γ̂bj (A, I2) = 0 since I is a leaf, where I1 and I2 form the bisection of I . Taking bj → ∞,

this implies that I ∩ ΞC
pp(A) 6= ∅ but I1 ∩ ΞC

pp(A) = I2 ∩ ΞC
pp(A) = ∅ which is absurd. Hence we have

shown the required contradiction, and proven convergence.

Step 2: Adaptation to achieve a ΣA2 tower. Let

Γ̃n2,n1
(A) = Sppp(A) ∪ Γn2,n1

(A), Γ̃n2
(A) = lim

n1→∞
Γ̃n2,n1

(A),

where we remark that the limit is guaranteed to exist. For m = 1, ..., n2 we define δ̂m(n1, n2) via the

following procedure. If Γn2,n1(A) ∩ Bm(0) 6= ∅, then we let δ̂m(n1, n2) ≤ 1 be the length of the longest

leaf in Tn2,n1
(A) that intersects B2m(0). If Γn2,n1

(A)∩Bm(0) = ∅, then we let δ̂m(n1, n2) = 1. We then

set δm(n1, n2) = min{δ̂k(n1, n2) : m ≤ k ≤ n2} and, if Γn2,n1
(A) 6= ∅, define

En2,n1
(A) = 2−n2 +

n2∑
m=1

2−m · δm(n1, n2).

Otherwise we set En2,n1
(A) = 0. Note that this can be computed using finitely many arithmetic operations

and comparisons. We also define

δm(n2) = lim
n1→∞

δm(n1, n2), En2
(A) = lim

n1→∞
En2,n1

(A),

where, again, both limits exist (in fact the sequences are eventually constant) since the finite number of

decision problems deciding Γn2,n1(A) and Tn2,n1(A) are eventually constant.

If m ∈ {1, 2, ..., n2} and x ∈ Bm(0), then the closest point to x that lies in Γ̃n2
(A) either lies in

Sppp(A), in which case the inclusion Sppp(A) ⊂ Γ̃n2
(A) implies that

min
{

1,
∣∣∣dist(x, Γ̃n2(A))− dist(x, Sppp(A))

∣∣∣} = 0 ≤ δ̂m(n2),

or it lies in Γn2
(A). In the latter case, if Γn2

(A)∩Bm(0) 6= ∅ then the closest point must also lie inB2m(0)

and hence

min
{

1,
∣∣∣dist(x, Γ̃n2(A))− dist(x, Sppp(A))

∣∣∣} ≤ δ̂m(n2),

since the final limit of the algorithm from Lemma 5.3.2 is from below. This implies that

min

{
1, sup
|x|≤m

∣∣∣dist(x, Γ̃n2
(A))− dist(x,Sppp(A))

∣∣∣}

≤ min
m≤k≤n2

{
1, sup
|x|≤k

∣∣∣dist(x, Γ̃n2(A))− dist(x, Sppp(A))
∣∣∣} ≤ δm(n2).

It follows that we must have

dAW(Γ̃n2
(A),Sppp(A)) ≤ En2

(A), (5.3.1)

with this bound being trivial in the case that Γn2
(A) = ∅. Now if m is such that Γn2

(A) ∩ Bm(0) 6= ∅ for

large n2, then since the maximum length of the leaves of Tn2
(A) over any compact set converges to zero,
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(A)

Figure 5.1: Example of tree structure used to compute the point spectrum for n2 = 3. Each tested interval
is shown in green (Γ̂n2,n1(A, I) = 1) or red (Γ̂n2,n1(A, I) = 0). The arrows show the bisections and the
final output is shown in blue.

we must have that limn2→∞ δ̂m(n2) = 0. It follows that if Sppp(A) 6= ∅ then limn2→∞ δm(n2) = 0 for

each m and hence limn2→∞En2
(A) = 0. Clearly this convergence also holds if Sppp(A) = ∅ since, in

this case, Γn2
(A) = ∅ for large n2.

To construct a ΣA2 tower, it is enough (by taking subsequences) to show that given ε ∈ Q>0, we can

choose n2(ε, n1) ≥ ε−1 such that limn1→∞ n2(ε, n1) = nε2 ∈ N exists and

dAW(Γ̃nε2(A),Sppp(A)) ≤ ε.

To do this, fix ε and consider S(ε, n1) = N ∩ [ε−1, n1]. If n1 < ε−1 then set n2(ε, n1) =
⌈
ε−1
⌉
. Oth-

erwise, let S ′(ε, n1) be the set of all k ∈ S(ε, n1) such Ek,n1
(A) ≤ ε. If S ′(ε, n1) = ∅ then we set

n2(ε, n1) =
⌈
ε−1
⌉
, otherwise we set n2(ε, n1) to be the minimal element of S ′(ε, n1). For large n1, since

each En2,n1(A) is eventually constant and the En2(A) converge to 0, we must have that S ′(ε, n1) 6= ∅. In

fact, we have that

nε2 = lim
n1→∞

n2(ε, n1) = min{k : k ≥
⌈
ε−1
⌉
, Ek(A) ≤ ε}.

The bound (5.3.1) now finishes the proof.

5.3.2 Absolutely continuous spectra

We will first prove the lower bound and recall the following result which will be crucial for the proof.

Theorem 5.3.3 (Krutikov and Remling [KR01]). Consider discrete Schrödinger operators acting on l2(N).

Let v be a (real-valued and bounded) potential of the following form:

v(n) =

∞∑
j=1

gjδn,mj , mj−1/mj → 0.

Then [0, 4] ⊂ Spess(H0 + v) and the following dichotomy holds:

(a) If
∑
j∈N g

2
j <∞ then H0 + v is purely absolutely continuous on (0, 4).

(b) If
∑
j∈N g

2
j =∞ then H0 + v is purely singular continuous on (0, 4).

To prove the lower bound (that one limit will not suffice) our strategy will be to reduce a certain decision

problem to the computation of ΞC
ac. Let (M′, d′) be the discrete space {0, 1}, let Ω′ denote the collection

of all infinite sequence {aj}j∈N with entries aj ∈ {0, 1} and consider the problem function

Ξ′({aj}) : Does {aj} have infinitely many non-zero entries?
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In [Colns], it was shown that SCI(Ξ′,Ω′)G = 2 (where the evaluation functions consist in component-wise

evaluation of the array {aj}).

Proof that {ΞC
ac,Ωf,α,Λ1} /∈ ∆G

2 . We are done if we prove the result for f(n) = n+1 and α = 0. Suppose

for a contradiction that Γn is a height one tower of general algorithms solving {ΞC
ac,Ωf,0,Λ1}. We will

gain a contradiction by using the supposed tower to solve {Ξ′,Ω′}.
Given {aj} ∈ Ω′, consider the operator H = H0 + v where the potential is of the following form:

v(m) =

∞∑
k=1

akδm,k!.

Then by Theorem 5.3.3, [0, 4] ⊂ Spac(H) if
∑
k ak <∞ (that is, if Ξ′({aj}) = 0) and Spac(H)∩ (0, 4) =

∅ otherwise. Given N we can evaluate any matrix value of H using only finitely many evaluations of {aj}
and hence the evaluation functions Λ1 can be computed using component-wise evaluations of the sequence

{aj}. We now set

Γ̂n({aj}) =

0, if dist(2,Γn(H)) < 1

1, otherwise.

The above comments show that each of these is a general algorithm and it is clear that it converges to

Ξ′({aj}) as n→∞, the required contradiction.

To construct the ΣA2 tower for ΞC
ac we will need the following lemma.

Lemma 5.3.4. Let a < b with a, b ∈ R and consider the decision problem

Ξa,b,ac : Ωf,α → {0, 1}

A→

1, if Spac(A) ∩ [a, b] 6= ∅

0, otherwise.

Then there exists a height two arithmetical tower Γn2,n1
(with evaluation functions Λ1) for Ξa,b,ac. Fur-

thermore, the final limit is from below in the sense that Γn2
(A) := limn1→∞ Γn2,n1

(A) ≤ Ξa,b,ac(A).

Proof. Fix such an a and b and let χn be a sequence of non-negative, continuous piecewise linear functions

on R, bounded by 1 and of compact support such that χn converge pointwise monotonically up to the

constant function 1. Define also the function

υm,n(u,A) = 〈KH(u+ i/n,A, em), em〉

and set

am,n2,n1(A) =

∫ b

a

υm,n1(u,A)χn2(|υm,n1(u,A)|)du.

Since each χn is continuous and has compact support, and since υm,n(u,A) converges almost everywhere

to ρAem,em(u) (the Radon–Nikodym derivative of the absolutely continuous part of the measure µAem,em ), it

follows by the dominated convergence theorem that

lim
n1→∞

am,n2,n1
(A) =: am,n2

(A) =

∫ b

a

ρAem,em(u)χn2
(ρAem,em(u))du.

We now use the fact that the χn are increasing and the dominated convergence theorem again to deduce that

lim
n2→∞

am,n2
(A) = µAem,em,ac([a, b]),
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with monotonic convergence from below.

Using Corollary 4.2.2 (and the now standard argument of Lipschitz continuity of the resolvent), we

can compute approximations of am,n2,n1
(A) to accuracy 1/n1 in finitely many arithmetic operations and

comparisons. Call these approximations ãm,n2,n1
(A) and set

Υn2,n1
(A) = max

1≤j≤n2

ãj,n2,n1
(A).

The proof now follows that of Lemma 5.3.2 exactly.

Proof that {ΞC
ac,Ωf,α,Λ1} ∈ ΣA2 . This is exactly the same construction as in the above proof of the inclu-

sion {ΞC
pp,Ωf,α,Λ1} ∈ ΣA2 . We simply replace the tower constructed in the proof of Lemma 5.3.2 by the

tower constructed in the proof of Lemma 5.3.4.

5.3.3 Singular continuous spectra

We will first prove the lower bound for the singular continuous spectrum via Theorem 5.3.3. Note that

the impossibility result {ΞC
sc,Ωf,α,Λ1} /∈ ∆G

2 follows from the same argument that was used to show

{ΞC
ac,Ωf,α,Λ1} /∈ ∆G

2 . To show that two limits will not suffice for f(n) − n ≥
√

2n + 1/2, our strategy

will be to reduce a certain decision problem to the computation of ΞC
sc. Let (M′, d′) be the space [0, 1] with

the usual topology and Ω̃ denote the collection of all infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1}
and consider the problem function

Ξ̃1({ai,j}) : Does {ai,j} have a column containing infinitely many non-zero entries?

Recall that it was shown in Theorem 2.3.7 in Chapter 2 §2.3 that SCI(Ξ̃1, Ω̃)G = 3 (where the evaluation

functions consist in component-wise evaluation of the array {ai,j}). We will gain a contradiction by using

the supposed height two tower to solve {Ξ̃1, Ω̃}.

Proof that {ΞC
sc,Ωf,α,Λ1} /∈ ∆G

3 if f(n)− n ≥
√

2n+ 1/2. Assume that the function f satisfies f(n) −
n ≥

√
2n + 1/2. The proof will use a direct sum construction. Given {ai,j} ∈ Ω̃, consider the operators

Hj = H0 + v(j) where the potential is of the following form:

v(j)(n) =

∞∑
k=1

ak,jδn,k!.

Using Theorem 5.3.3, [0, 4] ⊂ Spsc(Hj) if
∑
k ak,j =∞ (that is, if the j-th column has infinitely many 1s)

and Spsc(Hj) ∩ (0, 4) = ∅ otherwise. Now consider an effective bijection (with effective inverse) between

the canonical bases of l2(N) and ⊕∞j=1l
2(N):

φ : {en : n ∈ N} → {ek : k ∈ NN, ‖k‖0 = 1}.

Set H({ai,j}) =
⊕∞

j=1Hj . Then through φ, we view H = H({ai,j}) as a self-adjoint operator acting on

l2(N). Explicitly, we consider the matrix

Hm,n = 〈Heφ(n), eφ(m)〉.

We choose the following bijection (where m lists the canonical basis in each Hilbert space):

85



5.3. Proof of Theorem 5.1.1 CHAPTER 5. Computing Spectral Type

j = 1 j = 2 j = 3 · · ·

m = 1 φ(1) φ(3) φ(6) · · ·

m = 2 φ(2) φ(5)

m = 3 φ(4)

· · · · · ·

A straightforward computation shows that H ∈ Ωf,0. We also observe that if Ξ̃1({ai,j}) = 1 then [0, 4] ⊂
Spsc(H), otherwise Spsc(H) ∩ (0, 4) = ∅.

Suppose for a contradiction that Γn2,n1 is a height two tower of general algorithms solving the problem

{ΞC
sc,Ωf,0,Λ1}. We will gain a contradiction by using the supposed height two tower to solve {Ξ̃1, Ω̃}. We

now set

Γ̂n2,n1
({ai,j}) = 1−min{1,dist(3,Γn2,n1

(A({ai,j})))},

where we use the convention dist(3, ∅) = 1. The comments above show that each of these is a general

algorithm. Furthermore, the convergence of Γn2,n1
implies that

lim
n2→∞

lim
n1→∞

Γ̂n2,n1
({ai,j}) = 1−min{1,dist(3,Spsc(H({ai,j})))} = Ξ̃1({ai,j}).

Hence Γ̂n2,n1 is a height two tower of general algorithms solving {Ξ̃1, Ω̃}, a contradiction.

Finally, we will use the following lemma to prove that the singular continuous spectrum can be com-

puted in three limits.

Lemma 5.3.5. Let a < b with a, b ∈ R and consider the decision problem

Ξa,b,sc : Ωf,α → {0, 1}

A→

1, if Spsc(A) ∩ [a, b] 6= ∅

0, otherwise.

Then there exists a height three arithmetical tower Γn3,n2,n1
(with evaluation functions Λ1) for Ξa,b,sc.

Furthermore, the final limit is from below in the sense that Γn3
(A) := limn2→∞ limn1→∞ Γn3,n2,n1

(A) ≤
Ξa,b,sc(A).

Once this is proven, we use the same construction that was used for {ΞC
pp,Ωf,α,Λ1}, {ΞC

ac,Ωf,α,Λ1} ∈
ΣA2 to show that {ΞC

sc,Ωf,α,Λ1} ∈ ΣA3 , but with an additional limit. Namely, we replace (n2, n1) by

(n3, n2) in the proof and use the tower constructed in the proof of Lemma 5.3.4 instead of Γ̂n2,n1
(A, I) for

an interval I . We still gain the required convergence since the only change is an additional limit in the finite

number of decision problems that decide the appropriate tree.

Proof of Lemma 5.3.5. Note that we can write

µAem,em,sc([a, b]) = µAem,em([a, b])− µAem,em,pp([a, b])− µAem,em,ac([a, b]).

From this and the proofs of Lemmas 5.3.2 and 5.3.4, it is clear that we can construct a height two arithmeti-

cal tower, am,n2,n1
(A), for µAem,em,sc([a, b]) where the final limit is from above. Now set

Υn3,n2,n1
(A) = max

1≤j≤n3

aj,n2,n1
(A).
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We see that each successive limit converges, with the second from above and the final from below. By

taking successive maxima, minima of our base algorithms, we can assume that the second and final limits

are monotonic and that Υn3,n2,n1
(A) is monotonic in both n2 and n3. Define the limiting sets Υn3,n2

(A) =

limn1→∞Υn3,n2,n1(A), Υn3(A) = limn2→∞Υn3,n2(A) and Υ(A) = limn3→∞Υn3(A). Then Υ(A) is

zero if Ξa,b,sc(A) = 0, otherwise it is a positive finite number.

With a slight change to the previous argument (the monotonicity in n2 and n3 is crucial for this to work),

consider the intervals Jm1 = [0, 1/m], and Jm2 = [2/m,∞). Let k(m,n, n1) ≤ n1 be maximal such that

Υm,n,n1
(A) ∈ Jm1 ∪ Jm2 . If no such k exists or Υm,n,k(A) ∈ Jm1 then set Γ̂m,n,n1

(A) = 0. Otherwise set

Γ̂m,n,n1
(A) = 1. We then define

Γn3,n2,n1
(A) = max

1≤m≤n3

min
1≤n≤n2

Γ̂m,n,n1
(A).

These can be computed using finitely many arithmetic operations and comparisons using Λ1, and, as before,

the first limit exists with

Γn3,n2
(A) = lim

n1→∞
Γn3,n2,n1

(A) = max
1≤m≤n3

min
1≤n≤n2

Γ̂m,n(A).

Note that the second and third sequential limits exist through the use of maxima and minima.

Now suppose that Ξa,b,sc(A) = 0 and fix n3. Then for large n2, we must have that Υm,n2
(A) <

1/(2n3) for all m ≤ n3 due to the monotonic convergence of Υp as p→∞. It follows in this case that

lim
n2→∞

Γn3,n2
(A) = 0, for all n3.

Now suppose that Ξa,b,sc(A) = 1. It follows in this case that there exists M ∈ N such that if m ≥ M

then Υm(A) > 3/m. Due to the monotonic convergence of Υm,p as p → ∞ it follows that for all p we

must have Υm,p > 3/m and hence there exists N(m, p) ∈ N such that if n1 ≥ N(m, p) then we must have

Υm,p,n1
≥ 2/m. It follows that if n3 ≥M then we must have Γ̂n3,p(A) = 1 for all p and hence that

lim
n3→∞

Γn3
(A) = 1.

The conclusion of the lemma now follows.
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Chapter 6

Discrete Spectra and Spectral Gap

Computing discrete spectra of normal operators is a problem encountered in many areas of applied mathe-

matics and theoretical physics, as well as being of purely theoretical interest. We provide an algorithm that

converges to the discrete spectrum and separates it from the essential spectrum. The method yields a sharp

classification in the SCI hierarchy. This problem is subtly different to that of computing the point spectrum

(eigenvalues) discussed in Chapter 5, since the discrete spectrum does not include eigenvalues of infinite

multiplicity or eigenvalues embedded in the essential spectrum.

A second problem considered in this chapter is the spectral gap problem, which is related to the di-

chotomy between the discrete and essential spectrum. The spectral gap problem has a long tradition and is

linked to many important conjectures and problems such as the Haldane conjecture [Hal83, GJL94] or the

Yang–Mills mass gap problem in quantum field theory [BCD+06]. In the seminal paper [CPGW15], it was

shown that the spectral gap problem is undecidable (i.e., the problem /∈ ∆A
1 ) when considering the thermo-

dynamic limit of finite-dimensional Hamiltonians. We consider the infinite-dimensional statement of the

problem and provide classifications in the SCI, as well as an extension to classifying the geometric/algebraic

properties of the bottom of the spectrum.

This chapter is based on [CHns].

6.1 Main Results

Throughout this chapter, we consider various operators acting on l2(N). The information given to us through

the functions Λ is the collection of matrix values of an operator A with respect to the canonical basis.

6.1.1 Computing discrete spectra

Let ΩdN denote the class of bounded normal operators on l2(N) with (known) bounded dispersion (recall

(3.1.1) and this concept from §3.1.1) and with non-empty discrete spectrum (this condition can be dropped

- see below), and denote by ΩdD the class of bounded diagonal self-adjoint operators in ΩdN. For a normal

operator A, there is a simple decomposition of Sp(A) into the discrete spectrum and the essential spectrum,

denoted by Spd(A) and Spess(A) respectively. The discrete spectrum consists of isolated points of the

spectrum that are eigenvalues of finite multiplicity. The essential spectrum has numerous definitions in the

non-normal case, but for the normal case is defined as the set of z such that A − zI is not a Fredholm
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operator. Define the problem function

Ξd1 : ΩdN,Ω
d
D 3 A 7→ cl (Spd(A)) .

We have taken the closure and restricted to operators with non-empty discrete spectrum, since we want

convergence with respect to the Hausdorff metric. However, the algorithm we build, Γn2,n1
, has the property

that limn1→∞ Γn2,n1
(A) ⊂ Spd(A), so this is not restrictive in practice.

Theorem 6.1.1. Let Ξd1, ΩdN and ΩdD be as above. Then,

∆G
2 63 {Ξd1,ΩdN} ∈ ΣA2 , ∆G

2 63 {Ξd1,ΩdD} ∈ ΣA2 .

The constructed algorithm Γn2,n1
has the property that given A ∈ ΩdN and z ∈ Spd(A), the following

holds. If ε > 0 is such that Sp(A) ∩ B2ε(z) = {z}, then there is at most one point in Γn2,n1
(A) that also

lies in Bε(z). Furthermore, the limit limn1→∞ Γn2,n1
(A) = Γn2

(A) is contained in the discrete spectrum

and increases to cl (Spd(A)) in the Hausdorff metric as n2 →∞. In other words, a given point of Spd(A)

has at most one point in Γn2,n1(A) approximating it.

Let ΩfN denote the class of bounded normal operators with (known) bounded dispersion with respect

to the function f . Let ΩD denote the class of bounded self-adjoint diagonal operators and consider the

following discrete problem (mapping into the discrete space {0, 1})

Ξd2 : ΩfN,ΩD 3 A 7→ Is Spd(A) 6= ∅?

An easy corollary of the proof of Theorem 6.1.1 is as follows.

Corollary 6.1.2. Let Ξd2, ΩfN and ΩD be as above. Then,

∆G
2 63 {Ξd2,Ω

f
N} ∈ ΣA2 , ∆G

2 63 {Ξd2,ΩD} ∈ ΣA2 .

What happens when we cannot bound the dispersion?

The algorithm constructed for Theorem 6.1.1 has limn1→∞ Γn2,n1
(A) ⊂ Spd(A). But what happens if we

do not know a dispersion function f as in (3.1.1) such that we may not have known bounded dispersion?

To investigate this case, let Ωd1 denote the class of bounded normal operators with non-empty discrete

spectrum and Ωd2 the class of bounded normal operators. As the next theorem reveals, we get a jump in the

SCI hierarchy.

Theorem 6.1.3. Let Ξdi and Ωdi be as above. Then,

∆G
3 63 {Ξd1,Ωd1} ∈ ΣA3 , ∆G

3 63 {Ξd2,Ωd2} ∈ ΣA3 .

The proof shows that, without additional structure, it requires three limits to compute the discrete spec-

trum of self-adjoint matrices or to check if there are any isolated eigenvalues of finite multiplicity.

6.1.2 The spectral gap problem

The question can be formulated in the following way. Let Ω̂SA be the set of all bounded below, self-adjoint

operators A on l2(N), for which the linear span of the canonical basis form a core of A (we do not assume

A is bounded above) and such that one of the two following cases occur:
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(1) The minimum of the spectrum, a, is an isolated eigenvalue with multiplicity one.

(2) There is some ε > 0 such that [a, a+ ε] ⊂ Sp(A).

[DRAW PICTURE ON BOARD]

In the former case, we say the spectrum is gapped, whereas in the latter we say it is gapless. Note that,

because we have restricted ourselves to the class where either (1) or (2) must hold, our problem is well-

defined as a decision problem. Moreover, this definition is in line with the definitions in [CPGW15] and

the physics literature. We also let Ω̂D denote the operators in Ω̂SA that are diagonal and define the decision

problem (mapping into the discrete space {0, 1})

Ξgap : Ω̂SA, Ω̂D 3 A 7→ Is the spectrum of A gapped? (6.1.1)

Theorem 6.1.4 (Spectral gap). Let Ξgap be as in (6.1.1) and Ω̂SA, Ω̂D as above. Then

∆G
2 63 {Ξgap, Ω̂SA} ∈ ΣA2 , ∆G

2 63 {Ξgap, Ω̂D} ∈ ΣA2 .

Remark 6.1.5 (Diagonal vs. full matrix). It is worth noting that Theorem 6.1.4 shows that there is no

difference in the classification of the spectral gap problem between the set of diagonal matrices and the

collection of full matrices.

The above spectral gap problem can also be extended as follows. Let Ω̃fSA denote the class of operators

that are bounded below, self-adjoint, for which the linear span of the canonical basis form a core, and that

have (known) bounded dispersion with respect to the function f . Let a(A) = inf{x : x ∈ Sp(A)} and

consider the following four cases

1. a(A) lies in the discrete spectrum and has multiplicity 1,

2. a(A) lies in the discrete spectrum and has multiplicity ≥ 2,

3. a(A) lies in the essential spectrum but is an isolated point of the spectrum,

4. a(A) is a cluster point of Sp(A).

[DRAW PICTURE ON BOARD]

We consider the classification problem Ξclass which maps Ω̃fSA (or relevant subclasses) to the discrete

space {1, 2, 3, 4} (with the natural order). We denote by Ω̃D the class of diagonal operators in Ω̃fSA.

Theorem 6.1.6 (Spectral Classification). Let Ξclass, Ω̃fSA and Ω̃D be as above. Then

∆G
2 63 {Ξclass, Ω̃

f
SA} ∈ ΠA

2 , ∆G
2 63 {Ξclass, Ω̃D} ∈ ΠA

2 .

6.2 Proofs of Theorems on Discrete Spectra

The following are well-known and follow from the ‘min-max’ theorem characterising eigenvalues.

Lemma 6.2.1. Let B ∈ B(l2(N)) be self-adjoint with eigenvalues λ1 ≤ λ2 ≤ ... (infinitely many, counted

according to multiplicity) below the essential spectrum. Consider the finite section approximates Bn =

PnBPn ∈ Cn and list the eigenvalues of Bn as µn1 ≤ µn2 ≤ ... ≤ µnn. Then the following hold:
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1. λj ≤ µnj for j = 1, ..., n,

2. for any j ∈ N, µnj ↓ λj as n→∞ (n ≥ j so that µnj makes sense).

Lemma 6.2.2. Let B ∈ B(l2(N)) be self-adjoint with finitely many eigenvalues λ1 ≤ λ2 ≤ ... ≤ λm

(counted according to multiplicity) below the essential spectrum and let a = inf{x : x ∈ Spess(B)}.
For j > m we set λj = a. Consider the finite section approximates Bn = PnBPn ∈ Cn and list the

eigenvalues of Bn as µn1 ≤ µn2 ≤ ... ≤ µnn. Then the following hold:

1. λj ≤ µnj for j = 1, ..., n,

2. for any j ≤ m, µnj ↓ λj as n→∞ (n ≥ j so that µnj makes sense),

3. given ε > 0 and k ∈ N, there exists N such that for all n ≥ N , µnk ≤ a+ ε.

Exercise: Prove these two lemmas.

Proof of Theorem 6.1.1. Step 1: {Ξd1,ΩdD} /∈ ∆G
2 . Suppose this were false and that there exists some height

one tower Γn solving the problem. Consider the matrix operators Am = diag{0, 0, ..., 0, 2} ∈ Cm×m and

C = diag{0, 0, ...} and set

A = diag{1, 2} ⊕
∞⊕
m=1

Akm ,

where we choose an increasing sequence km inductively as follows. Set k1 = 1 and suppose that k1, ..., km

have been chosen. Spd(diag{1, 2} ⊕ Ak1 ⊕ Ak2 ⊕ ... ⊕ Akm ⊕ C) = {1, 2} is closed and so there exists

some nm ≥ m such that if n ≥ nm then

dist(2,Γn(diag{1, 2} ⊕Ak1 ⊕ ...⊕Akm ⊕ C) ≤ 1

4
. (6.2.1)

Now let km+1 ≥ max{N(diag{1, 2} ⊕ Ak1 ⊕ ... ⊕ Akm ⊕ C, nm), km + 1}. Arguing as in the proof of

Theorem 3.1.6, it follows that Γnm(A) = Γnm(diag{1, 2}⊕Ak1⊕ ...⊕Akm⊕C). But Γnm(A) converges

to Spd(A) = {1}, contradicting (6.2.1).

Step 2: {Ξd1,ΩdN} ∈ ΣA2 . We now construct an arithmetic height two tower for Ξd1 and the class

ΩdN. To do this, we recall that a height two tower Γ̃n2,n1
for the essential spectrum of operators in ΩdN

was constructed in [BACH+20]. For completeness, we write out the algorithm here. Let Pn be the usual

projection onto the first n basis elements and set Qn = I − Pn. Define

µm,n(A) := min{σinf(Pf(n)(A− zI)|QmPn(l2(N))), σinf(Pf(n)(A− zI)∗|QmPn(l2(N)))},

Gn := min

{
s+ it

2n
: s, t ∈ {−22n, ..., 22n}

}
,

Υm(z) := z + {w ∈ C : |Re(w)| , |Im(w)| ≤ 2−(m+1)}.

We then define the following sets for n > m:

Sm,n(z) := {j = m+ 1, ..., n : ∃w ∈ Υm(z) ∩Gj with µm,i(w) ≤ 1/m},

Tm,n(z) := {j = m+ 1, ..., n : ∃w ∈ Υm(z) ∩Gj with µm,i(w) ≤ 1/(m+ 1)},

Em,n(z) := |Sm,n(z)|+ |Tm,n(z)| − n,

Im,n :=

{
z ∈

{
s+ it

2m
: s, t ∈ Z

}
: Em,n(z) > 0

}
.
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Finally we define for n1 > n2

Γ̃n2,n1
(A) =

⋃
z∈In2,n1

Υn2
(z),

and set Γ̃n2,n1
(A) = {1} if n1 ≤ n2. Furthermore, the tower has the following desirable properties:

1. For fixed n2, the sequence Γ̃n2,n1
(A) is eventually constant as we increase n1,

2. The sets limn1→∞ Γ̃n2,n1
(A) =: Γ̃n2

(A) are nested, converging down to Spess(A).

We also need the height one tower, Γ̂n, for the spectrum of operators in ΩdN discussed in Chapter 3. Note

that Γ̂n(A) is a finite set for all n. For z ∈ Γ̂n(z), this also outputs an error control E(n, z) such that

dist(z,Sp(A)) ≤ E(n, z) and such that E(n, z) converges to the true distance to the spectrum uniformly

on compact subsets of C (with the choice of g(x) = x since the operator is normal). We now fit the pieces

together and initially define

ζn2,n1(A) = {z ∈ Γ̂n1(A) : E(n1, z) < dist(z, Γ̃n2,n1(A) +B1/n2
(0))}.

We must show that this defines an arithmetic tower in the sense of Definitions 2.1.1 and 2.1.3. Given

z ∈ Γ̂n1(A) and using Pythagoras’ theorem, along with the fact that Γ̃n2,n1(A) consists of finitely many

squares in the complex plane aligned with the real and imaginary axes, we can compute dist(z, Γ̃n2,n1
(A))2

in finitely many arithmetic operations and comparisons. We can compute (E(n1, z) + 1/n2)2 and check

if this is less than dist(z, Γ̃n2,n1
(A))2. Hence ζn2,n1

(A) can be computed with finitely many arithmetic

operations and comparisons. There are now two cases to consider:

Case 1: Spd(A)∩ (Γ̃n2(A) +B1/n2
(0))c = ∅. For large n1, Γ̃n2(A) = Γ̃n2,n1(A) and this set contains

the essential spectrum. It follows, for large n1, since E(n1, z) ≥ dist(z, Γ̃n2,n1(A)) for all z ∈ Γ̂n1(A),

that ζn2,n1
(A) = ∅.

Case 2: Spd(A) ∩ (Γ̃n2
(A) + B1/n2

(0))c 6= ∅. In this case, this set is a finite subset of Spd(A),

{ẑ1, ..., ẑm(n2)}, separated from the closed set Γ̃n2
(A) + B1/n2

(0) (we need the +B1/n2
(0) for this to

be true to avoid accumulation points of the discrete spectrum). There exists some δn2
> 0 such that the

balls B2δn2
(ẑj) for j = 1, ...,m(n2) are pairwise disjoint and such that their union does note intersect

Γ̃n2(A) + B1/n2
(0).Using the convergence of Γ̂n1(A) to Sp(A) and E(n, z) ≥ dist(z,Sp(A)), it follows

that for large n1 that

ζn2,n1
(A) ⊂

m(n2)⋃
j=1

Bδn2
(ẑj), (6.2.2)

is non-empty and that ζn2,n1
(A) converges to Spd(A)∩(Γ̃n2

(A)+B1/n2
(0))c 6= ∅ in the Hausdorff metric.

Suppose that ζn2,n1(A) is non-empty. Recall that we only want one output per eigenvalue in the discrete

spectrum. To do this, we partition the finite set ζn2,n1
(A) into equivalence classes as follows. For z, w ∈

ζn2,n1
(A), we say that z ∼n1

w if there exists a finite sequence z = z1, z2, ..., zn = w ∈ ζn2,n1
(A)

such that BE(n1,zj)(zj) and BE(n1,zj+1)(zj+1) intersect. The idea is that equivalence classes correspond

to clusters of points in ζn2,n1
(A). Given any z ∈ ζn2,n1

(A) we can compute its equivalence class using

finitely many arithmetic operations and comparisons. Let S0 be the set {z} and given Sn, let Sn+1 be the

union of any w ∈ ζn2,n1(A) such that BE(n1,w)(w) and BE(n1,v)(v) intersect for some v ∈ Sn. Given

Sn, we can compute Sn+1 using finitely many arithmetic operations and comparisons. The equivalence

class is any Sn where Sn = Sn+1 which must happen since ζn2,n1
(A) is finite. We let Φn2,n1

consist of
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one element of each equivalence class that minimises E(n1, ·) over its respective equivalence class. By

the above comments it is clear that Φn2,n1
can be computed in finitely many arithmetic operations and

comparisons from the given data. Furthermore, due to (6.2.2) which holds for large n1, the separation of

the B2δn2
(ẑj) and the fact that E(n1, ·) converges uniformly on compact subsets to the distance to Sp(A),

it follows that for large n1 there is exactly one point in each intersection B2δn2
(ẑj) ∩ Φn2,n1(A). But

we can shrink δn2
and apply the same argument to see that Φn2,n1

(A) converges to Spd(A) ∩ (Γ̃n2
(A) +

B1/n2
(0))c 6= ∅ in the Hausdorff metric.

Now suppose that ζn2,n1
(A) is non-empty and z1, z2 ∈ Φn2,n1

(A) and both lie in Bε(z) for some

z ∈ Spd(A) and ε > 0 with Sp(A) ∩ B2ε(z) = {z}. It follows that z minimises the distance to the

spectrum from both z1 and z2. Hence, BE(n1,z1)(z1) and BE(n1,z2)(z2) both contain the point z so that

z1 ∼n1 z2. But then at most one of z1, z2 can lie in Φn2,n1(A) and hence z1 = z2.

To finish, we must alter Φn2,n1
(A) to take care of the case when ζn2,n1

(A) = ∅ and to produce a

ΣA2 algorithm. In the case that ζn2,n1
(A) = ∅, set Φn2,n1

(A) = ∅. Let N(A) ∈ N be minimal such that

Spd(A)∩(Γ̃N (A)+B1/N (0))c 6= ∅ (recall the discrete spectrum is non-empty for our class of operators). If

n2 > n1 then set Γn2,n1
(A) = {0}, otherwise consider Φk,n1

(A) for n2 ≤ k ≤ n1. If all of these are empty

then set Γn2,n1(A) = {0}, otherwise choose minimal k with Φk,n1(A) 6= ∅ and let Γn2,n1(A) = Φk,n1(A).

Note that this defines an arithmetic tower of algorithms, with Γn2,n1(A) non-empty. By the above case

analysis, for large n1 it holds that

Γn2,n1(A) = Φn2∨N(A),n1
(A)

and it follows that

lim
n1→∞

Γn2,n1
(A) =: Γn2

(A) = Spd(A) ∩ (Γ̃n2∨N(A)(A) +B1/n2∨N(A)(0))c.

Hence Γn2
(A) ⊂ Spd(A) and Γn2

(A) converges up to cl (Spd(A)) in the Hausdorff metric.

Proof of Corollary 6.1.2. Since ΩD ⊂ ΩfN, its suffices to show that {Ξd2,Ω
f
N} ∈ ΣA2 and {Ξd2,ΩD} /∈ ∆G

2 .

Step 1: {Ξd2,ΩD} /∈ ∆G
2 . The proof is almost identical to step 1 in the proof of Theorem 6.1.1. Sup-

pose there exists some height one tower Γn solving the problem. Consider the matrix operators Am =

diag{0, 0, ..., 0, 2} ∈ Cm×m and C = diag{0, 0, ...} and set

A =

∞⊕
m=1

Akm ,

where we choose an increasing sequence km inductively as follows. Set k1 = 1 and suppose that k1, ..., km

have been chosen. Spd(Ak1 ⊕ Ak2 ⊕ ... ⊕ Akm ⊕ C) = {2} so there exists some nm ≥ m such that if

n ≥ nm then

Γn(Ak1
⊕ ...⊕Akm ⊕ C) = 1.

Now let km+1 ≥ max{N(diag{1, 2} ⊕ Ak1 ⊕ ... ⊕ Akm ⊕ C, nm), km + 1}. Arguing as in the proof of

Theorem 3.1.6, it follows that Γnm(A) = Γnm(Ak1
⊕ ... ⊕ Akm ⊕ C). But Γnm(A) converges to 0 as A

has no discrete spectrum and this contradiction finishes this step.

Step 2: {Ξd2,Ω
f
N} ∈ ΣA2 . Consider the height two tower, ζn2,n1

, defined in step 2 of the proof of Theorem

6.1.1. Let A ∈ ΩfN and if ζn2,n1
(A) = ∅, define ρn2,n1

(A) = 0, otherwise define ρn2,n1
(A) = 1. The
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discussion in the proof of Theorem 6.1.1 shows that

lim
n1→∞

ρn2,n1
(A) =: ρn2

(A) =

0, if Spd(A) ∩ (Γ̃n2
(A) +B1/n2

(0))c = ∅

1, otherwise.

Since Spd(A)∩ (Γ̃n2
(A)+B1/n2

(0))c increases to cl (Spd(A)), it follows that limn2→∞ ρn2
(A) = Ξd2(A)

and that if ρn2
(A) = 1, then Ξd2(A) = 1. Hence, ρn2,n1

provides a ΣA2 tower for {Ξd2,Ω
f
N}.

Proof of Theorem 6.1.3. Step 1: {Ξd1,Ωd1} /∈ ∆G
3 . Suppose for a contradiction that Γn2,n1

is a height two

tower solving this problem. For this proof we shall use the decision problem Ξ̃2 from §2.3 which was proven

in Theorem 2.3.7 to have SCIG = 3. For convenience, we remind the reader of this decision problem. Let

(M, d) be the discrete space {0, 1}, let Ω̃ denote the collection of all infinite matrices {ai,j}i,j∈N with

entries ai,j ∈ {0, 1} and consider the problem function

Ξ̃2({ai,j}) : Does {ai,j} have only finitely many columns containing only finitely many non-zero entries?

We will gain a contradiction by using the supposed height two tower for {Ξd1,Ωd1}, Γn2,n1 , to solve {Ξ̃2, Ω̃}.
Without loss of generality, identify B(l2(N)) with B(X) where X = C2 ⊕

⊕∞
j=1Xj in the l2-sense

withXj = l2(N). Now let {ai,j} ∈ Ω̃ and for the jth column defineBj ∈ B(Xj) with the following matrix

representation:

Bj =

Mj⊕
r=1

Aljr , Am :=



1 1

0

. . .

0

1 1


∈ Cm×m,

where if Mj is finite then ljMj
=∞ with A∞ = diag(1, 0, 0, ...). The ljr are defined such that

∑m
i=1 ai,j∑
r=1

ljr = m+

m∑
i=1

ai,j . (6.2.3)

Define the self-adjoint operator

A = diag{3, 1} ⊕
∞⊕
j=1

Bj .

Note that no matter what the choices of ljr are, 3 ∈ Spd(A) and hence A ∈ Ωd1. Note also that the spectrum

of A is contained in {0, 1, 2, 3}. If Ξ̃2({ai,j}) = 1 then 1 is an isolated eigenvalue of finite multiplicity and

hence in Spd(A). But if Ξ̃2({ai,j}) = 0 then 1 is an isolated eigenvalue of infinite multiplicity so does not

lie in the discrete spectrum and hence Spd(A) ⊂ {0, 2, 3}.
Consider the intervals J1 = [0, 1/2], and J2 = [3/4,∞). Set αn2,n1 = dist(1,Γn2,n1(A)). Let

k(n2, n1) ≤ n1 be maximal such that αn2,k(A) ∈ J1 ∪ J2. If no such k exists or αn2,k(A) ∈ J1 then

set Γ̃n2,n1
({ai,j}) = 1. Otherwise set Γ̃n2,n1

({ai,j}) = 0. It is clear from (6.2.3) that this defines a

generalised algorithm. In particular, given N we can evaluate {Ak,l : k, l ≤ N} using only finitely many

evaluations of {ai,j}, where we can use a suitable bijection between bases of l2(N) and C2 ⊕
⊕∞

j=1Xj to

viewA as acting on l2(N). The point of the intervals J1, J2 is that we can show limn1→∞ Γ̃n2,n1
({ai,j}) =

Γ̃n2({ai,j}) exists. If Ξ̃2({ai,j}) = 1, then, for large n2, limn1→∞ αn2,k(A) < 1/2 and hence it follows

that limn2→∞ Γ̃n2({ai,j}) = 1. Similarly, if Ξ̃2({ai,j}) = 0, then, for large n2, we must have that
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limn1→∞ αn2,k(A) > 3/4 and hence it follows that limn2→∞ Γ̃n2
({ai,j}) = 0. Hence Γ̃n2,n1

is a height

two tower of general algorithms solving {Ξ̃2, Ω̃}, a contradiction.

Step 2: {Ξd2,Ωd2} /∈ ∆G
3 . To prove this we can use a slight alteration of the argument in step 1. Replace

X by X = l2(N)⊕
⊕∞

j=1Xj and A by

A = diag{1, 0, 2, 0, 2, ...} ⊕
∞⊕
j=1

Bj .

It is then clear that Ξd2(A) = 1 if and only if Ξ̃2({ai,j}) = 1.

Step 3: {Ξd1,Ωd1} ∈ ΣA3 . For this we argue similarly to the proof of Theorem 6.1.1 step 2. It was

shown in [BACH+20] that there exists a height three arithmetic tower Γ̃n3,n2,n1
for the essential spectrum

of operators in Ωd1 such that

• Each Γ̃n3,n2,n1
(A) consists of a finite collection of points in the complex plane.

• For large n1, Γ̃n3,n2,n1
(A) is eventually constant and equal to Γ̃n3,n2

(A).

• Γ̃n3,n2(A) is increasing with n2 with limit Γ̃n3(A) containing the essential spectrum. The limit

Γ̃n3(A) is also decreasing with n3.

Furthermore, it was proven in [BACH+20] that for operators in Ωd1, there exists a height two arithmetic

tower Γ̂n2,n1
for computing the spectrum such that

• Γ̂n2,n1
(A) is constant for large n1.

• For any z ∈ Γ̂n2(A), dist(z,Sp(A)) ≤ 2−n2 .

Using these, we initially define

ζn3,n2,n1(A) = {z ∈ Γ̂n2,n1(A) : 2−n3 − 2−n2 ≤ dist(z, Γ̃n3,n2,n1(A))}.

The arguments in the proof of Theorem 6.1.1 show that this can be computed in finitely many arithmetic

operations and comparisons using the relevant evaluation functions. Note that for large n1

ζn3,n2,n1
(A) = {z ∈ Γ̂n2

(A) : 2−n3 − 2−n2 ≤ dist(z, Γ̃n3,n2
(A))} =: ζn3,n2

(A).

There are now two cases to consider (we use Dη(z) to denote the open ball of radius η about a point z):

Case 1: Spd(A) ∩ (Γ̃n3(A) + D2−n3 (0))c = ∅. Suppose, for a contradiction, in this case that there

exists zmj ∈ ζn3,mj (A) with mj →∞. Then, without loss of generality, zmj → z ∈ Sp(A). We also have

that

dist(zmj , Γ̃n3,mj (A)) ≥ 2−n3 − 2−mj ,

which implies that dist(z, Γ̃n3
(A)) ≥ 2−n3 and hence z ∈ Spd(A) ∩ (Γ̃n3

(A) +D2−n3 (0))c, the required

contradiction. It follows that ζn3,n2
(A) is empty for large n2.

Case 2: Spd(A) ∩ (Γ̃n3
(A) + D2−n3 (0))c 6= ∅. In this case, this set is a finite subset of Spd(A),

{ẑ1, ..., ẑm(n3)}. Each of these points is an isolated point of the spectrum. It follows that there exists

zn2 ∈ Γ̂n2(A) with zn2 → ẑ1 and |zn2 − ẑ1| ≤ 2−n2 for large n2. Since the Γ̃n3,n2(A) are increasing, this

implies that

dist(zn2
, Γ̃n3,n2

(A)) ≥ dist(zn2
, Γ̃n3

(A))

≥ dist(ẑ1, Γ̃n3
(A))− 2−n2 ≥ 2−n3 − 2−n2 ,
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so that zn2
∈ ζn3,n2

(A). The same argument holds for points converging to all of {ẑ1, ..., ẑm(n3)}. On the

other hand, the argument used in Case 1 shows that any limit points of ζn3,n2
(A) as n2 →∞ are contained

in Spd(A)∩(Γ̃n3
(A)+D2−n3 (0))c. It follows that in this case ζn3,n2

(A) converges to Spd(A)∩(Γ̃n3
(A)+

B1/n3
(0))c 6= ∅ in the Hausdorff metric as n2 →∞.

Let N(A) ∈ N be minimal such that Spd(A)∩ (Γ̃N (A) +D2−N (0))c 6= ∅ (recall the discrete spectrum

is non-empty for our class of operators). If n3 > n2 then set Γn3,n2,n1
(A) = {0}, otherwise consider

ζk,n2,n1
(A) for n3 ≤ k ≤ n2. If all of these are empty then set Γn3,n2,n1

(A) = {0}, otherwise choose

minimal k with ζk,n2,n1(A) 6= ∅ and let Γn3,n2,n1(A) = ζk,n2,n1(A). Note that this defines an arithmetic

tower of algorithms, with Γn3,n2,n1(A) non-empty. Since we consider finitely many of the sets ζk,n2,n1(A),

and these are constant for large n1, it follows that Γn3,n2,n1(A) is constant for large n1 and constructed in

the same manner with replacing ζk,n2,n1
(A) by ζk,n2

(A). Call this limit Γn3,n2
(A).

For large n2,

Γn3,n2
(A) = ζn3∨N(A),n2

(A)

and it follows that

lim
n2→∞

Γn3,n2
(A) =: Γn3

(A) = Spd(A) ∩ (Γ̃n3∨N(A)(A) +D2−n3∨N(A)(0))c.

Hence Γn3
(A) ⊂ Spd(A) and Γn3

(A) converges up to cl (Spd(A)) in the Hausdorff metric.

Step 4: {Ξd2,Ωd2} ∈ ΣA3 . Consider the height three tower, ζn3,n2,n1 , defined in step 3. Let A ∈ Ωd2 and

if ζn3,n2,n1(A) = ∅, define ρn3,n2,n1(A) = 0, otherwise define ρn3,n2,n1(A) = 1. The discussion in step 3

shows that

lim
n2→∞

lim
n1→∞

ρn3,n2,n1
(A) =: ρn3

(A) =

0, if Spd(A) ∩ (Γ̃n3
(A) +D2−n3 (0))c = ∅

1, otherwise.

Since Spd(A)∩(Γ̃n3
(A)+D2−n3 (0))c increases to cl (Spd(A)), it follows that limn3→∞ ρn3

(A) = Ξd2(A)

and that if ρn3
(A) = 1, then Ξd2(A) = 1. Hence, ρn3,n2,n1

provides a ΣA3 tower for {Ξd2,Ωd2}.

6.3 Proofs of Theorems on the Spectral Gap

Proof of Theorem 6.1.4. Step 1: {Ξgap, Ω̂SA} ∈ ΣA2 . Let A ∈ Ω̂SA. We can compute all n eigenvalues

of PnAPn to arbitrary precision in finitely many arithmetic operations and comparisons. In the notation

of Lemmas 6.2.1, and 6.2.2 (whose analogous results also hold for the possibly unbounded A ∈ Ω̂SA),

consider an approximation

0 ≤ ln := µn2 − µn1 + εn, n ≥ 2,

where we have computed µn2 − µn1 to accuracy |εn| ≤ 1/n. Recall that for A ∈ Ω̂SA we restricted the

class so that either the bottom of the spectrum is in the discrete spectrum with multiplicity one, or there is

a closed interval in the spectrum of positive measure with the bottom of the spectrum as its left end-point.

It follows that ln converges to zero if and only if Ξgap(A) = 0, otherwise it converges to some positive

number. If n1 = 1 then set Γn2,n1
(A) = 1, otherwise consider the following.

Let J1
n2

= [0, 1/(2n2)] and J2
n2

= (1/n2,∞). Given n1 ∈ N, consider lk for k ≤ n1. If no such k

exists with lk ∈ J1
n2
∪J2

n2
then set Γn2,n1(A) = 0. Otherwise, consider k maximal with lk ∈ J1

n2
∪J2

n2
and

set Γn2,n1
(A) = 0 if lk ∈ J1

n2
and Γn2,n1

(A) = 1 if lk ∈ J2
n2

. The sequence ln1
→ c ≥ 0 for some number
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c. The separation of the intervals J1
n2

and J2
n2

, ensures that ln1
cannot be in both intervals infinitely often

as n1 →∞ and hence the first limit Γn2
(A) := limn1→∞ Γn2,n1

(A) exists. If c = 0, then Γn2
(A) = 0 but

if c > 0 then there exists n2 with 1/n2 < c and hence for large n1, ln1
∈ J2

n2
. It follows in this case that

Γn2(A) = 1 and we also see that if Γn2(A) = 1 then Ξgap(A) = 1. Hence Γn2,n1 provides a ΣA2 tower.

Step 2: {Ξgap, Ω̂D} /∈ ∆G
2 . We argue by contradiction and assume the existence of a height one

tower, Γn converging to Ξgap. The method of proof follows the same lines as before. For every A and n

there exists a finite numberN(A,n) ∈ N such that the evaluations from ΛΓn(A) only take the matrix entries

Aij = 〈Aej , ei〉with i, j ≤ N(A,n) into account. List the rationals in (0, 1) without repetition as d1, d2, ....

We consider the operators Am = diag{d1, d2, ..., dm} ∈ Cm×m, Bm = diag{1, 1, ..., 1} ∈ Cm×m and

C = diag{1, 1, ...}. Let

A =

∞⊕
m=1

(Bkm ⊕Akm),

where we choose an increasing sequence km inductively as follows. In what follows, all operators consid-

ered are easily seen to be in Ω̂D.

Set k1 = 1 and suppose that k1, ..., km have been chosen with the property that upon defining

ζp := min{dr : 1 ≤ r ≤ kp},

we have ζp > ζp+1 for p = 1, ...,m − 1. Sp(Bk1
⊕ Ak1

⊕ ... ⊕ Bkm ⊕ Akm ⊕ C) = {d1, d2, ..., dm, 1}
has ζm the minimum of its spectrum and an isolated eigenvalue of multiplicity 1, hence

Ξ(Bk1
⊕Ak1

⊕ ...⊕Bkm ⊕Akm ⊕ C) = 1.

It follows that there exists some nm ≥ m such that if n ≥ nm then

Γn(Bk1
⊕Ak1

⊕ ...⊕Bkm ⊕Akm ⊕ C) = 1.

Now let km+1 ≥ max{N(Bk1 ⊕Ak1 ⊕ ...⊕Bkm ⊕Akm ⊕C, nm), km + 1} with ζm > ζm+1. The same

argument used in the proof of Theorem 3.1.6 shows that Γnm(A) = Γnm(Bk1
⊕Ak1

⊕ ...⊕Bkm ⊕Akm ⊕
C) = 1. But Sp(A) = [0, 1] is gapless and so must have limn→∞(Γn(A)) = 0, a contradiction.

Proof of Theorem 6.1.6. By restricting Ω̃D to Ω̂D and composing with the map

ρ : {1, 2, 3, 4} → {0, 1},

ρ(1) = 1, ρ(2) = ρ(3) = ρ(4) = 0, it is clear that Theorem 6.1.4 implies {Ξclass, Ω̃
f
SA}, {Ξclass, Ω̃D} /∈

∆G
2 . Since Ω̃D ⊂ Ω̃fSA, we need only construct a ΠA

2 tower for {Ξclass, Ω̃
f
SA}.

Let A ∈ Ω̃fSA. For a given n, set Bn = PnAPn and in the notation of Lemmas 6.2.2 and 6.2.1, let

0 ≤ ljn := µnj+1 − µn1 + εjn, for j < n.

where we again have computed µnj+1 − µn1 to accuracy
∣∣εjn∣∣ ≤ 1/n using only finitely many arithmetic

operations and comparisons. Ξclass(A) = 1 if and only if l1n converges to a positive constant as n → ∞
and Ξclass(A) = 2 if and only if l1n converges to zero as n → ∞ but there exists j with ljn convergent to a

positive constant.

Note that we can use the algorithm, denoted Γ̂n, to compute the spectrum presented in Chapter 3, with

error function denoted by E(n, ·) converging uniformly on compact subsets of C to the true error from
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above (again with the choice of g(x) = x since the operator is normal). Setting

an(A) = min
x∈Γ̂n(A)

{x+ E(n, x)},

we see that an(A) ≥ a(A) := infx∈Sp(A){x} and that an(A)→ a(A). Now consider

bn2,n1
(A) = min{E(k, ak(A) + 1/n2) + 1/k : 1 ≤ k ≤ n1}

then bn2,n1
(A) is positive and decreasing in n1 so converges to some limit bn2

(A).

Lemma 6.3.1. Let A ∈ Ω̃fSA and cn2,n1(A) = E(n1, an1(A) + 1/n2) + 1/n1, then

lim
n1→∞

cn2,n1
(A) =: cn2

(A) = dist(a+ 1/n2,Sp(A)).

Furthermore, if Ξclass(A) 6= 4 then for large n2 it follows that cn2
(A) = bn2

(A) = 1/n2.

Proof of Lemma 6.3.1. We know that an1
(A) + 1/n2 converges to a(A) + 1/n2 as n1 →∞. Furthermore,

dist(z,Sp(A)) is continuous in z and E(n1, z) converges uniformly to dist(z,Sp(A)) on compact subsets

of C. Hence, the limit cn2
(A) exists and is equal to dist(a(A) + 1/n2,Sp(A)). It is clear that bn2

(A) ≤
cn2(A). Suppose now that Ξclass(A) 6= 4, then for large n1, say bigger than some N , and for large enough

n2,

E(n1, an1
(A) + 1/n2) ≥ dist(an1

(A) + 1/n2,Sp(A))

= |an1
(A) + 1/n2 − a(A)|

≥ 1/n2 = dist(a(A) + 1/n2,Sp(A)).

Now choose n2 large such that the above inequality holds and 1/n2 ≤ 1/N . Then bn2,n1
(A) ≥ 1/n2.

Taking limits finishes the proof.

If n2 ≥ n1 then set Γn2,n1
(A) = 1. Otherwise, for 1 ≤ j ≤ n2, let kjn2,n1

be maximal with 1 ≤
kjn2,n1

< n1 such that lj
kjn2,n1

∈ J1
n2
∪ J2

n2
if such kjn2,n1

exist, where J1
n2

and J2
n2

are as in the proof of

Theorem 6.1.4. If k1
n2,n1

exists with l1k1
n2,n1

∈ J2
n2

then set Γn2,n1
(A) = 1. Otherwise, if any of kmn2,n1

exists with lmkmn2,n1

∈ J2
n2

for 2 ≤ m ≤ n2 then set Γn2,n1(A) = 2. Suppose that neither of these two

cases hold. In this case compute bn2,n1(A). If bn2,n1(A) ≥ 1/n2 then set Γn2,n1(A) = 3, otherwise set

Γn2,n1
(A) = 4. We now must show this provides a ΠA

2 tower solving our problem.

First we show convergence of the first limit. Fix n2 and consider n1 large. The separation of the

intervals J1
n2

and J2
n2

ensures that each sequence {ljn}n∈N cannot visit each interval infinitely often. Since

bn1,n2
(A) is non-increasing in n1, we also see that the question whether bn2,n1

(A) ≥ 1/n2 eventually has a

constant answer. These observations ensure convergence of the first limit Γn2(A) = limn1→∞ Γn2,n1(A).

If Ξclass(A) = 1 then for large n2, l1n1
must eventually be in J2

n2
and hence Γn2(A) = 1. It is also clear

that if Γn2
(A) = 1 then l1n1

converges to a positive constant, which implies Ξclass(A) = 1. If Ξclass(A) = 2

then for large n2, lmn1
eventually lies in J2

n2
for some 2 ≤ m ≤ n2, but l1n1

eventually in J1
n2

. It follows that

Γn2
(A) = 2. If Γn2

(A) = 2, then we know that there exists some lmn1
convergent to l ≥ 1/n2 and hence

we know Ξclass(A) is either 1 or 2.

Now suppose that Ξclass(A) = 3, then for fixed n2 and any 1 ≤ m ≤ n2, lmn1
eventually lies in J1

n2
and

hence our lowest level of the tower must eventually depend on whether bn2,n1(A) ≥ 1/n2. From Lemma

6.3.1, bn2
(A) = cn2

(A) = 1/n2 for large n2. It follows that for large n2, bn2
(A) ≥ 1/n2 for all n1 and
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Γn2
(A) = 3. Furthermore, if Γn2

(A) = 3 then we know that cn2
(A) ≥ bn2

(A) ≥ 1/n2, which implies

Ξclass(A) 6= 4. Finally, note that if Ξclass(A) = 4 but there exists n2 with Γn2
(A) 6= 4 then the above

implies the contradiction Ξclass(A) 6= 4. The above imply Γn2,n1
realises the ΠA

2 classification.

6.4 Numerical Example for Discrete Spectra

Although it is hard to analyse the convergence of a height two tower, we can take advantage of the extra

structure in this problem. The algorithm constructed in Theorem 6.1.1, referred to as DiscreteSpec in

this section, computes Γn2,n1
(A) such that limn1→∞ Γn2,n1

(A) is a finite subset of Spd(A). Furthermore,

for each z ∈ Spd(A), there is at most one point in zn1
∈ Γn2,n1

(A) approximating z. We can use the

methods of Chapter 3 (DistSpec) to gain an error bound of dist(zn1
,Sp(A)), which, for large n1, will be

equal to |z − zn1 | since z is an isolated point of Sp(A). As we increase n2, more and more of the discrete

spectrum (in general portions nearer the essential spectrum) are approximated.

Our example is the almost Mathieu operator on l2(Z), given by

(Hαx)n = xn−1 + xn+1 + 2λ cos(2πnα+ ν)xn, λ = 1 (critical coupling).

The case of λ = 1 was studied in Hofstadter’s classic paper [Hof76] (Hofstadter butterfly). The Hamiltonian

represents a crystal electron in a uniform magnetic field, and the spectrum can be interpreted as the allowed

energies of the system. For rational choices of α, the operator is periodic with purely absolutely continuous

spectrum depending on ν. For irrational α, the spectrum is a Cantor set and does not depend on ν. Hence it

follows that there is no discrete spectrum. In general, we cannot work with infinite precision, so approximate

irrational α by rational approximations. We choose to work with ν = 0 but found similar results for other

values. To generate a discrete spectrum, we add a perturbation of the potential of the form

V (n) = Vn/(|n|+ 1), (6.4.1)

where Vn are independent and uniformly distributed in [−2, 2]. The perturbation is compact so preserves

the essential spectrum, allowing us to test the algorithm. This type of problem is well-studied in the more

general setting of Jacobi operators [Tes00, HS02], and physically models defects in the crystal.

Figure 6.1 shows a typical result for a realisation of the random potential. The figure shows the output

of finite section and the algorithm of Chapter 3 (with a uniform error bound of 10−2) for computing the

total spectrum. We have also shown the output of DiscreteSpec, which separates the discrete spectrum

from the essential spectrum. For each α we took n2 large enough (obtained by comparing with the output

of the height two tower for computing the essential spectrum) for expected limit inclusions

Γn2
(A) ⊂ Spd(A) ⊂ Γn2

(A) +B0.01(0). (6.4.2)

Recall that Γn2(A) ⊂ Spd(A) always holds and taking n2 larger caused sharper inclusion bounds on the

right-hand side of (6.4.2). Additionally, we confirmed that (6.4.2) does indeed hold by using the height one

tower to compute the spectrum (Chapter 3) with and without the random potential. Note that it is difficult

to detect spectral pollution when using finite section with the additional perturbation (6.4.1). In contrast,

DiscreteSpec computes the discrete spectrum without spectral pollution and allows us to separate the

discrete spectrum from the essential spectrum.
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Figure 6.1: Top: Output of finite section. Spectral pollution detected by the algorithm of Chapter 3 is shown
as red crosses. Bottom: Output of DiscreteSpec and the splitting into the essential spectrum and the
discrete spectrum. The output captures the discrete spectrum down to a distance ≈ 0.01 away from the
essential spectrum, which can be made smaller for larger n2.
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Chapter 7

Geometric Features and Detecting

Finite Section Failure

In this chapter, based on [Colns], we address certain geometric features of the spectrum. We begin with

some remarks on the finite section method, the most common approach to computing spectra. A highlight of

this chapter is the proof that computing an error flag for finite section is harder than computing the spectrum

itself (the problem solved in Chapter 3). This also settles the problem of computing or detecting gaps in the

essential spectrum of self-adjoint operators, which has received considerable attention in the community.

Furthermore, we classify various types of spectral radii, polynomial operator norms and capacity (which

is useful for the analysis of Krylov numerical methods) in the SCI hierarchy. Even in the simplest case

of computing the usual spectral radius, the only previous computational results are for normal operators

(where the spectral radius is equal to the operator norm). In the non-normal case, this becomes a highly

non-trivial problem, requiring three limits in the general case for the class of bounded operators on l2(N).

7.1 The Finite Section Method and when it fails

To motivate parts of this chapter, we begin with some brief remarks on the finite section method, the

most common approach to approximate spectra (which, while successful for many problems, can also fail

catastrophically). There has been considerable attention towards methods that detect gaps in the essential

spectrum (spectral gaps) and eigenvalues within these gaps for self-adjoint operators [RS78, Kla80, Dav98,

ZJ00, BBG00, CL90, LS14]. When computing spectra via the finite section method, it is well-known that

spurious eigenvalues (spectral pollution) can occur anywhere within these gaps (see [LS09, Mar10] and

the theorems below). There is a large literature that studies the precise nature of spectral pollution and

possible ways to avoid it. This is an issue in applied areas such as computational chemistry, elasticity, elec-

tromagnetism and hydrodynamics [DG81, SH84, LS09, STY+04, JWP96]. The computation is often done

with finite element, finite difference or spectral methods by discretising the operator on a suitable finite-

dimensional space, and then using algorithms for finite-dimensional matrix eigenvalue problems on the dis-

cretised operator [Rap77, RSHSPV97, BBG00, BDG99, BP06, BCJ09, ABP06, Zha07, BHP07, BPW09,

BBG13, CW13]. Related to this is a more subtle issue, namely, that most numerical methods for eigenvalue

problems come with convergence rates (often with hidden constants) and it is common knowledge that only
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a small portion of numerical eigenvalues are reliable. However, this knowledge is typically only qualitative

rather than quantitative, and it is not clear in general what portion of the computation can be trusted (even

when a method converges) [WT88, Zha15]. In other words, how do we know that an eigenvalue or portion

of the spectrum is resolved?

To state our theorems in this chapter, we recall the definition of the essential numerical range:

We(A) =
⋂

K compact

cl(W (A+K)),

where W (A) = {〈Ax, x〉 : ‖x‖ = 1} is the usual numerical range. If A is hyponormal (A∗A−AA∗ ≥ 0)

then We(A) is the convex hull of the essential spectrum [Sal72]. We also recall two theorems:

Theorem 7.1.1 ([Pok79]). Let A ∈ B(H) and {Pn} be a sequence of finite-dimensional projections con-

verging strongly to the identity. Suppose that S ⊂ We(A). Then there exists a sequence {Qn} of finite-

dimensional projections such that Pn < Qn (so Qn → I strongly) and

dH(Sp(An) ∪ S,Sp(Ãn))→ 0, n→∞,

where

An = PnA|PnH, Ãn = QnA|QnH

and dH denotes the Hausdorff distance.

Theorem 7.1.2 ([Pok79]). Let A ∈ B(H) and {Pn} be a sequence of finite-dimensional projections con-

verging strongly to the identity. If λ /∈We(A) then λ ∈ Sp(A) if and only if

dist(λ,Sp(PnA|PnH)) −→ 0, n→∞.

These theorems say that the failure of the finite section method is confined to the essential numerical

range and can be arbitrarily bad on We(A)\Sp(A).1 This is one of the key results motivating the quest for

an algorithm that detects gaps in the essential spectrum of self-adjoint operators (in this case, these gaps

correspond exactly to We(A)\Sp(A)).

7.2 The Set-up

Throughout this chapter and the next, A will be a bounded operator on l2(N) realised as a matrix with

respect to the canonical basis. By a choice of basis we can, as in previous chapters, deal with arbitrary

separable Hilbert spaces.

There are two basic natural sets of information that we allow our algorithms to read when computing

spectral properties of A. The first is the set of evaluation functions Λ1 consisting of the family of all

functions f1
i,j : A 7→ 〈Aej , ei〉, i, j ∈ N, which provide the entries of the matrix representation of A with

respect to the canonical basis {ei}i∈N. The second, which we denote by Λ2, is the family Λ1 together with

all functions f2
i,j : A 7→ 〈Aej , Aei〉 and f3

i,j : A 7→ 〈A∗ej , A∗ei〉, i, j ∈ N, which provide the entries

of the matrix representation of A∗A and AA∗ with respect to the canonical basis {ei}i∈N. In general,

the classification of a computational problem in the SCI hierarchy depends on the evaluation set Λ. We

1In the non-normal case it is possible for finite section to not capture all of the spectrum - parts of the spectrum may be unattainable.
This is distinct from spectral pollution. Theorem 7.1.1 says that, up to a different choice of projections, this can be avoided onWe(A).
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have included Λ2 in these two chapters since it is natural for problems posed in variational form. When

considering classes with functions f (and {cn}) and g as in (3.1.1) and (3.1.2), we will add these to the

relevant evaluation set and, with the usual abuse of notation, still use the notation Λi. A small selection

of the problems also require additional information, such as when testing if a set intersects a spectral set.

However, any changes to Λi will be pointed out where appropriate.

7.3 Main Results

7.3.1 Spectral radii, operator norms and capacity of spectrum

The spectral radius r(A) of a bounded operator A is the supremum of the absolute values of member of

the spectrum (which is attained). Let ΩN denote the class of normal operators in ΩB and ΩD denote the

self-adjoint diagonal operators in ΩN. We also denote by Ωf the class of operators in ΩB with dispersion

bounded by f (see §3.1.1). Let g : R+ → R+ be an increasing function such that g maps [0,∞) onto itself

continuously and strictly monotonously. Let Ωg be the class of bounded operators with

‖R(z,A)‖−1 ≥ g(dist(z,Sp(A))), (7.3.1)

for z ∈ C. Note that such a g is always guaranteed to exist, however, the classification in the SCI hierarchy

depends on whether one knows an estimate for g or not. For example, in the self-adjoint and normal cases

g(x) = x is the trivial choice of g. Operators with g(x) = x are known as G1 in the operator theory

literature and include the well-studied class of hyponormal operators [Put79]. It is known that if A is G1

then: if Sp(A) is real thenA is self-adjoint [Nie62], if Sp(A) is contained in the unit circle thenA is unitary

[Don63], and if Sp(A) is finite then A is normal [Sta65].

We let Ξr(A) := r(A). Our proofs show that the computational problem of the operator norm or

numerical radius of anyA ∈ ΩB lies in ΣA1 . Hence we can easily get an upper bound (that may not be sharp)

for Ξr(A) in one limit. If an operator lies in Ωg with g(x) = x, then it is well-known that the convex hull of

the spectrum is equal to the closure of the numerical range (the operator is convexoid) [Orl64] and hence the

computational problem lies in ΣA1 . One might expect that the computation of Ξr(A) is strictly easier than

that of the spectrum, particularly in light of Gelfand’s famous formula Ξr(A) = limn→∞ ‖An‖
1
n . However,

the following shows that this intuition is false in general, and only occurs if an operator is convexoid.

Controlling the resolvent via a function g as in (7.3.1) makes the problem easier than the general ΩB, but is

not sufficient to reduce the SCI of the problem to 1.

Theorem 7.3.1. Let g : R+ → R+ be a strictly increasing, continuous function that vanishes only at 0 with

limx→∞ g(x) =∞. Suppose also that for some δ ∈ (0, 1) it holds that g(x) ≤ (1− δ)x. Then:

∆G
1 63 {Ξr,ΩD,Λ1} ∈ ΣA1 , ∆G

1 63 {Ξr,ΩN,Λ1} ∈ ΣA1 , ∆G
1 63 {Ξr,Ωf ∩ Ωg,Λ1} ∈ ΣA1 ,

∆G
2 63 {Ξr,Ωg,Λ1} ∈ ΣA2 , ∆G

2 63 {Ξr,Ωf ,Λ1} ∈ ΠA
2 , ∆G

3 63 {Ξr,ΩB,Λ1} ∈ ΠA
3 .

When considering the evaluation set Λ2, the only changes are the following classifications:

∆G
1 63 {Ξr,Ωg,Λ2} ∈ ΣA1 , ∆G

2 63 {Ξr,ΩB,Λ2} ∈ ΠA
2 .

Next, we consider the essential spectral radius. Define the essential spectrum of A ∈ ΩB as

Spess(A) =
⋂

B∈ΩC

Sp(A+B),
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where ΩC denotes the class of compact operators. The essential spectral radius, Ξer(A), is simply the

supremum of the absolute values over Spess(A).

Theorem 7.3.2. We have the following classifications for i = 1, 2:

∆G
2 63 {Ξer,ΩD,Λi} ∈ ΠA

2 , ∆G
2 63 {Ξer,ΩN,Λi} ∈ ΠA

2 , ∆G
2 63 {Ξer,Ωf ,Λi} ∈ ΠA

2 .

For general operators,

∆G
3 63 {Ξer,ΩB,Λ1} ∈ ΠA

3 , ∆G
2 63 {Ξer,ΩB,Λ2} ∈ ΠA

2 .

As two final problems in this section, given a polynomial p (of degree at least two), we consider the

problem of computing Ξr,p = ‖p(A)‖ and the capacity of the spectrum defined by

Ξcap(A) = inf
monic polynomial p

‖p(A)‖1/deg(p).

Operators with Ξcap(A) = 0 are known as quasialgebraic, and a theorem of Halmos shows that this defi-

nition of capacity agrees with the usual potential-theoretic definition of capacity of the set Sp(A) [Hal71].

This quantity is of particular interest in Krylov methods where, for instance, it is related to the speed of

convergence2 [Nev93, Nev95]. Vaguely speaking, the capacity is a measure of the size of Sp(A) (a mea-

sure of its ability to hold electrical charge as opposed to volume). We will also see some other measures of

size in Chapter 8 when considering the Lebesgue measure and fractal dimensions of Sp(A).

Theorem 7.3.3. We have the following classifications for i = 1, 2 and Ω̂ = ΩD,Ωf :

∆G
1 63 {Ξr,p, Ω̂,Λi} ∈ ΣA1 , ∆G

2 63 {Ξcap, Ω̂,Λi} ∈ ΠA
2 .

Whereas for Ω̃ = ΩN,Ωg or ΩB:

∆G
2 63 {Ξr,p, Ω̃,Λ1} ∈ ΣA2 , ∆G

3 63 {Ξcap, Ω̃,Λ1} ∈ ΠA
3

∆G
1 63 {Ξr,p, Ω̃,Λ2} ∈ ΣA1 , ∆G

2 63 {Ξcap, Ω̃,Λ2} ∈ ΠA
2 .

7.3.2 Gaps in essential spectra and detecting algorithm failure for finite section

We will show that detecting whether spectral pollution can occur is strictly harder than computing the

spectrum for self-adjoint operators. In other words, detecting the failure of the finite section method is

strictly harder than the problem it was designed to solve!

Let Ξwe(A) = We(A). For a given open set U in F (F being C or R), let ΞF
poll be the decision problem

ΞF
poll(A,U) =

1, if cl (U) ∩ (We(A)\Sp(A)) 6= ∅

0, otherwise.

ΞF
poll decides whether spectral pollution can occur on the closed set cl (U), which is assumed to have non-

empty interior. For the self-adjoint case (where F = R), this is equivalent to asking whether there exists

a point in the open set U which also lies in a gap of the essential spectrum. To incorporate U into Λi, we

allow access to a countable number of open balls {Um}m∈N whose union is U . If F is R then each Um is

of the form (am, bm) with am, bm ∈ Q∪{±∞}, whereas if F is C then each Um is equal to Drm(zm) (the

open ball of radius rm centred at zm) with rm ∈ Q+ and zm ∈ Q + iQ. We add pointwise evaluations of

{(am, bm)} or {(rm, zm)} to Λi. Let ΩSA denote the class of bounded self-adjoint operators.
2This is an idealisation since the capacity studies operator norms while true Krylov processes look at p(A)x with one or several

vectors x. However, from local spectral theory (e.g. [M9̈2]) it follows that generically the asymptotic speeds are the same.
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Theorem 7.3.4. Let Ω = ΩN,ΩSA or ΩB and let i = 1, 2. Then

∆G
2 63 {Ξwe,Ω,Λi} ∈ ΠA

2 .

Furthermore, for i = 1, 2 the following classifications hold, valid also if we restrict to the case U = U1 or

to U = U1 = F:

∆G
3 63 {ΞR

poll,ΩSA,Λi} ∈ ΣA3 , ∆G
3 63 {ΞC

poll,ΩB,Λi} ∈ ΣA3 .

Remark 7.3.5. One can show that {Sp(·),ΩSA,Λ1} ∈ ΣA2 and {Sp(·),ΩSA,Λ2} ∈ ΣA1 . Hence determin-

ing ΞR
poll is strictly harder than the spectral computational problem and requires two extra limits if Λ = Λ2.

Even in the general case, {Sp(·),ΩB,Λ2} ∈ ΠA
2 and hence the spectral problem is strictly easier. The

proofs also make clear that we get the same classification of ΞF
poll for other classes such as ΩN, Ωg etc.

7.4 Proofs of Theorems in §7.3.1

We begin with the proof of Theorem 7.3.1, dealing with the evaluation set Λ1 first. Suppose that Γ̃nk,...,n1

is a ΠA
k tower of algorithms to compute the spectrum of a class of operators, where the output is a finite set

for each n1, ..., nk. It is then clear that

Γnk,...,n1
(A) = sup

z∈Γ̃nk,...,n1 (A)

|z|+ 1

2nk

provides a ΠA
k tower of algorithms for the spectral radius. Strictly speaking, the above may not be an

arithmetic tower owing to the absolute value. But it can be approximated to arbitrary precision (from above

say), the error of which can be absorbed in the first limit. In what follows, we always assume this is done

without further comment. Similarly if Γ̃nk,...,n1
provides a ΣAk tower of algorithms for the spectrum (output

a finite set for each n1, ..., nk),

Γnk,...,n1(A) = sup
z∈Γ̃nk,...,n1 (A)

|z| − 1

2nk

provides a ΣAk tower of algorithms for the spectral radius. If we only have a height k tower with no Σk or

Πk type error control for the spectrum, then taking the supremum of absolute values shows we get a height

k tower for the spectral radius.

The fact that {Ξr,ΩD} ∈ ΣA1 , {Ξr,Ωf ∩Ωg} ∈ ΣA1 , {Ξr,Ωg} ∈ ΣA2 , {Ξr,Ωf} ∈ ΠA
2 and {Ξr,ΩB} ∈

ΠA
3 hence follow from Chapter 3 and the results of [BACH+20]. It is clear that {Ξr,ΩD} /∈ ∆G

1 and this

also shows that {Ξr,ΩN} /∈ ∆G
1 and {Ξr,Ωf ∩ Ωg} /∈ ∆G

1 . Hence, we must show the positive result that

{Ξr,ΩN} ∈ ΣA1 and prove the lower bounds {Ξr,Ωg} /∈ ∆G
2 , {Ξr,Ωf} /∈ ∆G

2 and {Ξr,ΩB} /∈ ∆G
3 .

Proof of Theorem 7.3.1 for Λ1. Throughout this proof we use the evaluation set Λ1 (dropped from notation

for convenience).

Step 1: {Ξr,ΩN} ∈ ΣA1 . Recall that the spectral radius of a normal operator A ∈ ΩB is equal to its

operator norm. Consider the finite section matrices PnAPn ∈ Cn×n. It is straightforward to show that

‖PnAPn‖ ↑ ‖A‖ as n→∞.

The norm ‖PnAPn‖ is the square root of the largest eigenvalue of the semi-positive definite self-adjoint

matrix (PnAPn)∗(PnAPn). This can be estimated from below to an accuracy of 1/n, which then yields a

ΣA1 algorithm for {Ξr,ΩN}.
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Step 2: {Ξr,Ωg} /∈ ∆G
2 . Recall that we assumed the existence of a δ ∈ (0, 1) such that g(x) ≤ (1−δ)x.

Let ε > 0, then it is easy to see that the matrices

S±(ε) =

 1 0

±ε 1


have norm bounded by 1 + ε+ ε2 and are clearly inverse of each other. Choose ε small such that (1 + ε+

ε2)2 ≤ 1/(1− δ). If B ∈ C2×2 is normal, it follows that B̂ := S+(ε)BS−(ε) lies in Ωg and has the same

spectrum as B. We choose

B̂ = S+(ε)

 1 −ε
−ε 0

S−(ε) =

1 + ε2 −ε
ε3 −ε2

 .

The crucial property of B̂ is that the first entry 1+ε2 is strictly greater in magnitude than the two eigenvalues

(1±
√

1 + 4ε2)/2.

Now suppose for a contradiction that a height one tower, Γn, solves the problem. We will gain a

contradiction by showing that Γn(A) does not converge for an operator of the form,

A =

∞⊕
r=1

Alr , Am :=



1 + ε2 −ε
0

. . .

0

ε3 −ε2


∈ Cm×m,

where we only consider lk ≥ 3. Each Am is unitarily equivalent to the matrix B̂ ⊕ 0 ∈ Cm×m and has

spectrum equal to {0, (1±
√

1 + 4ε2)/2}. Any A of the above form is unitarily equivalent to a direct sum

of an infinite number of B̂’s and the zero operator and hence lies in Ωg . Now suppose that l1, ..., lk have

been chosen and consider the operator

Bk = Al1 ⊕ ...⊕Alk ⊕ C, C = diag{1 + ε2, 0, ...}.

The spectrum of Bk is {0, (1±
√

1 + 4ε2)/2, 1 + ε2} and hence there exist η > 0 and n(k) ≥ k such that

Γn(k)(Bk) > (1+
√

1 + 4ε2)/2+η. But Γn(k)(Bk) can only depend on the evaluations of the matrix entries

{Bk}ij = 〈Bkej , ei〉 with i, j ≤ N(Bk, n(k)) (as well as evaluations of the function g) into account. If

we choose lk+1 > N(Bk, n(k)) then by the assumptions in Definition 2.1.1, Γn(k)(A) = Γn(k)(Bk) >

(1 +
√

1 + 4ε2)/2 + η. But Γn(A) must converge to (1 +
√

1 + 4ε2)/2, a contradiction.

Step 3: {Ξr,Ωf} /∈ ∆G
2 . Suppose for a contradiction that a height one tower, Γn, solves the problem.

We will gain a contradiction by showing that Γn(A) does not converge for an operator of the form,

A =

∞⊕
r=1

Clr ⊕Alr , Am :=



0 1

0 1

. . . . . .

1

0


∈ Cm×m, Cm = diag{0, 0, ..., 0} ∈ Cm×m,

where we assume that lr ≥ r to ensure that the spectrum of A is equal to the unit disc B1(0). Note that the

function f(n) = n + 1 will do for the bounded dispersion with cn = 0. Now suppose that l1, ..., lk have
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been chosen and consider the operator

Bk =
(
Cl1 ⊕Al1

)
⊕ ...⊕

(
Clk ⊕Alk

)
⊕ C, C = diag{0, 0, ...}.

The spectrum ofBk is {0} and hence there exists n(k) ≥ k such that Γn(k)(Bk) < 1/4. But Γn(k)(Bk) can

only depend on the evaluations of the matrix entries {Bk}ij = 〈Bkej , ei〉 with i, j ≤ N(Bk, n(k)) (as well

as evaluations of the function f ) into account. If we choose lk+1 > N(Bk, n(k)) then by the assumptions

in Definition 2.1.1, Γn(k)(A) = Γn(k)(Bk) < 1/4. But Γn(A) must converge to 1, a contradiction.

Step 4: {Ξr,ΩB} /∈ ∆G
3 . Suppose as a contradiction that Γn2,n1

is a height two (general) tower and

without loss of generality assume it to be non-negative. Let (M, d) be the space [0, 1] with the usual

metric, let Ω̃ denote the collection of all infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and recall

the problem function

Ξ̃1({ai,j}) : Does {ai,j} have a column containing infinitely many non-zero entries?

It was shown in Theorem 2.3.7 that SCI(Ξ̃1, Ω̃)G = 3. We will gain a contradiction by using the supposed

height two tower to solve {Ξ̃1, Ω̃}.
Without loss of generality, identify ΩB with B(X) where X =

⊕∞
j=1Xj in the l2-sense with Xj =

l2(N). Now let {ai,j} ∈ Ω̃ and define Bj ∈ B(Xj) with the matrix representation

(Bj)k,i =


1, if k = i and ak,j = 0

1, if k < i and al,j = 0 for k < l < i

0, otherwise 0 ≤ n ≤ 1.

Let Ij be the index set of all i where ai,j = 1. Bj acts as a unilateral shift on cl (span) {ek : k ∈ Ij} and

the identity on its orthogonal complement. It follows that

Sp(Bj) =


1, if Ij = ∅

{0, 1}, if Ij is finite and non-empty

D (the unit disc), if Ij is infinite.

For the matrix {ai,j} define A ∈ ΩB by

A =

∞⊕
j=1

(
Bj −

1

2
Ij

)
,

where Ij denotes the identity operator on Cj×j , then Sp(A) = cl
(
∪∞j=1Sp(Bj)

)
− 1

2 .

Hence we see that

Ξr(A) =


1
2 , if Ξ̃1({ai,j}) = 0

3
2 , if Ξ̃1({ai,j}) = 1.

We then set Γ̃n2,n1
({ai,j}) = min{max{Γn2,n1

(A)− 1/2, 0}, 1}. It is clear that this defines a generalised

algorithm mapping into [0, 1]. In particular, given N we can evaluate {Ak,l : k, l ≤ N} using only finitely

many evaluations of {ai,j}, where we can use a bijection between canonical bases of l2(N) and
⊕∞

j=1Xj

to viewA as acting on l2(N). But then Γ̃n2,n1 provides a height two tower for {Ξ̃1, Ω̃}, a contradiction.

Proof of Theorem 7.3.1 for Λ2. Here we prove the changes for Ξr when we consider the evaluation set Λ2.

It is clear that the classifications in ΣA1 do not change. It is also easy to use the algorithms in Chapter 3
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(now using Λ2 to collapse the first limit and approximate γn) to prove {Ξr,Ωg,Λ2} ∈ ΣA1 . Similarly we

can use the algorithm for the spectrum of operators in Ωf for ΩB using Λ2 to collapse the first limit and

hence {Ξr,ΩB,Λ2} ∈ ΠA
2 . Since Ωf ⊂ ΩB, it follows that we only need to prove {Ξr,Ωf ,Λ2} 6∈ ∆G

2 .

This is proven using the same example and a similar argument to step 3 of the proof of Theorem 7.3.1.

Proof of Theorem 7.3.2. We begin by proving the results for Λ1. For the lower bounds, it is enough to

show that {Ξer,ΩD,Λ1} 6∈ ∆G
2 and {Ξer,ΩB,Λ1} 6∈ ∆G

3 . For the upper bounds, we must show that

{Ξer,Ωf ,Λ1} ∈ ΠA
2 , {Ξer,ΩB,Λ1} ∈ ΠA

3 and {Ξer,ΩN,Λ1} ∈ ΠA
2 . The lower bounds for Λ2 follow

from {Ξer,ΩD,Λ1} 6∈ ∆G
2 and for the upper bounds it is enough to prove {Ξer,ΩB,Λ2} ∈ ΠA

2 .

Step 1: {Ξer,ΩD,Λ1} 6∈ ∆G
2 . This is the same argument as in step 3 of the proof of Theorem 7.3.1,

however now we replace Am by Am = diag{1, 1, ..., 1} ∈ Cm×m and use the fact that Ξer(Bk) = 0. It

follows that given the proposed height one tower Γn and the constructed A, Ξer(A) = 1 but Γn(k)(A) <

1/4, the required contradiction.

Step 2: {Ξer,ΩB,Λ1} 6∈ ∆G
3 . This is the same argument as step 4 of the proof of Theorem 7.3.1.

Step 3: {Ξer,Ωf ,Λ1} ∈ ΠA
2 , {Ξer,ΩB,Λ1} ∈ ΠA

3 and {Ξer,ΩB,Λ2} ∈ ΠA
2 . {Ξer,Ωf ,Λ1} ∈ ΠA

2

follows immediately from the existence of a ΠA
2 tower of algorithms for the essential spectrum of operators

in Ωf proven in [BACH+20]. The output of this tower is a finite collection of rectangles with complex

rational vertices, hence we can gain an approximation of the maximum absolute value over this output to any

given precision. This can be used to construct a ΠA
2 tower for {Ξer,Ωf ,Λ1}. Similarly, {Ξer,ΩB,Λ1} ∈

ΠA
3 follows from the ΠA

3 tower of algorithms for {Spess,ΩB,Λ1} constructed in [BACH+20]. Finally, we

can use Λ2 to collapse the first limit of the algorithm for the essential spectrum in [BACH+20], giving a

ΠA
2 algorithm and this can be used to show {Ξer,ΩB,Λ2} ∈ ΠA

2 .

Step 4: {Ξer,ΩN,Λ1} ∈ ΠA
2 . A ΠA

2 tower is constructed in the proof of Theorem 7.3.4 for the essential

numerical range, We(A), of normal operators (using Λ1) and this outputs a finite collection of points. For

normal operators A, We(A) is the convex hull of the essential spectrum and hence supz∈We(A) |z| is equal

to Ξer(A). Hence a ΠA
2 tower for {Ξer,ΩN,Λ1} follows by taking the maximum absolute value over the

tower for We(A).

Proof of Theorem 7.3.3. Some general remarks are in order to simplify the proof. First, note that given

a height k arithmetical tower Γ̂nk,...,n1
(·, p) for Ξr,p and a class Ω′, we can build a ΠA

k+1 tower for

{Ξcap,Ω′} as follows. Let p1, p2, ... be an enumeration of the monic polynomials with rational coeffi-

cients and Γ̃nk,...,n1
(·, p) be an approximation to

∣∣∣Γ̂nk,...,n1
(·, p)

∣∣∣1/deg(p)

to accuracy 1/n1 using finitely

many arithmetic operations and comparisons. Define

Γnk+1,...,n1(A) = min
1≤m≤nk+1

Γ̃nk,...,n1(A, pm).

The fact that this is a convergent ΠA
k+1 tower is clear. This, together with inclusions of the considered

classes of operators, means that to prove the positive results we only need to prove {Ξr,p,Ωf ,Λ1} ∈ ΣA1 ,

{Ξr,p,ΩB,Λ1} ∈ ΣA2 and {Ξr,p,ΩB,Λ2} ∈ ΣA1 . Likewise, for the negative results we only need to

prove {Ξcap,ΩD,Λ2} 6∈ ∆G
2 (the fact that {Ξr,p,ΩD,Λ2} 6∈ ∆G

1 is obvious), {Ξcap,ΩN,Λ1} 6∈ ∆G
3 and

{Ξr,p,ΩN,Λ2} 6∈ ∆G
2 . We shall prove these results with ΩN replaced by the class of self-adjoint bounded

operators denoted by ΩSA.

Remark 7.4.1 (Efficiently computing the capacity). Listing the monic polynomials with rational coeffi-

cients in the above proof is very inefficient. In practice, it is much better to split the domain of interest into
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intervals (or squares if in the complex plane, but we stick to the self-adjoint case in the following discus-

sion). Suppose that each interval has dyadic endpoints and a diameter of 2−n2 and that our operator is

self-adjoint with known bounded dispersion. One can then apply Lemma 8.1.7 (denoting the index of that

tower by n1) to obtain an interval covering of the spectrum which will converge as n1 → ∞, modulo the

possibility of isolated points of the spectrum located at the endpoints of the intervals. Since the capacity of

a compact set is unaltered by adding finitely many points, we do not have to worry about the endpoints -

the limit of the capacity of this covering as n1 →∞ will be the capacity of a covering of the spectrum. As

n2 → ∞, we can use the fact that capacity is right-continuous as a set function (for compact sets En, E

with En ↓ E, one has cap(En) ↓ cap(E)) to obtain a ΠA
2 algorithm. The point of this is that it reduces

the computation of the resulting tower Γn2,n1
to computing the capacity of finite unions of disjoint closed

intervals in R. In our numerical example, we made use of the method in [LSN17], which uses conformal

mappings and can deal with thousands of intervals.

Step 1: {Ξr,p,Ωf ,Λ1} ∈ ΣA1 . The function f and sequence {cn} allows us to compute the matrix

elements of p(A) for any A ∈ Ωf and polynomial p to arbitrary accuracy. We can then use the same

argument as step 1 of the proof of Theorem 7.3.1, approximating ‖Pnp(A)Pn‖ instead of ‖PnAPn‖.
Step 2: {Ξr,p,ΩB,Λ1} ∈ ΣA2 and {Ξr,p,ΩB,Λ2} ∈ ΣA1 . For the first result, we note that

lim
m→∞

‖Pnp(PmAPm)Pn‖ = ‖Pnp(A)Pn‖

and let Γn,m(A, p) be an approximation of ‖Pnp(PmAPm)Pn‖ to accuracy 1/m, which can be computed

in finitely many arithmetic operations and comparisons. To prove {Ξr,p,ΩB,Λ2} ∈ ΣA1 , for any given

A ∈ ΩB we can use Λ2 to compute a function fA and sequence {cn(A)} bounding the dispersion such that

A ∈ ΩfA and use step 1.

Step 3: {Ξcap,ΩSA,Λ1} /∈ ∆G
3 . Suppose as a contradiction that Γn2,n1

is a height two (general) tower

for the problem and without loss of generality, assume it to be non-negative. Our strategy will be as in the

proof of Theorem 7.3.1. Let (M, d) be the space [0, 1] with the usual metric, let Ω̃ denote the collection of

all infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and consider the problem function

Ξ̃2({ai,j}) : Does {ai,j} have (only) finitely many columns with (only) finitely many 1’s?

Recall that it was shown in Theorem 2.3.7 that SCI(Ξ̃2, Ω̃)G = 3. We will gain a contradiction by using

the supposed height two tower to solve {Ξ̃2, Ω̃}. Without loss of generality, identify ΩSA with self adjoint

operators in B(X) where X =
⊕∞

j=1Xj in the l2-sense with Xj = l2(N). To proceed we need the

following elementary lemma, which will be useful in constructing examples of spectral pollution.

Lemma 7.4.2. Let z1, z2, ..., zk ∈ [−1, 1] and let aj =
√

1− z2
j (say positive square root). Then the
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symmetric matrix

B(z1, ..., zk) =



z1 0 · · · a1 0 · · ·
0 z2 0 · · · 0 a2 0 · · ·
... 0

. . .
... 0

. . .
...

...

zk ak

a1 0 · · · −z1 0 · · ·
0 a2 0 · · · 0 −z2 0 · · ·
... 0

. . .
... 0

. . .
...

...

ak −zk



∈ C2k×2k

has eigenvalues ±1 (repeated k times).

Proof. By a change of basis, the above matrix is equivalent to a block diagonal matrix with blockszj aj

aj −zj

 .

These blocks have eigenvalues {−1, 1}.

Now choose a sequence of rational numbers {zj}j∈N ∈ [−1, 1] that is also dense in [−1, 1] and let

Bj = B(z1, ..., zj). For each column of a given {ai,j} ∈ Ω̃, let the infinite matrix C(j) be defined as

follows. If k, l < j + 1 then C(j)
kl = zkδk,l. Let r(i) denote the row of the ith one of the column {ai,j}i∈N

(with r(i) =∞ if
∑
m am,j < i and r(0) = 0). If r(i) <∞ then for k ≤ l define

C
(j)
kl =



apδk,l−(r(i)−r(i−1)−1), p = 1, ..., j, l = r(i) + j · (2i− 1) + p− 1

−zpδk,l, p = 1, ..., j, l = r(i) + j · (2i− 1) + p− 1

zpδk,l, p = 1, ..., j, l = r(i) + 2j · i+ p− 1

0, otherwise,

and extend C
(j)
kl below the diagonal to a symmetric matrix. The key property of this matrix is that if

the column {ai,j}i∈N has infinitely many 1s, then its is unitarily equivalent to an infinite direct sum of

infinitely many Bj together with the zero operator acting on some subspace (whose dimension is equal to

the number of zeros in the column). In this case Sp(C(j)) = {−1, 1, 0} or {−1, 1}. On the other hand,

if {ai,j}i∈N has finitely many 1s, then C(j) is unitarily equivalent the direct sum of a finite number of

Bj , the diagonal operator diag{z1, ..., zj} and the zero operator acting on some subspace. In this case

{z1, ..., zj} ⊂ Sp(C(j)). Let A =
⊕∞

j=1 C
(j), then it is clear that if Ξ̃2({ai,j}) = 1, then Sp(A) is a finite

set, otherwise it is the entire interval [−1, 1].

Now we use the following facts for bounded self-adjoint operators A. If Sp(A) is a finite set then

Ξcap(A) = 0 whereas if Sp(A) = [−1, 1] then Ξcap(A) = 1/2 (this can be proven easily using the minimal

l∞ norm property of monic Chebyshev polynomials). We then define Γ̃n2,n1({ai,j}) = min{max{1 −
2Γn2,n1(A), 0}, 1}. It is clear that this defines a generalised algorithm. In particular, given N we can

evaluate {Ak,l : k, l ≤ N} using only finitely many evaluations of {ai,j}, where we can use a bijection
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between canonical bases of l2(N) and
⊕∞

j=1Xj to viewA as acting on l2(N). We also have the convergence

limn2→∞ limn1→∞ Γ̃n2,n1
({ai,j}) = Ξ̃2({ai,j}), a contradiction.

Step 4: {Ξcap,ΩD,Λ2} 6∈ ∆G
2 . This is the same argument as in step 3 of the proof of Theorem 7.3.1,

however now we replaceAm byAm = diag{d1, d2, ..., dm} ∈ Cm×m, where {dm} is a dense subsequence

of [−1, 1], and use the fact that Ξcap(Bk) = 0. It follows that given the proposed height one tower Γn and

the constructed A, Ξcap(A) = 1/2 but Γn(k)(A) < 1/4, the required contradiction.

Step 5: {Ξr,p,ΩSA,Λ2} 6∈ ∆G
2 . Recall that we are given some polynomial p of degree at least two.

We assume without loss of generality that the zeros of p are ±1 and |p(0)| > 1 (the more general case is

similar). The argument is similar to step 3 of the proof of Theorem 7.3.1, but we spell it out since it uses

Lemma 7.4.2. Suppose for a contradiction that a height one tower, Γn, solves the problem. We will gain a

contradiction by showing that Γn(A) does not converge for an operator of the form,

A =

∞⊕
r=1

B(z1, ..., zlr ),

and define

C = diag{z1, z2, ...} ∈ ΩB.

Where we assume that lr ≥ r to ensure that the spectrum of A is equal to {−1, 1} and hence Ξr,p(A) = 0.

Now suppose that l1, ..., lk have been chosen and consider the operator

Bk = B(z1)⊕ ...⊕B(z1, ..., zlk)⊕ C.

The spectrum ofBk is [−1, 1] so that Ξr,p(Bk) > 1 and hence there exists n(k) ≥ k such that Γn(k)(Bk) >

1/4. But Γn(k)(Bk) can only depend on the evaluations of the matrix entries {Bk}ij = 〈Bkej , ei〉
with i, j ≤ N(Bk, n(k)) (as well as evaluations of the function f ) into account. If we choose lk+1 >

N(Bk, n(k)) then by the assumptions in Definition 2.1.1, Γn(k)(A) = Γn(k)(Bk) > 1/4. But Γn(A) must

converge to 0, a contradiction.

7.5 Proof of Theorem 7.3.4

Proof of Theorem 7.3.4 for Ξwe. For the lower bounds, it is enough to note that {Ξwe,ΩD,Λ2} 6∈ ∆G
2

by the same argument as step 1 of the proof of Theorem 7.3.2. The construction is exactly the same but

yields dH(Γn(k)(A), {0}) ≤ 1/2, whereas Ξwe(A) = [0, 1]. Hence the proposed height one tower cannot

converge. To construct a ΠA
2 tower for general operators, we need the following Lemma:

Lemma 7.5.1. LetB ∈ Cn×n and ε > 0. Then using finitely many arithmetic operations and comparisons,

we can compute points z1, ..., zk ∈ Q + iQ such that

dH({z1, ..., zk},W (B)) ≤ ε.

Proof. Recall from step 1 of the proof of Theorem 7.3.1 that we can compute an upper bound M ∈ Q+

for ‖B‖ in finitely many arithmetic operations and comparisons. Now choose points x1, ..., xk ∈ Qn,

each of norm at most 1, such that dH({x1, ..., xk}, {x ∈ Cn : ‖x‖ = 1}) < ε/(3M). These can be

computed in finitely many arithmetic operations and comparisons using generalised polar coordinates and

approximations of trigonometric identities. It follows that

dH({〈Bx1, x1〉, ..., 〈Bxk, xk〉},W (B)) ≤ 2ε/3.
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We then let each zj ∈ Q + iQ be a ε/4 approximation of 〈Bxj , xj〉, which can be computed in finitely

many arithmetic operations and comparisons.

Remark 7.5.2 (Efficient computation). In practice, there are much more efficient methods of computation.

For example, the method of Johnson [Joh78], reduces the computation of W (B) for B ∈ Cn×n to a series

of n× n Hermitian eigenvalue problems.

It is well-known that for A ∈ ΩB,

cl (W (PnA|PnH)) ↑ cl (W (A)) ,

cl
(
W ((I − Pn)A|(I−Pn)H)

)
↓We(A).

GivenA, let Γn2,n1
(A) be a finite collection of points produced by the algorithm in Lemma 7.5.1 applied to

B = (I − Pn2
)Pn1+n2+1A|Pn1+n2+1(I−Pn2

)H and ε = 1/n1. The above limits show that Γn2,n1
provides

a ΠA
2 tower for {Ξer,ΩB,Λ1}.

Proof of Theorem 7.3.4 for ΞF
poll. We will prove that {ΞR

poll,ΩD,Λi} 6∈ ∆G
3 and {ΞC

poll,ΩB,Λ1} ∈ ΣA3 .

The construction of towers for ΞR
poll are similar, as are the arguments for lower bounds.

Step 1: {ΞC
poll,ΩB,Λ1} ∈ ΣA3 . Let Γ̃n2,n1 be the ΠA

2 tower for {Ξer,ΩB,Λ1} constructed above. Let

γn2,n1(z;A) = min{σinf(Pn1(A− zI)|Pn2
H), σinf(Pn1(A∗ − z̄I)|Pn2

H)}

and note that this can be approximated to any given accuracy in finitely many arithmetic operations and

comparisons. We assume that we approximate from below to an accuracy of 1/n1 and call this approxi-

mation γ̃n2,n1 . The function γn2,n1(z;A) is Lipschitz continuous with Lipschitz constant bounded by 1.

Define the set

Vn1
=

n1⋃
m=1

Um,

where Um are the approximations to the open set U . By taking squares of distances to ball centres, we can

decide whether a point z ∈ Q + iQ has dist(z, Vn1) < η for any given η ∈ Q+. Let Υn2,n1(A,U) be the

finite collection of all z ∈ Γ̃n2,n1
(A) with dist(z, Vn1

) < 1/n2 − 1/n1. If Υn2,n1
(A,U) is empty then set

Qn2,n1
(A,U) = 0, otherwise set

Qn2,n1
(A,U) := sup

z∈Υn2,n1
(A,U)

γ̃n2,n1
(z;A)− 1

n1
.

The above remarks show that this can be computed using finitely many arithmetic operations and compar-

isons.

For notational convenience, we let Wn2 = cl
(
W ((I − Pn2)A|(I−Pn2

)H)
)

and also let Wn2,n1 =

W ((I − Pn2)Pn1+n2+1A|Pn1+n2+1(I−Pn2 )H). We claim that the set Υn2,n1(A,U) converges to

Υn2
(A,U) := cl

({
z ∈Wn2

: dist (z, cl (U)) <
1

n2

})
,

as n1 → ∞, meaning also if Υn2(A,U) is empty then Υn2,n1(A,U) is empty for large n1. If z ∈
Υn2,n1

(A,U), then there exists ẑ ∈Wn2,n1
⊂Wn2

with |z − ẑ| ≤ 1/n1. Since

dist (z, cl (U)) ≤ dist(z, Vn1
) < 1/n2 − 1/n1,

it follows that dist (ẑ, cl (U)) < 1/n2 and hence Υn2(A,U) is non-empty. So to prove convergence we

only need to deal with the case Υn2
(A,U) 6= ∅. The above argument also shows that any limit point of a
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subsequence zm(j) ∈ Υn2,m(j)(A,U) must lie in Υn2
(A,U). Hence to prove the claim, we need to only

prove that for any z ∈ Υn2
(A,U), there exists zn1

that are contained in Υn2,n1
(A,U) for large n1 and

converge to z.

Let z ∈ Wn2 with dist (z, cl (U)) < 1/n2, then there exists ε > 0 and j > 0 such that dist(z, Uj) <

1/n2 − ε. There also exists zn1 ∈ Γ̃n2,n1(A) with zn1 → z. It must hold for n1 > j that

dist(zn1 , Vn1) ≤ dist(zn1 , Vj) ≤ |zn1 − z|+ dist(z, Uj)

< |zn1
− z|+ 1

n2
− ε.

This last quantity is smaller than 1/n2 − 1/n1 for large n1 and hence zn1 ∈ Υn2,n1(A,U) for large n1.

It follows for any z ∈ Υn2
(A,U), there exists zn1

that are contained in Υn2,n1
(A,U) for large n1 and

converge to z.

Define

Qn2
(A,U) := sup

z∈Υn2
(A,U)

γn2
(z;A),

where we recall that γn2
(z;A) = min{σinf((A−zI)|Pn2

H), σinf((A
∗− z̄I)|Pn2

H)}. If z ∈ Υn2,n1
(A,U),

then the above shows that there exists ẑ ∈ Υn2
(A,U) with |z − ẑ| ≤ 1/n1. It follows that

γ̃n2,n1
(z;A)− 1

n1
≤ γn2,n1

(z;A)− 1

n1

≤ γn2,n1
(ẑ;A) ≤ γn2

(z;A),

where we have used the bound on the Lipschitz constant and the fact that γn2,n1
converge up to γn2

(and

uniformly on compact subsets of C). It follows that Qn2,n1
(A,U) ≤ Qn2

(A,U) and this also covers the

case that Υn2(A,U) = ∅ if we define the supremum over the empty set to be 0. The set convergence proven

above and uniform convergence of γ̃n2,n1 implies that Qn2,n1(A,U) converges to Qn2(A,U). It is also

clear that the Υn2(A,U) are nested and converge down to We(A) ∩ cl (U) since Wn2 converges down to

We(A). The function γn2
also converges down to

γ(z;A) = ‖R(z,A)‖−1

uniformly on compact subsets of C and hence Qn2(A,U) converges down to

Q(A,U) = sup
z∈We(A)∩cl(U)

‖R(z,A)‖−1
.

Define

Γn3,n2,n1(A,U) = 1− χ[0,1/n3](Qn2,n1(A,U)) ∈ {0, 1}.

The above show that

lim
n1→∞

Γn3,n2,n1
(A,U) = 1− χ[0,1/n3](Qn2

(A,U)) =: Γn3,n2
(A,U).

Since χ[0,1/n3] has right limits and Qn2
(A,U) are non-increasing,

lim
n2→∞

Γn3,n2(A,U) = 1− χ[0,1/n3](Q(A,U)±) := Γn3
(A,U),

where ± denotes one of the right or left limits (it is possible to have either). Now if ΞC
poll(A,U) = 0, then

Γn3(A,U) = 0 for all n3. But if ΞC
poll(A,U) = 1, then for large n3, Γn3(A,U) = 1. Moreover, in this
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latter case, Γn3
(A,U) = 1 signifies the existence of z ∈ We(A) ∩ cl (U) with γ(z;A) > 0 and hence

z 6∈ Sp(A). Hence Γn3,n2,n1
provides a ΣA3 tower.

Step 2: {ΞR
poll,ΩD,Λ2} 6∈ ∆G

3 . We will argue for the case that U = U1 = R and the restricted

case is similar. Assume for a contradiction that this is false and Γ̂n2,n1 is a general height two tower for

{ΞR
poll,ΩD,Λ2}. We follow the same strategy as the proof of Theorem 7.3.1 step 4. Let (M, d) be discrete

space {0, 1} and Ω̃ denote the collection of all infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and

consider the problem function

Ξ̃1({ai,j}) : Does {ai,j} have a column containing infinitely many non-zero entries?

For j ∈ N, let {bi,j}i∈N be a dense subset of Ij := [1−1/22j−1, 1−1/22j ]. Given a matrix {ai,j}i,j∈N ∈
Ω̃, construct a matrix {ci,j}i,j∈N by letting ci,j = ai,jbr(i,j),j where

r(i, j) = max

{
1,

i∑
k=1

ak,j

}
.

Now consider any bijection φ : N→ N2 and define the diagonal operator

A = diag(cφ(1), cφ(2), cφ(3), ...).

The algorithm Γ̂n2,n1 thus translates to an algorithm Γ′n2,n1
for {Ξ̃1, Ω̃}. Namely, we define the algorithm

Γ′n2,n1
({ai,j}i∈N) = Γ̂n2,n1(A). The fact that φ is a bijection shows that the lowest level Γ′n2,n1

are

generalised algorithms (and are consistent). In particular, given N , we can find {Ai,j : i, j ≤ N} using

finitely many evaluations of the matrix values {ck,l} (the same is true for A∗A and AA∗ since the operator

is diagonal). But for any given ck,l we can evaluate this entry using only finitely many evaluations of the

matrix values {am,n} by the construction of r. Finally note that

Sp(A) = {1} ∪

 ⋃
j:{ai,j}i∈N has infinitely many 1s

Ij

 ∪Q,
where Q lies in the discrete spectrum. The intervals Ij are also separated. It follows that there is a gap in

the essential spectrum if and only if there exists a column {ai,j}i∈N with infinitely many 1s. Otherwise the

essential spectrum is {1}. It follows that Ξ̃({ai,j}) = ΞR
poll(A,R) and hence we get a contradiction.

7.6 Numerical Examples

The SCI-sharp towers of algorithms constructed in this chapter can be efficiently implemented for large

scale computations. Moreover, they have desirable convergence properties, converging monotonically or

being eventually constant, as captured by the Σ/Π classification. Generically, this monotonicity holds in

all of the limits, and not just the final limit: many of the towers undergo oscillation phenomena where

each subsequent limit is monotone but in the opposite sense/direction than the limit beforehand. We can

take advantage of this when analysing the algorithms numerically. The algorithms also highlight suitable

information that lowers the SCI classification to Σ1/Π1. Other advantages for the algorithms based on

approximating the resolvent norm include locality, numerical stability and speed/parallelisation.
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Figure 7.1: Left: Output of the algorithm for computing the spectral radius. Right: Pseudospectrum com-
puted using the method of Chapter 3 (the colour scale corresponds to the resolvent norm ‖(A − zI)−1‖)
which provides error control. We have show the output of Γ103,104(A) via the green dashed circle.

7.6.1 Numerical example for spectral radius

We begin with the spectral radius and consider the upper-triangular non-normal operator on l2(Z) defined

by its action on the canonical basis via

Aej = ej−2 + ijej−1.

In this case, the operator norm of A is 2 and the approximation of the spectrum by finite section is {0}.
Hence, to compute the spectral radius, one must resort to the techniques used in our tower of algorithms

based on rectangular truncations. Recall that the SCI classification for computing the spectral radius of

such operators (where the dispersion is known3) is ΠA
2 (see Theorem 7.3.1 for further classifications). The

first parameter, n1, controls the size of the rectangular truncation (as well as the grid resolution), whereas

the second, n2, controls the resolvent norm cut-off (ε = 1/n2).

Figure 7.1 (left) shows the output of the tower of algorithms Γn2,n1(A) for computing the spectral

radius. We see the expected monotonicity: Γn2,n1
(A) is increasing in n1 but decreasing in n2. It appears

that limn1→∞ Γ102,n1
(A) ≈ limn1→∞ Γ103,n1

(A) ≈ 1.4149. The fact that these two values for different

n2 are similar suggests that we have reached convergence. Though, of course, the proof that the problem

does not lie in ∆G
2 shows that we can never apply a choice of subsequences to gain convergence in one limit

over the whole class Ωf . Nevertheless, the approximate value of 1.4149 is confirmed in Figure 7.1 (right)

where we have shown pseudospectra, computed using the algorithm of Chapter 3.

7.6.2 Numerical examples for essential numerical range

To demonstrate the algorithm for computing the essential numerical range, we first consider the Laurent

operator A0 acting on l2(Z) with symbol

a(t) =
t4 + t−1

2
.

In this case, Sp(A0) = Spess(A0) = {a(z) : |z| = 1}. We consider the operator A = A0 + E where the

compact perturbation E is given by

Eej = − 3i

1 + |j|
ej−1.

3For this example and others on l2(Z), we reorder the basis so that the operator A acts on l2(N).
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Figure 7.2: Left: The boundaries of ∂W (A) and ∂Γ2×104,500(A). We have also shown the essential spec-
trum of A (whose convex hull, in this example, corresponds to We(A)) and the output of finite section for
a 200× 200 truncation. Right: Pseudospectrum computed using the method of Chapter 3 (the colour scale
corresponds to the resolvent norm ‖(A − zI)−1‖) which provides error control. This confirms that eigen-
values, computed using finite section, outside ∂Γ2×104,500(A) are accurate and, in this example, indicates
that the other eigenvalues correspond to spectral pollution.

Recall that the SCI classification for computing the essential numerical range is ΠA
2 (see Theorem 7.3.4).

The first parameter, n1, controls the size of the truncation, whereas the second, n2, controls how far along

the matrix the truncations (I−Pn2
)Pn1+n2

A|Pn1+n2
(I−Pn2

)H are taken with respect to the canonical basis

once we have represented the operator as an operator on l2(N). (An alternative to reordering the basis

so that the operator acts on l2(N) is to use truncations in ‘both directions’ on l2(Z) by letting Pn be the

projection onto the span of {ej : |j| ≤ n}.)
Figure 7.2 (left) shows the output of the algorithm Γn2,n1

(A) to compute the essential numerical range

for n2 = 20000 and n1 = 500. We show the boundary ∂Γn2,n1
(A) since the essential numerical range is

convex. In this example, We(A) is the convex hull of Spess(A0), which allows us to verify the output of

the algorithm. We also show 200 eigenvalues of finite section (computed using extended precision to avoid

numerical instabilities associated with non-normal truncations), the majority of which are due to truncation

and provide an example of spectral pollution. This is confirmed when we compare to the pseudospectrum,

also shown in Figure 7.2 (right), computed using the algorithm of Chapter 3. However, eigenvalues outside

We(A) correspond to true eigenvalues of A (see Theorem 7.1.2).

The algorithm can also be extended to unbounded operators, as outlined in [Colns].4 For example, we

consider the complex Schrödinger operator

T = − d2

dx2
+ (2i+ 1) cos(x). (7.6.1)

By using a Gabor basis, we can represent T as a closed operator on l2(N) such that the linear span of

the canonical basis (corresponding to the Gabor basis) forms a core. We compute the matrix elements

(corresponding to inner products with the basis functions) with error control using quadrature. Figure 7.3

shows the output for n2 = 104 and various n1. We see the expected monotonicity as n1 increases and the

output for n1 = 2000 has converged to visible accuracy in the plot.

4The essential numerical range for unbounded operators was defined and studied in [BMT20].
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Figure 7.3: The output of the algorithm for computing the essential numerical range of closed operators,
applied to the complex Schrödinger operator T in (7.6.1).
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Figure 7.4: Output of the algorithm for computing the capacity of Sp(H0).

7.6.3 Numerical example for capacity

We now consider the transport Hamiltonian H0 on a Penrose tile discussed in §3.4.1 of Chapter 3. Recall

that by choosing a suitable ordering of the vertices, we can represent H0 as an operator acting on l2(N)

of bounded dispersion with f(n) − n ∼ O(
√
n). Recall also that the SCI classification for computing the

capacity of the spectrum of such operators is ΠA
2 (see Theorem 7.3.3 for further classifications). The first

parameter, n1, controls the size of the truncation used to test if intervals intersect the spectrum via Lemma

8.1.7, whereas the second, n2, controls the spacings of the interval coverings (which have width 2−n2 ). In

this example, we used the conformal mapping method of [LSN17] to accurately and rapidly compute the

capacity of finite unions of intervals in R. See Remark 7.4.1 for a discussion of computational efficiency.

Figure 7.4 shows the output of Γn2,n1
(H0) and we see the expected monotonicity: the output is increas-

ing in n1 but decreasing in n2. By comparing the outputs for n1 = 104 and n1 = 105, it appears we have

convergence up to around n2 = 8. This suggests an upper bound (since the output is non-increasing in n2)

of approximately 2.26 for the capacity of Sp(H0) (Sp(H0) is shown in Figure 3.1).
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Chapter 8

Lebesgue Measure and Fractal

Dimensions of Spectra

In this chapter, based on [Colns], we consider the SCI of computing the Lebesgue measure of the spec-

trum (and pseudospectrum) and different fractal dimensions of the spectrum (box-counting and Hausdorff).

This chapter is motivated by recent progress in the field of Schrödinger operators with random or almost

periodic potentials [Avi09, Avi08, AJ09, AK06, AV07, Pui04, Süt89]. Cantor-like spectra occur in many

families of one-dimensional operators. Fractal dimensions of spectra are important in many applications.

For example, in quantum mechanics, they lead to upper bounds on the spreading of wavepackets, and are

related to time-dependent quantities associated with wave functions [HTHK94, KPG92, KKKG97]. Frac-

tal spectra appear in a wide variety of contexts, such as exciting new results in multilayer materials (e.g.

bilayer graphene) [DWM+13, GG13a, HSYY+13, PGY+13], strained materials [NBLOLT17, RTN14] or

quasicrystals [BRS16, TGB+14, KST87, LRF+11].

Whilst results are known for specific one-dimensional examples such as the almost Mathieu operator

[AK06] or the Fibonacci Hamiltonian [Süt89], the problems of computing the Lebesgue measure and frac-

tal dimensions of spectra remain open in the general case [DGS15]. This is reflected by the difficulty of

performing rigorous numerical studies, despite many examples studied in the physics literature (see the ref-

erences in [AJM17, BS91, Sir89]). In general, there are no known algorithms for determining the Lebesgue

measure and fractal dimension of spectra for general operators or even banded self-adjoint operators.

We solve these problems and design towers of algorithms that are numerically implementable. These

are demonstrated numerically on a two-dimensional model of a quasicrystal. In particular, we provide

numerical evidence that a portion of the spectrum of the graphical Laplacian on a Penrose tile is fractal with

fractal dimension approximately 0.8. However, we find that determining the Lebesgue measure and fractal

dimensions are hard in the sense of the SCI. This helps to explain the difficulty encountered in studying

these properties numerically or theoretically.

8.1 Main Results

We continue to use the set-up of Chapter 7 described in §7.2 and recall the following classes of bounded

operators from §7.3, for which we prove classifications:
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• Ωf : operators with dispersion bounded by f

• Ωg: operators with resolvent bounded by g

• ΩD: self-adjoint and diagonal operators

• ΩSA: self-adjoint operators

• ΩN: normal operators

• ΩB: general bounded operators.

We first discuss the Lebesgue measure, and then move onto the computation of the box-counting di-

mension and Hausdorff dimension.

8.1.1 Lebesgue measure of spectra

A basic property of Sp(A), also connected to physical applications in quantum mechanics, is its Lebesgue

measure. Well-studied operators such as the almost Mathieu operator at critical coupling [AK06] or the

Fibonacci Hamiltonian [Süt89] have spectra with Lebesgue measure zero. The Lebesgue measure on C

will be denoted by Leb and, when considering classes of self-adjoint operators, the Lebesgue measure on

R will be denoted by LebR. We will also consider

Ŝpε(A) = {z ∈ C : ‖R(z,A)‖−1 < ε},

whose closure is Spε(A). For a class Ω ⊂ ΩB, there are three questions we are interested in and answer in

this section:

1. Given A ∈ Ω, can we compute Leb(Sp(A))?

2. Given A ∈ Ω and ε > 0, can we compute Leb(Ŝpε(A))?

3. Given A ∈ Ω, can we determine whether Leb(Sp(A)) = 0?

We do not consider the final question for the pseudospectrum since Leb(Ŝpε(A)) > 0. It might appear that

answering the third question is at least as easy as the first. However, this could be false (and in general is),

since we consider a problem function with range in a different metric space. For the first two questions, we

consider the metric space ([0,∞), d) with the Euclidean metric. For question three we consider the discrete

metric on {0, 1}, where 1 is interpreted as ‘yes’, and 0 as ‘no’. Finally, we consider the computation of

Leb(Ŝpε(A)) since it is not immediately clear that the level sets

Sε(A) := {z ∈ C : ‖R(z,A)‖−1
= ε} (8.1.1)

always have Lebesgue measure zero. Again, this is analogous to the case of approximating the pseudospec-

tra for bounded operators, where one uses the crucial property that the pseudospectrum cannot jump - it

cannot be constant on open subsets of C for bounded operators acting on a separable Hilbert space [Sha08].

Assuming that the sets in (8.1.1) are null is the measure theoretic equivalent. Note, however, that it is

straightforward to show that Sε(A) is null forA ∈ ΩN through the formula ‖R(z,A)‖−1 = dist(z,Sp(A)).
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The above problem functions are denoted by ΞL1 ,Ξ
L
2 and ΞL3 respectively. In analogy to computing the

spectra/pseudospectra themselves, ΞL2 is, in fact, the easiest to compute and can be done in one limit for a

large class of operators. We also have from the dominated convergence theorem that

lim
ε↓0

Leb(Ŝpε(A)) = Leb(Sp(A)). (8.1.2)

Unless otherwise told, we will assume that given A ∈ Ωf , we know a sequence {cn}n∈N that converges to

zero such that Df,n(A) ≤ cn. When considering ΩD or ΩSA, we use LebR.

Lebesgue measure of spectrum and pseudospectrum

Theorem 8.1.1. Given the above set-up, we have the following classifications

∆G
2 63 {ΞL1 ,Ωf ,Λi} ∈ ΠA

2 , ∆G
2 63 {ΞL1 ,ΩD,Λi} ∈ ΠA

2 i = 1, 2,

and for Ω = ΩB,ΩSA, ΩN or Ωg ,

∆G
3 63 {ΞL1 ,Ω,Λ1} ∈ ΠA

3 , ∆G
2 63 {ΞL1 ,Ω,Λ2} ∈ ΠA

2 .

The constructed algorithm is local, and we can easily adapt it to find the Lebesgue measure of Sp(A)

intersected with any compact interval or cube in one or two dimensions, respectively. It also does not need

the sequence {cn}. In other words, the evaluations of {cn} can be dropped from Λi, and the theorem

remains true. The algorithm can also be restricted to R where it converges to LebR(Sp(A) ∩ R).

We now turn to the SCI classification of Leb(Ŝpε(A)) which is useful since it provides a route to

computing Leb(Sp(A)) for any A ∈ ΩB via (8.1.2). This is a similar state of affairs to the computation of

the spectrum itself - one can approximate the spectrum via pseudospectra.

Theorem 8.1.2. Given the above set-up, we have the following classifications

∆G
1 63 {ΞL2 ,Ωf ,Λi} ∈ ΣA1 , ∆G

1 63 {ΞL2 ,ΩD,Λi} ∈ ΣA1 i = 1, 2,

and for Ω = ΩB,ΩSA, ΩN or Ωg ,

∆G
2 63 {ΞL2 ,Ω,Λ1} ∈ ΣA2 , ∆G

1 63 {ΞL2 ,Ω,Λ2} ∈ ΣA1 .

Heuristically, the pseudospectrum is less refined than the spectrum, making the measure easier to esti-

mate. Another viewpoint is the analysis of the continuity points of the maps ΞL1 and ΞL2 :

Proposition 8.1.3. In the above set-up, the following hold:

1. ΞL1 is continuous at A ∈ ΩD if and only if LebR(Sp(A)) = 0.

2. ΞL2 is continuous at all A ∈ ΩD if ε > 0.

Exercise: Prove Proposition 8.1.3.

When is Leb(Sp(A)) = 0?

In this section, let (M, d) be the set {0, 1} with the discrete topology and consider the problem function

ΞL3 (A) =

0, if Leb(Sp(A)) > 0

1, otherwise.
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It is straightforward to build a height three tower for this problem based on the monotonicity of LebSpec

(the algorithm constructed in Theorem 8.1.1). The next theorem shows that this is optimal - even for the

set of diagonal self-adjoint bounded operators. This demonstrates just how hard it is to answer decision

problem questions about the spectrum with finite amounts of information, particularly when the questions

involve a tool such as Lebesgue measure, which ignores countable sets.

Theorem 8.1.4. Given the above set-up, we have the following classifications

∆G
3 63 {ΞL3 ,Ωf ,Λi} ∈ ΠA

3 , ∆G
3 63 {ΞL3 ,ΩD,Λi} ∈ ΠA

3 , i = 1, 2,

and for Ω = ΩB,ΩSA, ΩN or Ωg ,

∆G
4 63 {ΞL3 ,Ω,Λ1} ∈ ΠA

4 , ∆G
3 63 {ΞL3 ,Ω,Λ2} ∈ ΠA

3 .

8.1.2 Fractal dimensions of spectra

If the spectrum of an operator has zero Lebesgue measure, it is natural to ask about its fractal dimension.

This question is not just borne out of mathematical curiosity. For instance, the fractal dimension leads

to an upper bound on the spreading of an initially localised wavepacket, and there has been much work

by physicists on relating the fractal dimension to time-dependent quantities associated with wave functions.

However, estimating the fractal dimension is extremely difficult. One possible reason is that it is not possible

to construct a height one tower of algorithms, even for the most basic definition of fractal dimension, the

box-counting dimension. The Hausdorff dimension is even worse and has SCI ≥ 3. In this section, we

exclusively treat self-adjoint operators and seek fractal dimensions of subsets of R.1

Box-counting dimension

Let F be a bounded set in some Euclidean space and Nδ(F ) be the number of closed boxes of side length

δ > 0 required to cover F . Define the upper and lower box-counting dimensions as

dimB(F ) = lim sup
δ↓0

log(Nδ(F ))

log(1/δ)
,

dimB(F ) = lim inf
δ↓0

log(Nδ(F ))

log(1/δ)
.

When both are equal, we can replace the lim inf and lim sup by lim and we define the common value as

the box-counting dimension dimB(F ), an example of a fractal dimension. The major drawback of this

definition is lack of countable stability. For instance, the box-counting dimension of {0, 1, 1/2, 1/3, ...}
is 1/2. Examples also exist of closed Cantor sets for which the upper and lower dimensions do not agree

[Fal03]. A natural example occurring as the spectrum of a discrete Schrödinger operator is presented in

[Colns], where this effect can be seen numerically. In the one-dimensional case, it is easy to prove that if

F is measurable with dimB(F ) < 1 then LebR(F ) = 0. The converse is false by considering countable

unions of Cantor sets whose Hausdorff dimension tends to 1 and similar results hold in higher dimensions.

We shall show that we can compute the box-counting dimension in two limits.

1The proofs for general self-adjoint operators can be adapted with an additional limit and the use of two-dimensional covering
boxes to treat the class of general bounded operators. Some care is required involving boundaries of covering boxes for the Hausdorff
dimension, but for brevity, we omit the details.
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Let ΩBDf be the class of self-adjoint operators in Ωf whose upper and lower box-counting dimensions

of the spectrum agree. Let ΩBDSA be the class of self-adjoint operators whose upper and lower box-counting

dimensions of the spectrum agree, and denote by ΩBDD the class of diagonal operators in ΩBDSA .

Theorem 8.1.5. Let ΞB be the evaluation of box-counting dimension of spectra, then for i = 1, 2 and

Ω = ΩBDf or ΩBDD

∆G
2 63 {ΞB ,Ω,Λi} ∈ ΠA

2 ,

whereas

∆G
3 63 {ΞB ,ΩBDSA ,Λ1} ∈ ΠA

3 , ∆G
2 63 {ΞB ,ΩBDSA ,Λ2} ∈ ΠA

2 .

Remark 8.1.6. The algorithms we construct for ΞB also converge without the assumption that the upper

and lower box-counting dimensions agree to a quantity Γ(A) with

dimB(Sp(A)) ≤ Γ(A) ≤ dimB(Sp(A)).

Hausdorff dimension

A more complicated, yet robust notion of fractal dimension is related to the Hausdorff measure. For the

connection and various other measures that give rise to the same dimension we refer the reader to [Fal03,

Mat95]. Let F ⊂ Rn be a Borel set in n-dimensional Euclidean space and let Cδ(F ) denote the class of

(countable) δ-covers2 of F . One first defines the quantity (for d ≥ 0)

Hdδ(F ) = inf

{∑
i

diam(Ui)
d : {Ui} ∈ Cδ(F )

}
,

and the d-dimensional Hausdorff measure of F by

Hd(F ) = lim
δ↓0
Hdδ(F ).

There is a unique d′ = dimH(F ) ≥ 0, the Hausdorff dimension of F , such thatHd(F ) = 0 for d > d′ and

Hd(F ) =∞ for d < d′.

One can prove that

dimH(F ) ≤ dimB(F ) ≤ dimB(F ).

A useful property of the Hausdorff dimension that makes it hard to compute is its countable stability (if

F is countable then dimH(F ) = 0). The following lemma is used in the construction of an algorithm for

computing the Hausdorff dimension but is interesting in its own right so is listed here.

Lemma 8.1.7. Let (a, b) ⊂ R be a finite open interval and let A ∈ Ωf ∩ ΩSA. Then determining whether

Sp(A) ∩ (a, b) 6= ∅ using Λi is a problem with SCIA = 1. Furthermore, we can design an algorithm that

halts if and only the answer is ‘yes’, that is, the problem lies in ΣA1 . Similarly the problem lies in ΣA2 when

considering ΩSA with Λ1 (or ΣA1 when we allow access to Λ2).

Theorem 8.1.8. Let ΞH be the evaluation of the Hausdorff dimension of spectra, then for i = 1, 2 and

Ω = ΩD or Ωf ∩ ΩSA

∆G
3 63 {ΞH ,Ω,Λi} ∈ ΣA3 ,

whereas

∆G
4 63 {ΞH ,ΩSA,Λ1} ∈ ΣA4 , ∆G

3 63 {ΞH ,ΩSA,Λ2} ∈ ΣA3 .
2That is, the set of covers {Ui}i∈I with I at most countable and with diam(Ui) ≤ δ.
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8.2 Proofs of Theorems on Lebesgue Measure

We will use the function DistSpec discussed in Chapter 3, written in (highly non-efficient form):

Function DistSpec(A,n,f(n),z)
Input : n ∈ N, f(n) ∈ N, matrix A, z ∈ C

Output: y ∈ R+, an approximation to the function z 7→ ‖R(z,A)‖−1

B = (A− zI)(1 : f(n), 1 : n), C = (A− zI)∗(1 : f(n), 1 : n)

S = B∗B, T = C∗C

ν = 1, l = 0

while ν = 1 do
l = l + 1

p = IsPosDef(S − l2

n2 ), q = IsPosDef(T − l2

n2 )

ν = min(p, q)

end

y = l
n

end

For ease of notation, we suppress the dispersion function f in calling DistSpec but assume that we

know Df,n(A) ≤ cn with cn → 0 as n → ∞. However, the proof of convergence also works when using

cn = 0 (which does not necessarily bound Df,n(A)). The key observation is the following:

Observation: If A ∈ Ωf , then the function Fn(z) := DistSpec(A,n, f(n), z) + cn converges uni-

formly to ‖R(z,A)‖−1 from above on compact subsets of C. By taking successive minima, we can assume

without loss of generality that Fn is non-increasing in n.

The other ingredient needed is the following proposition

Proposition 8.2.1. Given a finite union of disks in the complex plane, the Lebesgue measure of their in-

tersection with the interior of a rectangle can be computed within arbitrary precision using finitely many

arithmetical operations and comparisons on the centres and radii of the discs as well the position of the

rectangle.

Exercise: Prove Proposition 8.2.1.

Proof of Theorem 8.1.1. Step 1: {ΞL1 ,Ωf ,Λi}, {ΞL1 ,ΩD,Λi} ∈ ΠA
2 . It is enough to consider Λ1. We

will estimate Leb(Sp(A)) by estimating the Lebesgue measure of the resolvent set on the closed square

[−C,C]2, where ‖A‖ ≤ C. We do not assume C is known. For n1, n2 ∈ N, let

Grid(n1, n2) =

(
1

2n2
Z +

1

2n2
iZ
)
∩ [−n1, n1]2.

Letting B(x, r), D(x, r) denote the closed and open balls of radius r around x respectively3 in C (or R

where appropriate), we define

U(n1, n2, A) = [−n1, n1]× [−n1, n1] ∩ (∪z∈Grid(n1,n2)B(z, Fn1(z))).

3We set D(x, 0) = ∅.
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Note that Leb(U(n1, n2, A)) can be computed up to arbitrary predetermined precision using only arithmetic

operations and comparisons by Proposition 8.2.1. Using this we can define

Γn2,n1
(A) = 4n2

1 − Leb(U(n1, n2, A))

where, without loss of generality, we assume that we have computed the exact value of the Lebesgue

measure (since we can absorb this error in the first limit). It is obvious that Γn2,n1
are general arithmetical

algorithms, the only non-trivial part is convergence.

We will now show that the algorithm LebSpec converges and realises the ΠA
2 classification. There

exists a compact set K such that ‖R(z,A)‖−1
> 1 on Kc and without loss of generality we can make C

larger, C ∈ N and take K = [−C,C]2. For n1 ≥ C

U(n1, n2, A) = ([−C,C]2 ∩ (∪z∈Grid(n1,n2)B(z, Fn1
(z)))) ∪ ([−n1, n1]2\[−C,C]2)

since Fn(z) ≥ ‖R(z,A)‖−1. It follows that for large n1

Γn2,n1
(A) = 4C2 − Leb([−C,C]2 ∩ (∪z∈Grid(n1,n2)B(z, Fn1

(z)))).

As n1 →∞, [−C,C]2 ∩ (∪z∈Grid(n1,n2)B(z, Fn1
(z))) converges to the closed set

X(n2, A) = [−C,C]2 ∩ (∪z∈Grid(C,n2)B(z, ‖R(z,A)‖−1
))

from above and hence

lim
n1→∞

Γn2,n1(A) = 4C2 − Leb(X(n2, A)),

from below. Consider the relatively open set

V (n2, A) = [−C,C]2 ∩ (∪z∈Grid(C,n2)D(z, ‖R(z,A)‖−1
)).

Clearly Leb(X(n2, A)) = Leb(V (n2, A)) since the sets differ by a finite collection of circular arcs or

points (recall we defined the open ball of radius zero to be the empty set). Hence we must show that

lim
n2→∞

Leb(V (n2, A)) = Leb(ρC(A)),

where ρC(A) = [−C,C]2\Sp(A). For z ∈ ρC(A),

dist(z,Sp(A)) ≥ ‖R(z,A)‖−1

and hence we get V (n2, A) ⊂ ρC(A). Since ρC(A) is relatively open, a simple density argument using the

continuity of ‖R(z,A)‖−1 yields V (n2, A) ↑ ρC(A) as n2 →∞ since the grid refines itself. So we get

Leb(V (n2, A)) ↑ Leb(ρC(A)).

This proves the convergence and also shows that Γn2
(A) ↓ ΞL1 (A), thus yielding the ΠA

2 classification. The

same argument works in the one-dimensional case when considering self-adjoint operators ΩD and LebR.

Simply restrict everything to the real line and consider the interval [−C,C] rather than a square.

Step 2: {ΞL1 ,Ωf ,Λi}, {ΞL1 ,ΩD,Λi} /∈ ∆G
2 . It is enough to consider Λ2. We will only show that

SCI(ΞL1 ,ΩD,Λ2)G ≥ 2 for which we use LebR and the two-dimensional case is similar. Suppose for a

contradiction that there exists a height one tower Γn, then ΛΓn(A) is finite for each A ∈ ΩD. Hence, for
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every A and n there exists a finite number N(A,n) ∈ N such that the evaluations from ΛΓn(A) only take

the matrix entries Aij = 〈Aej , ei〉 with i, j ≤ N(A,n) into account.

Pick any sequence a1, a2, ... dense in the unit interval [0, 1]. Consider the matrix operators Am =

diag{a1, a2, ..., am} ∈ Cm×m, Bm = diag{0, 0, ..., 0} ∈ Cm×m and C = diag{0, 0, ...}. Set A =⊕∞
m=1(Bkm ⊕ Akm) where we choose an increasing sequence km inductively as follows. Set k1 = 1 and

suppose that k1, ..., km have been chosen. Sp(Bk1 ⊕Ak1 ⊕ ...⊕Bkm ⊕Akm ⊕ C) = {0, a1, a2, ..., akm}
and hence Leb(Sp(Bk1

⊕ Ak1
⊕ ... ⊕ Bkm ⊕ Akm ⊕ C)) = 0 so there exists some nm ≥ m such that if

n ≥ nm then

Γn(Bk1
⊕Ak1

⊕ ...⊕Bkm ⊕Akm ⊕ C) ≤ 1

2
.

Now let km+1 ≥ max{N(Bk1
⊕ Ak1

⊕ ... ⊕ Bkm ⊕ Akm ⊕ C, nm), km + 1}. Any evaluation function

fi,j ∈ Λ is simply the (i, j)th matrix entry and hence by construction

fi,j(Bk1 ⊕Ak1 ⊕ ...⊕Bkm ⊕Akm ⊕ C) = fi,j(A),

for all fi,j ∈ ΛΓnm
(Bk1 ⊕Ak1 ⊕ ...⊕Bkm ⊕Akm ⊕C). By assumption (iii) in Definition 2.1.1 it follows

that ΛΓnm
(Bk1

⊕ Ak1
⊕ ... ⊕ Bkm ⊕ Akm ⊕ C) = ΛΓnm

(A) and hence by assumption (ii) in the same

definition that Γnm(A) = Γnm(Bk1
⊕ Ak1

⊕ ... ⊕ Bkm ⊕ Akm ⊕ C) ≤ 1/2. But limn→∞(Γn(A)) =

Leb(cl({0, a1, a2, ...})) = 1 a contradiction.

Step 3: {ΞL1 ,Ω,Λ1} ∈ ΠA
3 for Ω = ΩB,ΩSA, ΩN or Ωg . We will deal with the case of ΩB. The cases

of ΩN and Ωg then follow via ΩN ⊂ Ωg ⊂ ΩB and the one-dimensional Lebesgue measure case for ΩSA is

similar.

A careful analysis of the proof in step 1 yields that

• Γn2,n1(A) converges to Γn2(A) from below as n1 →∞.

• Γn2
(A) converges to Leb(Sp(A)) monotonically from above as n2 →∞.

We can ensure that the first limit converges from below by always slightly overestimating the Lebesgue

measure of U(n1, n2) (with error converging to zero) and using Proposition 8.2.1. These observations will

be used later to answer question 3. We do not need to know cn for the above proof to work, but we will

need it for the first of the above facts. A slight alteration of the proof/algorithm by inserting an extra limit

deals with the general case.

Define the function

γn,m(z;A) = min{σinf(Pm(A− zI)|PnH), σinf(Pm(A∗ − z̄I)|PnH)},

where σinf denotes the injection modulus/smallest singular value. One can show that γn,m converges uni-

formly on compact subsets to

γn(z;A) = min{σinf((A− zI)|PnH), σinf((A
∗ − z̄I)|PnH)},

asm→∞ and that this converges uniformly down to ‖R(z,A)‖−1 on compact subsets as n→∞ [Han11].

With a slight abuse of notation, we can approximate γn,m(z;A) to within 1/m by DistSpec(A,n,m, z)

(where the spacing of the search routine is 1/m) so that this converges uniformly on compact subsets to

γn(z;A). In exactly the same manner as before, define

U(n1, n2, n3, A) = [−n2, n2]2 ∩ (∪z∈Grid(n2,n3)B(z, γn2,n1
(z;A))),

Γn3,n2,n1
(A) = (2n2)2 − Leb(U(n1, n2, n3, A))
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The stated uniform convergence means that the argument in step 1 carries through and we have a height

three tower, realising the ΠA
3 classification.

Step 4: {ΞL1 ,ΩSA,Λ1} /∈ ∆G
3 . The proof is exactly the same argument as the proof of step 3 of Theorem

7.3.3. However, in this case to gain the contradiction, we then define Γ̃n2,n1
({ai,j}) = min{max{1 −

Γn2,n1(A)/2, 0}, 1} where Γn2,n1(A) is the supposed height two tower for {ΞL1 ,ΩSA,Λ1}.
Step 5: {ΞL1 ,Ω,Λ1} /∈ ∆G

3 for Ω = ΩB,ΩN, or Ωg . Since ΩN ⊂ Ωg ⊂ ΩB, we only need to deal with

ΩN. We can use a similar argument as in step 4, but now replacing each C(j) by

D(j) =

j⊕
k=1

ihkC
(j),

where h1, h2, ... is a dense sequence in [0, 1] and this operators acts on Xj =
⊕j

k=1 l
2(N). This en-

sures that the spectrum of the operator yields a positive two-dimensional Lebesgue measure if and only if

Ξ̃2({ai,j}) = 0. The rest of the argument is entirely analogous.

Step 6: ∆G
2 63 {ΞL1 ,Ω,Λ2} ∈ ΠA

2 for Ω = ΩB,ΩSA, ΩN or Ωg . The impossibility result follows by

considering diagonal operators. For the existence of ΠA
2 algorithms, we can use the construction in step 3,

but the knowledge of matrix values ofA∗A allows us to skip the first limit and approximate γn directly.

Proof of Theorem 8.1.2. Using the convergence

lim
ε↓0

Leb(Ŝpε(A)) = Leb(Sp(A)),

the lower bounds in Theorem 8.1.1 immediately imply the lower bounds in Theorem 8.1.2. Hence we only

need to construct the appropriate algorithms.

Step 1: {ΞL2 ,Ωf ,Λ1}, {ΞL2 ,ΩD,Λ1} ∈ ΣA1 . Let A ∈ Ωf and

En =
1

n
(Z + iZ) ∩ {z ∈ C : Fn(z) ≤ ε} ∩ [−n, n]2.

Clearly, we can compute En with finitely many arithmetic operations and comparisons, and we set

Γn(A) = Leb
(
∪z∈En D(z,max{0, ε− Fn(z)})

)
.

Proposition 8.2.1 shows that, without loss of generality, we can assume Γn(A) can be computed exactly

with finitely many arithmetic operations and comparisons.

Suppose that Fn(z) < ε and that |w| < ε− Fn(z). If z ∈ Sp(A) then clearly

‖R(z + w,A)‖−1 ≤ |w| < ε− Fn(z) ≤ ε,

and this holds trivially if z + w ∈ Sp(A) so assume that neither of z, z + w are in the spectrum. The

resolvent identity yields

‖R(z + w,A)‖ ≥ ‖R(z,A)‖ − |w| ‖R(z + w,A)‖ ‖R(z,A)‖ ,

which rearranges to

‖R(z + w,A)‖−1 ≤ ‖R(z,A)‖−1
+ |w| < ε.

It follows that ∪z∈EnD(z,max{0, ε−Fn(z)}) is in Ŝpε(A) and hence that Γn(A) ≤ ΞL2 (A). Without loss

of generality by taking successive maxima we can assume that Γn(A) is increasing. Together these will
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yield ΣA1 once convergence is shown. Using the uniform convergence of Fn and density of 1/n(Z + iZ) ∩
[−n, n]2 we see that pointwise convergence holds:

χ∪z∈EnD(z,max{0,ε−Fn(z)} → χ
Ŝpε(A)

,

where χE denotes the indicator function of a set E. It follows by the dominated convergence theorem that

Γn(A)→ Leb(Ŝpε(A)). The proof for ΩD is similar by restricting everything to the real line.

Step 2: {ΞL2 ,Ω,Λ1} ∈ ΣA2 for Ω = ΩB,ΩSA, ΩN or Ωg . To prove this, we simply replace Fn1 by the

functions γn2,n1 and set

Γn2,n1
(A) = Leb

(
∪z∈En2

D(z,max{0, ε− γn2,n1
(z;A)})

)
.

Step 3: {ΞL2 ,Ω,Λ2} ∈ ΣA1 for Ω = ΩB,ΩSA, ΩN or Ωg . The knowledge of matrix values of A∗A

allows us to skip the first limit in the construction of step 2 and approximate γn directly.

Finally, we deal with the question of determining if the Lebesgue measure is zero. Recall that for this

problem, (M, d) denotes the set {0, 1} endowed with the discrete topology and we consider the problem

function

ΞL3 (A) =

0, if Leb(Sp(A)) > 0

1, otherwise.

Proof of Theorem 8.1.4. We will show that {ΞL3 ,Ωf ,Λ1} ∈ ΠA
3 and {ΞL3 ,ΩD,Λ2} /∈ ∆G

3 . The analogous

statements {ΞL3 ,ΩD,Λ1} ∈ ΠA
3 and {ΞL3 ,Ωf ,Λ2} /∈ ∆G

3 follow from similar arguments.

The lower bound argument can also be used when considering Λ2 and Ω = ΩB,ΩSA, ΩN or Ωg . We

will also prove the lower bound {ΞL3 ,ΩSA,Λ1} /∈ ∆G
4 . The remaining lower bounds for Λ1 follow from

a similar argument and construction as in step 5 of the proof of Theorem 8.1.1 to ensure we are dealing

with two-dimensional Lebesgue measure. Finally, we prove that {ΞL3 ,ΩB,Λ1} ∈ ΠA
4 . The upper bounds

for Ω = ΩSA, ΩN or Ωg and Λ1 follow from an almost identical argument. When considering Λ2, we can

collapse the first limit in exactly the same manner as we did for solving ΞL1 .

Step 1: {ΞL3 ,Ωf ,Λ1} ∈ ΠA
3 . First we use the algorithm used to compute ΞL1 in Theorem 8.1.1, which

we shall denote by Γ̃, to build a height 3 tower for {ΞL3 ,Ωf}. As above, Ωf denotes the set of bounded

operators with the usual assumption of bounded dispersion (now with known bounds cn). Recall that we

observed

• Γ̃n2,n1
(A) converges to Γ̃n2

(A) from below as n1 →∞.

• Γ̃n2
(A) converges to Leb(Sp(A)) monotonically from above as n2 →∞.

We can alter our algorithms, by taking maxima, so that we can assume without loss of generality that

Γ̃n2,n1
(A) converges to Γ̃n2

(A) monotonically from below as n1 →∞. Now let

Γn3,n2,n1
(A) = χ[0,1/n3](Γ̃n2,n1

(A)).

Note that χ[0,1/n3] is left continuous on [0,∞) with right limits. Hence by the assumed monotonicity

lim
n1→∞

Γn3,n2,n1(A) = χ[0,1/n3](Γ̃n2(A)).

It follows that

lim
n2→∞

lim
n1→∞

Γn3,n2,n1
(A) = χ[0,1/n3](Leb(Sp(A))±),
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where ± denotes one of the right or left limits (it is possible to have either). It is then easy to see that

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1
(A) = ΞL3 (A).

It is also clear that the answer to the question is 0 if Γn3(A) = 0, which yields the ΠA
3 classification.

Step 2: {ΞL3 ,ΩD,Λ1} /∈ ∆G
3 . Assume for a contradiction that this is false and Γ̂n2,n1

is a general

height two tower for {ΞL3 ,ΩD}. Let (M, d) be discrete space {0, 1} and Ω̃ denote the collection of all

infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and consider the problem function

Ξ̃1({ai,j}) : Does {ai,j} have a column containing infinitely many non-zero entries?

Recall that it was shown in Theorem 2.3.7 in Chapter 2 §2.3 that SCI(Ξ̃1, Ω̃)G = 3. We will gain a

contradiction by using the supposed height two tower to solve {Ξ̃1, Ω̃}.
For j ∈ N, let {bi,j}i∈N be a dense subset of Ij := [1−1/2j−1, 1−1/2j ]. Given a matrix {ai,j}i,j∈N ∈

Ω̃, construct a matrix {ci,j}i,j∈N by letting ci,j = ai,jbr(i,j),j where

r(i, j) = max

{
1,

i∑
k=1

ak,j

}
.

Now consider any bijection φ : N→ N2 and define the diagonal operator

A = diag(cφ(1), cφ(2), cφ(3), ...).

The algorithm Γ̂n2,n1 thus translates to an algorithm defined by Γ′n2,n1
for {Ξ̃1, Ω̃}. Namely, we set

Γ′n2,n1
({ai,j}i∈N) = Γ̂n2,n1

(A). The fact that φ is a bijection shows that the lowest level Γ′n2,n1
are

generalised algorithms (and are consistent). In particular, given N , we can find {Ai,j : i, j ≤ N} using

finitely many evaluations of the matrix values {ck,l}. But for any given ck,l we can evaluate this entry using

only finitely many evaluations of the matrix values {am,n} by the construction of r. Finally note that

Sp(A) =

 ⋃
j:
∑
i ai,j=∞

Ij

 ∪Q,
where Q is at most countable. Hence

LebR(Sp(A)) =
∑

j:
∑
i ai,j=∞

1

2j
.

It follows that Ξ̃1({ai,j}) = ΞL3 (A) and hence we get a contradiction.

Step 3: {ΞL3 ,ΩSA,Λ1} /∈ ∆G
4 . Suppose for a contradiction that Γn3,n2,n1

is a height three tower of

general algorithms for the problem {ΞL3 ,ΩSA,Λ1}. Let (M, d) be the space {0, 1} with the discrete metric,

let Ω̃ denote the collection of all infinite arrays {am,i,j}m,i,j∈N with entries am,i,j ∈ {0, 1} and consider

the problem function

Ξ̃4({am,i,j}) : For every m, does {am,i,j}i,j have (only) finitely many columns

with (only) finitely many 1’s?

Recall that it was shown in Theorem 2.3.7 in Chapter 2 §2.3 that SCI(Ξ̃4, Ω̃)G = 4. We will gain a

contradiction by using the supposed height three tower to solve {Ξ̃4, Ω̃}.
The construction follows step 3 of the proof of Theorem 7.3.3 closely. For fixed m, recall the construc-

tion of the operator Am := A({am,i,j}i,j) from that proof, the key property being that if {am,i,j}i,j has
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(only) finitely many columns with (only) finitely many 1’s then Sp(Am) is a finite subset of [−1, 1], other-

wise it is the whole interval [−1, 1]. Now consider the intervals Im = [1− 2m−1, 1− 2m] and affine maps,

αm, that act as a bijection from [−1, 1] to Im. Without loss of generality, identify ΩSA with self adjoint

operators in B(X) where X =
⊕∞

i=1

⊕∞
j=1Xi,j in the l2-sense with Xi,j = l2(N). We then consider the

operator

T ({am,i,j}m,i,j) =

∞⊕
m=1

αm(Am).

The same arguments in the proof of Theorem 7.3.3 show that the map

Γ̃n3,n2,n1
({am,i,j}m,i,j) = Γn3,n2,n1

(T ({am,i,j}m,i,j))

is a general tower using the relevant pointwise evaluation functions of the array {am,i,j}m,i,j . If it holds

that Ξ̃4({am,i,j}) = 1, then Sp(T ({am,i,j}m,i,j)) is countable and hence ΞL3 (T ({am,i,j}m,i,j)) = 1.

On the other hand, if Ξ̃4({am,i,j}) = 0, then there exists m with Sp(Am) = [−1, 1] and hence Im ⊂
Sp(T ({am,i,j}m,i,j)) so that ΞL3 (T ({am,i,j}m,i,j)) = 0. It follows that Γ̃n3,n2,n1 provides a height three

tower for {Ξ̃4, Ω̃}, a contradiction.

Step 4: {ΞL3 ,ΩB,Λ1} ∈ ΠA
4 . Recall the tower of algorithms to solve {ΞL1 ,ΩB,Λ1}, and denote it by

Γ̃. Our strategy will be the same as in step 1 but with an extra limit. It is easy to show that

• Γ̃n3,n2,n1
(A) converges to Γ̃n3,n2

(A) from above as n1 →∞.

• Γ̃n3,n2(A) converges to Γ̃n3(A) from below as n2 →∞.

• Γ̃n3
(A) converges to Leb(Sp(A)) from above as n3 →∞.

Again, by taking successive maxima or minima where appropriate, we can assume that all of these are

monotonic. Now let

Γn4,n3,n2,n1(A) = χ[0,1/n4](Γ̃n3,n2,n1(A)).

Note that χ[0,1/n4] is left continuous on [0,∞) with right limits. Hence by the assumed monotonicity and

arguments as in step 1, it is then easy to see that

lim
n4→∞

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn4,n3,n2,n1
(A) = ΞL3 (A).

It is also clear that the answer to the question is 0 if Γn4
(A) = 0, which yields the ΠA

4 classification.

8.3 Proofs of Theorems on Fractal Dimensions

We begin with the box-counting dimension. For the construction of towers of algorithms, it is useful to use a

slightly different (but equivalent - see [Fal03]) definition of the upper and lower box-counting dimensions.

Let F ⊂ R be bounded and N ′δ(F ) denote the number of δ-mesh intervals that intersect F . A δ-mesh

interval is an interval of the form [mδ, (m+ 1)δ] for m ∈ Z. Then

dimB(F ) = lim sup
δ↓0

log(N ′δ(F ))

log(1/δ)
,

dimB(F ) = lim inf
δ↓0

log(N ′δ(F ))

log(1/δ)
.
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Proof of Theorem 8.1.5. Since ΩD
BD ⊂ ΩBDf ⊂ ΩBDSA , it is enough to prove that {ΞB ,ΩBDf ,Λ1} ∈ ΠA

2 ,

{ΞB ,ΩBDSA ,Λ2} ∈ ΠA
2 , {ΞB ,ΩBDSA ,Λ1} ∈ ΠA

3 , {ΞB ,ΩBDSA ,Λ1} 6∈ ∆A
3 and {ΞB ,ΩBDD ,Λ2} 6∈ ∆A

2 .

Step 1: {ΞB ,ΩBDf ,Λ1} ∈ ΠA
2 . Recall the existence of a height one tower, Γ̃n, using Λ1 for Sp(A),

A ∈ ΩBDf from Chapter 3. Furthermore, Γ̃n(A) outputs a finite collection {z1,n, ..., zkn,n} ⊂ Q such that

dist(zj,n,Sp(A)) ≤ 2−n. Define the intervals

Ij,n = [zj,n − 2−n, zj,n + 2−n]

and let Im denote the collection of all 2−m-mesh intervals. Let Υm,n(A) be any union of finitely many

such mesh intervals with minimal length |Υm,n(A)| (‘length’ being the number of intervals ∈ Im that make

up Υm,n(A)) such that

Υm,n(A) ∩ Ij,l 6= ∅, for 1 ≤ l ≤ n, 1 ≤ j ≤ kl.

There may be more than one such collection so we can gain a deterministic algorithm by enumerating each

Im and choosing the first such collection in this enumeration. It is then clear that |Υm,n(A)| is increasing

in n. Furthermore, to determine Υm,n(A), there are only finitely many intervals in Im to consider, namely

those that have non-empty intersection with at least one Ij,l with 1 ≤ l ≤ n, 1 ≤ j ≤ kl. It follows that

Υm,n(A) and hence |Υm,n(A)| can be computed in finitely may arithmetic operations and comparisons

using Λ1.

Suppose that I = [a, b] ∈ Im has (a, b) ∩ Sp(A) 6= ∅. Then for large n there exists zj,n ∈ I such

that Ij,n ⊂ I and hence I ⊂ Υm,n(A) for large n. If z ∈ Sp(A) ∩ 2−mZ then a similar argument

shows that z ⊂ Υm,n(A) for large n. Since Sp(A) is bounded and Sp(A) ∩ 2−mZ finite, it follows that

Sp(A) ⊂ Υm,n(A) for large n and hence

N2−m(Sp(A)) ≤ lim inf
n→∞

|Υm,n(A)| .

Let Wm(A) be the union of all intervals in Im that intersect Sp(A). It is clear that Wm(A) ∩ Ij,l 6= ∅ for

1 ≤ l ≤ n, 1 ≤ j ≤ kl and hence |Υm,n(A)| ≤ N ′2−m(Sp(A)). It follows that limn→∞ |Υm,n(A)| =

δm(A) exists with

N2−m(Sp(A)) ≤ δm(A) ≤ N ′2−m(Sp(A)). (8.3.1)

For n2 > n1 set Γn2,n1
(A) = 0, otherwise set

Γn2,n1
(A) = max

n2≤k≤n1

max
1≤j≤n1

log(|Υk,j(A)|)
k log(2)

.

The above monotone convergence and (8.3.1) shows that

lim
n1→∞

Γn2,n1
(A) = Γn2

(A) = sup
k≥n2

log(δk(A))

k log(2)
≥ lim sup

k→∞

log(δk(A))

k log(2)
,

lim
n2→∞

Γn2
(A) = lim sup

k→∞

log(δk(A))

k log(2)
.

Hence, by the assumption that the box-counting dimension exists, we have constructed a ΠA
2 tower.

Step 2: {ΞB ,ΩBDSA ,Λ2} ∈ ΠA
2 and {ΞB ,ΩBDSA ,Λ1} ∈ ΠA

3 . The first of these is exactly as in step

1, using Λ2 to construct the relevant ΣA1 tower for the spectrum. The proof that {ΞB ,ΩBDSA ,Λ1} ∈ ΠA
3

uses a height two tower, Γ̃n2,n1 , using Λ1 for Sp(A), A ∈ ΩBDSA (or any self-adjoint A) constructed in

[BACH+20]. This tower has the property that each Γ̃n2,n1(A) is a finite subset of Q and, for fixed n2,

is constant for large n1. Moreover if z ∈ limn1→∞ Γ̃n2,n1
(A) then dist(z,Sp(A)) ≤ 2−n2 . It follows
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that we can use the same construction as step 1 with an additional limit at the start to reach the finite set

limn1→∞ Γ̃n2,n1
(A).

Step 3: {ΞB ,ΩBDD ,Λ2} 6∈ ∆A
2 . This is exactly the same argument as step 2 of the proof of Theorem

8.1.1 with Lebesgue measure replaced by box-counting dimension.

Step 4: {ΞB ,ΩBDSA ,Λ1} 6∈ ∆A
3 . This is exactly the same argument as step 4 of the proof of Theorem

8.1.1 with Lebesgue measure replaced by box-counting dimension.

We now turn to the Hausdorff dimension. Recall Lemma 8.1.7 on the problem of determining whether

Sp(A) ∩ (a, b) 6= ∅.

Proof of Lemma 8.1.7. We start with the class Ωf ∩ ΩSA. We can interpret this problem as a decision

problem and the following algorithm as one that halts on output yes. Let c = (a+ b)/2 and δ = (b− a)/2

then the idea is to simply test whether DistSpec(A,n, f(n), c) + cn < δ. If the answer is yes then

we output yes, otherwise we output no and increase n by one. Note that Sp(A) ∩ (a, b) 6= ∅ if and

only if ‖R(c, A)‖−1
< δ and hence as DistSpec(A,n, f(n), c) + cn converges down to ‖R(c, A)‖−1

we see that this provides a convergent algorithm. For ΩSA we require an additional limit by replacing

DistSpec(A,n, f(n), c) + cn with the function γn2,n1
(z;A). If we have access to Λ2 then this can be

avoided in the usual way.

To build our algorithm for the Hausdorff dimension, we use an alternative, equivalent definition for

compact sets that can be found in [FMSG15, FMSG14]. We consider the case of subsets of R. Let ρk

denote the set of all closed binary cubes of the form [2−km, 2−k(m+ 1)],m ∈ Z. Set

Ak(F ) =
{
{Ui}i∈I : I is finite , F ⊂ ∪i∈IUi, Ui ∈ ∪l≥kρl

}
and define

H̃dk(F ) = inf

{∑
i

diam(Ui)
d : {Ui}i∈I ∈ Ak(F )

}
, H̃d(F ) = lim

k→∞
H̃dk(F ).

The following can be found in [FMSG14] (Theorem 3.13):

Theorem 8.3.1 ([FMSG14]). Let F be a bounded subset of R. Then there exists a unique d′ = dimH′(F )

such that H̃d(F ) = 0 for d > d′ and H̃d(F ) =∞ for d < d′. Furthermore, d′ = dimH(cl(F )).

Denoting the dyadic rationals by D, we shall compute dimH(Sp(A)) via approximating the above

applied to F = Sp(A) ∩ Dc and using the lemma 8.1.7.

Proof of Theorem 8.1.8. It is enough to prove the lower bounds {ΞH ,ΩD,Λ2} /∈ ∆G
3 , {ΞH ,ΩSA,Λ1} /∈

∆G
4 and construct the towers of algorithms for the inclusions {ΞH ,Ωf∩ΩSA,Λ1} ∈ ΣA3 , {ΞH ,ΩSA,Λ1} ∈

ΣA4 and {ΞH ,ΩSA,Λ2} ∈ ΣA3 .

Step 1: {ΞH ,ΩD,Λ2} /∈ ∆G
3 . Suppose for a contradiction that a height two tower, Γn2,n1 , exists

for {ΞH ,ΩD} (taking values in [0, 1] without loss of generality). We repeat the argument in the proof of

Theorem 8.1.4. Consider the same problem

Ξ̃1({ai,j}) : Does {ai,j} have a column containing infinitely many non-zero entries?
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but now mapping to [0, 1] with the usual metric, and the same operator A = diag(cφ(1), cφ(2), cφ(3), ...)

with

Sp(A) =

 ⋃
j:
∑
i ai,j=∞

Ij

 ∪Q,
where Q is at most countable. We use the fact that the Hausdorff dimension satisfies

dimH(∪∞j=1Xj) = sup
j∈N

dimH(Xj)

and that dimH(Q) = 0 for any countable Q, to note that the equality ΞH(A) = Ξ̃1({ai,j}) holds. We

then set Γ̃n2,n1({ai,j}i,j) = Γn2,n1(A) to provide a height two tower for Ξ̃1. But this contradicts Theorem

2.3.7.

Step 2: {ΞH ,ΩSA,Λ1} /∈ ∆G
4 . Suppose for a contradiction that Γn3,n2,n1

is a height three tower

of general algorithms for the problem {ΞH ,ΩSA,Λ1} (taking values in [0, 1] without loss of general-

ity). Let (M, d) be the space [0, 1] with the usual metric, let Ω̃ denote the collection of all infinite arrays

{am,i,j}m,i,j∈N with entries am,i,j ∈ {0, 1} and consider the problem function

Ξ̃4({am,i,j}) : For every m, does {am,i,j}i,j have (only) finitely many columns

with (only) finitely many 1’s?

Recall that it was shown in Theorem 2.3.7 in Chapter 2 §2.3 that SCI(Ξ̃4, Ω̃)G = 4. We will gain a

contradiction by using the supposed height three tower to solve {Ξ̃4, Ω̃}.
We use the same construction as in step 3 of the proof of Theorem 8.1.4. If Ξ̃4({am,i,j}) = 1,

then Sp(T ({am,i,j}m,i,j)) is countable and hence ΞH(T ({am,i,j}m,i,j)) = 0. On the other hand, if

Ξ̃4({am,i,j}) = 0, then there exists m with Sp(Am) = [−1, 1] and hence Im ⊂ Sp(T ({am,i,j}m,i,j)) so

that ΞH(T ({am,i,j}m,i,j)) = 1. It follows that Γ̃n3,n2,n1
({am,i,j}m,i,j) = 1−Γn3,n2,n1

(T ({am,i,j}m,i,j))
provides a height three tower for {Ξ̃4, Ω̃}, a contradiction.

Step 3: {ΞH ,Ωf ∩ ΩSA,Λ1} ∈ ΣA3 . To construct a height three tower for A ∈ Ωf ∩ ΩSA, if n2 < n3

set Γn3,n2,n1
(A) = 0. Otherwise, consider the set

An3,n2,n1
(A) = {{Ui}i∈I : I is finite , Sn1,n2

(A) ⊂ ∪i∈IUi, Ui ∈ ∪n3≤l≤n2
ρl}

where Sn1,n2(A) is the union of all S ∈ ρn2 with S ⊂ [−n1, n1] and such that the algorithm discussed in

Lemma 8.1.7 outputs yes for the interior of S and input parameter n1. We then define

hn3,n2,n1(A, d) = inf

{∑
i

diam(Ui)
d : {Ui} ∈ An3,n2,n1(A)

}
.

If Sn1,n2(A) is empty then we interpret the infinum as 0. There are only finitely many sets to check and

hence the infinum is a minimisation problem over finitely many coverings (see §8.4.2 for a discussion of

efficient implementation). It follows that hn3,n2,n1
(A, d) defines a general algorithm computable in finitely

many arithmetic operations and comparisons. Furthermore, it is easy to see that

lim
n1→∞

hn3,n2,n1
(A, d) = inf

{∑
i

diam(Ui)
d : {Ui} ∈ Cn3,n2

(A)

}
=: hn3,n2

(A, d)

from below (since we are covering larger sets as n1 increases), where

Cn3,n2
(A) =

{
{Ui}i∈I : I is finite ,Sp(A) ∩ Dcn2

⊂ ∪i∈IUi, Ui ∈ ∪n3≤l≤n2
ρl
}
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and Dk := 1/2k · Z denotes the dyadic rationals of resolution k. We now use the property that Ak(F )

consists of collections of finite coverings. As n2 → ∞, hn3,n2
(A, d) is non-increasing (since we take

infinum over a larger class of coverings and the sets Sp(A) ∩ Dcn2
decrease) and hence converges to some

number. Clearly

lim
n2→∞

hn3,n2(A, d) =: hn3(A, d) ≥ H̃dn3
(Sp(A) ∩ Dc).

For ε > 0 let l ∈ N and {Ui} ∈ An3(Sp(A) ∩ Dcl )} with∑
i

diam(Ui)
d ≤ ε+ H̃dn3

(Sp(A) ∩ Dcl ).

For large enough n2, {Ui} ∈ Cn3,n2(A) and hence since ε > 0 was arbitrary,

hn3
(A, d) ≤ H̃dn3

(Sp(A) ∩ Dcl )

for all l. For a fixed A and d, hn3
(A, d) is non-decreasing in n3 and hence converges to a function of d,

h(A, d) (possibly taking infinite values). Furthermore,

H̃d(Sp(A) ∩ Dc) ≤ h(A, d) ≤ H̃d(Sp(A) ∩ Dcl ).

Since the set Sp(A) ∩ D is countable, its Hausdorff dimension is zero. Using sub-additivity of Hausdorff

dimension and Theorem 8.3.1,

dimH(Sp(A)) ≤ dimH(Sp(A) ∩ Dc)

≤ dimH(cl(Sp(A) ∩ Dc)) = dimH′(Sp(A) ∩ Dc)

≤ dimH(cl(Sp(A) ∩ Dcl )) = dimH′(Sp(A) ∩ Dcl )

≤ dimH(Sp(A)).

It follows that h(A, d) = 0 if d > dimH(Sp(A)) and that h(A, d) =∞ if d < dimH(Sp(A)). Define

Γn3,n2,n1
(A) = sup

j=1,...,2n3

{
j

2n3
: hn3,n2,n1

(A, k/2n3) +
1

n2
>

1

2
for k = 1, ..., j

}
,

where in this case we define the maximum over the empty set to be 0.

Consider n2 ≥ n3. Since hn3,n2,n1
(A, d) ↑ hn3,n2

(A, d), it is clear that

lim
n1→∞

Γn3,n2,n1
(A) = sup

j=1,...,2n3

{
j

2n3
: hn3,n2

(A, k/2n3) +
1

n2
>

1

2
for k = 1, ..., j

}
=: Γn3,n2

(A).

If hn3(A, d) ≥ 1/2, then hn3,n2(A, d) + 1/n2 > 1/2 for all n2, otherwise we must have hn3,n2(A, d) +

1/n2 < 1/2 eventually. Hence

lim
n2→∞

Γn3,n2(A) = sup
j=1,...,2n3

{
j

2n3
: hn3(A, k/2n3) ≥ 1

2
for k = 1, ..., j

}
=: Γn3(A).

Using the monotonicity of hn3
(A, d) in d and the proven properties of the limit function h, it follows that

lim
n3→∞

Γn3
(A) = dimH(Sp(A)).

The fact that hn3
is non-decreasing in n3, the set {1/2n3 , 2/2n3 , ..., 1} refines itself and the stated mono-

tonicity show that convergence is monotonic from below and hence we get the ΣA3 classification.

Step 4: {ΞH ,ΩSA,Λ1} ∈ ΣA4 and {ΞH ,ΩSA,Λ2} ∈ ΣA3 . The first of these can be proven as in step 3

by replacing (n1, n2, n3) by (n2, n3, n4) and the set Sn2,n1
(A) by the set Sn3,n2,n1

(A) given by the union

133



8.4. Numerical Examples CHAPTER 8. Lebesgue Measure and Fractal Dimensions

of all S ∈ ρn3
with S ⊂ [−n2, n2] and such that the ΣA2 tower of algorithms discussed in Lemma 8.1.7

outputs yes for the interior of S and input parameters (n2, n1). To prove {ΞH ,ΩSA,Λ2} ∈ ΣA3 we use

exactly the same construction as in step 3 now using the ΣA1 algorithm (which uses Λ2) given by Lemma

8.1.7.

8.4 Numerical Examples

We demonstrate that whilst some of the problems considered in this chapter require more than one limit to

solve, the towers of algorithms constructed in this chapter are usable and can be efficiently implemented

for large scale computations. Exactly the same comments can be made as in §7.6. The algorithms have

desirable convergence properties, converging monotonically or being eventually constant, as captured by the

Σ/Π classification. Generically, this monotonicity holds in all of the limits, and not just the final limit: many

of the towers undergo oscillation phenomena where each subsequent limit is monotone but in the opposite

sense/direction than the limit beforehand. We can take advantage of this when analysing the algorithms

numerically, and this can be useful for creating ansatz for stopping criteria. The algorithms also highlight

suitable information that lowers the SCI classification to Σ1/Π1. Other advantages for the algorithms based

on approximating the resolvent norm include locality, numerical stability and speed/parallelisation.

8.4.1 Numerical examples for Lebesgue measure

Our first set of examples tests the towers of algorithms constructed for Lebesgue measure. We consider one

example where the solution is analytically known and then one where nothing is currently known.

Almost Mathieu operator

We begin testing the algorithms on the almost Mathieu operator, which was studied in §6.4 of Chapter 6.

For the benefit of the reader, we recall that the operator acts on l2(Z) via

(Hαx)n = xn−1 + xn+1 + 2λ cos(2πnα+ ν)xn.

For irrational α, the spectrum of Hα does not depend on ν and [AK06]

LebR(Sp(Hα)) = 4 |1− |λ|| . (8.4.1)

We consider the case α = (
√

5 − 1)/2 and without loss of generality set ν = 0. Figure 8.1 shows the

output of the algorithm, computing LebR(Sp(Hα)) and LebR(Spε(Hα)) for a range of values of ε. We

chose values of n = 5000 (corresponding to 10003 × 10001 matrices for resolvent estimates), a grid

spacing of 1/128 and a resolution in DistSpec of order 1/1000. One can clearly see that the estimates

for LebR(Spε(Hα)) are decreasing to LebR(Sp(Hα)), which is well-estimated by LebSpec (Method 1).

We also compare Method 1 with the naive estimate provided by finite section estimates Sp(PnHαPn),

where Pn is the orthogonal projection onto span{ek : |k| ≤ n}. As expected, this gives too coarse an

estimate of the Lebesgue measure, overestimating the true value, particularly when the Lebesgue measure is

close to zero. LebSpec and LebPseudoSpec estimate the distance to the spectrum directly, allowing us

to produce covering estimates that are tailor-made to the spectrum of the operator at hand. Other advantages

include locality, numerical stability, speed/parallelisation, and guaranteed convergence.
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Figure 8.1: Left: Output of algorithm to compute LebR(Spε(Hα)) as well as the direct algorithm for
LebR(Sp(Hα)) from §8.1.1 (Method 1). Note that we gain convergence to the true value as ε ↓ 0. Right:
Estimates for LebR(Sp(H) ∩ (−∞, x]) obtained by letting n1 = 105 and selecting different n2. The
estimate above −3 appears to be well-resolved.

Graphical Laplacian on Penrose tile

We now consider the transport Hamiltonian H on a Penrose tile discussed in §3.4.1 of Chapter 3. An

obvious problem of a height two tower Γn2,n1
is that apriori we do not know, for a given input A, a choice

of subsequence n2(n1) such that Γn2(n1),n1
(A) converges. There are numerous ‘stopping criteria’ for such

scenarios (but, in general, the SCI classification shows that given such a criterion, there will always be

an operator for which the subsequence choice fails). In our case, note that, for the height two tower in

§8.1.1, we may assume without loss of generality that Γn2,n1(A) is decreasing in n2 but increasing in n1.

This suggests setting n1 as computationally large as feasibly possible, then choosing a suitable cut-off, or

maxima N , for n2 and seeing if we appear to gain convergence for n2 ≤ N . We set n1 = 105 and look at

the average estimated error of the output. This was 0.0016 for a grid spacing of 10−5 so we shall consider

grid refinements of spacing 1/32, 1/64, ..., 1/1024 corresponding to n2 = 5, 6, ..., 10. Figure 8.1 (right)

shows the output as a cumulative Lebesgue measure, that is, an estimate of LebR(Sp(H) ∩ (−∞, x]) for a

given x, along with the computed spectrum (for a grid spacing of 10−5). The figure suggests that we have

not reached required convergence in n1 to take n2 any larger. However, there is strong evidence that the

part of the spectrum closest to 0 is resolved by the algorithm and has Lebesgue measure zero. We shall see

more evidence for this in §8.4.2.

8.4.2 Numerical examples for fractal dimensions

We begin with the box-counting dimension and denote by Γ̃n the ΣA1 algorithm for the spectrum from

Chapter 3. The caveat in the tower of algorithms used to compute the box-counting dimension is that

convergence can, at best, only be expected to be logarithmic in the following sense. We expect that the

error in approximating log(N1/2n2 (Sp(A)))/ log(2n2) (recall that Nδ(F) is the number of closed boxes of

side length δ > 0 required to cover F ) via the first limit is roughly orderO(1/n2). This can only be reached

in the worst case for dH(Γ̃n1(A),Sp(A)) = O(1/2n2) meaning that we have to resolve the spectrum to

order exp(−1/ε) to approximate the box-counting dimension to order ε. This is a problem shared by all
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Figure 8.2: Left: A plot ofN1/n2
(Γ̃105(H)∩[−3,∞)) against n2. We found a scaling region with estimated

box-counting dimension ≈ 0.8. Note that for large n2 & 5000, scalings are not resolved by Γ̃105 (we can
predict when this happens using the ΣA1 property of Γ̃n). We have also shown the approximation using finite
sections (square 105 × 105 matrix truncations), as a dashed line, which overestimate the size of coverings,
cannot detect the fractal structure, and break down for smaller n2. Right: hn3,9,105(H, d) ∧ 10 to show
a range of d where the estimates to the Hausdorff measures of Sp(H) ∩ [−3,∞) rapidly increase. These
curves increase with n3 consistent with the theory. This supports that the Hausdorff dimension may be
close to 0.8. The ‘cut-off’ is a lower bound for the estimates given by J/2n2 , with J being the number of
intervals of length 2−n2 that need to be covered from the estimate of Sp(H) ∩ [−3,∞).

methods that use the definition of box-counting dimension directly with an estimate of the spectrum. In

reality, it is much better to assume that one has the stronger asymptotic condition Nδ ∼ 1/δd, as δ → 0.

We do this for the operator H from §8.4.1, for which the fractal dimension of Sp(H) is unknown.

In Figure 8.2, we plotN1/n2
(Γ̃105(H)∩[−3,∞)) against n2. We also show a linear fit of slope 0.8. The

error control provided by the algorithm Γ̃n allows us to deduce the region where the fit holds, corresponding

to a reliable resolution of the spectrum. In other words, we can ensure that n2 is not too large, so that the

spacings of the coverings are not smaller than the numerically resolved spectrum. As expected, when n2

is too large we see the effect of the grid spacing and the unresolved spectrum (by choosing larger n1, we

can take n2 larger). The figure suggests that the spectrum above −3 is fractal with box-counting dimension

≈ 0.8 and hence has Lebesgue measure zero, in agreement with the findings in Figure 8.1.

Figure 8.2 shows what happens when one performs the same experiment but with finite section replacing

Γ̃n. First, for small n2, using finite section produces an overestimate of the size of the covering and the

corresponding slope of the graph due to spectral pollution. In other words, finite section prevents us from

detecting the fractal spectrum. Second, the covering estimate via finite section breaks down at smaller n2

and it is impossible to predict suitable values of n2 so that the spacings of the coverings do not go beyond

the resolution of the computed spectrum. Together, these issues highlight why finite section is unsuitable in

general for approximating fractal dimensions and why the new algorithms are needed.

Finally, we investigate the Hausdorff dimension. An efficient way to compute a minimal covering is

to use binary trees. We take n1 = 105 and use the error bounds to estimate the resolution obtained which

corresponds to n2. The height three tower can be written as

Γn3,n2,n1
(A) = sup

j=1,...,2n3

{
j

2n3
: hn3,n2,n1

(A, k/2n3) +
1

n2
>

1

2
for k = 1, ..., j

}
,

136



8.4. Numerical Examples CHAPTER 8. Lebesgue Measure and Fractal Dimensions

where hn3,n2,n1
is an analogue of Hdδ (see §8.3). Figure 8.2 (right) shows hn3,9,105(H, d) for various d

and restricted to estimating Sp(H) ∩ [−3,∞). The figure is consistent with the estimates increasing in n3.

There appears to be a region around 0.8 where the estimates begin to rapidly increase. Both algorithms

support the possibility that the spectrum above −3 is fractal and hence has Lebesgue measure zero.
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Chapter 9

Data-driven Computations of Spectral

Properties of Koopman Operators

In this chapter, based on [CT21, CAS22], we consider spectral problems that arise in data-driven study of

dynamical systems. We consider autonomous dynamical systems whose state xxx evolves over a state-space

Ω ⊆ Rd in discrete time-steps according to a function F : Ω→ Ω. In other words,

xxxn+1 = F (xxxn), n ≥ 0, (9.0.1)

wherexxx0 is a given initial condition. Such a dynamical system forms a trajectory of iteratesxxx0,xxx1,xxx2, . . . in

Ω. We are interested in answering questions about the system’s behavior by analyzing such trajectories. The

interaction between numerical analysis and dynamical systems theory has stimulated remarkable growth in

the subject since the 1960s [Kal63, Lor63, Eps69, SH98]. With the arrival of big data [HTT+09], modern

statistical learning [HTF09], and machine learning [MRT18], data-driven algorithms are now becoming

increasingly important in understanding dynamical systems [SL09, BK19].

9.1 Koopman Operators and associated Challenges

A classical viewpoint to analyze dynamical systems that originates in the seminal work of Poincaré [Poi99]

is to study fixed points and periodic orbits, as well as stable and unstable manifolds. Two fundamental

challenges with Poincaré’s geometric state-space viewpoint are:

• Non-linear dynamics: To understand the stability of fixed points of non-linear dynamical systems,

one typically forms local models centered at these fixed points. Such models allow one to predict

long-time dynamics in small neighbourhoods of fixed points and attracting manifolds. However, they

do not provide reasonable predictions for all initial conditions. A global understanding of non-linear

dynamics in state-space remains largely qualitative [BMM12].

• Unknown dynamics: For many applications, a system’s dynamics may be too complicated to de-

scribe analytically, or we may have incomplete knowledge of its evolution. Typically, we can only

acquire several sequences of iterates of (9.0.1) starting at different values of xxx0. This means that

constructing local models can be impossible. In this chapter, we focus on data-driven approaches to

learning and analyzing the dynamical system with trajectories of iterates from (9.0.1).
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Koopman operator theory, which dates back to Koopman and von Neumann [KvN32, Koo31], is an

alternative viewpoint from which to analyse a dynamical system, that uses the space of scalar observable

functions [Mez21]. Its increasing popularity has led to the term “Koopmanism” [BMM12], as well as thou-

sands of articles over the last decade. A reason for the recent attention is its use in data-driven methods for

studying dynamical systems (see [BBKK21] for a review and the history). Some popular applications in-

clude fluid dynamics, epidemiology, neuroscience, finance, robotics, power grids, and molecular dynamics.

Let g : Ω → C be a function that one can use to indirectly measure the state of the dynamical system

in (9.0.1). Such a function g is known as an observable. One typically works in the Hilbert space L2(Ω, ω)

of observables for a positive measure ω on Ω.1 We consider the Koopman operator K : D(K)→ L2(Ω, ω),

where D(K) ⊆ L2(Ω, ω), given by

[Kg](xxx) = (g ◦ F )(xxx), xxx ∈ Ω, g ∈ D(K), (9.1.1)

where the equality is understood in the L2(Ω, ω) sense. K is a linear operator, regardless of whether the

dynamics are linear or non-linear. Hence, the behaviour of the dynamical system (9.0.1) is determined by

the spectral information of K (e.g., see (9.3.4)). However, since K is an infinite-dimensional operator, its

spectral information can be far more complicated than that of a finite matrix. For example, K can have both

discrete2 and continuous spectra.

Computing the spectral properties of K is an active area of research - see [CT21] for further discussion.

However, remaining challenges (some of which we have met in previous chapters) include:

• Continuous spectra.

• Spectral pollution.

• Lack of (non-trivial) finite-dimensional invariant subspaces.

• Strong non-linearities and high-dimensional state-space.

The goal of this chapter is to show how these challenges can be overcome. We have not framed theorems

in terms of the SCI hierarchy. However, the reader will be able to see its presence in some of the theorems.

Currently, it is an open problem to prove lower bounds for the classification of computational problems

associated with Koopman operators.

We assume that we have access to discrete time snapshots of this system, i.e., a finite set of M pairs of

measurements

{xxx(j), yyy(j)}Mj=1 such that yyy(j) = F (xxx(j)), j = 1, . . . ,M, (9.1.2)

where the operator F evolves the system along one discrete time unit. For example, these snapshots could

be measurements of unsteady velocities across M discrete spatial grid points taken via Particle Image

Velocimetry (PIV). Suitable data could be collected from one long time trajectory, corresponding to xxx(j) =

F j−1(xxx0), or from multiple shorter trajectories.

1We do not assume that this measure is invariant, and the most common choice of ω is the standard Lebesgue measure. This

choice is natural for Hamiltonian systems for which the Koopman operator is unitary on L2(Ω, ω). For other systems, we can select

ω according to the region where we wish to study the dynamics, such as a Gaussian measure.
2Throughout this chapter we use the term “discrete spectra” to mean the eigenvalues of K, also known as the point spectrum. This

also includes embedded eigenvalues, in contrast to the usual definition of the discrete spectrum.
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9.2 Residual Dynamic Mode Decomposition (ResDMD)

We develop an algorithm, Residual DMD (ResDMD), that approximates the associated Koopman operator

of the dynamics. Our approach allows for Koopman operators K that have no finite-dimensional invariant

subspace. The key difference between ResDMD and other DMD algorithms (such as EDMD) is that we

construct Galerkin approximations for not onlyK, but alsoK∗K. This difference allows us to have rigorous

convergence guarantees for ResDMD when recovering the spectral information ofK and computing spectra

and pseudospectra. In particular, we avoid spectral pollution.

9.2.1 Extended DMD (EDMD) and a new matrix for computing residuals

Before discussing our ResDMD approach, we describe EDMD. EDMD constructs a matrix KEDMD ∈
CNK×NK that approximates the action ofK from the snapshot data. The original version of EDMD assumes

that {xxx(j)}Mj=1 ⊂ Ω are drawn independently according to ω [WKR15]. Here, we describe EDMD for

arbitrary initial states and use {xxx(j)}Mj=1 as quadrature nodes.

Given a dictionary {ψ1, . . . , ψNK} ⊂ D(K) of observables, EDMD selects a matrix KEDMD that

approximates K on the subspace VNK = span{ψ1, . . . , ψNK}, i.e.,

[Kψj ](xxx) = ψj(F (xxx)) ≈
NK∑
i=1

(KEDMD)ijψi(xxx)

for 1 ≤ j ≤ NK . Define the vector-valued feature map Ψ(xxx) =
[
ψ1(xxx) · · · ψNK (xxx)

]
∈ C1×NK . Then

any g ∈ VNK can be written as g(xxx) =
∑NK
j=1 ψj(xxx)gj = Ψ(xxx)ggg for some vector ggg ∈ CNK . It follows that

[Kg](xxx) = Ψ(F (xxx))ggg = Ψ(xxx)(KEDMD ggg) +

NK∑
j=1

ψj(F (xxx))gj −Ψ(xxx)(KEDMD ggg)


︸ ︷︷ ︸

r(ggg,xxx)

.

Typically, VNK is not an invariant subspace of K so there is no choice of KEDMD that makes r(ggg,xxx) zero

for all g ∈ VN and xxx ∈ Ω. Instead, it is natural to select KEDMD as a solution of

argminB∈CNK×NK

{∫
Ω

max
ggg∈CNK ,‖ggg‖=1

|r(ggg,xxx)|2 dω(xxx) =

∫
Ω

‖Ψ(F (xxx))−Ψ(xxx)B‖2`2 dω(xxx)

}
. (9.2.1)

In practice, one cannot directly evaluate the integral in (9.2.1). Instead, we approximate it via a quadra-

ture rule with nodes {xxx(j)}Mj=1 and weights {wj}Mj=1. The discretised version of (9.2.1) is therefore the

following weighted least-squares problem:

argminB∈CNK×NK

M∑
j=1

wj

∥∥∥Ψ(yyy(j))−Ψ(xxx(j))B
∥∥∥2

`2
. (9.2.2)

A solution to (9.2.2) can be written down explicitly as KEDMD = (Ψ∗XWΨX)†(Ψ∗XWΨY ), where ‘†’
denotes the pseudoinverse and W = diag(w1, . . . , wM ). Here, ΨX and ΨY are the M ×NK matrices

ΨX =
[
Ψ(xxx(1))> · · · Ψ(xxx(M))>

]>
, ΨY =

[
Ψ(yyy(1))> · · · Ψ(yyy(M))>

]>
. (9.2.3)

By reducing the size of the dictionary if necessary, we may assume without loss of generality that Ψ∗XWΨX

is invertible. In practice, one may also consider regularisation through truncated singular value decompo-

sitions. Since Ψ∗XWΨX =
∑M
j=1 wjΨ(xxx(j))∗Ψ(xxx(j)) and Ψ∗XWΨY =

∑M
j=1 wjΨ(xxx(j))∗Ψ(yyy(j)), if the
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quadrature converges then

lim
M→∞

[Ψ∗XWΨX ]jk = 〈ψk, ψj〉 and lim
M→∞

[Ψ∗XWΨY ]jk = 〈Kψk, ψj〉,

where 〈·, ·〉 is the inner product associated withL2(Ω, ω). Thus, EDMD can be viewed as a Galerkin method

in the large data limit as M →∞. Let PVNK denote the orthogonal projection onto VNK . In the large data

limit, KEDMD approaches a matrix representation of PVNKKPVNK and the EDMD eigenvalues approach

the spectrum of PVNKKPVNK . Thus, approximating Sp(K) by the eigenvalues ofKEDMD is closely related

to the finite section method. Since the finite section method can suffer from spectral pollution, spectral

pollution is also a concern for EDMD and it is important to have an independent way to measure the

accuracy of a candidate eigenvalue-eigenvector pair.

9.2.2 Measuring the accuracy of candidate eigenvalue-eigenvector pairs

Suppose that we have a candidate eigenvalue-eigenvector pair (λ, g) of K, where λ ∈ C and g = Ψggg ∈
VNK . One way to measure the accuracy of (λ, g) is by estimating the squared relative residual∫

Ω
|[Kg](xxx)− λg(xxx)|2 dω(xxx)∫

Ω
|g(xxx)|2 dω(xxx)

=
〈(K − λ)g, (K − λ)g〉

〈g, g〉
(9.2.4)

=

∑NK
j,k=1 gjgk

[
〈Kψk,Kψj〉 − λ〈ψk,Kψj〉 − λ〈Kψk, ψj〉+ |λ|2〈ψk, ψj〉

]∑NK
j,k=1 gjgk〈ψk, ψj〉

.

If K is a normal operator, then the minimum of (9.2.4) over all normalised g ∈ D(K) is exactly the square

distance of λ to the spectrum of K; otherwise, for non-normal K the residual can still provide a measure of

accuracy. One can also use the residual to bound the distance between g and the eigenspace associated with

λ, assuming λ is a point in the discrete spectrum of K.

We approximate the residual in (9.2.4) by

res(λ, g)2 =

∑NK
j,k=1 gjgk

[
(Ψ∗YWΨY )jk − λ(Ψ∗YWΨX)jk − λ(Ψ∗XWΨY )jk + |λ|2(Ψ∗XWΨX)jk

]∑NK
j,k=1 gjgk(Ψ∗XWΨX)jk

.

(9.2.5)

All the terms in this residual can be computed using the snapshot data. Note that, as well as the matri-

ces found in EDMD, (9.2.5) has the additional matrix Ψ∗YWΨY . Moreover, under certain conditions, we

have limM→∞ res(λ, g)2 =
∫

Ω
|[Kg](xxx)− λg(xxx)|2 dω(xxx)/

∫
Ω
|g(xxx)|2 dω(xxx) for any g ∈ VNK . In partic-

ular, we often have limM→∞[Ψ∗YWΨY ]jk = 〈Kψk,Kψj〉 and then Ψ∗YWΨY formally corresponds to a

Galerkin approximation of K∗K as M →∞.

9.2.3 Convergence of quadrature

There are typically three scenarios that ensure that

lim
M→∞

[Ψ∗XWΨX ]jk = 〈ψk, ψj〉,

lim
M→∞

[Ψ∗XWΨY ]jk = 〈Kψk, ψj〉,

lim
M→∞

[Ψ∗YWΨY ]jk = 〈Kψk,Kψj〉.

(9.2.6)

• Suppose that {xxx(j)}Mj=1 are selected so that they are anM -point quadrature rule with weights {wj}Mj=1.

Integrals and inner products can then be approximated with numerical integration by evaluating func-

tions at the data points. High-order quadrature rules can lead to fast rates of convergence if the
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Algorithm 1 : ResDMD for computing eigenpairs without spectral pollution.
Input: Snapshot data {xxx(j), yyy(j)}Mj=1 (such that yyy(j) = F (xxx(j))), quadrature weights {wj}Mj=1, a dictionary

of observables {ψj}NKj=1 and an accuracy goal ε > 0.

1: Compute Ψ∗XWΨX , Ψ∗XWΨY , and Ψ∗YWΨY .

2: Solve (Ψ∗XWΨY )ggg = λ(Ψ∗XWΨX)ggg for eigenpairs {(λj , g(j) = Ψgggj)}.
3: Compute res(λj , g(j)) for all j (see (9.2.5)) and discard if res(λj , g(j)) > ε.

Output: A collection of accurate eigenpairs {(λj , gggj) : res(λj , g(j)) ≤ ε}.

dictionary functions and F are sufficiently regular. If the integrands are analytic in a neighbourhood

of Ω, then we can often select a quadrature rule that even converges exponentially as M → ∞. For

example, if Ω is unbounded then we can use quadrature rules such as the trapezoidal rule and if Ω is

a bounded simple domain then one can use Gaussian quadrature. When the state-space dimension d

is moderately large we can use sparse grids and a kernelized approach for large d.

• If ω is a probability measure and the initial points {xxx(j)}Mj=1 are drawn independently and at random

according to ω, the strong law of large numbers shows that limM→∞[Ψ∗XWΨX ]jk = 〈ψk, ψj〉 and

limM→∞[Ψ∗XWΨY ]jk = 〈Kψk, ψj〉 holds with probability one [KKS16, Section 3.4] provided that

ω is not supported on a zero level set that is a linear combination of the dictionary [KM18, Section

4]. This is with the quadrature weights wj = 1/M and the convergence is typically at a Monte

Carlo rate ofO(M−1/2) [Caf98]. It is a practical approach if the state-space dimension is large. One

could also consider quasi-Monte Carlo integration, which can achieve a faster rate of O(M−1) (up

to logarithmic factors) under suitable conditions [Caf98]. This argument is straightforward to adapt

to show the convergence limM→∞[Ψ∗YWΨY ]jk = 〈Kψk,Kψj〉.

• For a single long trajectory, if the dynamical system is ergodic, then one can use Birkhoff’s Er-

godic Theorem to show that limM→∞[Ψ∗XWΨX ]jk = 〈ψk, ψj〉 and limM→∞[Ψ∗XWΨY ]jk =

〈Kψk, ψj〉 [KM18]. One chooseswj = 1/M but the convergence rate is problem dependent [Kac96].

This argument is straightforward to adapt to show limM→∞[Ψ∗YWΨY ]jk = 〈Kψk,Kψj〉.

The scenario depends on the type of data that is collected. Typically for experiments, it is the later two

that are most relevant. However, if one is entirely free to select the initial conditions of the trajectory data,

and d is not too large, then we recommend picking them based on a high-order quadrature rule.

9.2.4 Convergence theorems

We now present our first ResDMD algorithm that computes the residual using the snapshot data to avoid

spectral pollution. As is usually done, the algorithm assumes that KEDMD is diagonalisable. First, we

compute the three matrices Ψ∗XWΨX , Ψ∗XWΨY , and Ψ∗YWΨY . Then, we find the eigenvalues and eigen-

vectors of KEDMD, i.e., we solve (Ψ∗XWΨX)†(Ψ∗XWΨY )ggg = λggg. One can solve this eigenproblem

directly, but it is often numerically more stable to solve the generalised eigenproblem (Ψ∗XWΨY )ggg =

λ(Ψ∗XWΨX)ggg. Afterward, to avoid spectral pollution, we discard computed eigenpairs with a larger rela-

tive residual than an accuracy goal of ε > 0.

Algorithm 1 summarises the procedure and is a simple modification of EDMD, as the only difference

is a clean-up where spurious eigenpairs are discarded based on their residual. This clean-up avoids spectral
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Algorithm 2 : ResDMD for estimating Spε(K).
Input: Snapshot data {xxx(j), yyy(j)}Mj=1 (such that yyy(j) = F (xxx(j))), quadrature weights {wj}Mj=1, a dictionary

of observables {ψj}NKj=1, an accuracy goal ε > 0, and a grid z1, . . . , zk ∈ C.

1: Compute Ψ∗XWΨX , Ψ∗XWΨY , and Ψ∗YWΨY .

2: For each zj , compute τj = minggg∈CNK res(zj ,Ψggg) (see (9.2.5)), which is a generalised SVD problem,

and the corresponding singular vectors gggj .

Output: Estimate of Spε(K): {zj : τj < ε}, and approximate eigenfunctions: {gggj : τj < ε}.

pollution and also removes eigenpairs that are inaccurate because of numerical errors associated with non-

normal operators, up to the relative tolerance ε. The following result makes this precise.

Theorem 9.2.1. Let K be the associated Koopman operator of (9.0.1) from which snapshot data is col-

lected. Let ΛM denote the eigenvalues in the output of Algorithm 1. Then, assuming (9.2.6),

lim sup
M→∞

max
λ∈ΛM

‖(K − λ)−1‖−1 ≤ ε.

Exercise: Prove Theorem 9.2.1.

Theorem 9.2.1 tells us that, in the large data limit, ResDMD computes eigenvalues inside Spε(K) and

hence, avoids spectral pollution and returns reasonable eigenvalues. Despite this, Algorithm 1 may not

approximate the whole Spε(K), even as M → ∞ and NK → ∞. This is because the eigenvalues of

KEDMD may not approximate the whole spectrum of K. For example, consider the shift operator, which is

unitary. [DRAW PICTURE ON BOARD] Suppose our dictionary consists of the functions ψj(k) = δk,q(j),

where q : N → Z is an enumeration of Z. Then, in the large data limit, KEDMD corresponds to a finite

section of the shift operator and has spectrum {0}, whereas Sp(K) = T. Hence, for ε < 1, the output of

Algorithm 1 is the empty set. This issue is known as spectral inclusion.

To overcome this issue, [CT21] developed ways to compute spectra and pseudospectra. For example,

Algorithm 2 computes practical approximations of Spε(K) with rigorous convergence guarantees. Assum-

ing (9.2.6), the output is guaranteed to be inside the Spε(K). Algorithm 2 also computes observables g with

res(λ, g)<ε, which are known as ε-approximate eigenfunctions.

Exercise: Using Algorithm 2, develop an algorithm that converges to the so-called approximate point

pseudospectrum,

Spε,ap(K) := cl ({λ ∈ C : σinf(K − λ) < ε}),

as NK →∞.

9.2.5 Dealing with large state-space dimension

When d is large, it can be impractical to store or form the matrix KEDMD, since the initial value of NK is

very large. We consider two common methods to overcome this issue:

(i) DMD: In this case, the dictionary consists of all monomials over Ω with ψj(xxx) = e∗jxxx. It is standard

to form a low-rank approximation of
√
WΨX via a truncated singular value decomposition (SVD) as

√
WΨX ≈ UrΣrV ∗r . (9.2.7)
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Here, Σr ∈ Cr×r is diagonal with strictly positive diagonal entries, and Vr ∈ CNK×r and Ur ∈
CM×r have V ∗r Vr = U∗rUr = Ir. We then form the matrix

K̃EDMD = (
√
WΨXVr)

†
√
WΨY Vr = Σ−1

r U∗r
√
WΨY Vr = V ∗r KEDMDVr ∈ Cr×r. (9.2.8)

Note that to fit into our Galerkin framework, this matrix is the transpose of the DMD matrix that is

commonly computed in the literature.

(ii) Kernelized EDMD (kEDMD): kEDMD [WRK15] aims to make EDMD practical for large d. Sup-

posing that ΨX is of full rank, kEDMD constructs a matrix with an identical formula to (9.2.8) with

r = M , for which we have the equivalent form

K̃EDMD = (Σ†MU
∗
M )(
√
WΨY Ψ∗X

√
W )(UMΣ†M ). (9.2.9)

Suitable matrices UM and ΣM can be recovered from the eigenvalue decomposition

√
WΨXΨ∗X

√
W = UMΣ2

MU
∗
M .

Moreover, both matrices
√
WΨXΨ∗X

√
W and

√
WΨY Ψ∗X

√
W can be computed using inner prod-

ucts. kEDMD applies the kernel trick to compute the inner products in an implicitly defined re-

producing Hilbert space H with inner product 〈·, ·〉H [Sch01]. A positive-definite kernel function

S : Ω× Ω→ R induces a feature map ϕ : Rd → H so that 〈ϕ(xxx), ϕ(yyy)〉H = S(xxx,yyy). This leads to

a choice of (typically non-linear) dictionary Ψ(xxx) so that Ψ(xxx)Ψ(yyy)∗ = 〈ϕ(xxx), ϕ(yyy)〉H = S(xxx,yyy).

Often S can be evaluated in O(d) operations, meaning that K̃EDMD is constructed in O(dM2) oper-

ations.

In either of these two cases, the approximation of K is equivalent to using a new dictionary with feature

map Ψ(xxx)Vr ∈ C1×r. In the case of DMD, it is beneficial to use the mathematically equivalent choice

Ψ(xxx)VrΣ
−1
r , which is numerically better conditioned. To see why, note that

√
WΨXVrΣ

−1
r ≈ Ur and Ur

has orthonormal columns.

The problem of vanishing residual estimates

Proposition 9.2.2. Suppose that
√
WΨXVr has full row rank, so that r = M , and that vvv ∈ CM is an

eigenvector of K̃EDMD with eigenvalue λ. Then res(λ, g) = 0.

Exercise: Prove Proposition 9.2.2.

Similarly, if r is too large, res(λ, g) will be a bad approximation of the true residual. In other words,

the regime r ∼ M prevents the large data convergence (M → ∞) of the quadrature rule, which holds for

a fixed basis and hence a fixed basis size. In turn, this prevents us from being able to apply the results of

Section 9.2.4. We next discuss how to overcome this issue by using two sets of snapshot data; these could

arise from two independent tests of the same system, or by partitioning the measured data into two groups.

Using two subsets of the snapshot data

A simple remedy to avoid the problem in Section 9.2.5 is to consider two sets of snapshot data. We

consider an initial set {x̃xx(j), ỹyy(j)}M ′j=1, which we use to form our dictionary. We then apply ResDMD to the

144



9.2. Residual Dynamic Mode Decomposition (ResDMD) CHAPTER 9. Data-driven Koopman Operators

Algorithm 3 : ResDMD with DMD selected observables.

Input: Snapshot data {x̃xx(j), ỹyy(j)}M ′j=1 and {x̂xx(j), ŷyy(j)}M ′′j=1, positive integer NK ≤M ′.
1: Set ΨDMD(xxx) =

[
e∗1xxx · · · e∗dxxx

]
.

2: Compute a truncated SVD

1√
M ′

(
ΨDMD(x̃xx(1))> · · · ΨDMD(x̃xx(M ′))>

)>
≈ UNKΣNV

∗
NK .

3: Apply Algorithms 1 and 2 with the matrices

ΨX =


ΨDMD(x̂xx(1))

...
ΨDMD(x̂xx(M ′′))

VNKΣ†NK , ΨY =


ΨDMD(ŷyy(1))

...
ΨDMD(ŷyy(M ′′))

VNKΣ†NK . (9.2.10)

Output: Spectral properties of Koopman operator according to Algorithms 1 and 2.

Algorithm 4 : ResDMD with kEDMD selected observables.

Input: Snapshot data {x̃xx(j), ỹyy(j)}M ′j=1 and {x̂xx(j), ŷyy(j)}M ′′j=1, positive-definite kernel function S : Ω×Ω→ R,
and positive integer NK ≤M ′.

1: Apply kEDMD to {x̃xx(m), ỹyy(m)}M ′m=1 with kernel S to compute the matrices K̃EDMD, UM ′ and ΣM ′

using the kernel trick.
2: Compute the dominant NK eigenvalues of K̃EDMD and stack the corresponding eigenvectors column-

by-column into Z ∈ CM ′×NK .
3: Apply a QR decomposition to orthogonalise Z to Q =

[
Q1 · · · QNK

]
∈ CM ′×NK .

4: Apply Algorithms 1 and 2 with {x̂xx(m), ŷyy(m)}M ′′m=1 and the dictionary {ψj}NKj=1, where

ψj(xxx) =
[
S(xxx, x̃xx(1)) S(xxx, x̃xx(2)) · · · S(xxx, x̃xx(M ′))

]
(UM ′Σ

†
M ′)Qj , 1 ≤ j ≤ NK .

Output: Spectral properties of Koopman operator according to Algorithms 1 and 2.

computed dictionary with a second set of snapshot data {x̂xx(j), ŷyy(j)}M ′′j=1, allowing us to prove convergence

as M ′′ →∞.

Exactly how to acquire a second set of snapshot data depends on the problem and method of data collec-

tion. Given snapshot data with random and independent {xxx(j)}, one can simply split up the snapshot data

into two parts. For initial conditions that are distributed according to a high-order quadrature rule, if one

already has access toM ′ snapshots then one must typically go back to the original dynamical system and re-

quest M ′′ further snapshots. For ergodic sampling along a trajectory, we can let {x̃xx(j), ỹyy(j)}M ′j=1 correspond

to the initial M ′ + 1 points of the trajectory (x̃xx(j) = F j−1(xxx0) for j = 1, . . . ,M ′) and let {x̂xx(j), ŷyy(j)}M ′′j=1

correspond to the initial M ′′ + 1 points of the trajectory (x̂xx(j) = F j−1(xxx0) for j = 1, . . . ,M ′′).

In the case of DMD, the two stage process is summarised in Algorithm 3. Often a suitable choice of

NK can be obtained by studying the decay of the singular values of the data matrix.

In the case of kEDMD, the two stage process is summarised in Algorithm 4. The choice of kernel S
determines the dictionary and the best choice depends on the application. In the following experiments, we

use the Laplacian kernel S(xxx,yyy) = exp (−γ‖xxx− yyy‖), where γ is the reciprocal of the average `2-norm of

the snapshot data after it is shifted to have mean zero.

We can now apply the theory of Section 9.2.4 in the limit M ′′ → ∞. It is well-known that the eigen-

values computed by DMD and kEDMD may suffer from spectral pollution. However, and crucially in our

setting, we do not directly use these methods to compute spectral properties of K. Instead, we are only
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using them to select a reasonable dictionary of size NK , after which our rigorous ResDMD algorithms can

be used. Moreover, we use {x̂xx(m), ŷyy(m)}M ′′m=1 to check the quality of the constructed dictionary. By study-

ing the residuals and using the error control in ResDMD, we can tell a-posteriori whether the dictionary is

satisfactory and whether NK is sufficiently large.

Finally, it is worth pointing out that the above choices of dictionaries are certainly not the only choices.

ResDMD can be applied to any suitable choice. For example, one could use other data-driven methods such

as diffusion kernels [GKKS18] or trained neural networks [LDBK17, MFF20].

9.3 Spectral Measures for measure-preserving Systems

In the following, we will use the setup outlined at the start of Chapter 4.

9.3.1 The setup and Koopman mode decompositions

Suppose that the associated dynamics is measure-preserving so that ω(E) = ω ({xxx : F (xxx) ∈ E}) for

any Borel measurable subset E ⊂ Ω. Equivalently, this means that the Koopman operator K asso-

ciated with the dynamical system in (9.0.1) is an isometry, i.e., ‖Kg‖ = ‖g‖ for all observables g ∈
D(K) = L2(Ω, ω). Dynamical systems such as Hamiltonian flows, geodesic flows on Riemannian mani-

folds, Bernoulli schemes in probability theory, and ergodic systems are all measuring-preserving. Moreover,

many dynamical systems become measure-preserving in the long-run.

As discussed in Chapter 4, spectral measures provide a way of diagonalising normal operators, including

self-adjoint and unitary operators, even in the presence of continuous spectra. Unfortunately, a Koopman

operator that is an isometry does not necessarily commute with its adjoint. Therefore, we must consider its

unitary extension before defining a spectral measure and Koopman mode decomposition.

Unitary extensions of isometries

Given a Koopman operator K of a measure-preserving dynamical system, we use the concept of unitary

extension to formally construct a related normal operator K′. That is, suppose that K : L2(Ω, ω) →
L2(Ω, ω) is an isometry, then there exists a unitary extension K′ defined on an extended Hilbert space H′

with L2(Ω, ω) ⊂ H′ [NFBK10, Proposition I.2.3].3 Even though such an extension is not unique, it allows

us to understand the spectral information of K by considering K′, which is a normal operator. If F is

invertible and measure-preserving, K is unitary and we can simply take K′ = K andH′ = L2(Ω, ω).

Spectral measures of a Koopman operator

Given an observable g ∈ L2(Ω, ω) ⊂ H′ of interest such that ‖g‖ = 1, the spectral measure of K′ with

respect to g is a scalar measure defined as µg(U) := 〈EK′(U)g, g〉, where U ⊂ T is a Borel measurable

set [RS80]. For plotting and visualisation, it is more convenient to equivalently consider the corresponding

probability measures νg defined on the periodic interval [−π, π]per after a change of variables λ = exp(iθ)

3To see how to extend K to a unitary operator K′, consider the Wold–von Neumann decomposition [NFBK10, Theorem I.1.1].

This decomposition states that K can be written as K = (⊕α∈ISα) ⊕ U for some index set I , where Sα is the unilateral shift on a

Hilbert space Hα and U is a unitary operator. Since one can extend any unilateral shift to a unitary bilateral shift, one can extend K
to a unitary operator K′.
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so that dµg(λ) = dνg(θ). We use the notation
∫

[−π,π]per
to denote integration along the periodic interval

[−π, π]per as
∫ π
−π is ambiguous since spectral measures can have atoms at ±π. The precise choice of g is

up to the practitioner: smooth g makes νg easier to compute but tends to blur out the spectral information

of K, whereas νg is more challenging to compute for non-smooth g but can give better resolution of the

underlying dynamics. In other situations the application itself dictates that a particular g is of interest.

To compute νg , we start by noting that the Fourier coefficients of νg are given by

ν̂g(n) :=
1

2π

∫
[−π,π]per

e−inθ dνg(θ) =
1

2π

∫
T
λ−n dµg(λ) =

1

2π
〈K′−ng, g〉, n ∈ Z. (9.3.1)

Since K′ is a unitary operator its inverse is its adjoint and thus, the Fourier coefficients of νg can be ex-

pressed in terms of correlations 〈Kng, g〉 and 〈g,Kng〉. That is, for g ∈ L2(Ω, ω),

ν̂g(n) =
1

2π
〈K−ng, g〉, n < 0, ν̂g(n) =

1

2π
〈g,Kng〉, n ≥ 0. (9.3.2)

Since g ∈ L2(Ω, ω) and (9.3.2) only depend on correlations with K, and νg is determined by its Fourier

coefficients, we find that νg is independent of the choice of unitary extensionK′. Henceforth, we can safely

dispense with the extension K′, and call νg the spectral measure of K with respect to g.

From (9.3.2), we find that ν̂g(−n) = ν̂g(n) for n ∈ Z, which tells us that νg is completely determined

by the forward-time dynamical autocorrelations 〈g,Kng〉with n ≥ 0. Equivalently, the spectral measure of

K with respect to almost every g ∈ L2(Ω, ω) is a signature for the forward-time dynamics of (9.0.1). This

is because νg completely determines K when g is cyclic, i.e., when the closure of span{g,Kg,K2g, . . .} is

L2(Ω, ω), and almost every g is cyclic. If g is not cyclic, then νg only determines the action of K on the

closure of span{g,Kg,K2g, . . . }, which can still be useful if one is interested in particular observables.

Continuous and discrete parts of spectra, and Koopman mode decompositions

Of particular importance to dynamical systems is Lebesgue’s decomposition of νg:

dνg(y) =
∑

λ=exp(iθ)∈Spp(K)

〈Pλg, g〉 δ(y − θ)dy

︸ ︷︷ ︸
discrete part

+ ρg(y) dy + dν(sc)
g (y)︸ ︷︷ ︸

continuous part

. (9.3.3)

The discrete (or atomic) part of νg is a sum of Dirac delta distributions, supported on Spp(K), the set

of eigenvalues of K.4 The coefficient of each δ in the sum is 〈Pλg, g〉 = ‖Pλg‖2, where Pλ is the

orthogonal spectral projector associated with the eigenvalue λ. The continuous part of νg consists of a

part that is absolutely continuous with respect to the Lebesgue measure, with Radon–Nikodym derivative

ρg ∈ L1([−π, π]per), and a singular continuous component ν(sc)
g . The decomposition in (9.3.3) provides

important information on the evolution of dynamical systems. For example, suppose that there is no singular

continuous spectrum, then any g ∈ L2(Ω, ω) can be written as

g =
∑

λ∈Spp(K)

cλϕλ +

∫
[−π,π]per

φθ,g dθ,

where the ϕλ are the eigenfunctions of K, cλ are expansion coefficients and φθ,g is a “continuously

parametrised” collection of eigenfunctions.5 Then, one obtains the Koopman mode decomposition [Mez05]

g(xxxn) = [Kng](xxx0) =
∑

λ∈Spp(K)

cλλ
nϕλ(xxx0) +

∫
[−π,π]per

einθφθ,g(xxx0) dθ. (9.3.4)

4After mapping to the periodic interval, the discrete part of νg is supported on the closure of Spp(K′). However, we can always

choose the extension K′ so that Spp(K′) = Spp(K) with the same eigenspaces.
5To be precise, φθ,g dθ is the absolutely continuous component of dEK

′
(θ)g and ρg(θ) = 〈φθ,g , g〉.
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Often, one can also characterise a dynamical system in terms of these decompositions. For example,

suppose F is measure-preserving and bijective, and ω is a probability measure. In that case, the dynamical

system is: (1) ergodic if and only if λ = 1 is a simple eigenvalue of K, (2) weakly mixing if and only if

λ = 1 is a simple eigenvalue of K and there are no other eigenvalues, and (3) mixing if λ = 1 is a simple

eigenvalue of K and K has absolutely continuous spectrum on span{1}⊥ [Hal17]. Different spectral types

also have interpretations in the context of fluid mechanics [Mez13], and weakly autonomous transport where

the Koopman operator has singular continuous spectra [Zas02].

9.3.2 General framework for computations

To develop convergence theory, we consider convolution with kernels. We form an approximation to νg by

convolution. That is, we define

νεg(θ0) =

∫
[−π,π]per

Kε(θ0 − θ)dνg(θ),

whereKε are a family of integrable functions {Kε : 0 < ε ≤ 1} satisfying certain properties (see Definition

9.3.1) so that νεg converges to νg in some sense. The most famous example of Kε is the Poisson kernel for

the unit disc given by

Kε(θ) =
1

2π

(1 + ε)2 − 1

1 + (1 + ε)2 − 2(1 + ε) cos(θ)
, (9.3.5)

in polar coordinates with r = (1 + ε)−1. The Poisson kernel is a first-order kernel because, up to a

logarithmic factor, it leads to a first-order algebraic rate of convergence of νεg to νg . We now give the

following general definition of an mth order kernel, and justify their name by showing that they lead to an

mth order rate of convergence of νεg to νg in a weak and pointwise sense (see Section 9.3.2).

Definition 9.3.1 (mth order periodic kernel). Let {Kε : 0 < ε ≤ 1} be a family of integrable functions on

the periodic interval [−π, π]per. We say that {Kε} is an mth order kernel for [−π, π]per if

(i) (Normalised)
∫

[−π,π]per
Kε(θ) dθ = 1.

(ii) (Approximately vanishing moments) There exists a constant CK such that∣∣∣∣∣
∫

[−π,π]per

θnKε(θ) dθ

∣∣∣∣∣ ≤ CKεm log(ε−1), for any integer 1 ≤ n ≤ m− 1. (9.3.6)

(iii) (Decay away from 0) For any θ ∈ [−π, π] and 0 < ε ≤ 1,

|Kε(θ)| ≤
CKε

m

(ε+ |θ|)m+1
. (9.3.7)

The conditions in Definition 9.3.1 are mostly technical assumptions that allow one to prove appropriate

convergence rates of νεg to νg . For pointwise convergence, property (iii) is required to apply a local cut-off

argument away from singular parts of the measure. Properties (i) and (ii) are used to show that terms vanish

in a local Taylor series expansion of the Radon–Nikodym derivative, and the remainder is bounded by (iii).

For weak convergence, we apply similar arguments to the test function by Fubini’s theorem.
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Pointwise convergence

For a point θ0 ∈ [−π, π], the value of the approximate spectral measure νεg(θ0) converges to the Radon–

Nikodym derivative, ρg(θ0) provided that νg is absolutely continuous in an interval containing θ0 (without

this separation condition it still converges for almost every θ0). The precise rate of convergence depends

on the smoothness of ρg in a small interval I containing θ0. In particular, we write ρg ∈ Cn,α(I) if ρg

is n-times continuously differentiable on I and the nth derivative is Hölder continuous with parameter

0 ≤ α < 1. For h1 ∈ C0,α(I) and h2 ∈ Ck,α(I) we define the seminorm and norm, respectively, as

|h1|C0,α(I) = sup
x 6=y∈I

|h1(x)− h1(y)|
|x− y|α

, ‖h2‖Ck,α(I) = |h(k)
2 |C0,α(I) + max

0≤j≤k
‖h(j)

2 ‖∞,I .

We state the following pointwise convergence theorem for general complex-valued measures ν as we apply

it to measures corresponding to test functions to prove Theorem 9.3.3. The choice ν = νg with ‖νg‖ = 1

in Theorem 9.3.2 gives pointwise convergence of spectral measures.

Theorem 9.3.2 (Pointwise convergence). Let {Kε} be an mth order kernel for [−π, π]per and let ν be a

complex-valued measure on [−π, π]per with finite total variation ‖ν‖. Suppose that for some θ0 ∈ [−π, π]

and η ∈ (0, π), ν is absolutely continuous on I = (θ0 − η, θ0 + η) with Radon–Nikodym derivative

ρ ∈ Cn,α(I) (α ∈ [0, 1)). Then the following hold for any 0 ≤ ε < 1:

(i) If n+ α < m, then∣∣∣∣∣ρ(θ0)−
∫

[−π,π]per

Kε(θ0 − θ) dν(θ)

∣∣∣∣∣ . CK(‖ν‖+ ‖ρ‖Cn,α(I)

)(
εn+α +

εm

(ε+ η)m+1

)(
1 + η−n−α

)
.

(9.3.8)

(ii) If n+ α ≥ m, then∣∣∣∣∣ρ(θ0)−
∫

[−π,π]per

Kε(θ0 − θ) dν(θ)

∣∣∣∣∣ . CK(‖ν‖+ ‖ρ‖Cm(I)

)(
εm log(ε−1) +

εm

(ε+ η)m+1

)(
1 + η−m

)
.

(9.3.9)

Here, ‘.’ means that the inequality holds up to a constant that only depends on n+ α and m.

Proof. By periodicity, we can assume without loss of generality that θ0 = 0. First, we decompose ρ into

two parts ρ = ρ1 +ρ2, where ρ1 ∈ Cn,α(I) is compactly supported on I and ρ2 vanishes on (−η/2,+η/2).

Using (9.3.7), we have∣∣∣∣∣ρ(0)−
∫

[−π,π]per

Kε(−θ)dν(θ)

∣∣∣∣∣ ≤
∣∣∣∣∣ρ1(0)−

∫
[−π,π]per

Kε(−θ)ρ1(θ) dθ

∣∣∣∣∣+

∫
|θ|>η/2

CKε
m d|νr|(θ)

(ε+ η/2)m+1
,

(9.3.10)

where dνr(θ) = dν(θ) − ρ1(θ) dθ. The second term on the right-hand side of (9.3.10) is bounded by

Ĉ1CK(‖ν‖+ ‖ρ1‖L∞(I))ε
m(ε+ η)−(m+1) for some constant Ĉ1 independent of all parameters. To bound

the first term, we expand ρ1 using Taylor’s theorem:

ρ1(θ) =

k−1∑
j=0

ρ
(j)
1 (0)

j!
θj +

ρ
(k)
1 (ξθ)

k!
θk, k = min(n,m), (9.3.11)

where |ξθ| ≤ |θ|. We now consider the two cases of the theorem separately.

Case (i): n + α <m. In this case, k = n and we can select ρ1 so that,

‖ρ1‖Cn,α(I) ≤ C(n, α)‖ρ‖Cn,α(I)

(
1 + η−n−α

)
, ‖ρ1‖L∞(I) ≤ C(n, α)‖ρ‖Cn,α(I) (9.3.12)
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for some universal constant C(n, α) that only depends on n and α. Existence of such a decomposition

follows from standard arguments with cut-off functions. Using (9.3.11), part (ii) of Definition 9.3.1 and the

first bound of (9.3.12), we obtain∣∣∣∣∣ρ1(0)−
∫

[−π,π]per

Kε(−θ)ρ1(θ) dθ

∣∣∣∣∣ ≤Ĉ2CK‖ρ‖Cn,α(I)ε
m log(ε−1)

(
1 + η−n−α

)
+

∣∣∣∣∣
∫

[−π,π]per

Kε(−θ)
ρ

(n)
1 (ξθ)− ρ(n)

1 (0)

n!
θn dθ

∣∣∣∣∣ ,
(9.3.13)

for some constant Ĉ2 independent of ε, η and ν (or ρ, ρ1, ρ2). Note that we have added the factor of ρ(n)
1 (0)

into the integrand by a second application of part (ii) of Definition 9.3.1 and the fact that n < m. The

Hölder continuity of ρ(n)
1 implies that |ρ(n)

1 (ξθ) − ρ(n)
1 (0)| ≤ C(n, α)‖ρ‖Cn,α(I) (1 + η−n−α) θα. Using

this bound in the integrand on the right-hand side of (9.3.13) and (9.3.7), we obtain∣∣∣∣∣ρ1(0)−
∫

[−π,π]per

Kε(−θ)ρ1(θ) dθ

∣∣∣∣∣ ≤ Ĉ3CK‖ρ‖Cn,α(I)

(
εm log(ε−1) + εn+α

∫ π/ε

0

τn+αdτ

(1 + τ)m+1

)(
1+η−n−α

)
,

for some constant Ĉ3 independent of ε, η and ν (or ρ, ρ1, ρ2). Since m > n + α, the integral in brackets

converges as ε ↓ 0 and the bound in (9.3.8) now follows.

Case (ii): n + α ≥m. In this case, k = m and we can select ρ1 such that

‖ρ1‖Cm(I) ≤ C(m)‖ρ‖Cm(I)

(
1 + η−m

)
,

for some universal constant C(m) that only depends on m. Again, existence of such a decomposition

follows from standard arguments with cut-off functions. Using (9.3.11) and applying (9.3.6) to the powers

θj for j < m and (9.3.7) to the θm term, we obtain∣∣∣∣∣ρ1(0)−
∫

[−π,π]per

Kε(−θ)ρ1(θ) dθ

∣∣∣∣∣ ≤ Ĉ2CK‖ρ‖Cm(I)

(
εm log(ε−1) + εm

∫ π/ε

0

τmdτ

(1 + τ)m+1

)(
1 + η−m

)
,

for some constant Ĉ2 independent of ε, η and ν (or ρ, ρ1, ρ2). The bound in (9.3.9) now follows.

Weak convergence

We now turn to proving weak convergence.

Theorem 9.3.3 (Weak convergence). Let {Kε} be anmth order kernel for [−π, π]per, φ ∈ Cn,α([−π, π]per),

and let νg be a spectral measure on the periodic interval [−π, π]per. Then∣∣∣∣∣
∫

[−π,π]per

φ(θ)νεg(θ) dθ −
∫

[−π,π]per

φ(θ) dνg(θ)

∣∣∣∣∣ . CK‖φ‖Cn,α([−π,π]per)

(
εn+α + εm log(ε−1)

)
,

(9.3.14)

where ‘.’ means that the inequality holds up to a constant that only depends on n+ α and m.

Proof. Let K̃ε(θ) = Kε(−θ), then it is easily seen that {K̃ε} is anmth order kernel for [−π, π]per. Fubini’s

theorem allows us to exchange the order of integration to see that∫
[−π,π]per

φ(θ)νεg(θ) dθ =

∫
[−π,π]per

φ(θ)[Kε ∗ νg](θ) dθ =

∫
[−π,π]per

[K̃ε ∗ φ](θ) dνg(θ).
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We can now apply Theorem 9.3.2 to the absolutely continuous measure with Radon–Nikodym derivative φ

and the kernel K̃ε (e.g., with η = π/2) to see that∣∣∣[K̃ε ∗ φ](θ)− φ(θ)
∣∣∣ ≤ C1CK‖φ‖Cn,α([−π,π]per)

(
εn+α + εm log(ε−1)

)
,

for some constant C1 depending on n, α and m. Since νg is a probability measure, (9.3.14) follows.

The high-order convergence in Theorem 9.3.3 does not require any regularity assumptions on νg . More-

over, though not covered by the theorem, for anymth order kernel and continuous periodic function φ, weak

convergence still holds.

Recovery of the atomic parts of the spectral measure

Finally, we consider the recovery of the atomic parts of spectral measures or, equivalently, Spp(K) - the set

of eigenvalues of K (see (9.3.3)). This convergence is achieved by rescaling the smoothed approximation

Kε ∗ νg .

Theorem 9.3.4 (Recovery of atoms). Let {Kε} be an mth order kernel for [−π, π]per that satisfies

lim sup
ε↓0

ε−1

|Kε(0)|
<∞,

and let νg be a spectral measure on [−π, π]per. Then, for any θ0 ∈ [−π, π]per,

νg({θ0}) = lim
ε↓0

1

Kε(0)
[Kε ∗ νg](θ0). (9.3.15)

Proof. By periodicity, we may assume without loss of generality that θ0 = 0. Let ν′g = νg − νg({0})δ0,

then
1

Kε(0)
[Kε ∗ νg](0) = νg({0}) +

1

Kε(0)
[Kε ∗ ν′g](0). (9.3.16)

Consider the functionKε(−θ)/Kε(0), which is uniformly bounded for sufficiently small ε using (9.3.7) and

the assumption lim supε↓0
ε−1

|Kε(0)| <∞. Since limε↓0Kε(−θ)/Kε(0) = 0 for any θ 6= 0 and ν′g({0}) = 0,

lim
ε↓0

1

Kε(0)
[Kε ∗ ν′g](0) = lim

ε↓0

∫
[−π,π]per

Kε(−θ)
Kε(0)

dν′g = 0,

where we used the dominated convergence theorem. Using (9.3.16), the theorem now follows.

The condition that lim supε↓0
ε−1

|Kε(0)| < ∞ is a technical condition that is satisfied by all the kernels

constructed in this chapter. A condition such as this is required to recover the atomic part of νg , as it says

that Kε must become localised around 0 sufficiently quickly as ε→ 0.

9.3.3 Computation from autocorrelations

We now suppose that one has already computed the autocorrelations 〈g,Kng〉 for 0 ≤ n ≤ N and would

like to recover a smoothed approximation of νg . Since the Fourier coefficients of νg are given by autocor-

relations (see (9.3.1)), the task is similar to Fourier recovery [GS97b, AH12]. We are particularly interested

in approaches with good convergence properties as N → ∞, as this reduces the number of computed

autocorrelations and the sample size M required for good recovery of the spectral measure.
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Motivated by the classical task of recovering a continuous function by its partial Fourier series, we start

by considering the “windowing trick” from sampling theory. That is, we define a smoothed approximation

to νg as

νg,N (θ) =

N∑
n=−N

ϕ
( n
N

)
ν̂g(n)einθ =

1

2π

−1∑
n=−N

ϕ
( n
N

)
〈g,K−ng〉einθ +

1

2π

N∑
n=0

ϕ
( n
N

)
〈g,Kng〉einθ.

(9.3.17)

The function ϕ : [−1, 1]→ R is often called a filter function. The idea of ϕ is that ϕ(x) is close to 1 when

x is close to 0, and ϕ tapers to 0 near x = ±1. By carefully tapering ϕ, the partial sum in (9.3.17) converges

to νg as N →∞. For fast pointwise or weak convergence of νg,N to νg , it is desirable for ϕ to be an even

function that smoothly tapers from 1 to 0.

One of the simplest filters is the hat function ϕhat(x) = 1 − |x|, for which (9.3.17) corresponds to the

classical Cesàro summation of Fourier series. With this choice of ϕ, νg,N (θ) is the convolution of νg with

the famous Fejèr kernel, FN (θ) =
∑N
n=−N (1− |n|/N)einθ. Other filter functions can provide a faster rate

of convergence than ϕhat(x) = 1− |x|, including the cosine and fourth-order filters [GS97b]:

ϕcos(x) =
1

2
(1− cos(πx)), ϕfour(x) = 1− x4(−20|x|3 + 70x2 − 84|x|+ 35).

For the recovery of measures, we find that a particularly good choice is

ϕbump(x) = exp

(
− 2

1− |x|
exp

(
− c

x4

))
, c ≈ 0.109550455106347, (9.3.18)

where the value of c is selected so that ϕbump(1/2) = 1/2. This filter can lead to arbitrary high orders of

convergence with errors between νg,N and νg that go to zero faster than any polynomial in N−1. A further

useful property is that νg,N localises any singular behavior of νg .6

Algorithm 5 summarises our computational framework for recovering a smoothed version of νg from

autocorrelations of the trajectory data. It is easy to verify that νg,N = Kε ∗ νg with

Kε(θ) =
1

2π

N∑
n=−N

ϕ
( n
N

)
einθ, N = bε−1c.

The properties of an mth order kernel can be translated to properties of a filter and we can therefore use the

convergence theory of Section 9.3.2.

Proposition 9.3.5. Let m ∈ N and suppose that ϕ is an even continuous function that is compactly sup-

ported on [−1, 1] such that (a) ϕ ∈ Cm−1([−1, 1]), (b) ϕ(0) = 1 and ϕ(n)(0) = 0 for any integer

1 ≤ n ≤ m − 1, (c) ϕ(n)(1) = 0 for any integer 0 ≤ n ≤ m − 1, and (d) ϕ|[0,1] ∈ Cm+1([0, 1]).

Then,

Kε(θ) =
1

2π

N∑
n=−N

ϕ
( n
N

)
einθ, N = bε−1c (9.3.19)

is an mth order kernel for [−π, π]per.

Exercise: Prove Proposition 9.3.5 using the Poisson summation formula.

Therefore, it can be verified that: ϕhat, ϕcos, and ϕfour induce first-order, second-order and fourth-order

kernels in (9.3.19), respectively. Similarly, ϕbump induces a kernel that is mth order for any m ∈ N. For

example, up to a logarithmic factor, the rate of convergence for ϕfour is O(ε4) as ε → 0 (resp. O(N−4) as

N →∞) in a weak and pointwise sense.
6This because the kernel associated with ϕbump (see Proposition 9.3.5) is highly localised due to the smoothness of ϕbump.
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Algorithm 5 A computational framework for recovering an approximation of the spectral measure νg asso-

ciated with a Koopman operator that is an isometry.
Input: Trajectory data, a filter ϕ, and an observable g ∈ L2(Ω, ω).

1: Approximate the autocorrelations an = 1
2π 〈g,K

ng〉 for 0 ≤ n ≤ N . (The precise value of N and the

approach depends on the trajectory data (see Section 9.2.3).)

2: Set a−n = an for 1 ≤ n ≤ N .

Output: The function νg,N (θ) =
∑N
n=−N ϕ

(
n
N

)
ane

inθ that can be evaluated for any θ ∈ [−π, π]per.
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Figure 9.1: Relative errors between νg,N and νg for the shift operator computed with filters ϕhat (blue),
ϕcos (red), ϕfour (yellow), and ϕbump (purple). Left: Relative error between νg,N to νg in the sense of weak
convergence for the test function φ(θ) = cos(5θ)/(2 + cos(θ)). Right: Relative error between νg,N to ρg
at θ = 0, illustrating pointwise convergence.

As an example, consider the shift operator with state-space Ω = Z (and counting measure ω) given by

xn+1 = F (xn), F (x) = x+ 1.

We seek to compute the spectral measure νg with respect to g ∈ L2(Z, ω) = `2(Z), where `2(Z) is the space

of square summable doubly infinite vectors. This example is a building block of many dynamical systems,

such as Bernoulli shifts, with so-called Lebesgue spectrum [AA68, Chapter 2]. We consider the observable

g(k) = C sin(k)/k, where C ≈ 0.564189583547756 is a normalisation constant so that ‖g‖ = 1. For

this example, νg is absolutely continuous but ρg has discontinuities at θ = ±1. Figure 9.1 shows the weak

convergence (left) and pointwise convergence (right) for various filters.

9.3.4 Computation using ResDMD

We now develop rational kernels that allow us to compute smoothed approximations of spectral measures

from the ResDMD matrices Ψ∗XWΨX , Ψ∗XWΨY , and Ψ∗YWΨY . Moreover, these matrices can be reused

to computed spectral measures with respect to different observable functions g.

The following lemma will be used to build mth order rational kernels. It provides sufficient conditions

for a family of integrable functions to be an mth order kernel.

Lemma 9.3.6. Let {Kε : ε ∈ (0, 1]} be a family of integrable functions on the periodic interval [−π, π]per
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that integrate to 1. Suppose that there exists a constant C such that for any integer n with 0 < n ≤ m− 1,∣∣∣∣∣
∫

[−π,π]per

Kε(−θ)einθdθ − 1

∣∣∣∣∣ ≤ Cεm log(ε−1), (9.3.20)

and such that

|Kε(θ)| ≤
Cεm

(ε+ |θ|)m+1
, (9.3.21)

for any θ ∈ [−π, π]per and ε ∈ (0, 1]. Then {Kε} is an mth order kernel for [−π, π]per.

Exercise: Prove Lemma 9.3.6.

We begin by considering a unitary extension K′ of K, which is defined on a Hilbert space H′ that is an

extension of L2(Ω, ω). Let z ∈ C with |z| > 1 and g ∈ L2(Ω, ω). Since ‖K‖ = 1 < |z| for z 6∈ Sp(K),

(K′ − z)−1g = (K − z)−1g and

〈(K − z)−1g,K∗g〉 = 〈K′(K′ − z)−1g, g〉H′ =

∫
T

λ

λ− z
dµg(λ) =

∫
[−π,π]per

eiθ

eiθ − z
dνg(θ), (9.3.22)

where the last equality follows from a change-of-variables. If z 6= 0 with |z| < 1, then z may be in Sp(K)

since K is not necessarily unitary. However, since |z−1| > 1, z−1 6∈ Sp(K) and hence (K′ − z−1)−1g =

(K − z−1)−1g. Since νg is a real-valued measure, we find that

〈g, (K−z−1)−1g〉 = 〈g, (K′−z−1)−1g〉H′ =

∫
[−π,π]per

dνg(θ)

eiθ − z−1 = −z
∫

[−π,π]per

eiθdνg(θ)

eiθ − z
. (9.3.23)

The leftmost and rightmost sides of (9.3.22) and (9.3.23) are independent of K′, so we can safely dispense

with the extension and have an expression for a generalised Cauchy transform of νg , i.e.,

Cνg(z) =
1

2π

∫
[−π,π]per

eiθdνg(θ)

eiθ − z
=

1

2π

〈(K − z)
−1g,K∗g〉, if |z| > 1,

−z−1〈g, (K − z−1)−1g〉, if z 6= 0 with |z| < 1.
(9.3.24)

The importance of (9.3.24) is that it relates Cνg to the resolvent operator (K − z)−1 for |z| > 1. Below, we

show how to compute the resolvent operator from snapshot data for |z| > 1. Since |z| > 1, we can provide

convergence results and stability results even when we replace K by a discretisation.

To recover νg from Cνg , a derivation motivated by the Sokhotski–Plemelj formula shows that

Cνg
(
eiθ0(1 + ε)−1

)
− Cνg

(
eiθ0(1 + ε)

)
=

∫
[−π,π]per

Kε(θ0 − θ) dνg(θ), (9.3.25)

where Kε is the Poisson kernel for the unit disc (see (9.3.5)). The Poisson kernel for the unit disc is a

first-order kernel. We can generalise the Sokhotski–Plemelj-like formula in (9.3.25) to develop high-order

rational kernels. Let {zj}mj=1 be distinct points with positive real part and consider the rational function:

Kε(θ) =
e−iθ

2π

m∑
j=1

[
cj

e−iθ − (1 + εzj)−1
− dj
e−iθ − (1 + εzj)

]
. (9.3.26)

A short derivation using (9.3.24) shows that∫
[−π,π]per

Kε(θ0 − θ) dνg(θ) =

m∑
j=1

[
cjCνg

(
eiθ0(1 + εzj)

−1
)
− djCνg

(
eiθ0(1 + εzj)

)]
=
−1

2π

m∑
j=1

[
cje
−iθ0(1 + εzj)〈g, (K − eiθ0(1 + εzj))

−1g〉+ dj〈(K − eiθ0(1 + εzj))
−1g,K∗g〉

]
.

(9.3.27)
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It follows that we can compute the convolution [Kε ∗ νg](θ0) by evaluating the resolvent at the m points

{eiθ0(1 + εzj)}mj=1. We use rational kernels because they allow us to compute smoothed approximations of

the spectral measure by applying the resolvent operator to functions.

However, for (9.3.27) to be a good approximation of νg , we must carefully select the points zj and the

coefficients {cj , dj} in (9.3.26). In particular, we would like {Kε} to be an mth order kernel. First, we

define ζj(ε) by the relationship 1 + εζj(ε) = (1 + εzj)
−1 and use Cauchy’s Residue Theorem to show that

for any integer n ≥ 1,

∫
[−π,π]per

Kε(−θ)einθ dθ =
1

2πi

∫
T

 m∑
j=1

cj
λ− (1 + εzj)−1

−
m∑
j=1

dj
λ− (1 + εzj)

λn dλ
=

m∑
j=1

cj(1 + εzj)
−n =

 m∑
j=1

cj

+

n∑
k=1

εk
(
n

k

) m∑
j=1

cjζj(ε)
k.

It follows that condition (9.3.20) in Lemma 9.3.6 holds if
1 . . . 1

ζ1(ε) . . . ζm(ε)
...

. . .
...

ζ1(ε)m−1 . . . ζm(ε)m−1




c1(ε)

c2(ε)
...

cm(ε)

 =


1

0
...

0

 . (9.3.28)

Note also that, if this holds, the coefficients cj = cj(ε) remain bounded as ε ↓ 0. To ensure that the decay

condition in (9.3.21) is satisfied, let ω = (e−iθ − 1)/ε. The kernel in (9.3.26) can then be re-written as

Kε(θ) =
ε−1e−iθ

2π

m∑
j=1

[
cj

ω − ζj(ε)
− dj
ω − zj

]
. (9.3.29)

Therefore, we have

ωKε(θ) =
ε−1e−iθ

2π

m∑
j=1

[
cj +

cjζj(ε)

ω − ζj(ε)
− dj −

djzj
ω − zj

]

=
ε−1e−iθ

2π

m∑
j=1

(cj − dj) +
ε−1e−iθ

2π

m∑
j=1

[
cjζj(ε)

ω − ζj(ε)
− djzj
ω − zj

]
.

By repeating the same argument m times, we arrive at

ωmKε(θ) =
ε−1e−iθ

2π

m−1∑
k=0

ωm−1−k
m∑
j=1

(cjζj(ε)
k − djzkj ) +

m∑
j=1

(
cjζj(ε)

m

ω − ζj(ε)
−

djz
m
j

ω − zj

) . (9.3.30)

This means that we should select the dk’s so that
1 . . . 1

z1 . . . zm
...

. . .
...

zm−1
1 . . . zm−1

m




d1

d2

...

dm

 =


1

0
...

0

 . (9.3.31)

We conclude that if the coefficients {cj}mj=1 and {dj}mj=1 satisfy (9.3.28) and (9.3.31), respectively, then

m−1∑
k=0

ωm−1−k
m∑
j=1

(cjζj(ε)
k − djzkj ) = 0,

∣∣∣∣∣∣
m∑
j=1

(
cjζj(ε)

m

ω − ζj(ε)
−

djz
m
j

ω − zj

)∣∣∣∣∣∣ . |ω|−1.
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Figure 9.2: The mth-order kernels (9.3.26) constructed with the choice (9.3.32) for ε = 1 and 1 ≤ m ≤ 6.

m {d1, . . . , ddm/2e} {c1(ε), . . . , cdm/2e(ε)}, ε = 0.1

2
{

1−3i
2

} {
3+10i

6

}
3 {−2− i, 5}

{−202+79i
80 , 121

20

}
4

{−39+65i
24 , 17−85i

8

} {−1165710−2944643i
750000 , 513570+3570527i

250000

}
5

{
15+10i

4 , −39−13i
2 , 65

2

} {
4052283−1460282i

648000 , −2393157+486551i
81000 , 190333

4000

}
6

{
725−1015i

192
, −2775+6475i

192
, 1073−7511i

96

} {
24883929805+81589072062i

8067360000
, −19967590755−93596942182i

1613472000
, 7898770397+102424504746i

806736000

}

Table 9.1: Coefficients in the rational kernels in (9.3.26) for 1 ≤ m ≤ 6, the choice (9.3.32), and ε = 0.1.

We give the first dm/2e coefficients as cm+1−j = cj and dm+1−j = dj .

By (9.3.30), this means that |ω|m |Kε(θ)| . ε−1|ω|−1. Moreover, since |Kε(θ)| . ε−1 we see that

|Kε(θ)| . min{ε−1, εm|θ|−(m+1)} . εm(ε + |θ|)−(m+1). Using Lemma 9.3.6, we have proved the fol-

lowing proposition.

Proposition 9.3.7. Let {zj}mj=1 be distinct points with positive real part and let Kε be given by (9.3.26).

Then, {Kε} is an mth order kernel for [−π, π]per if the coefficients {cj}mj=1 and {dj}mj=1 satisfy (9.3.28)

and (9.3.31), respectively.

The choice of rational kernel

We are free to choose the points {zj}mj=1 in (9.3.7) subject to Re(zj) > 0, after which the linear systems

(9.3.28) and (9.3.31) provide suitable {cj}mj=1 (dependent on ε) and {dj}mj=1 (independent of ε). As a

natural extension of the Poisson kernel in (9.3.5), we select the points {zj}mj=1 as

zj = 1 +

(
2j

m+ 1
− 1

)
i, 1 ≤ j ≤ m. (9.3.32)

The kernels that we have developed are typically not real-valued. Since νg is a probability measure and

hence real-valued, we often gain better accuracy for a particular ε by considering the kernel Re(Kε), and

this is what we do throughout this chapter. The convolution with Re(Kε) can be computed by taking the

real part of the right-hand side of (9.3.27). The first six kernels with the choice ε = 1 are shown in Figure

9.2. The exact coefficients {cj , dj}mj=1 for ε = 0.1 are shown in Table 9.1 for the first six kernels.
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An algorithm for evaluating a smoothed spectral measure

To evaluate [Kε ∗ νg] at a single point θ0 ∈ [−π, π]per, we use the setup of ResDMD so that we can

obtain rigorous a posteriori error bounds on the computed resolvents, allowing us to adaptively select the

dictionary size NK based on the smoothing parameter ε. Since K is an isometry, we only need to compute

(K − z)−1 for |z| > 1 = ‖K‖ and so we can achieve our goal with standard Galerkin truncations of K.

Theorem 9.3.8. Suppose that K is an isometry and λ ∈ C with |λ| > 1. Let ψ1, ψ2, . . . be a dictionary

of observables and VNK = span {ψ1, . . . , ψNK}, so that ∪NK∈NVNK is dense in L2(Ω, ω). Then, for any

sequence of observables gNK ∈ VNK such that limNK→∞ gNK = g ∈ L2(Ω, ω),

lim
NK→∞

(
PVNKKPVNK − λINK

)−1

gNK = (K − λ)−1g,

where PVNK is the orthogonal projection operator onto VNK and INK is the NK ×NK identity matrix.

Exercise: Prove Theorem 9.3.8 using a Neumann series argument.

We now apply Theorem 9.3.8 to evaluate [Kε ∗νg] at θ0. Recall from (9.3.27) that there are two types of

inner products to compute: (i) 〈g, (K−λ)−1g〉 and (ii) 〈(K−λ)−1g,K∗g〉 for some observable g. We form

a sequence of observables gNK ∈ VNK by setting gNK = PVNK g, which can be approximately computed

from snapshot data as

g̃NK =

NK∑
j=1

aaajψj , aaa = (Ψ∗XWΨX)−1Ψ∗XW


g(xxx

(1)
0 )
...

g(xxx
(M)
0 )

 ∈ CNK . (9.3.33)

Under suitable conditions, such as those already discussed in Section 9.2.3, limM→∞ g̃NK = gNK . Since

(
PVNKKPVNK − λINK

)−1

gNK = lim
M→∞

NK∑
j=1

[
(Ψ∗XWΨY − λΨ∗XWΨX)−1Ψ∗XWΨXaaa

]
j
ψj ,

it follows that our two types of inner products satisfy〈
gNK ,

(
PVNKKPVNK − λINK

)−1

gNK

〉
= lim
M→∞

aaa∗Ψ∗XWΨX(Ψ∗XWΨY − λ(Ψ∗XWΨX))−1Ψ∗XWΨXaaa,

(9.3.34)〈(
PVNKKPVNK − λINK

)−1

gNK ,K∗gNK
〉

= lim
M→∞

aaa∗Ψ∗XWΨY (Ψ∗XWΨY − λΨ∗XWΨX)−1Ψ∗XWΨXaaa.

(9.3.35)

For a given value of M , the right-hand side of (9.3.34) and (9.3.35) can then be substituted into (9.3.27)

to evaluate [Kε ∗ νg](θ0). Often we can estimate the error between these computed inner products and the

limiting value as M → ∞ by comparing the computations for different M or by using a priori knowledge

of the convergence rates. NK can be adaptively chosen (by approximating the error in the large data

limit and adding observables to the dictionary if required) so that the left-hand sides of (9.3.34) and (9.3.35)

approximate the inner products 〈g, (K−λ)−1g〉 and 〈(K−λ)−1g,K∗g〉, respectively, to a desired accuracy.

Thus, for a given smoothing parameter ε, we have a principled way of selecting (a) the sample size M and

(b) the truncation size NK to ensure that our approximations of the inner products in (9.3.27) are accurate.

157



9.4. Numerical Examples CHAPTER 9. Data-driven Koopman Operators

Algorithm 6 A computational framework for evaluating an approximate spectral measure with respect to

g ∈ L2(Ω, ω) at {θk}Pk=1 ⊂ [−π, π]per of an isometry K using snapshot data.

Input: Snapshot data {xxx(j), yyy(j)}Mj=1 (such that yyy(j) = F (xxx(j))), quadrature weights {wj}Mj=1, a dic-

tionary of observables {ψj}NKj=1, m ∈ N, smoothing parameter 0 < ε < 1 (accuracy goal is εm), dis-

tinct points {zj}mj=1 ⊂ C with Re(zj) > 0 (recommended choice is (9.3.32)), and evaluation points

{θk}Pk=1 ⊂ [−π, π]per.

1: Solve (9.3.28) and (9.3.31) for c1(ε), . . . , cm(ε) ∈ C and d1, . . . , dm ∈ C, respectively.

2: Compute Ψ∗XWΨX and Ψ∗XWΨY , where ΨX and ΨY are given in (9.2.3).

3: Compute a generalised Schur decomposition of Ψ∗XWΨY and Ψ∗XWΨX , i.e., Ψ∗XWΨY = QSZ∗

and Ψ∗XWΨX = QTZ∗, where Q,Z are unitary and S, T are upper triangular.

4: Compute aaa in (9.3.33) and v1 = TZ∗aaa, v2 = T ∗Q∗aaa, and v3 = S∗Q∗aaa.

5: For k = 1, . . . , P

6: Compute Ij = (S − eiθk(1 + εzj)T )−1v1 for 1 ≤ j ≤ m.

7: Compute νεg(θk) = −1
2π

∑m
j=1 Re

[
cj(ε)e

−iθk(1 + εzj)(I
∗
j v2) + dj(v

∗
3Ij)

]
.

8: end for

Output: Values of the approximate spectral measure, i.e., {νεg(θk)}Pk=1.

In general, the cost of point evaluation of [Kε ∗ νg] using these formulas isO(N3
K) operations as it requires

m solutions of NK ×NK dense linear systems.

To evaluate [Kε ∗ νg] at θ1, . . . , θP ∈ [−π, π]per, one can be more computationally efficient than in-

dependently computing each of the inner products in (9.3.34) and (9.3.35) for each θk for 1 ≤ k ≤ P .

Instead, one can compute a generalised Schur decomposition and use it to speed up the evaluation. Let

Ψ∗XWΨY = QSZ∗ and Ψ∗XWΨX = QTZ∗ be a generalised Schur decomposition, where Q and Z are

unitary matrices and S and T are upper-triangular matrices. With this decomposition in hand,

aaa∗Ψ∗XWΨX(Ψ∗XWΨY − λ(Ψ∗XWΨX))−1Ψ∗XWΨXaaa = aaa∗QT (S − λT )−1TZ∗aaa,

aaa∗Ψ∗XWΨY (Ψ∗XWΨY − λΨ∗XWΨX)−1Ψ∗XWΨXaaa = aaa∗QS(S − λT )−1TZ∗aaa.

Now, after computing the generalised Schur decomposition costing O(N3
K) operations, each evaluation

requires solvingNK×NK upper-triangular linear systems inO(N2
K) operations. Additional computational

savings can be realised if one is willing to do each evaluation at θ1, . . . , θP in parallel. We summarise the

evaluation scheme in Algorithm 6.

9.4 Numerical Examples

9.4.1 Non-linear pendulum (d = 2)

Let xxx = (x1, x2) = (θ, θ̇) be the state variables governed by the following equations of motion:

ẋ1 = x2, ẋ2 = − sin(x1), with Ω = [−π, π]per × R, (9.4.1)

where ω is the standard Lebesgue measure. We consider the corresponding discrete-time dynamical system

by sampling with a time-step ∆t = 0.5. For the dictionary of observables ψ1, . . . , ψNK , we use a hyperbolic
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Figure 9.3: The ε-pseudospectra for the non-linear pendulum and ε = 0.25 (shaded region) computed
using Algorithm 2 with discretisation sizes NK . Discretisation sizes correspond to a hyperbolic cross
approximation. The computed ε-pseudospectra converge as NK → ∞. The unit circle (red line) is shown
with the EDMD eigenvalues (magenta dots), many of which are spurious. ResDMD removes spurious
eigenvalues by computing pseudospectra.

cross approximation with the standard Fourier basis (in x1 ∈ [−π, π]per) and Hermite functions (in x2 ∈ R).

We use the trapezoidal quadrature rule to compute Ψ∗XWΨX , Ψ∗XWΨY , and Ψ∗YWΨY , where ΨX and

ΨY are given in (9.2.3). To simulate the collection of trajectory data, we compute trajectories starting at

each initial condition using the ode45 command in MATLAB. We stress that we only use ode45 as a

black-box integrator - all of our algorithms in this chapter are purely data driven.

The system is Hamiltonian and hence the Koopman operator is unitary. It follows that Spε(K) = {z ∈
C : dist(z,T) ≤ ε}. Figure 9.3 shows the computed pseudospectrum for ε = 0.25. The algorithm uses a

discretisation size of NK to compute a set guaranteed to be inside Spε(K) (i.e., no spectral pollution), that

also converges as NK → ∞. We also show the corresponding EDMD eigenvalues. Some of these EDMD

eigenvalues are reliable, but the majority are not, demonstrating severe spectral pollution. Note that this

spectral pollution has nothing to do with any stability issues, but instead is due to the discretisation of the

infinite-dimensional operatorK by a finite matrix. Using the ε-pseudospectrum for different ε, we can detect

exactly which of these eigenvalues are reliable. Using Algorithm 2 and NK = 964, we also compute some

approximate eigenfunctions corresponding to λ = exp(0.4932i), λ = exp(0.9765i), λ = exp(1.4452i),

and λ = exp(1.8951i) (see Figure 9.4). As λ moves further from 1, we typically see increased oscillations

in the approximate eigenfunctions.

The Koopman operator associated with (9.4.1) has a continuous spectrum. We now compute spectral

measures from autocorrelations using Algorithm 5 and consider a corresponding discrete-time system by

sampling (9.4.1) with a time-step of ∆t = 1. We look at the following observable that involves non-trivial

dynamics in each coordinate:

g(x1, x2) = C(1 + i sin(x1))(1−
√

2x2)e−x
2
2/2,

where C ≈ 0.24466788518668 is a normalisation constant. Figure 9.5 shows high resolution approxima-

tions of the spectral measure νg for N = 100 and N = 1000. The spectral measure is purely continuous

(no atoms) away from θ = 0, consistent with the general theory of integrable Hamiltonian systems with

one degree of freedom [Mez20]. Note that the constant function 1 is not in L2([0, 2π]per × R) and hence

cannot be an eigenfunction. We confirmed this by using Theorem 9.3.4 for larger N and observing that the
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Figure 9.4: The approximate eigenfunctions of the non-linear pendulum visualised as phase portraits, where
the color illustrates the complex argument of the eigenfunction. We also plot lines of constant modulus
as shadowed steps. All of these approximate eigenfunctions have residuals at most ε = 0.05 as judged
by (9.2.5), which can be made smaller by increasing NK .
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Figure 9.5: Computed spectral measure using Algorithm 5 with (9.3.18) for the non-linear pendulum.
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Figure 9.6: Schematic of the TR-PIV experiments conducted in the Wall Jet Wind Tunnel of Virginia Tech.

peak at θ = 0 seen in Figure 9.5 does not grow as fast as ∝ N .

9.4.2 Turbulent wall-jet boundary layer flow (d = 102, 300)

We now consider a turbulent wall-jet boundary layer flow [Ger15, GAE+00, KRH+19]. For this example,

we assess the performance of the ResDMD algorithm on a set of time-resolved (TR) particle image ve-

locimetry (PIV) data. We consider the boundary layer generated by a thin jet (hjet = 12.7mm) injecting

air onto a smooth flat wall. This case is challenging for regular DMD approaches due to multiple turbu-

lent scales expected within the boundary layer. This section demonstrates the use of ResDMD for a high

Reynolds number, turbulent, complex flow field.

Experiments using TR-PIV are performed at the Wall Jet Wind Tunnel of Virginia Tech, as schemati-

cally shown in Figure 9.6. A two-dimensional two-component TR-PIV system is used to capture the wall-jet

flow and the streamwise origin of the field-of-view (FOV) is x̂ =1282.7mm downstream of the wall-jet noz-

zle. We use a jet velocity of Uj =50m/s, corresponding to a jet Reynolds number of Rejet = hjetUj/ν =

63.5× 103. The length and height of the FOV is approximately 75mm × 45mm, and the spatial resolution

of the velocity vector field is 0.25mm. The high-speed cameras are operated in a double frame mode, with

a rate of 12,000 frame pairs per second, resulting in a fine temporal resolution of 0.083ms.

The flow consists of two main regions. Within the region bounded by the wall and the peak in the veloc-

ity profile, the flow exhibits the properties of a zero pressure gradient turbulent boundary layer. Above this

fluid portion, the flow is dominated by a two-dimensional shear layer consisting of rather large, energetic

flow structures. While the peak in the velocity profile is ym ≈ 18mm from the wall in our case, the overall

thickness of the wall-jet flow is on the order of 200mm. Clearly, the PIV experiments must compromise be-

tween a good spatial resolution or capturing the entire flow field. In our case, the FOV was not tall enough

to capture the entire wall-jet flow field. For this reason, the standard DMD algorithm under-predicts the

energies corresponding to the shear-layer portion of the wall-jet flow as the corresponding length scales fall

outside of the limits of the FOV.

We collect snapshot data of the velocity field from two separate realisations of the experiment. We use
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Figure 9.7: Left: Forecast of total kinetic energy (normalised by the time average of the kinetic energy),
averaged over the 12000 initial conditions. Values closer to 1 correspond to better predictions. Right: Pseu-
dospectral contours computed using Algorithm 2 for the wall-jet example, using a non-linear dictionary.
The eigenvalues of the finite Galerkin matrix KEDMD are shown as red dots. The shape of the contours
reflect the transient modes. The blue curve corresponds to a fit r = exp(−c|θ|) of these contours and the
boundary of the eigenvalues, and represents successive powers of modes.

the first experiment to generate data {x̃xx(j), ỹyy(j)}M ′j=1 with M ′ = 2000, corresponding to 121 boundary layer

turnover times. This data is used to select our dictionary of functions. We use the second experiment to

generate data {x̂xx(j), ŷyy(j)}M ′′j=1 with M ′′ = 12000 (a single trajectory of one second of physical flow time

and 728 boundary layer turnover times), which we use to generate the ResDMD matrices, as outlined in

Section 9.2.5. To demonstrate the need for non-linear functions in our dictionary, we compute the Koopman

mode decomposition of the total kinetic energy of the domain. Using this decomposition, we compute

forecasts of the total energy from a given initial condition of the system. Figure 9.7 (left) shows the results,

where we average over the 12000 initial conditions in the data set and normalise by the true time-averaged

kinetic energy. We use Algorithms 3 and 4 with NK = 2000, which we refer to as a linear dictionary

and non-linear dictionary, respectively. The importance of including non-linear functions in the dictionary

is clear, and corresponds to a much better approximation of K’s spectral content near 0. For the rest

of this section, we therefore only use the non-linear dictionary. Figure 9.7 (right) shows pseudospectral

contours computed using Algorithm 2. The contours appear to be centered around a curve of the form

r = exp(−c|θ|) (shown as blue in the plot), corresponding to successive powers of transient modes. This

is reflected in the eigenvalues of the finite NK ×NK Galerkin matrix KEDMD, shown as red dots, some of

which correspond to spectral pollution. The eigenvalues of non-normal matrices can be severely unstable

to perturbations, particularly for large NK , so we checked the computation of the eigenvalues of KEDMD

by comparing to extended precision and predict a bound of ≈ 10−10 on the error in Figure 9.7 (right).

To investigate the Koopman modes, we compute the ResDMD Koopman mode decomposition corre-

sponding to Algorithm 1 with the error tolerance ε = 0.5 to get rid of the most severe spectral pollution. The

total number of modes used is 656. Figure 9.8 illustrates a range of Koopman modes which are long-lasting

(left-hand column) and transient (right-hand column). Due to residual measures, we are able to accurately

select physical transient modes. Within each figure, the arrows dictate the unsteady fluid structure (com-

puted from the Koopman modes of the velocity fields), with the magnitude of the arrow indicating the local

flow speed, and the colourbar denotes the Koopman mode of the velocity magnitude. The corresponding
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approximate eigenvalues, λ, and residual bound are provided for each mode.

The modes in the left column of Figure 9.8 illustrate the range of rolling eddies within the bound-

ary layer, with the smaller structures containing less energy than the largest structures. Interestingly, the

third mode in the left column resembles the shape of ejection-like motions within the boundary layer flow

(y/ym < 1) while larger-scale structures above the boundary layer (y/ym > 1) are also visible. This may

be interpreted as a non-linear interaction in the turbulent flow field, which is efficiently captured using the

ResDMD algorithm. The transient modes in the right column of Figure 9.8 show a richer structure. Based

on our analysis, we interpret these modes as transient, short-lived behaviour of turbulence. The uppermost

panel may be seen as the shear layer traveling over the boundary layer (y/ym > 1), with the following panel

potentially seen as the breakdown of this transient structure into smaller structures. The third panel may

be seen as an interaction between an ejection-type vortex and the shear layer, note the ejection-like shape

of negative contours below y/ym = 1.5 with a height-invariant positive island of contour at y/ym ≈ 1.75.

Finally the bottom-most panel could be seen as a flow uplift out of the boundary layer and further turbulent

streaks with counter-rotating properties.

9.4.3 MD simulation of the Adenylate Kinase enzyme (d = 20, 046)

Molecular dynamics (MD) analyses the movement of atoms and molecules by numerically solving New-

ton’s equations of motion for a system of interacting particles. Energies and forces between particles are

typically computed using potentials. MD is arguably one of the most robust approaches for simulating

macromolecular dynamics, in large part due to the availability of full atomistic detail [DDG+12]. Recently,

DMD-type and Koopman techniques are making an impact in MD [NKPH+14, KNK+18, SP15, SP13].

For example, [KSM20] applies kernel EDMD to the positions of the carbon atoms in n-butane (d = 12) and

shows that the EDMD eigenfunctions parametrise a dihedral angle that controls key dynamics.

Here, we study trajectory data from the dynamics of Adenylate Kinase (ADK), which is an enzyme (see

Figure 9.9) that catalyses important phosphate reactions in cellular biology. ADK is a common benchmark

enzyme in MD and consists of 3341 atoms split into 214 residues (specific monomers that can be thought

of as parts). The trajectory data comes from an all-atom equilibrium simulation for 1.004 × 10−6s, with a

so-called CHARMM force field, that is produced on PSC Anton [SDS+09] and publicly available [BFG+].

The data consists of a single trajectory of the positions of all atoms as ADK moves. To make the system

Hamiltonian, we append the data with approximations of the velocities computed using centered finite

differences. This leads to d = 6 × 3341 = 20046. We sample the trajectory data every 240 × 10−12s so

that M = 4184.

To apply the kernelized version of Algorithm 6, we subselect M ′ = 2000 initial conditions from the

trajectory data. We select NK = 1000 EDMD eigenfunctions and append the dictionary with the four

observables of interest that are discussed below. Accuracy of the corresponding matrices in (9.2.6) is

verified by comparing to smaller M ′′ and also computing pseudospectra with Algorithm 2.

ADK has three parts of its molecule called CORE, LID, and NMP (see Figure 9.9 (left)). The LID

and NMP domains move around the stable CORE. By computing root-mean-square-fluctuations, we select

the most mobile residue from the LID and NMP domains. These residues have canonical dihedral angles

(φ, ψ) defined on the backbone atoms that determine the overall shape of the residue. Figure 9.9 (middle,

left) shows the spectral measures with respect to these dihedral angles (where we have subtracted the mean
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Figure 9.8: Left: A range of long-lasting modes from the ResDMD Koopman mode decomposition. Right:
A range of transient modes from the ResDMD Koopman mode decomposition.The arrows dictate the un-
steady fluid structure (computed from the Koopman modes of the velocity fields), with the magnitude of
the arrow indicating the local flow speed, and the colourbar denotes the Koopman mode of the velocity
magnitude.
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Figure 9.9: Left: Structure of ADK which has three domains: CORE (green), LID (yellow) and NMP (red).
Middle and right: Spectral measures with respect to the dihedral angles of the selected residues.
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Figure 9.10: Schematic diagram of the laser beam setup to generate the laser-induced plasma.

angle value) for both selected residues. These spectral measures are computed using the sixth order rational

kernel with ε = 0.1 (see Table 9.1). The computed spectral measures are verified with higher order kernels

and smaller ε, as well as comparison with a polynomial kernel S. The spectral measures for the angles in

the LID residue are much broader than for the NMP residue. This hints at a more complicated dynamical

interaction and may have biological consequences.

9.4.4 Shockwave propagation (d varies)

The computation of residuals allows an efficient compression of the Koopman mode decomposition by

discarding modes associated with spectral pollution. As our final example, we demonstrate the use of

ResDMD on an acoustic example where the sound source of interest exhibits highly non-linear properties.

We investigate a near-ideal acoustic monopole source that is generated using the laser optical setup il-

lustrated in Figure 9.10. When a high-energy laser beam is focused into a point, the air ionizes and plasma

is generated due to the extremely high electromagnetic energy density (on the order of 1012W/m2). As a

result of the sudden deposit of energy, the volume of air undergoes a sudden expansion that generates a

shockwave. The initial propagation characteristics can be modeled using von Neumann’s point strong ex-

plosion theory, which was originally developed for nuclear explosion modeling. For our ResDMD analysis,

we use laser-induced plasma (LIP) sound signature data measured using an 1/8inch, Bruel & Kjaer (B&K)

type 4138 microphone operated using a B&K Nexus module [SDB+22]. The data from the microphone is

acquired using an NI-6358 module at a sampling rate of fs =1.25MS/s. With this apparatus, we can resolve

the high-frequency nature of the LIP up to 100kHz.

The important acoustic characteristic of the LIP is that it has a short time period of initial supersonic

propagation speed, which are shown as Schlieren images taken over a 15µs window in Figure 9.11. When

observed from the far field, this initial supersonic propagation is observed as a non-linear characteristic
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a) t = 5 µs b) t = 10 µs c) t = 15 µs d) t = 20 µs

Figure 9.11: Schlieren images of the initial laser-induced plasma illustrating the shock wave formation and
propagation.

despite that the wavespeed is supersonic only in a short radius around the source, namely, until about

3–4mm from the optical focal point. During the experiments, 65 realisations of LIP are captured using

microphones. Each realisation of LIP is then gated in time such that only the direct propagation path of the

LIP remains in the signal. We use this gated data for our ResDMD analysis.

For a positive integer d, we take the state at time n to be

xxxn =
(
p(n) p(n− 1) · · · p(n− d+ 1)

)>
∈ Rd,

where p is acoustic pressure. This corresponds to time-delay embedding, which is a popular method for

DMD-type algorithms. There is a further interpretation of d when we make future state predictions using

the Koopman mode decomposition. The value of d corresponds to the initial time interval that we use to

make future state prediction. This is shown as vertical dashed lines in the plots below.

We split the data into three parts. The first 10 realisations of LIP correspond to {x̃xx(j), ỹyy(j)}M ′j=1 and are

used to train the dictionary. The next 50 realisations correspond to {x̂xx(j), ŷyy(j)}M ′′j=1, and are used to construct

the ResDMD matrices. The final 5 realisations are used to test the resulting Koopman mode decomposition.

We consider two choices of dictionary. The first is a linear dictionary computed using Algorithm 3. The

second is the union of the linear dictionary and the dictionary computed using Algorithm 4 withNK = 200.

We refer to this combined dictionary as the non-linear dictionary.

Figure 9.12 (left) shows the results of the Koopman mode decomposition, applied to the first realisation

of the experiment in the test set, with d = 10. Namely, we approximate the state as

xxxn ≈ Kn
EDMDΨ(xxx0)V

[
V −1(

√
WΨX)†

√
W
(
x̂xx(1) · · · x̂xx(M ′′)

)>]
= Ψ(xxx0)V Λn

[
V −1(

√
WΨX)†

√
W
(
x̂xx(1) · · · x̂xx(M ′′)

)>]
.

(9.4.2)

In particular, we test the Koopman mode decomposition on unseen data corresponding to the test set. The

values of p to the left of the vertical dashed line correspond to xxx0. It is clear that the non-linear dictionary

does a much better job of representing the non-linear behaviour of the system. While the linear dictionary

can predict the positive pressure peak, it fails to predict both the magnitude and shape of the negative peak,

and it also fails to capture the smaller, high-frequency oscillations following the fist two large oscillation.

These discrepancies between the linear and non-linear dictionary-based results also pinpoint where non-

linearity in the signal relies. In other words, the non-linear signature of the pressure wave relies in the

negative portion of the wave. Figure 9.12 (right) plots the relative mean squared error (RMSE) averaged

over the test set for different values of d. The non-linear dictionary allows an average relative L2 error of

around 6% for d = 15.
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Figure 9.12: Left: Prediction using (9.4.2) on the first experiment in the test set. The values of p to the left
of the vertical dashed line correspond to xxx0. Right: Relative mean squared error (RMSE) averaged over the
test set for different values of d.
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Figure 9.13: Left: Pseudospectral contours, computed using Algorithm 2 with the non-linear dictionary and
d = 10. The eigenvalues of KEDMD are shown as red dots. Right: Prediction on the first experiment in the
test set. The values of p to the left of the vertical dashed line correspond to xxx0. For each type of ordering,
we use 40 modes.

Figure 9.13 (left) shows the corresponding pseudospectral contours, computed using Algorithm 2 with

d = 10. We can use ResDMD to compress the representation of the dynamics, by ordering the Koopman

eigenvalues λj , eigenfunctions gj , and modes according to their (relative) residual res(λj , gj) (defined

in (9.2.5)). For a prescribed value of N ′, we can produce a Koopman mode decomposition of the N ′

eigenfunctions with the smallest residual. In Figure 9.13 (right), we compare this to a compression based

on the modulus of the eigenvalues using 40 modes in each expansion. It is clear that ordering the eigenvalues

by their residuals gives a much better compression of the dynamics. To investigate this further, Figure 9.14

shows the error curves of the two different compressions for various dictionary sizes and choices of d. This

suggests ResDMD may be effective in the construction of reduced order models.
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Figure 9.14: RMSE averaged over the test set for two types of compression. ‘residual ordering’ (black
curves) corresponds to ordering approximate eigenvalues based on their residual. ‘modulus ordering’ (red
curves) corresponds to ordering approximate eigenvalues based on their modulus.
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Chapter 10

Beyond Spectral Problems

In this final chapter we discuss work beyond spectral problems. The framework provided by this course

encompasses a vast number of areas in computational mathematics, including numerical solution of PDEs,

the foundations of AI and neural networks, optimisation, and computer-assisted proofs. Much of the work

below is ongoing. If you are interested in working on any of these projects, please do get in touch!

10.1 Numerical Solution of PDEs

10.1.1 Semigroups

The discussion in this section is based on [Col22]. Given a linear operator A on an infinite-dimensional

separable Hilbert spaceH, can we numerically compute, with error control, the solution of

u′(t) = Au(t) for t ≥ 0, with initial condition u(0) = u0 ∈ H? (10.1.1)

The desired solution is written as u(t) = exp(tA)u0 and made rigorous through the theory of semigroups

[Paz12, ABHN01]. Equation (10.1.1) arises in numerous applications and there exist many numerical meth-

ods designed to approximate u(t), including but not limited to: contour methods [WT07, TW14, SST03,

HHT08]; domain truncation and absorbing boundary conditions (e.g., whenA represents a differential oper-

ator on an unbounded domain) [EM77, AES03, Tsy98, Sze04, A+08]; Galerkin methods [Lub08b, KLY19,

LL20]; Krylov methods [Gri12, GG13b, LS13]; rational approximations [CLPT93, BT79, Pal93]; and

series expansions, splitting methods, and exponential integrators [Hig05, Lub08a, IKS18, HO10, MQ02,

AMH11].

The majority of convergence results in the literature concern specific cases of the operator A. If A is

unbounded with domainD(A), it is common to assume regularity on u0 (e.g., u0 ∈ D(Aν) for some ν > 0)

to obtain asymptotic rates of convergence. Instead, we consider the following question:

Q.1: Can we compute semigroups with error control? That is, does there exist an algorithm that

when given a generator A of a strongly continuous semigroup on H, time t > 0, arbitrary u0 ∈ H
and error tolerance ε > 0, computes an approximation of exp(tA)u0 to accuracy ε inH?

A prototypical example of (10.1.1) is when A is a partial differential operator (PDO) on some domain.

For unbounded domains, such as H = L2(Rd), this is a well-studied yet notoriously difficult challenge.
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The methods listed above yield invaluable insight into many computational issues. However, the answer to

Q.1 for unbounded domains remains largely unknown in the general case. For example, only in specific

cases does one know how to truncate the domain and set appropriate boundary conditions. Even if one can

prove the existence of suitable truncations and boundary conditions, there may not be an algorithm that

does this (the original results of [EM79] reflect this). Moreover, difficulties are intensified in the case of

irregular geometry or variable coefficients. A motivating example is the Schrödinger equation,

i
∂u

∂t
= −∆u+ V u, u0 ∈ L2(Rd), (10.1.2)

In light of this, a second question we consider is the following:

Q.2: For H = L2(Rd), is there a large class of PDO generators A (more general than (10.1.2)) on

the unbounded domain Rd where the answer to Q.1 is yes?

To have any hope of answering this question, we need the semigroup to be well-behaved, i.e., (10.1.1)

to be well-posed. The following are standard [Paz12].

Definition 10.1.1. A strongly continuous semigroup (C0-semigroup) on a Banach space X is a map S :

[0,∞)→ L(X) such that

1. S(0) = I

2. S(s+ t) = S(s)S(t), ∀s, t ≥ 0

3. S(t) converges strongly to I as t ↓ 0 (i.e., limt↓0 S(t)x = x, for all x ∈ X).

The infinitesimal generator A of S is defined as Ax = limt↓0
1
t (S(t)− I)x, where D(A) is all x ∈ X such

that the limit exists, and we write S(t) = exp(tA).

Definition 10.1.2. A continuous function u : [0,∞)→ X is a

1. Classical solution of the Cauchy problem (10.1.1) if it is continuously differentiable, u(t) ∈ D(A)

for all t ≥ 0, and (10.1.1) is satisfied,

2. Mild solution of the Cauchy problem (10.1.1) if for all t ≥ 0,∫ t

0

u(s)ds ∈ D(A) and A

∫ t

0

u(s)ds = u(t)− u0.

The following theorem tells us precisely when a unique mild solution exists.

Theorem 10.1.3 (Theorem 3.1.12 of [ABHN01]). Let A be a closed operator acting on the Banach space

X . The following assertions are equivalent:

(a) For any u0 ∈ X , there exists a unique mild solution of (10.1.1).

(b) ρ(A) 6= ∅ and for every u0 ∈ D(A), there is a unique classical solution of (10.1.1).

(c) The operator A generates a C0-semigroup S.

When these conditions hold, the solution is given by u(t) = S(t)u0 = exp(tA)u0.

The Hille–Yosida theorem tells us precisely when an operator A generates a strongly continuous semi-

group, and thus, by Theorem 10.1.3, when (10.1.1) admits a unique solution.
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Theorem 10.1.4 (Hille–Yosida theorem). A closed operator A on X generates a C0-semigroup if and only

if A is densely defined and there exists ω ∈ R, M > 0 with

(1) {λ ∈ R : λ > ω} ⊂ ρ(A).

(2) For all λ > ω and n ∈ N, (λ− ω)n‖R(λ,A)n‖ ≤M.

Under these conditions, ‖ exp(tA)‖ ≤M exp(ωt) and if Re(λ)>ω then λ∈ρ(A) with

‖R(λ,A)n‖ ≤ M

(Re(λ)− ω)n
, for all n ∈ N. (10.1.3)

Example results

First, consider the canonical separable Hilbert space l2(N) of square summable sequences, using e1, e2, . . .

to denote the canonical orthonormal basis. Let C(l2(N)) denote the set of closed and densely defined linear

operators A such that span{en : n ∈ N} forms a core of A and its adjoint A∗. If A ∈ C(l2(N)), then we

can associate an infinite matrix with the operator A through the inner products Aj,k = 〈Aek, ej〉. Given

(A, u0) ∈ C(l2(N))× l2(N), we consider the following evaluation functions (recall that this is the readable

input to our algorithm), denoted by Λ1, which include the case of inexact input:

• Matrix evaluation functions: {f (1)
j,k,m, f

(2)
j,k,m : j, k,m ∈ N} such that

|f (1)
j,k,m(A)− 〈Aek, ej〉| ≤ 2−m, |f (2)

j,k,m(A)− 〈Aek, Aej〉| ≤ 2−m, ∀j, k,m ∈ N.

• Coefficient and norm evaluation functions: {fj,m : j ∈ N ∪ {0},m ∈ N} such that

|f0,m(u0)− 〈u0, u0〉| ≤ 2−m, |fj,m(u0)− 〈u0, ej〉| ≤ 2−m, ∀j,m ∈ N. (10.1.4)

Let ΩC0 denote the set of triples (A, u0, t) where A ∈ C(l2(N)) generates a strongly continuous

semigroup, u0 ∈ l2(N) and t > 0. We define the set of evaluation functions for such triples to be

ΛC0
= Λ1 ∪ {M(A), ω(A)}, where M = M(A) and ω = ω(A) are constants satisfying the condi-

tions in Theorem 10.1.4 for the generator A. Finally, we consider the problem function ΞC0
: ΩC0

→
l2(N), (A, u0, t) 7→ exp(tA)u0. In other words, the computation of the solution of (10.1.1). The following

theorem provides a positive answer to Q.1.

Theorem 10.1.5 (C0-semigroups on l2(N) computed with error control). There exists an algorithm Γ using

ΛC0
such that for any ε > 0 and (A, u0, t) ∈ ΩC0

,

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε.

It follows that {ΞC0
,ΩC0

} ∈ ∆A
1 .

We now extend the above to PDOs. Consider the closure, denoted by A, of the initial operator

[Ãu](x) =
∑

k∈Zd≥0
,|k|≤N

ak(x)∂ku(x), D(Ã) = {u smooth with compact support}. (10.1.5)

We use multi-index notation with |k| = max{|k1| , ..., |kd|} and ∂k = ∂k1
x1
∂k2
x2
...∂kdxd . We assume that Ã is

closable and that the coefficients ak(x) are complex-valued measurable functions on Rd. For dimension d

and r > 0, consider the space

Ar = {f ∈ Meas([−r, r]d) : ‖f‖∞ + TV[−r,r]d(f) <∞},
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where Meas([−r, r]d) denotes the set of measurable functions on the hypercube [−r, r]d and TV[−r,r]d the

total variation norm in the sense of Hardy and Krause [Nie92]. This space becomes a Banach algebra when

equipped with the norm [BT89]

‖f‖Ar :=
∥∥f |[−r,r]d∥∥∞ + (3d + 1)TV[−r,r]d(f).

We let ΩPDE be all such (A, u0, t) with u0 ∈ L2(Rd) and t > 0, for which A generates a strongly

continuous semigroup on L2(Rd) and the following hold:

(1) The set of smooth, compactly supported functions forms a core of A and A∗.

(2) At most polynomial growth: There exist positive constants Ck and integers Bk such that almost ev-

erywhere on Rd, |ak(x)| ≤ Ck(1 + |x|2Bk).

(3) Locally bounded total variation: For all r > 0, u0|[−r,r]d , ak|[−r,r]d ∈ Ar.

These assumptions are very mild as the class of functions with locally bounded variation includes dis-

continuous functions and functions with arbitrary wild oscillations at infinity. For input (A, u0, t) ∈ ΩPDE,

we define ΛPDE as the set of evaluation functions (where ranges of indices have been suppressed for nota-

tional convenience):

(a) Pointwise coefficient evaluations: {Sk,q,m} such that for all m ∈ N,

|Sk,q,m(A)− ak(q)| ≤ 2−m, ∀q ∈ Qd.

(b) Pointwise initial condition evaluations: {Sq,m} such that for all m ∈ N,

|Sq,m(u0)− u0(q)| ≤ 2−m, ∀q ∈ Qd.

(c) Bounds on growth and total variation: {Ck, Bk} such that the bound in (2) holds and positive se-

quences {bn}n∈N and {cn}n∈N such that for all n ∈ N,

max
|k|≤N

‖ak‖An ≤ bn, ‖u0‖An ≤ cn.

(d) Decay of initial condition: A positive sequence {dn}n∈N, such that

‖u0|[−n,n]d − u0‖L2(Rd) ≤ dn, lim
n→∞

dn = 0,

together with constants M = M(A) > 0 and ω = ω(A) > 0 satisfying the conditions in Theorem 10.1.4

for the generatorA. We consider the problem function ΞPDE : ΩPDE → L2(Rd), (A, u0, t) 7→ exp(tA)u0.

In other words, the computation of the solution of (10.1.1) for PDOs A on L2(Rd). The following theorem

provides a positive answer to Q.2.

Theorem 10.1.6 (PDO C0-semigroups on L2(Rd) computed with error control). There exists an algorithm

Γ using ΛPDE such that for any ε > 0 and (A, u0, t) ∈ ΩPDE,

‖Γ(A, u0, t, ε)− exp(tA)u0‖ ≤ ε.

It follows that {ΞPDE,ΩPDE} ∈ ∆A
1 .

Exercise: Assuming Theorem 10.1.5, prove Theorem 10.1.6 using the techniques of Chapter 3.
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The idea of the method

The solution of (10.1.1) is, at least formally, the Bromwich complex contour integral

exp(tA)u0 =

[
−1

2πi

∫ σ+i∞

σ−i∞
ezt(A− zI)−1 dz

]
u0, for sufficiently large σ ∈ R, (10.1.6)

and computing solutions of (10.1.1) is a special case of inverting an operator-valued Laplace transform.

However, there are two challenges with using (10.1.6). First, the integrand need not decay (special cases

when it does after a contour deformation include analytic semigroups). Second, how do we compute the

inverses (A−zI)−1? To overcome these challenges, our method combines a regularised functional calculus,

suitable contour quadrature rules, and the adaptive computation of resolvents in infinite dimensions. We

compute the resolvent in an adaptive manner, providing explicit error control.

Dealing with the operator A directly, as opposed to a truncation or discretisation, allows us to provide

rigorous convergence results under quite general assumptions. In many problems, there is an additional

practical benefit in that it is easier to bound the resolvent. In contrast, previous approaches to (10.1.1) are

typically of the flavor “truncate-then-solve.” A truncation/discretisation of A is adopted and methods for

computing the exponential of a finite matrix are used. In rigorously answering Q.1, it is vital to adopt a

“solve-then-discretise” approach.

10.1.2 Non-linear Schrödinger equations

The discussion in this subsection follows [BH20]. We consider the situation of a single particle described

by a self-adjoint Schrödinger operator H0 = −∆ + V : D(H0) ⊂ L2(Rd) → L2(Rd) with static pinning

potential V . Apart from the static pinning potential, we also allow the presence of an additional control

potential Vcon with time-dependent control function u ∈ W 1,1
pcw(0, T ) (piecewise W 1,1). Thus, writing

VTD(t) := u(t)Vcon for the time-dependent potential, we cover time-dependent Schrödinger equations

The non-linear Schrödinger equations we consider are

i∂tψ(x, t) = H0ψ(x, t) + VTD(x, t)ψ(x, t) + νFσ(ψ(x, t)), (x, t) ∈ R× (0, T )

ψ(·, 0) = ϕ0

(10.1.7)

with scattering length ν = 1 and non-linearity Fσ(ψ(x, t)) = |ψ(x, t)|σ−1ψ(x, t) where we consider σ = 3

(cubic NLS) and σ = 5 (quintic NLS). The choice ν = 1 yields a defocussing non-linearity and ν = −1 a

focussing one.

Numerical methods are often used to analyse if the solution of a NLS blows up in finite time or not

[DS11]. While the solution to the quintic NLS in (10.1.7) exists for all times if the non-linearity is defo-

cussing, this is no longer the case if (10.1.7) has a focussing quintic non-linearity. In greater generality, we

study whether it is possible to numerically decide whether a solution to a NLS will blow up in finite time or

not? We show that this is impossible in great generality.

Definition 10.1.7 (Initial state with controlled local boundedness and bounded variation and (CLBBV)).

Given an initial state ϕ0 ∈ BVloc(Rd) we say that ϕ0 has controlled local boundedness and bounded varia-

tion (CLBBV) by ω : N→ N if for everyR ∈ N thenK = ω(R) is such that ‖ϕ0

∣∣
CR(0)

‖L∞ ,TV(ϕ0

∣∣
CR(0)

) ≤
K, where CR(0) is the closed cube of length R centered at zero.1

1We emphasize that bounded total variation already implies a possibly weak L∞ estimate by ‖ϕ0

∣∣
CR(0)

‖L∞ ≤ |ϕ0(0)| +
TV(ϕ0

∣∣
CR(0)

)
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Remark 10.1.8 (Input to the algorithms). We assume that{
(ϕ0(xk), VTD(xk, tj)) | {xk}k∈N, {tj}j∈N are dense in Rd and [0, T ], xk, tj have coordinates ∈ Q

}
,

are accessible to the algorithm.

At least from a physics perspective, the most prominent example of a NLS with non-trivial blow-up

dichotomy is the focussing (ν = −1) cubic NLS

i∂tψ(x, t) + ∆ψ(x, t) = ν|ψ(x, t)|2ψ(x, t), (t, x) ∈ R× R3,

ψ(0, x) = ϕ0(x).
(10.1.8)

Choose any fixed C > 0 and g as in Def. 10.1.7. Then, we define, for ρ, ν ≥ 1, the set of initial data as

ΩBU(1) = {ϕ0 ∈ Hρ
ν (R) | ‖ϕ0‖Hρν (R) ≤ C and ϕ0 has CLBV by g}.

We consider the computational problem

ΞBU(1) : ΩBU(1) 3 ϕ0 7→

Yes if (10.1.8) blows up in finite time,

No if (10.1.8) does not blows up in finite time
∈M, (10.1.9)

where M = {Yes,No} = {1, 0}. Next, we consider the focussing (ν = −1) mass-critical NLS with

σ = 1 + 4/d, in particular,

i∂tψ(x, t) + ∆ψ(x, t) = ν|ψ(x, t)|σ−1ψ(x, t), (t, x) ∈ R× Rd,

ψ(0, x) = ϕ0(x).
(10.1.10)

Choose any fixed C > 0 and g as in Def. 10.1.7. Then, we define, for ρ, ν ≥ 1, the set of initial data as

ΩBU(2) = {ϕ0 ∈ Hρ
ν (Rd) | ‖ϕ0‖Hρν (Rd) ≤ C and ϕ0 has CLBV by g}.

We consider the computational problem

ΞBU(2) : ΩBU(2) 3 ϕ0 7→

Yes if (10.1.10) blows up in finite time,

No if (10.1.10) does not blows up in finite time
∈M. (10.1.11)

Our main result on the computability of blow-ups is then Theorem 10.1.9.

Theorem 10.1.9 (Blow up cannot be decided, in fact not verified nor falsified). Consider the decision

problems {ΞBU(1),ΩBU(1)} and {ΞBU(2),ΩBU(2)} defined in (10.1.9) and (10.1.11) concerning the blow

up of the NLS. Then, there do not exist sequences of algorithms {Γ1
k}, {Γ2

k}, with Γ1
k : ΩBU(1) →M and

Γ2
k : ΩBU(2) →M such that

lim
k→∞

Γ1
k(ϕ0) = ΞBU(1)(ϕ0), such that Γ1

k(ϕ0) = No⇒ ΞBU(1)(ϕ0) = No,

lim
k→∞

Γ2
k(ϕ0) = ΞBU(2)(ϕ0), such that Γ1

k(ϕ0) = Yes⇒ ΞBU(2)(ϕ0) = Yes.

These statements are universal independent of the computational model.

Let us consider norms |f |L2 := ‖f‖L2 , |f |H1 := ‖f‖αL2‖f‖1−α
Ḣ1

for some fixed α ∈ (0, 1), and |f |Ḣ1 =

‖f‖Ḣ1 a non-trivial function f . We then let X ∈
{
L2(Ω), H1(Ω), Ḣ1(Ω)

}
and Ω ⊂ Rd a domain. Let
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C > 0 be given and let ΩBU(X) be the set of functions v ∈ X ∩ C(Ω) with |v|X ≤ C and v has controlled

local bounded variation by h. We then consider the condition

|u0|X ≤ |f |X . (10.1.12)

To define the computational problem we define for f ∈ ΩBU(X) the set

ΩBU(X,f) =
{
u0 ∈ ΩBU(X); |u0|X 6= |f |X

}
,M = {No,Yes} = {0, 1} and

ΞBU(X,f)(ϕ0) = Does (10.1.12) hold?.
(10.1.13)

Proposition 10.1.10. Given the above setup, we have that

{ΞBU(f,X),ΩBU(f,X),M,Λ} /∈ ΣG1 .

Proof. To show that {ΞBU(f,X),ΩBU(f,X),M,Λ} /∈ ΣG1 we argue by contradiction and assume the con-

trary. Let therefore {Γn} be a sequence of general algorithms such that Γn(ϕ0) → ΞBU(f,X)(ϕ0) as

n → ∞, and with Γn(ϕ0) = 1 ⇒ ΞBU(f,X)(ϕ0) = 1. Let ϕ0 ∈ ΩBU(f,X) denote a function satisfying

(10.1.12) and note that, by the reasoning above ΞBU(f,X)(ϕ0) = 1. Thus, there is an N ∈ N such that

Γn(ϕ0) = 1 for all n ≥ N . Choose any such n ≥ N and let B ⊂ Ω be an open ball such that for all

fj ∈ ΛΓn(ϕ0) we have ωj /∈ B. Choose a ϕ̃0 ∈ Ω such that supp(ϕ̃0) ⊂ B and

|ϕ̃0|X > |f |X . (10.1.14)

Note that such a choice is easy to justify by using bump functions. Note that, by the choice of ϕ̃0 we have

that fj(ϕ̃0) = fj(ϕ0) ∀fj ∈ ΛΓn(ϕ0). Hence, by assumption (iii) in (ii) in Definition 2.1.1 it follows that

1 = Γn(ϕ0) = Γn(ϕ̃0). However, by (10.1.14), it follows that ΞBU(f,X)(ϕ̃0) = 0, which contradicts that

Γn(ϕ̃0) = 1⇒ ΞBU(f,X)(ϕ̃0) = 1, and we have reached the desired contradiction.

Proposition 10.1.11 (Mass critical NLS). Given the setup as in (10.1.10), we have that

{ΞBU(2),ΩBU(2),M,Λ} /∈ ΣG1 .

Proof. The ground state soliton Q satisfying

−∆Q−Q|Q|4 +Q = 0

for the 1d-quintic NLS is known explicitly Q(x) =
(

3
cosh2(2x)

)1/4

and exists for all d ≥ 1. For d ≥ 1 and

σ = 1+4/d, it is known [Dod15] that if ‖ϕ0‖L2 < ‖Q‖L2 then the solution to (10.1.10) exists globally and

scatters whereas for ‖ϕ0‖L2 > ‖Q‖L2 there exist solutions that exist only for finite time. The statement

then follows from Proposition 10.1.10.

Showing that {ΞBU(2),ΩBU(2),M,Λ} /∈ ΠG
1 is in general more subtle. To see this, observe that by

Sobolev’s embedding in dimension one, we have ‖ϕ0‖L∞ ≤ ‖ϕ0‖H1 . This implies that if an algorithm

samples a sufficiently large value of ϕ0 it follows that ‖ϕ0‖H1 is large as well.

For our next proposition we consider a bump function

χε,x0
(x) := e

1+ ε2

‖x−x0‖2−ε2 1lB(x0,ε)(x).

We then have that

‖χε,x0‖L2 = O(εd) and ‖χε,x0‖Ḣ1 = O(εd−2). (10.1.15)

If we impose stronger conditions on X and the dimension, we obtain the following result:
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Proposition 10.1.12. For the setup as above, it follows that {ΞBU(f,X),ΩBU(f,X),M,Λ} /∈ ΠG
1 under the

following conditions on the space X and the dimension d with open domain Ω ⊂ Rd

• If d = 1 and X ∈
{
L2(Ω) ∩ C(Ω), H1(Ω) ∩ C(Ω)

}
with α < 1/2.

• If d = 2 and X ∈
{
L2(Ω) ∩ C(Ω), H1(Ω) ∩ C(Ω)

}
.

• d ≥ 3.

Proof. We argue again by contradiction. Assuming the contrary, let {Γn} be a sequence of general algo-

rithms such that Γn(ϕ0) → ΞBU(f,X)(ϕ0) as n → ∞, and with Γn(ϕ0) = 0 ⇒ ΞBU(f,X)(ϕ0) = 0. Let

ϕ0 ∈ ΩBU(f,X) be a function that does not satisfy (10.1.12). In this case ΞBU(f,X)(ϕ0) = 0 and hence

there is an N ∈ N such that Γn(ϕ0) = 0 for all n ≥ N . Let ε be small enough such that B(ω̃j , ε) are

disjoint.

Choose any such n and choose ϕ̃0 :=
∑
ϕ0(ωj)χε,ωj such that ϕ̃0 interpolates ϕ0 at the points ω̃j ,

where fj(ϕ0) = ϕ0(ω̃j) and fj ∈ ΛΓn(ϕ0). Let ε be sufficiently small, then by (10.1.15) it follows that

|ϕ̃0|X < |f |X . Then, as argued as above, we have fj(ϕ̃0) = fj(ϕ0) ∀fj ∈ ΛΓn(ϕ̃0), and hence by by

assumption (iii) in (ii) in Definition 2.1.1 it follows that 0 = Γn(ϕ0) = Γn(ϕ̃0). However, since |ϕ̃0|X <

|f |X we have that ΞBU(f,X)(ϕ̃0) = 1, which contradicts that Γn(ϕ̃0) = 0⇒ ΞBU(f,X)(ϕ̃0) = 0.

We continue with our result on the cubic NLS:

Proposition 10.1.13. Given the setup in (10.1.8) we have that

{ΞBU(1),ΩBU(1),M,Λ} /∈ ΠG
1 .

Proof. For (10.1.8) one has the following blow up dichotomy [HR08, HPR09]: Let ϕ0 ∈ H1
1 (R3) be an

initial state to the focusing NLS (10.1.8) with ground state soliton Q satisfying

−∆Q−Q|Q|2 +Q = 0.

• If ‖ϕ0‖L2 ‖∇ϕ0‖L2 < ‖Q‖L2 ‖∇Q‖L2 , then the solution to (10.1.8) exists globally in time in the

space H1(R3).

• If ‖ϕ0‖L2 ‖∇ϕ0‖L2 > ‖Q‖L2 ‖∇Q‖L2 , then the solution to (10.1.8) blows up in finite time, i.e.

the solution to (10.1.8) exists only in a maximum time interval [0, Tmax) in H1(R3). The result then

follows from Proposition 10.1.12.

Proof of Theorem 10.1.9. Theorem 10.1.9 follows immediately from the analysis above.

The phenomenon of undecidability is, for the blow-up dichotomy, not due to the unboundedness of the

domain as the following example shows:

Example 10.1.14 (Cubic NLS on bounded domain). Let Ω ⊂ R2 be a bounded and smooth domain:

Consider the cubic NLS with Dirichlet data ϕ0 ∈ H2(Ω) ∩H1
0 (Ω)

i∂tψ(x, t) + ∆ψ(x, t) + |ψ(x, t)|2ψ(x, t) = 0, (x, t) ∈ Ω× (0, T ),

ψ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

ψ(x, 0) = ϕ0(x), x ∈ Ω.

(10.1.16)
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This equation has a unique positive ground state to the equation

−Q(x) + ∆Q(x) + |Q(x)|2Q(x) = 0, x ∈ R2.

Then, there exists a solution with the same L2 norm as Q that blows up in finite time [BGT03, Theorem 1],

whereas [BGT03, Lemma 2.3] shows that for Dirichlet initial data ϕ0 ∈ H2(Ω)∩H1
0 (Ω) with ‖ϕ0‖L2(Ω) <

‖Q‖L2(R2) the solution exists globally in time, see also [Wei82].

10.1.3 Future work

• Fractional PDEs: The above results on semigroups can be extended to certain time-fractional PDEs

[CA22]. So far this has only be done in one space variable. Higher dimensions would be of interest.

Further, classifying exactly which type of fractional PDEs lead to ∆A
1 classifications would be an

interesting direction.

• Practical computation: On the practical side, it should be relatively straightforward (and very use-

ful) to develop a finite element implementation of the above results. NB: The results themselves were

proven using spectral methods.

• Foundations of non-linear PDEs: It may be possible to use the ∆A
1 algorithm for semigroups as part

of exponential integrators to certain solve non-linear PDEs with error control. Currently classifying

non-linear PDEs that lend themselves to ∆A
1 results is an open and challenging, yet fundamental,

problem. Undoubtedly, this would lead to a theory as rich as that for infinite-dimensional spectral

computations.

10.2 Foundations of AI and Smale’s 18th Problem

The relevant paper for this is [CAH22b]. For ease of exposition, I will go through this article:

sinews.siam.org/mathematical-paradoxes-unravel-limits-of-ai

This is a hot topic. For example, some news pieces on this paradox can be found here:

https://spectrum.ieee.org/deep-neural-network

www.cam.ac.uk/news/mathematical-paradox-demonstrates-the-limits-of-ai

10.3 Optimisation

This discussion in based on [BHV21].

10.3.1 Background

Finding minimisers for linear and semidefinite programming, regularisation techniques such as basis pur-

suit, Lasso etc. has become a main focus over the last decades. These approaches have in many areas

of mathematics, statistics, learning and data science changed the state of the art from linear to non-linear

approaches, typically via obtaining minimisers of convex problems. Key examples include

177

https://sinews.siam.org/Details-Page/proving-existence-is-not-enough-mathematical-paradoxes-unravel-the-limits-of-neural-networks-in-artificial-intelligence
https://spectrum.ieee.org/deep-neural-network
https://www.cam.ac.uk/research/news/mathematical-paradox-demonstrates-the-limits-of-ai


10.3. Optimisation CHAPTER 10. Beyond Spectral Problems

(i) Linear Programming (LP)

z ∈ argmin
x
〈x, c〉 subject to Ax = y, x ≥ 0, (10.3.1)

(ii) Basis Pursuit (BP)

z ∈ argmin
x
J (x) subject to ‖Ax− y‖2 ≤ δ, δ ∈ [0, 1], (10.3.2)

(iii) Unconstrained Lasso (UL)

z ∈ argmin
x
‖Ax− y‖22 + λJ (x), λ ∈ (0, 1], (10.3.3)

(iv) Constrained Lasso (CL)

z ∈ argmin
x
‖Ax− y‖2 subject to ‖x‖1 ≤ τ, τ > 0, (10.3.4)

(v) Semidefinite Programming (SDP)

Z ∈ argmin
X∈Sn

〈C,X〉Sn subject to 〈Ak, X〉Sn = bk, X � 0, k = 1, . . . ,m. (10.3.5)

In the above notation we have

A ∈ Rm×N , y ∈ Rm, c ∈ RN , J (x) = ‖x‖1 or J (x) = ‖x‖TV,

where the TV semi-norm is defined as ‖x‖TV =
∑N−1
j=1 |xj − xj+1|. For SDP, the notation is

C,Ak ∈ Sn (real n× n symmetric matrices), bk ∈ R, 〈C,X〉Sn = trace(CTX).

All of the problems above may have multi-valued solutions in certain cases. Whenever this occurs, the

computational problem of interest is to compute any of these solutions. We use the notation

Ξ : Ω⇒M, (10.3.6)

to denote the multivalued solution map, mapping an input ι ∈ Ω to a metric space (M, dM), allowing

measurement of error. The metric space is typically RN or CN equipped with the ‖ · ‖2 norm, however,

any metric can be considered. Even though the solution map Ξ may be multivalued, in our theory the

output of an algorithm will always be single-valued. Thus, if Γ : Ω →M is an algorithm we measure the

approximation error by

distM(Γ(ι),Ξ(ι)) = inf
ξ∈Ξ(ι)

dM(Γ(ι), ξ).

Remark 10.3.1 (Objective function vs minimisers). We are primarily concerned with the problem of

obtaining minimisers that are vectors and not the real-valued minimum value of the objective function.

There is a very rich literature on how to compute the objective function, and, in particular, the minimum

value f(x∗) = min{f(x) |x ∈ X}, for some convex function f : Rd → R, convex set X ⊂ Rd, and

minimiser x∗ ∈ X . The traditional problem of interest is as follows. Given ε > 0, compute an xε ∈ Rd

such that f(xε)− f(x∗) ≤ ε. Note that f(xε)− f(x∗) ≤ ε does not necessarily mean that

‖xε − x∗‖ ≤ ε. (10.3.7)

Our main focus is the problem of computing xε satisfying (10.3.7). The motivation behind this is self-evident

as there are vast areas of mathematics of information, regularisation, estimation, learning, compressed

sensing and data sciences where the object of interest is the minimiser and not the minimum value.
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The question: “is LP in P?” [Kha80, GL81, Law80] was a fundamental problem whose solution, proven

by L. Khachiyan – based on work by N. Shor, D. Yudin, A. Nemirovski – reached the front page of The New

York Times [GLS88]. The affirmative answer has been refined several times and is now typically stated in

the following form. One can solve LPs with rational inputs in runtime is bounded by

O(n3.5L2 · logL · log logL), (10.3.8)

where n denotes the number of variables and L is the number of bits or digits required in the representation

of the inputs. The problem, however, is that in an overwhelming number of problems in computational

mathematics and scientific computing the input contains irrational numbers. This leads to the following

basic question:

Given a class of LPs that contain irrational numbers which can be computed in polynomial

time, what is the computational cost of computing a K-digit accurate approximate minimiser?

Is that problem in P (solvable in polynomial time in the number of variables n)?

Note that the estimate (10.3.8) will not answer this question as L =∞ for an irrational number.

10.3.2 Inexact input and the extended model

Given that the input is inexact, the output of an algorithm will come with an error as well. The model, both

in the Turing and the BSS case, where one measures the computational cost of running the algorithm in

terms of the number of variables n and the error (or the number of correct digits K = | log(ε)|, where ε is

the error) is well established. See, for example [BCSS98, p. 29], [GLS88, p. 34] and [Val13, p. 131]). We

thus arrive at the following extension of Smale’s 9th problem.

Problem 10.3.2 (The extended Smale’s 9th problem). Given any of the problems in (10.3.1) - (10.3.4),

represented by the solution map Ξ mapping a class of inputs Ω into a metric space (M, dM), is there an

algorithm which decides the feasibility of the problem, and if so, produces an output that is correct up to K

digits (where the error is measured via distM) and whose computational cost is bounded by a polynomial

in K and the number of variables n?

This question can be asked both in the Turing model, where the computational cost can be expressed

either in terms of the number of steps performed by the Turing machine, or alternatively in terms of the

total number of arithmetic operations and comparisons as well as the space complexity. In the BSS model,

the computational cost is given by the total number of arithmetic operations and comparisons executed by

the BSS machine. We will consider all these cases.

10.3.3 Example Theorem

Theorem 10.3.3 (The extended Smale’s 9th problem - computing solutions). Let Ξ denote the solution

map to any of the problems (10.3.1) - (10.3.4) with the regularisation parameters satisfying δ ∈ [0, 1],

λ ∈ (0, 1/3], and τ ∈ [1/2, 2] (and additionally being rational in the Turing case) and consider the ‖ · ‖p-

norm for measuring the error, for an arbitrary p ∈ [1,∞]. Let K > 2 be an integer. There exists a class Ω

of “well-conditioned” feasible inputs so that, simultaneously, we have the following.
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(i) No algorithm can produce K correct digits on each input in Ω. Moreover, for any p > 1
2 , no

randomised algorithm can produce K correct digits with probability greater than or equal to p on

each input in Ω.

(ii) There does exist an algorithm (a Turing or a BSS machine) that produces K − 1 correct digits for

all inputs in Ω. However, any such algorithm will need an arbitrarily long time to achieve this. In

particular, for any T > 0, and any algorithm Γ, there exists an input ι ∈ Ω such that either Γ on

input ι does not produce K − 1 correct digits for Ξ(ι) or the runtime of Γ on ι exceeds T . Moreover,

for any randomised algorithm Γran and p < 1/2 there exists an input ι ∈ Ω such that

P
(
Γran(ι) does not produce K − 1 correct digits for Ξ(ι)

or the runtime of Γ on ι exceeds T
)
> p.

(iii) There exists a polynomial pol : R → R, as well as a Turing machine and a BSS machine that both

produce K − 2 correct digits for all inputs in Ω, so that the number of arithmetic operations for both

machines is bounded by pol(n), where n = m+mN is the number of variables, and the number of

digits required from the input oracle is bounded by pol(log(n)). Moreover, the space complexity of

the Turing machine is bounded by pol(n).

(iv) If one only considers (i) - (iii), Ω can be chosen with any fixed dimensions m and N provided that

m ≥ 4 and N > m. Moreover, if one only considers (i) then K can be chosen to be 1.

The problem of computing ε-approximations to the objective function of NP-hard optimisation problems

often leads to phase transitions at the approximation threshold εA > 0. Indeed, assuming that P 6= NP we

often have the following:

Classical phase

transition in hardness

of approximation

Computing

ε-approx ∈ P

Computing ε-approx

is NP-Hard (thus /∈ P)

εA>ε

εA<ε

(10.3.9)

The fact that εA > 0 often follows from the PCP theorem [BGS98, ALM+98, FGL+96], for overviews

see S. Arora and B. Barak [AB09] and references therein. The extended Smale’s 9th problem leads to similar

– yet more complex – phase transitions for the problem of computing ε-approximations to minimisers in the

extended model for classical combinatorial optimisation problems such as LP and problems in continuous

optimisation such as BP. This phenomenon is characterised by the strong breakdown-epsilon εsB and the

weak breakdown-epsilon εwB, yielding phase transitions in several directions for LP (the computational cost
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is measured as a function of the number of variables) independent of the P vs NP question:

New phase

transitions due to the

extended Smale’s 9th

Computing ε-approx /∈ k-EXPTIME ∀ k
but ∈ R (computable)

Computing

ε-approx ∈ P

Computing

ε-approx /∈ R

(non-computable)

ε
w
B
<ε

ε
w
B
>ε
>ε

s
B

ε s
B>εε s

B<ε<ε w
B

εsB=εwB>ε

εsB=εwB<ε

(10.3.10)

The above integers (K, K − 1, K − 2) can be viewed as ‘quantised’ phase transition thresholds. In

particular, we consider the integers d| log(εwB)|e and d| log(εsB)|e, but one can easily state our main results

with the actual breakdown-epsilons describing the ’unquantised’ phase transition threshold as in (10.3.10).

10.3.4 Computing the exit flag - can correctness of algorithms be certified?

A crucial topic in computational mathematics is the reliability of algorithms and certification of their cor-

rectness. It is therefore natural to test whether the built-in algorithms in, for example MATLAB are reliable.

We consider two concrete examples: the linear program

min
x∈R2

x1 + x2 subject to x1 + (1− δ)x2 = 1, x1, x2 ≥ 0, (10.3.11)

where δ > 0 is a parameter, and the centred and standardised (so that the columns of the design matrix are

normalised) Lasso problem

min
x∈N

1

m
‖AδDδx− y‖22 + λ‖x‖1, (10.3.12)

where m = 3, N = 2, λ ∈ (0, 1/
√

3],

Aδ =


1√
2
− δ 1√

2

− 1√
2
− δ − 1√

2

2δ 0

 ∈3×2, y =
(

1/
√

2 −1/
√

2 0
)T
∈3, (10.3.13)

and Dδ is the unique diagonal matrix such that each column of AδDδ has norm
√
m.

In order to compute a solution to (10.3.11), we consider MATLAB’s linprog command; a well-

established optimisation solver for linear programs. This is a general purpose solver, which offers three

different algorithms: ‘dual-simplex’ (the default), ‘interior-point’, and ‘interior-point-legacy’. Besides a

minimiser, linprog also computes an additional output – EXITFLAG – which is an integer value corre-

sponding to the reason for why the algorithm halted. Note that +1 indicates convergence to a minimiser,

all other values indicate some form of failure. In Table 10.1 we apply the three linprog algorithms

(with default settings) to the problem (10.3.11) with different values of δ. The results are fascinating. Not

only does linprog completely fail to compute a minimiser accurately, it also fails to recognise that the

computed minimiser is incorrect: in all cases, the EXITFLAG returns the value +1 indicating a successful

termination.

To compute a solution to (10.3.12), we consider Matlab’s lasso command. We test it with default

settings as well as the tolerance parameter set to machine epsilon εmach = 2−52 and also the maximum
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‘dual-simplex’ ‘interior-point’ ‘interior-point-legacy’

δ Error EXITFLAG Error EXITFLAG Error EXITFLAG

2−1 0 1 0 1 6.0 · 10−12 1

2−15 0 1 0 1 3.0 · 10−5 1

2−20 0 1 0 1 7.0 · 10−7 1

2−24 0 1 0 1 7.1 · 10−8 1

2−26 1.4 1 1.4 1 1.2 · 10−1 1

2−28 1.4 1 1.4 1 4.6 · 10−1 1

2−30 1.4 1 1.4 1 7.1 · 10−1 1

Table 10.1: Testing the output of linprog applied to the problem in (10.3.11) for the algorithms ‘dual-

simplex’, ‘interior-point’ and ‘interior-point-legacy’. The table shows the error ‖x̂− x̃‖`2 and the value of

EXITFLAG (1 means successful output), where x̂ is the true minimiser of (10.3.11) and x̃ is the computed

approximate minimiser. Note that machine epsilon is εmach = 2−52.

Default settings ‘RelTol’ = εmach ‘RelTol’ = εmach

‘MaxIter’ = ε−1
mach

δ Error Runtime Warn Error Runtime Warn Error Runtime Warn

2−1 1 · 10−16 < 0.01s 0 1 · 10−16 < 0.01s 0 1 · 10−16 < 0.01s 0

2−7 0.68 < 0.01s 0 2 · 10−16 0.02s 0 2 · 10−16 0.02s 0

2−15 1.17 < 0.01s 0 1.17 0.33s 1 1 · 10−11 1381.5s 0

2−20 1.17 < 0.01s 0 1.17 0.33s 1 no output > 12h 0

2−24 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0

2−26 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0

2−28 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

2−30 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

Table 10.2: The output of lasso applied to (10.3.12) with inputs as in (10.3.13) and λ = 0.1. The table

shows the error ‖x̂ − x̃‖`2 (where x̂ is the true minimiser and x̃ is the computed minimiser), the CPU

runtime, and a boolean value indicating whether a Warning was issued.
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spgl1 on basis pursuit with δ = 0 MATLAB’s lasso on Lasso with λ = 10−2
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Figure 10.1: (Random matrices – Non-computability is not rare). The vertical axis represents the success

rate # of successes
# of trials , where # of trials = 1200. Success⇔ computed solution is accurate to at least K = 2

digits (‖ · ‖∞ norm). The horizontal axis shows the dimension N . In all cases, A ∈ Rm×N in (10.3.2) and

(10.3.3) is iid – as described in §10.3.5 – according to the distributions U(a, b), Exp(ν) andN (µ, σ2), being

the uniform distribution on [a, b], the exponential distribution with parameter ν and the normal distribution

with mean µ and variance σ.

number of iterations to ε−1
mach. The lasso routine does not have an ‘exit flag’, however, it provides a

Warning if it considers the output to be untrustworthy. The results of this experiment are summarised in

Table 10.2, where we display 1 under the Warn column if a Warning was issued, or 0 if no warning was

issued. As is evident, the failure of lasso is similar to the failure of linprog, however, an interesting

observation is that the Warning parameter is occasionally able to verify the wrong solution, yet, most of

the time, no warning is issued despite completely inaccurate outputs.

10.3.5 Non-computability is not rare

Theorem 10.3.3 demonstrates that for any integerK, there are – for all problems (10.3.1) - (10.3.5) – classes

of inputs for which no algorithm can compute a correct K digit approximate solution. This statement, as

is typical for a result regarding non-computability, describes a worst case scenario. However, the proof

techniques of our theorems reveal much more. Indeed, for random matrix ensembles, one can characterise

the probability of failure of algorithms. This is because our proof of Theorem 10.3.3 is constructive.

To be more precise, Figure 10.1 displays experiments with well-established algorithms such as spgl1

[vdBF08] and MATLAB’s lasso. We have tested these algorithms on BP (10.3.2) with δ = 0 and Lasso

(10.3.3) with λ = 10−2. In both cases, all accuracy parameters in the algorithms were set to machine

precision εmach in MATLAB, and the number of iterations in spgl1 and lasso were set to 1000 and the

default parameter respectively. We executed these algorithms on inputsA ∈ Rm×N and y ∈ Rm, where the

entries of A are iid according to a distribution D and y = Aei where i ∈ {1, . . . , N} is chosen uniformly

at random. In particular, we examine the cases where D is a normal distribution N (µ, σ2) with mean µ

and variance σ, D is a uniform distribution U(a, b) on the interval [a, b], or D is an exponential distribution

183



10.4. Computer-assisted Proofs CHAPTER 10. Beyond Spectral Problems

Exp(ν) with parameter ν. Figure 10.1 displays the results for m = 1 and varying Ns, where we plot the

‘success rate’ given by

Success rate =
# of successes

# of trials
∈ [0, 1],

as a function of the dimension N . In all cases # of trials = 1200. Given a distribution D, let ιN = (y,A)

be such that y ∈1 and A ∈1×N are randomly chosen as described above. For any choice of algorithm Γ

that solve Basis Pursuit or Lasso implemented in floating point arithmetic and any K ∈ N define (when the

limit exists)

lim
N→∞

P
(
Γ(ιN ) provides K correct digits

)
=: PΓ

∞(D).

One can show that, for example, when Γ represents the spgl1 algorithm we have

PΓ
∞(D) = 0 for D = U(a, b).

Note that this asymptotic behaviour is already visible in Figure 10.1. For the Gaussian and Exponential

distributions, the issue is more complicated and there may be transient behaviour. Indeed, let Ξ denote the

solution map to the Lasso problem in Figure 10.1 (so that Ξ outputs a solution to (10.3.3)) and assume that

D is N (µ, σ2) or that D is Exp(ν). Then P(‖Ξ(ιN )‖∞ < 10−k) → 1, as N → ∞ for all k ∈ N. Thus,

an algorithm that always outputs zero will eventually become correct with high probability. However, in

Figure 10.1, there is behaviour of the following form: there exists an M so that

P
(
Γ(ιN ) provides K correct digits

)
> P

(
Γ(ιN+1) provides K correct digits

)
N ≤M,

for some large M ∈ N, yet for any algorithm Γ – such that the objective function applied to Γ(ιN ) is ε (in

this example ε = 10−5 suffices) away from the true minimum – we have PΓ
∞(D) = 1. The latter is typically

true for both spgl1 and lasso, thus Figure 10.1 demonstrates a transient behaviour for both the normal

and exponential distributions. These phenomena can be mathematically analysed and proven by using the

specific techniques used in the proof of Theorem 10.3.3.

10.4 Computer-assisted Proofs

Computer-assisted proofs are rapidly becoming an important part of modern pure mathematics:

“During the next century computers will become sufficiently good at proving theorems that the

practice of pure mathematical research will be completely revolutionized.”

— Sir W.T. Gowers (Fields medal 1998), Cambridge [Gow00]

Recent examples given in Hales’ proof of Kepler’s conjecture (Hilbert’s 18th problem) [Hal05, HAB+17]

and Fefferman (Fields medal 1978) and Seco’s proof of the Dirac–Schwinger conjecture [FS90, FS92,

FS93, FS94b, FS94c, FS95, FS96b, FS96a, FS94a], see also the discussion of Fefferman’s 2017 Wolf Prize

[CST+17]. A potentially surprising result is that both of these examples are computer-assisted proofs that

use non-computable problems. This can be understood via the precise notions of error control in §2.2. The

theory of computer-assisted proofs has not yet been developed, since, in general, it is not known which

computational problems can be used in computer-assisted proofs.

Any computation that arises in a proof must be performed reliably with 100% verification. At first,

one might expect that this can only be achieved with ∆A
1 computational problems, i.e., problems that are
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computable in the classical Turing sense. However, this is not the case and bears a resemblance to the notion

of recursively enumerable sets in classical computation theory. For example, the computer-assisted proof

of Kepler’s conjecture is based on problems that are in ΣA1 but not ∆G
1 . There are several such examples:

• Kepler’s Conjecture (Hilbert’s 18th problem) - SCI classification: ∈ ΣA1 , /∈ ∆G
1 : Kepler conjec-

tured that no packing of congruent balls in Euclidean three space has density greater than that of

the face-centred cubic packing. The Flyspeck programme, led by Hales [Hal05, HAB+17], provides

a fully computer-assisted verification. The key computational part relies on deciding about 50000

linear programs with irrational inputs. More specifically, to decide whether there exists an x ∈ RN

such that

〈x, c〉K ≤M subject to Ax = y, x ≥ 0, (10.4.1)

〈x, c〉K = b10K〈x, c〉c10−K , K ∈ N, M ∈ Q.

Since A and y can be irrational, one can think of this as a decision problem with inexact input (a

Turing machine or a BSS machine that can access A ∈ Rm×N in the form of an oracle OA such that

|OA(i, j, k) − Ai,j | ≤ 2−k). The following facts about the problem (10.4.1) and its classification

hold:

(i) For any integer K̃ > 1 there exists a class of inputs Ω such that the problem (10.4.1) with

K = K̃ is /∈ ΣG1 . However, with the same input class Ω, we have that the problem (10.4.1),

with K = K̃ − 1 is ∈ ∆A
1 .

(ii) The raises the question of how the computer-assisted proof of Kepler’s conjecture was at all

possible, given that (10.4.1) must be decided for K = 6. Given the class Ω in (i), if the

inequality 〈x, c〉K ≤ M in (10.4.1) is replaced by a strict inequality 〈x, c〉K < M , then the

problem is in ΣA1 . A similar (though much more complicated) analysis occurs, and leads to a

series of ΣA1 problems which are solved in the Flyspeck programme.

• Dirac–Schwinger conjecture - SCI classification: ∈ ΣA1 , /∈ ∆G
1 : The Dirac–Schwinger conjecture

was proven in a series of papers by Fefferman and Seco [FS90, FS92, FS93, FS94b, FS94c, FS95,

FS96b, FS96a, FS94a]. Consider the Hamiltonian

HdZ =

d∑
k=1

(−4xk − Z|xk|−1) +
∑

1≤j≤k≤d

|xj − xk|−1

acting on antisymmetric functions in L2(R3d). The ground state energy E(d, Z) for d electrons and

a nucleus of charge Z is then defined by

E(d, Z) := inf{λ ∈ Sp(HdZ)}.

The ground state energy of an atom is then defined as E(Z) := mind≥1E(d, Z). The key result is

asymptotic behaviour of E(Z) for large Z:

E(Z) = −c0Z7/3 +
1

8
Z2 − c1Z5/3 +O(Z5/3−1/2835),

for some explicitly defined constants c0 and c1. In order to show this, the proof verified that F ′′(ω) ≤
c < 0 for some specific function F , for some c and for all ω ∈ (0, ωc) where ωc is specifically defined.

A full discussion of the details is beyond the scope of this thesis, but the intricate computer-assisted
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proof hinges on several problems that are /∈ ∆G
1 but ∈ ΣA1 (see, for example, Algorithm 3.7 and

Algorithm 3.8 in [FS96b]).

• Boolean Pythagorean triples problem - SCI classification: ∈ ΠA
1 , 6∈ ∆G

1 : The Boolean Pythagorean

triples problem asks if it is possible to colour each of the positive integers either red or blue, so that no

Pythagorean triple of integers a, b, c, satisfying a2 + b2 = c2 are all the same colour. This is true up

to n = 7824, and the proof, performed by Heule, Kullmann, and Marek (2016) [HKM16], is based

on computations showing that this is not true for n = 7825. Clearly, for any finite set of integers,

the combinatorial problem lies ∈ ∆A
0 , but it is not ∈ ∆G

0 for the whole set N. However, by checking

each successive integer, it is clear that the problem does lie ∈ ΠA
1 . Such proofs for counterexamples

are common for disproving conjectures within number theory.

• Group theory: Aut(F5) has property (T ) - SCI classification : ∈ ΣA1 , /∈ ∆G
1 : The fact that the

automorphism group of the free group on five generators has Kazhdan’s property (T ), was shown

by Kaluba, Nowak and Ozawa [KNO19]. The key computational problem involves a (root of a)

minimiser of a semi-definite program. This is computed using floating-point arithmetic, which, at

best, is equivalent to solving the semi-definite program with inexact input. This problem is /∈ ∆G
1 but

is ∈ ∆A
2 . There is no concept of ΣA1 for minimisers of semi-definite programs, but the reasoning in

the paper [KNO19] regarding the verification implies that the final decision problem is ∈ ΣA1 .

A key part in all of the examples above is that one must prove either ΣA1 or ΠA
1 classifications in order

to demonstrate that the verification is possible. This is trivial in the Boolean Pythagorean triples problem,

but is very technical in the proof of the Dirac–Schwinger conjecture. Regarding spectral problems, many

of the results in this course led to ΣA1 or ΠA
1 classifications. It follows that such computations could be

used as part of a proof. Figuring out exactly which problems can similarly be used will be a key part of

mathematics in the coming decades.
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[GG13b] T. Göckler and V. Grimm. Convergence analysis of an extended Krylov subspace method for the ap-
proximation of operator functions in exponential integrators. SIAM J. Numer. Anal., 51(4):2189–2213,
2013.

[Gil03] Michael I. Gil. Operator functions and localization of spectra. Springer, 2003.

[GJL94] O. Golinelli, T. Jolicoeur, and R. Lacaze. Finite-lattice extrapolations for a Haldane-gap antiferromagnet.
Physical Review B, 50(5):3037, 1994.

[GK98] Ilya Ya Goldsheid and Boris A. Khoruzhenko. Distribution of eigenvalues in non-Hermitian Anderson
models. Physical Review Letters, 80(13):2897, 1998.

[GKKS18] Dimitrios Giannakis, Anastasiya Kolchinskaya, Dmitry Krasnov, and Jörg Schumacher. Koopman anal-
ysis of the long-term evolution in a turbulent convection cell. Journal of Fluid Mechanics, 847:735–767,
2018.

[GKP91] T. Geisel, R. Ketzmerick, and G. Petschel. New class of level statistics in quantum systems with un-
bounded diffusion. Physical Review Letters, 66(13):1651, 1991.
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