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Abstract

Topological insulators (TIs) are renowned for their remarkable electronic properties: quantised
bulk Hall and edge conductivities, and robust edge wave-packet propagation, even in the pres-
ence of material defects and disorder. Computations of these physical properties generally rely on
artificial periodicity (the supercell approximation, which struggles in the presence of edges), or un-
physical boundary conditions (artificial truncation). In this work, we build on recently developed
methods for computing spectral properties of infinite-dimensional operators. We apply these tech-
niques to develop efficient and accurate computational tools for computing the physical properties
of TIs. These tools completely avoid such artificial restrictions and allow one to probe the spectral
properties of the infinite-dimensional operator directly, even in the presence of material defects,
edges, and disorder. Our methods permit computation of spectra, approximate eigenstates, spec-
tral measures, spectral projections, transport properties, and conductances. Numerical examples
are given for the Haldane model, and the techniques can be extended similarly to other TIs in two
and three dimensions.

This paper was solicited for publication as a result of Matthew Colbrook being the winner of the
2021 IMA Lighthill–Thwaites Prize Prize.
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1 Introduction

Topological insulators (TIs) are materials with remarkable electronic properties1. The bulk Hall and
edge conductances of a TI are quantised precisely, even in the presence of defects and disorder (see
[4, 8, 14, 16, 21, 22, 48, 59, 60, 66, 67, 73, 75, 87, 91, 92, 103] and the references therein). The remarkable
robustness of these physical quantities has generated huge interest in TIs for potential industrial
applications such as spintronics, quantum computing, and the “topological transistor” [14,56,66,87,92].
The importance of topological insulators was confirmed by the award of the 2016 Nobel prize to
Thouless, Haldane, and Kosterlitz for foundational work on topological phases of matter.

The edge currents of TIs are mediated by electronic states localised at edges known as edge states.
The robustness of the edge conductance of a TI can be seen at the level of localised wave-packets
formed from these edge states, that snake around corners and defects of the edge, even in the presence
of disorder [5, 14, 18, 20, 45, 50, 64, 66, 73, 83, 86, 87, 92, 103]. The behaviour of these wave-packets has
spurred interest in building photonic and acoustic devices that mimic topological insulators for wave-
guiding applications [43,79,94,108,110,115].
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1For simplicity of presentation, in this work we treat topological insulators as synonymous with two-dimensional
Chern insulators: two-dimensional topological insulators whose bulk topology is measured by the Chern number (the
classification of topological insulators by dimension and symmetry class was given by [76, 100], for reviews, see [14, 51,
66,87,92]). Our methods are not fundamentally restricted to two dimensions or Chern insulators.
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The significant interest in TIs for industrial applications makes finding good numerical methods for
computing their electronic properties essential. Non-interacting electrons in TIs are typically modelled
by spatially discrete Schrödinger equations known as tight-binding models. To account for the vast
number of ionic cores in typical materials, the bulk of the material is generally treated as extending
infinitely in all directions. In contrast, the edge of the material is modelled as a truncation of the
infinite bulk model in one direction. The infinite extent of these models, coupled with non-periodic
defects and disorder in realistic models, makes the numerical computation of the electronic properties
of TIs very challenging.

In many scenarios, existing methods for computing electronic properties of TIs are unsatisfactory
because they rely on imposing either artificial periodicity (supercell approximation), or unphysical
boundary conditions (artificial truncations), or some combination of the two (see, for example, the
package PythTB [114]). As far as we are aware, supercell approximation has not been rigorously
justified in this context. In any case, it cannot be used in the direction transverse to an edge. At the
same time, artificial truncation leads immediately to spectral pollution and spurious edge states [111].

This paper applies recently developed methods for rigorously and efficiently computing spectral
properties of infinite-dimensional operators [23, 25–27, 33, 37, 38] to the problem of computing the
electronic properties of TIs. We do this without assuming model periodicity and without introducing
artificial truncations. From a numerical analysis perspective, the majority of methods that deal with
spectra in infinite dimensions are of a “truncate-then-solve” flavour. A truncation/discretisation of
the operator is adopted, possibly taking advantage of periodicity in suitable directions (e.g., supercell
method), and methods for computing the eigenvalues of a finite matrix are used. In contrast, we
adopt a “solve-then-discretise” approach.2 We are concerned with the following four types of spectral
computations for infinite-dimensional operators:

(P1) Computing spectra with error control and computing approximate eigenstates3 discussed in
Section 3.1, where we use the method of [38].

(P2) Computing spectral measures, discussed in Section 3.2, where we use the method of [25,37].

(P3) Computing spectral projections, discussed in Section 3.3, for which we propose a new efficient
method building on the ideas in [25,37].

(P4) Computing transport properties (and more generally the functional calculus), discussed in
Section 3.4, where we use the method of [27].

With this set of computational tools in hand, we focus on computing the following physical prop-
erties of TIs:

(PA) Bulk and edge conductances of non-periodic TIs, discussed in Sections 4.4 and 4.5, with
results shown in Section 5.1.

(PB) Edge states of periodic TIs and their dispersion relations, discussed in Section 4.5, with
results shown in Section 5.2.

(PC) Approximate edge states and edge wave-packets of non-periodic TIs, and their spectral
measures, discussed in Section 4.5, with results shown in Sections 5.3 and 5.4.

(PD) Dynamics of edge wave-packets of non-periodic TIs, discussed in Section 4.5, with results shown
in Section 5.5.

As well as applying the new methods of [25, 27, 37, 38], this paper contains the following novel
contributions. On the numerical side, we provide a rigorous and efficient scheme for computing with
projection-valued measures developed in Section 3.3. This includes a generalisation of Stone’s formula
to rational kernels and improved convergence rates via contour deformations. On the TIs side, we
provide rigorous computations of bulk and edge conductances, and spectral measures, in the presence
of global disorder, i.e., nonlocal perturbations. For brevity, we have restricted ourselves to reporting

2The “solve-then-discretise” paradigm has also recently been applied to other spectral problems [69,111,117], exten-
sions of classical methods such as the QL and QR algorithms [32, 116], Krylov methods [57], and the computation of
resonances [10,11].

3Where the spectrum is discrete, these approximate eigenstates are guaranteed to converge to exact eigenstates. This
is sufficient to compute exact edge states of periodic TIs; see Section 4.5.
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results for the Haldane model [62]. However, our methods are not fundamentally restricted to this
model and allow the computation of the electronic properties of more general TIs in two and three
dimensions.

The paper is organised as follows. First, we discuss the motivation and idea of our methods in
Section 2. We then give a summary of the algorithms in Section 3. The Haldane model and its physics
are discussed in Section 4. Results are reported in Section 5. We also provide appendices of proofs
and further details on the physical model.

Finally, code for our paper can be found at https://github.com/SpecSolve/SpecTB [36]. We
hope this paper can also act as a user manual for those who wish to apply these techniques to their
problems of interest.

2 Motivation for the numerical methods

We present algorithms for discrete models of electrons in materials known as tight-binding models.
For such models, the Hilbert space is isomorphic to the space of square summable sequences, l2(N).
Basis vectors correspond to atomic sites, perhaps with additional internal degrees of freedom such as
sublattice label and spin. In this basis, the Hamiltonian is described by an infinite Hermitian matrix
H̃ = {H̃ij}i,j∈N, that we assume to be sparse, or finite range, i.e. finitely many non-zero entries in each
column.4 After a suitable ordering of the sites (e.g., by positional radius from an origin), there exists

a function f : N → N such that H̃ij = 0 if i > f(j). Thus f describes the sparsity of H̃. Therefore,
we describe the algorithms below for infinite sparse matrices representing Hermitian Hamiltonians.
The restriction to sparse tight-binding models is not fundamental: for non-sparse matrices and even
non-Hermitian operators, see [38]. Extensions of the algorithms to unbounded operators and partial
differential operators can be found in the relevant papers [25, 27, 33, 35, 37]. In this paper, our aim is

to compute the spectral quantities of interest from the infinite matrix H̃.

2.1 Rectangular, as opposed to square, truncations

In the context of this paper, the algorithms we use rely on rectangular, as opposed to square, trunca-
tions of H̃. Since this may be an unfamiliar approach to the reader, we first explain the general idea
before discussing the algorithms. See also [26] for a pedagogical description. In what follows, we use
Sp(·) to denote the spectrum.

Model: As a concrete example, consider a finite range Hamiltonian on a hexagonal lattice such as
the Haldane model. The situation is shown in Fig. 1 (panel (a)), where, for the sake of illustration,
we have also added a physical edge, so that the model is a half lattice, as well as the position of a
potential defect. The presence of the defect is significant because it breaks the translation symmetry
of the system parallel to the edge, meaning that spectral properties cannot be computed (at least, not
exactly, see the ‘supercell method’ below) using Bloch’s theorem [2,96] parallel to the edge.5

Previous approaches to computing spectra: Let Pn denote the orthogonal projection onto
the linear span of the first n basis vectors. The most straightforward approach to computing spectral
properties of the infinite operator H is to compute the spectral properties of large square truncations
of the matrix H̃ and hope that the computations converge in the limit of large truncations. Math-
ematically, this amounts to computing spectral properties of the finite-dimensional matrices PnH̃Pn,
where n is a large positive integer (shown as a red box in Fig. 1). Physically, this corresponds to
studying the interactions of a finite number of sites within the truncation (Fig. 1 (b)). Although this

method is straightforward, it is easy to see that the matrices PnH̃Pn can have eigenvalues that never
approach the spectrum of H, even as n → ∞. This is an example of the general phenomenon known
as ‘spectral pollution’, where eigenvalues of finite discretisations/truncations can accumulate at points
in gaps between the essential spectrum of infinite self-adjoint operators [42, 80, 89] as the truncation
size increases. In the context of TIs, which necessarily have eigenstates localised at edges, spectral
pollution arising from the new edges created by the truncation is inevitable [111].

4We use the notational ·̃ to distinguish between the abstract Hamiltonian H and its representation as an infinite
matrix H̃ on l2(N). This notation is to avoid confusion later on, where we write H in terms of infinite matrices acting
on Hilbert spaces different to l2(N).

5Bloch’s theorem reduces spectral computations on infinite domains to computations (parametrised by k) on domains
that are bounded in each direction of periodicity, with periodic boundary conditions (up to a phase).
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(a) Infinite Lattice (b) Finite Truncation (c) Our Method

H̃ PnH̃Pn Pf(n)H̃Pn

Figure 1: Top: (a) Infinite hexagonal lattice with an infinite edge and possible defect. (b) Finite
truncation of tile to n sites. (c) Finite truncation with interactions shown as green arrows (our

method). Bottom: The corresponding sparsity patterns (non-zero entries of the infinite matrix H̃).
The boxes show the different types of truncations of the operator. In (c), f(n) is chosen to include all
of the interactions of the first n sites (basis vectors).

Figure 2: The supercell method on ribbon geometry combines periodic approximation along the edge
with finite truncation away from the edge (note that the orientation of Fig. 1 has been rotated by
π/2). The artificial edge typically leads to numerical artifacts in the computed spectrum. When the
lattice contains defects or disorder, the artificial periodicity may also contribute to numerical artifacts
or degrade accuracy.
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In the TI literature, a common approach to computing spectral properties of H is the ‘supercell
method on ribbon geometry’ (e.g., the package PythTB [114]). The method involves two approxima-
tions. The first approximation (the ‘supercell method’) is to approximate the edge of the material
by a periodic edge with a large fundamental cell (the ‘supercell’) by repeating the defect along the
edge. The spectral properties of the periodic edge are then related, via Bloch’s theorem, to those of
the Hamiltonian restricted to a semi-infinite strip extending perpendicular to the edge with periodic
(up to a phase) boundary conditions along the boundaries of the strip. The second approximation is
then to truncate these semi-infinite Hamiltonians far from the original edge so that the computational
domain forms a ‘ribbon’. Fig. 2 illustrates this approach.

Supercell approximations have been proved to converge as the supercell width increases in other
contexts, see, e.g., [19,47,106], but we are not aware of any work justifying them for P1 in the present
context. In contexts where one has off-diagonal decay [13], it is often possible to compute the resolvent
using supercell methods or truncations with Dirichlet boundary conditions [46]. However, it can
be difficult in practice to choose the truncation parameter and the methods we discuss in this paper
automatically and adaptively select truncation parameters. Nevertheless, the framework we propose to
solve P2–P4 allows the use of any convergent truncation method for computing resolvents. In practice,
supercell approximations can be computationally inefficient when a large supercell is required, e.g.,
for materials with disorder (for a comprehensive discussion in the context of photonic quasicrystals,
see [98]).

As for the second approximation, spectral pollution is inevitable, leading to results that can be
misleading and difficult to interpret (see Remark 1). It is worth remarking that the second approxima-
tion must be dealt with even when the supercell approximation is exact, e.g., when there is no defect
at all! In certain circumstances, the second approximation can be removed (see Remark 2). Finally,
if periodicity is present in the problem, then our method of using rectangular truncations can take
advantage of this, reducing the problem in the direction of periodicity (see Section 5.2).

Remark 1. It is common in the physics literature to accept the additional spectrum arising from the
truncation away from the edge and simply treat the system as having a second edge. However, the
spectrum of the truncated Hamiltonian is often clearly different from that of the semi-infinite operator:
see, for example, Lee–Thorp [78], in particular Figure 26.7, and compare with Figure 5.3 of [111].

Remark 2. Two of the authors have introduced the ‘Green’s function method’ that computes the
discrete spectrum and associated eigenfunctions of the semi-infinite Hamiltonians obtained via super-
cell approximation that eliminates spectral pollution, see [111]. Similarly to the present work, the
fundamental idea of the ‘Green’s function method’ is to work with the resolvent. The main contrast
between [111] and the present work is that here we make fewer assumptions on the form of the edge
Hamiltonian: we do not assume periodicity either parallel to the edge or into the bulk. We also com-
pute other spectral properties not considered in [111]: spectral measure, spectral projection, and time
propagation.

Rectangular truncations: In this work, we compute spectral properties using rectangular trun-
cations of the form (shown as a green box in Fig. 1):

Pf(n)H̃Pn ∈ Cf(n)×n. (2.1)

Recall that f describes the sparsity pattern of the matrix. In our case, the rectangular truncation
Pf(n)H̃Pn corresponds to including all of the interactions of the first n sites (the first n columns of

H̃) without needing to apply boundary conditions. Fig. 1 (panel (c)) shows the general idea. This
truncation is in sharp contrast to näıve methods that typically take a square truncation of the matrix
H̃, such as PnH̃Pn ∈ Cn×n, with a boundary condition. This difference allows us to rigorously compute
properties via computation of the resolvent operator

R(z, H̃) = (H̃ − z)−1, z /∈ Sp(H).

Once we have computed the resolvent, we can then compute the spectral properties of the operator H.
This approach lends itself to adaptive computations of the full infinite-dimensional operator directly,
eliminating both of the approximations involved in the ‘supercell method on ribbon geometry’. For
our computational problems, this allows:
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(P1) Computation of spectra and approximate eigenstates with guaranteed error control. In the
case of discrete spectrum, the approximate eigenstates correspond to bona fide eigenstates
(e.g., edge states when the edge is periodic).

(P2) & (P3) Computation of spectral measures/projections with guaranteed convergence and given
rates of approximation.

(P4) Computation of the functional calculus (and hence transport properties) with guaranteed
error control.

Rectangular truncations thus allow methods with guaranteed convergence (e.g., choosing the truncation
size for the smoothing parameter in P2), and, in certain cases, error control. With this technique in
hand, we can reliably probe the spectral properties of systems in infinite dimensions. Indeed, this
technique is already allowing for the discovery and investigation of new physics in quasicrystalline
systems, including their transport and topological properties [71].

Remark 3 (Foundations of computation). Our methods form part of a wider programme on the
foundations of computations. One can classify computational spectral problems (and other types of
computational problems) into a hierarchy (the SCI hierarchy) [9, 12, 23–25, 28, 32, 33, 65, 99]. This
measures the intrinsic difficulty of computational problems and provides proofs of the optimality of
algorithms, realising the limits of what computers can achieve. This is crucial for infinite-dimensional
spectral computations since not all problems can be solved. Moreover, the classification often tells us
precisely the assumptions we need to make computations possible. This framework is now being applied
to optimisation, machine learning and artificial intelligence, solving partial differential equations, data-
driven dynamical systems, and computer-assisted proofs [6, 7, 10, 11, 27, 29, 30, 39, 40, 117].

3 The infinite-dimensional numerical methods

Here we briefly describe the algorithms for infinite-dimensional spectral computations.

3.1 Computation of spectra and approximate eigenstates

We utilise an algorithm, developed in [38], that computes the spectrum of an infinite-dimensional
operator with error control. Recall that in our setting, the Hamiltonian H can be represented by an
infinite Hermitian matrix, H̃ = {H̃ij}i,j∈N and we are given a function f : N → N such that H̃ij = 0

if i > f(j). Thus f describes the sparsity of H̃. Our starting point is the function

Fn(z) := σinf(Pf(n)(H̃ − z)Pn), (3.1)

where we remind the reader that Pm denotes the orthogonal projection onto the linear span of the first
m basis vectors. We also use σinf to denote the smallest singular value of the corresponding rectangular
matrix. Since our operator is normal (commutes with its adjoint), the function F is an upper bound for
the distance of z to the spectrum Sp(H), and converges down to this distance uniformly on compact
sets as n → ∞ [38]. Physically, Fn(z) is the square-root of the ground state energy of the folded

Hamiltonian Pn(H̃ − z)∗(H̃ − z)Pn. There are numerous ways to compute Fn, such as standard

iterative algorithms or incomplete Cholesky decomposition of the shifts Pn(H̃ − z)∗Pf(n)(H̃ − z)Pn
(see the supplementary material of [38] for a discussion). The other ingredient we need is a grid of

points Gn = {z(n)
1 , ..., z

(n)
j(n)} ⊂ R providing the wanted resolution rn over the spectral region of interest.

The method is sketched in Algorithm 1 and produces three quantities: Γn, En and Vn. The simple
idea of the method is a local search routine. If Fn(z) ≤ 1/2, we search within a radius Fn(z) around
z to minimise the approximated distance to the spectrum. This gives our best estimate of points in
the spectrum near z (the set Mz). The output Γn(H) is then the collection of these local minimisers.
Γn(H) converges to the spectrum Sp(H) of the full infinite-dimensional operator as n→∞ (for suitable
rn → ∞). This convergence is free from the edge states/spectral pollution that are associated with
any artificial or numerical truncation. In other words, we compute Sp(H), and only Sp(H). Note
that in the examples of this paper, Sp(H) does include spectrum associated to edge states of the full
Hamiltonian H. The algorithm also outputs an error bound En that satisfies

sup
z∈Γn(H)

dist(z,Sp(H)) ≤ En with lim
n→∞

En = 0. (3.2)
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Algorithm 1 Computation of spectrum and the associated approximate states with error control via
the method of [38]. The computation of F̃n can be performed in parallel.

Input: H̃, f , n and Gn (with resolution rn ≥ 1).

1: For each z ∈ Gn, compute F̃n(z) = d2rnFn(z)e/(2rn) and vn(z), the right-singular vector of

Pf(n)(H̃ − z)Pn corresponding to the smallest singular value.

2: For z ∈ Gn, if F̃n(z) ≤ 1/2, then set

Iz =
{
w ∈ Gn : |w − z| ≤ F̃n(z)

}
, Mz =

{
w ∈ Iz : F̃n(w) = min

x∈Iz
F̃n(x)

}
.

Otherwise, set Mz = ∅.

Output: Γn = ∪z∈GnMz (approximation of spectrum), En = maxz∈Γn F̃n(z) (error bound) and
Vn = ∪z∈Γn{vn(z)} (approximate states).

For an accuracy δ > 0, we simply increase n until En ≤ δ. The final quantity Vn consists of the
approximate states corresponding to the output Γn. The approximate eigenstate vn(z) satisfies

‖(H̃ − z)vn(z)‖ = ‖Pf(n)(H̃ − z)Pnvn(z)‖ = Fn(z) ≤ En,

up to numerical errors. For an interval arithmetic implementation of this algorithm (allowing verified
error bounds) and extensions to partial differential operators, see [33]. We can also verify the spectral
content of these approximate eigenstates by computing their spectral measure, see Section 3.2.

3.2 Computation of scalar spectral measures

Associated with the Hamiltonian H is a projection-valued measure, E , whose existence is guaranteed by
the spectral theorem [97, Theorem VIII.6] and whose support is the spectrum Sp(H). This diagonalises
H, even when there does not exist a basis of normalisable eigenstates (recall that we are working in
an infinite-dimensional Hilbert space):

H =

∫
Sp(H)

λ dE(λ). (3.3)

In finite dimensions, or when H is compact or has compact resolvent, E consists of a sum of Dirac mea-
sures, located at the eigenvalues of H, whose values are the corresponding projections onto eigenspaces.
More generally, however, there may be a continuous component of the spectrum and spectral measure.

The key ingredient that allows approximations of E to be computed is the formula for the resolvent

(H − z)−1 =

∫
Sp(H)

1

λ− z
dE(λ). (3.4)

In [25], it is shown how to compute the action of the resolvent with error control via the rectangular
truncations Pf(n)(H̃ − z)Pn and solving the resulting overdetermined linear system in the least squares
sense. The residual converges to zero as n→∞ and can be used to provide the needed error bounds
through an adaptive selection of n [25, Theorem 2.1]. As ε ↓ 0, the truncation size n must be increased
adaptively. Rectangular truncations are useful since they provably converge and allow us to choose
n = n(ε) without manual selection of parameters. Note that if one can approximate the error when
computing the resolvent, then different truncation methods can also be used in the scheme below.
We compute a smoothed approximation of E via convolution with a rational kernel Kε for smoothing
parameter ε > 0.

We explain the method for the important case of scalar-valued measures, before discussing the case
of spectral projections in Section 3.3. The spectral measure of H with respect to ψ ∈ H is a scalar
measure defined as µψ(Ω) := 〈E(Ω)ψ,ψ〉. Lebesgue’s decomposition of µψ [107] gives

dµψ(y) =
∑

λ∈Spp(H)

〈Pλψ,ψ〉 δ(y − λ)dy

︸ ︷︷ ︸
discrete part

+ ρψ(y) dy + dµ
(sc)
ψ (y)︸ ︷︷ ︸

continuous part

. (3.5)
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The discrete part of µψ is a sum of Dirac delta distributions on the set of eigenvalues of H, that
we denote by Spp(H). The coefficient of each δ in the sum is 〈Pλψ,ψ〉 = ‖Pλψ‖2, where Pλ is the
orthogonal spectral projector associated with the eigenvalue λ. The continuous part of µψ consists of
an absolutely continuous part with Radon–Nikodym derivative ρψ ∈ L1(R) and a singular continuous
component µ

(sc)
ψ .

We evaluate smoothed approximations of µψ via a function gε, with smoothing parameter ε > 0,
that converges weakly to µψ [17, Ch. 1]. That is,∫

R
φ(y)gε(y) dy →

∫
R
φ(y) dµψ(y), as ε ↓ 0,

for any bounded, continuous function φ. The classical example of this is Stone’s formula that corre-
sponds to convolution with the Poisson kernel for the half-plane [49, p. 37] (also called the Cauchy
distribution or Lorentzian):

gε(x) =
1

2πi

〈[
(H − (x+ iε))−1 − (H − (x− iε))−1

]
ψ,ψ

〉
=

∫
R

επ−1

(x− λ)2 + ε2
dµψ(λ). (3.6)

As ε ↓ 0, this approximation converges weakly to µψ. However, for a given truncation size, if ε is
too small the approximation of (3.6) via Pf(n)(H̃ − z)Pn (described above) becomes unstable due to

the truncation of H̃. There is an increased computational cost for smaller ε, which typically requires
larger truncation parameters. Since we want to approximate spectral properties without finite-size
effects, it is advantageous to replace the Poisson kernel with higher-order rational kernels developed
in [37]. These kernels have better convergence rates as ε ↓ 0, allowing a larger ε to be used for a given
accuracy, thus leading to a lower computational burden. We use the high-order kernel machinery
developed in [37], where the following definition is made.

Definition 3.1 (mth order kernel). Let m ∈ N and K ∈ L1(R). We say K is an mth order kernel if:

(i) Normalised:
∫
RK(x) dx = 1.

(ii) Zero moments: K(x)xj is integrable and
∫
RK(x)xj dx = 0 for 0 < j < m.

(iii) Decay at ±∞: There is a constant CK , such that |K(x)| ≤ CK(1 + |x|)−(m+1), ∀x ∈ R.

We set Kε(·) = ε−1K(·/ε) to obtain an approximate identity. High-order kernels can be constructed
using rational functions as follows. Let {aj}mj=1 be distinct points in the upper half plane and suppose
that the constants {αj}mj=1 satisfy the following (transposed) Vandermonde system:

1 . . . 1
a1 . . . am
...

. . .
...

am−1
1 . . . am−1

m



α1

α2

...
αm

 =


1
0
...
0

 . (3.7)

Then the kernel

K(x) =
1

2πi

m∑
j=1

αj
x− aj

− 1

2πi

m∑
j=1

αj
x− aj

, (3.8)

is an mth order kernel, and we have the following generalisation of Stone’s formula

[Kε ∗ µψ](x) =
−1

2πi

m∑
j=1

〈[
αj(H − (x− εaj))−1 − ᾱj(H − (x− εāj))−1

]
ψ,ψ

〉
=
−1

π

m∑
j=1

Im
(
αj 〈(H − (x− εaj))−1ψ,ψ〉

)
. (3.9)

This convolution converges with mth order of convergence in ε (up to a logarithmic factor and for
sufficiently smooth µψ) [37]. The second line of (3.9) follows from the conjugate symmetry of the
resolvent. Here, z̄ denotes the complex conjugate of z and ∗ represents convolution. As a natural
extension of the Poisson kernel, whose two poles are at ±i, we consider the choice aj = 2j/(m+ 1)−
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m πK(x)
∏m
j=1(x− aj)(x− aj) {α1, . . . , αdm/2e}

2 20
9

{
1+3i

2

}
3 − 5

4x
2 + 65

16 {−2 + i, 5}

4 − 3536
625 x

2 + 21216
3125

{−39−65i
24 , 17+85i

8

}
5 130

81 x
4 − 12350

729 x2 + 70720
6561

{
15−10i

4 , −39+13i
2 , 65

2

}
6 1287600

117649 x
4 − 34336000

823543 x2 + 667835200
40353607

{
725+1015i

192 , −2775−6475i
192 , 1073+7511i

96

}
Table 1: The numerators and residues of the first six rational kernels with equispaced poles. We give
the first dm/2e residues because the others follow by the symmetry αm+1−j = αj .

Algorithm 2 A practical framework for evaluating an approximate spectral measure of an operator
H̃ at x0 ∈ R with respect to a vector ψ ∈ H via the method of [25, 37]. For the examples of this
paper, the resolvent is computed using the rectangular truncations in (2.1). However, the framework
generalises to arbitrary self-adjoint operators given the ability to approximate solutions of the shifted
linear systems and inner products.

Input: H̃, ψ ∈ H ∼= l2(N), x0 ∈ R, a1, . . . , am ∈ {z ∈ C : Im(z) > 0}, and ε > 0.

1: Solve the Vandermonde system (3.7) for the residues α1, . . . , αm ∈ C.

2: Solve (H̃ − (x0 − εaj))uεj = ψ for 1 ≤ j ≤ m.

3: Compute µεψ(x0) = −1
π Im

(∑m
j=1 αj〈uεj , ψ〉

)
.

Output: µεψ(x0).

1 + i. We then determine the residues by solving the Vandermonde system in (3.7). The first six
kernels are explicitly written down in Table 1 (taken from [37]).

Given an mth order rational kernel, defined by distinct poles a1, . . . , am in the upper half-plane, the
resolvent-based framework for evaluating an approximation of the spectral measure µψ is summarised
in Algorithm 2. This algorithm, which can be performed in parallel for several x0, forms the foundation
of SpecSolve [34]. In practice, the resolvent in Algorithm 2 is discretised before being applied. We
compute an accurate value of µεψ provided that the resolvent is applied with sufficient accuracy, which
can be done adaptively with a posteriori error bounds [25]. For an efficient adaptive implementation,
SpecSolve constructs a fixed discretisation, solves linear systems at each required complex shift, and
checks the approximation error at each shift. If further accuracy is needed at a subset of the shifts,
then the discretisation is refined geometrically, applied at these shifts, and the error is recomputed.
This process is repeated until the resolvent is computed accurately at all shifts.

3.3 Computation of spectral projections

Computing spectral projections plays an integral role in a variety of large-scale eigensolvers used in
electronic structure calculations [1, 58, 90, 101]. A distinguished class of these algorithms use rational
filter functions to compute discrete spectral projectors of large matrices [3, 61, 70, 81, 105, 109]. In
this section, we show how to compute projection-valued spectral measures (see (3.3)) associated with
arbitrary spectral types, including continuous spectra. Our approach is similar to methods based on
rational filters for discrete spectral projectors, but incorporates careful regularisation and endpoint
corrections to achieve convergence. To do this in infinite dimensions, one must carefully balance the
smoothing parameter and truncation size [37]. If one does not, a “truncate-then-solve” approach simply
computes the spectral projection associated with the truncated operator, which always has pure point
spectra and no continuous spectra.

Given an interval [a, b] ⊂ Sp(H), a vector ψ ∈ H, and an mth order kernel K, the identity

[Kε ∗ E ](x) =
−1

2πi

m∑
j=1

[
αj(H − (x− εaj))−1 − ᾱj(H − (x− εāj))−1

]
(3.10)

allows us to approximate E([a, b])ψ by solving shifted linear system of the form (H − z)u = ψ. Em-
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Figure 3: Deforming the contour of integration away from the spectrum of H in (3.11) alleviates the
computational cost of computing the resolvent at the interior quadrature nodes. The left panel depicts
two integration contours (solid and dashed lines) for the Poisson kernel (m = 1) with smoothing
parameter ε = 0.1. The right panel displays the relative approximation errors in the solutions of the
truncated system (Pf(n)H̃Pn − z)vn = e1 (see Section 2.1), where e1 is the first canonical basis vector

and H̃ is the Hamiltonian of the bulk Haldane model (see Section 4.1), corresponding to the two values
of z marked along the contours in the left panel (blue square and red triangle).

ploying a quadrature rule with weights w1, . . . , w` and nodes x1, . . . , x`, we form the approximation∫ b

a

[Kε ∗ E ](x) dx ≈ −1

2πi

N∑
`=1

w`

m∑
j=1

[
αj(H − (x` − εaj))−1 − ᾱj(H − (x` − εāj))−1

]
. (3.11)

The following generalisation of Stone’s formula establishes that the approximation converges in the
limit ε → 0, up to contributions from atoms of E at the endpoints. It is convenient to distinguish
between the real and imaginary parts of the residues explicitly, so we denote αj = βj + iγj .

Theorem 3.2. Given a projection-valued measure E (see (3.3)) and mth order kernel K with conjugate
pole pairs (see (3.8)), for any [a, b] ⊂ R we have that

lim
ε→0+

∫ b

a

[Kε ∗ E ](x) dx = E((a, b)) + clE({a}) + crE({b}),

where cl = π−1
∑m
j=1 βj(π − arg(aj)) + iγj log |aj | and cr = π−1

∑m
j=1 βj arg(aj)− iγj log |aj |. More-

over, if the poles are symmetric about the imaginary axis so that am+1−j = −āj, then cl = cr = 1/2.

Proof. See Appendix A.

Remark 4 (Contribution of singleton sets). One can easily show via the dominated convergence
theorem that

lim
ε→0+

ε

2i

[
(H − x− iε)−1 − (H − x+ iε)−1

]
= E({x}).

Together with Theorem 3.2, this allows computation of E((a, b)) and E([a, b]).

By analogy with scalar spectral measures, approximating projection-valued spectral measures with
higher-order rational convolution kernels is computationally advantageous because they achieve com-
parable accuracy with larger ε. By increasing the kernel order rather than decreasing ε, the resolvent
in (3.11) remains well-conditioned and is usually significantly cheaper to apply. In addition, we can
reduce the computational cost further by leveraging the resolvent’s analyticity in the upper and lower
half-plane and deforming the contour of integration in (3.11) away from the spectrum (see Fig. 3 (left)).
The method is summarised in Algorithm 3.

Consider the semi-circle contour connecting the points a and b and oriented in the clockwise direc-
tion, parametrised explicitly by 0 ≤ θ ≤ 1 as

z(θ) = b+
a− b

2
(1 + exp(iπθ)), with z′(θ) = iπ

a− b
2

exp(iπθ).
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Algorithm 3 An efficient method (see Section 3.3) to compute spectral projections associated with

the projection-valued measure E of an operator H̃.

Input: H̃, ψ ∈ H ∼= l2(N), [a, b] ⊂ R, θ1, . . . , θN ∈ [0, 1], w1, . . . , wN ∈ R+, a1, . . . , am ∈ {z ∈ C :
Im(z) > 0}, and ε > 0.

1: Solve the Vandermonde system (3.7) for the residues α1, . . . , αm ∈ C.
2: Set z` = a+ b−a

2 (1 + exp(πiθ`)) and z′` = −i b−a2 exp(πiθ`).
3: Solve (H̃ − (z` − εaj))uεj = ψ and (H̃ − (z̄` − εāj))vεj = ψ for 1 ≤ j ≤ m, and each 1 ≤ ` ≤ N .

4: Solve (H̃ − a∓ iε)uεa,± = ψ and (H̃ − b∓ iε)uεb,± = ψ.

5: Compute Eε(a,b)ψ = −1
2πi

∑N
`=1

∑m
j=1 w`

[
αjz
′
`u
ε
j − ᾱj z̄′`vεj

]
− ε

2i

(
cl
[
uεa,+ − uεa,−

]
+ cr

[
uεb,+ − uεb,−

])
.

Output: Eε(a,b)ψ.

Since the resolvent is analytic in C \ Sp(H) and a1, . . . , am lie in the upper half-plane, we may write∫ b

a

[Kε ∗ E ](x) dx =
−1

2πi

∫ 1

0

m∑
j=1

[
αj(H − (z(θ)− εaj))−1z′(θ)− ᾱj(H − (z̄(θ)− εāj))−1z̄′(θ)

]
dz

≈ −1

2πi

N∑
`=1

w̃`

m∑
j=1

[
αj(H − (z(θ`)− εaj))−1z′(θ`)− ᾱj(H − (z̄(θ`)− εāj))−1z̄′(θ`)

]
.

(3.12)
with quadrature weights w̃1, . . . , w̃N and nodes θ1, . . . , θN . From a computational standpoint, (3.12)
improves two-fold on the formulation in (3.11):

� First, the resolvent is evaluated further from the spectrum and is typically well-approximated by
smaller discretisations at many interior quadrature nodes (see Fig. 3 (right)).

� Second, the convergence rate of quadrature rules are improved because the integrand’s region
of analyticity is effectively enlarged when the contour is deformed away from the spectrum
(see Fig. 4) [63]. Consequently, fewer quadrature nodes are required to approximate the integral
to a fixed tolerance.

Therefore, comparable accuracy is achieved while solving both fewer and smaller linear systems.
To compare the computational efficiency of the two contours with respect to the second point,

we estimate the number of quadrature nodes required to achieve approximation error 0 < δ∗ < 1.
We consider spectral projection onto the interval [0, 1] (without loss of generality), Clenshaw–Curtis
quadrature (CCQ), and an mth order rational kernel with equispaced poles aj = 2j/(m+ 1) − 1 + i
(see Section 3.2). In this setting, Clenshaw–Curtis converges exponentially so that the quadrature
approximation error is bounded by ‖EN‖ ≤ Cρ−N , where N is the number of quadrature nodes, ρ > 1
is half the sum of the major and minor axes of any Bernstein ellipse Bρ with focii at 0 and 1 in which
[Kε ∗ E ](x) is analytic, and C > 0 is a constant proportional to supz∈Bρ ‖[Kε ∗ E ](z)‖. The minimal
number of nodes required to achieve ‖EN‖ ≤ δ∗ error is therefore N ≈ log (C/δ∗) / log ρ.

To estimate the convergence rate ρ for each contour, suppose the singularities of [Kε ∗ E ](x) are
determined precisely by the spectrum of H.6 For the flat contour (see (3.11)), the integrand is ana-
lytic between parallel lines displaced from the contour of integration by ±iε in the complex x-plane
(see Fig. 4, left). We consider the elliptic region of analyticity with minor axis (ρ1 − ρ−1

1 )/2 = ε, so
that

ρ1 = ε+
√
ε2 + 1 = 1 +O(ε) as ε→ 0.

For the deformed contour (see (3.12)), the integrand’s region of analyticity is bounded by the curves
in the complex θ-plane defined by z(θ) − εaj ∈ Sp(H) for j = 1, . . . ,m (see Fig. 4, right). Here, we
may take the Bernstein ellipse with major axis (ρ2 + ρ−1

2 )/2 = 1 + ε/2, so that

ρ2 = 1 + ε/2 +

√
(1 + ε/2)

2 − 1 = 1 +O(
√
ε), as ε→ 0.

6In fact, [Kε ∗ E](x) may sometimes be analytically continued across the spectrum of H, in which case CCQ may
converge faster than our analysis indicates for both contours.
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Figure 4: Bernstein ellipses (dashed grey contours) for the integrands in (3.11) (left) and in (3.12)
(right) with m = 1 and ε = 0.1. The integrand in (3.12) is analytic in a larger ellipse because the
spectrum of H is effectively deformed away (blue lines) from the integration contour (black line). The
ellipse parameters ρ1 and ρ2 govern convergence rates for the Clenshaw–Curtis quadrature approxi-
mations in (3.11) and (3.12), respectively.

Since H is self-adjoint, supz∈Bρ ‖[Kε ∗ E ](z)‖ grows in inverse proportion to dist(Bρ,Sp(H)) as does

the constant C. For both contours, our choice of Bρ yields C = O(ε−1). Therefore, we conclude that
the number of quadrature nodes required on each contour is, as ε→ 0,

N1 ≈
log (C/δ∗)

log ρ1
= O

(
ε−1 log(ε−1δ−1

∗ )
)
, and N2 ≈

log (C/δ∗)

log ρ2
= O

(
ε−

1
2 log(ε−1δ−1

∗ )
)
.

The deformed contour improves on (3.11) by requiring a factor of up to O(
√
ε) fewer CCQ nodes. This

analysis also reveals the further benefit of a reduced number of quadrature nodes when increasing ε
using high-order kernels.7

3.4 Computing transport properties and the functional calculus

For the computation of general semigroups with error control using rectangular truncations, we refer
the reader to [27, 31]. Related to the method we adopt here, many works use contour methods to
invert the Laplace transform and solve time evolution problems, with a focus on parabolic PDEs
[44,53,54,82,85,104,118,119]. An excellent survey of contour methods is provided in [113].

In our case, the relevant Hamiltonians are bounded and the procedure is considerably simplified.
For a holomorphic function g, Cauchy’s integral formula yields

g(H) =
1

2πi

∫
γ

g(z)(H − z)−1 dz, (3.13)

where γ is a closed contour looping once around the spectrum. Transport properties are computed via
the choice g(z) = exp(−izt). Namely, given an initial wavefunction ψ0, we wish to compute

ψ(t) = exp(−iHt)ψ0 =
1

2πi

∫
γ

exp(−izt)
[
(H − z)−1ψ0

]
dz. (3.14)

Note that here, and throughout, we use natural units so that the electron charge and Planck’s con-
stant both equal 1. The contour integral is computed using quadrature and approximations of the
resolvent (H − z)−1 via rectangular truncations as above. In particular, the rectangular truncation of
the Hamiltonian is chosen adaptively through a posteriori error bounds. This allows us to perform
rigorous computations with error control that are guaranteed to be free from finite-size or trunca-
tion/discretisation effects, directly probing the transport properties of the infinite lattice. It is difficult
to achieve error control or computations free from truncation effects via other methods since it can be
challenging to predict how large the truncation needs to be.

Suppose that the spectrum is located in an interval [a, b] ⊂ R. We take γ to be a rectangular
contour split into four line segments: two parallel to the imaginary axis with real parts a− 1 and b+ 1
and two parallel to the real axis with imaginary parts ±η (η > 0). Along these line segments we apply

7Under certain smoothness conditions we can take ε = O(δ
1/m
∗ ) up to logarithmic factors.
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Figure 5: Illustration of hopping terms of the Haldane model (4.1). Red and blue circles denote the A
and B sublattices, respectively, and orange lines denote hopping starting at the B site in the (m,n)th
cell. Solid orange lines show nearest-neighbour hoppings, while dashed orange lines show next-nearest-
neighbour hoppings. Short orange dashes correspond to next-nearest-neighbour hoppings with phase
e−iφ, while long orange dashes correspond to next-nearest-neighbour hoppings with phase eiφ.

Gaussian quadrature with enough quadrature nodes for the desired accuracy (the number of nodes can
be found by bounding the analytic integrand). Suppose that the weights and nodes for the quadrature
rule applied to the whole of γ are {wj}Nj=1 and {zj}Nj=1. Then the approximation of (3.14) is given by

ψ(t) ≈
N∑
j=1

wj
2πi

exp(−izjt)
[
(H − zj)−1ψ0

]
. (3.15)

The vectors (H − zj)−1ψ0 are computed using the adaptive method, that can be performed in parallel
across the quadrature nodes. We also reuse these computed vectors for different times t. Numerically,
this requires η to not be too large due to the growth of the complex exponential in the complex plane.
Given a finite interval of desired times up to t = T , we select η ∼ T−1 to avoid exponential blow-up.
Suitable N can then be selected for the resulting oscillatory integrand, and the truncation sizes for
computing (H − zj)−1ψ0 are selected adaptively to achieve a desired accuracy.

4 The Haldane model

In this work, we apply the methods just described to the Haldane model [62]. The Haldane model
describes electrons hopping on a two-dimensional honeycomb lattice (Fig. 5) in the presence of a
periodic magnetic field with zero net flux. In this section, we first present basic features of the periodic
bulk and edge Haldane models and their Bloch reductions in Sections 4.1 and 4.2. We do this only
for the reader’s convenience since excellent reviews already exist in the literature [51, 84]. We then
describe how we model defects and disorder in Section 4.3. We then discuss edge states, and bulk
and edge conductances, in Sections 4.4 and 4.5, before making our computational goals more precise
in Section 4.6. To improve readability, we postpone some long formulas to Appendix B.

4.1 The periodic bulk Haldane model

We model electrons in the bulk of the material as elements of the Hilbert space `2(Z2;C2), written

ψ : m 7→ ψm, where m = (m,n) and ψm =
(
ψAm, ψ

B
m

)>
. The quantity |ψυm|2 is then the electron
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probability density on site υ ∈ {A,B} in the mth cell. The bulk Haldane Hamiltonian HB is then [62]

(HBψ)m := t

(
ψBm,n + ψBm−1,n + ψBm,n−1

ψAm,n + ψAm+1,n + ψAm,n+1

)
+ V

(
ψAm
−ψBm

)
+ t′

(
eiφ
(
ψAm,n+1 + ψAm−1,n + ψAm+1,n−1

)
+ e−iφ

(
ψAm,n−1 + ψAm+1,n + ψAm−1,n+1

)
eiφ
(
ψBm,n−1 + ψBm+1,n + ψBm−1,n+1

)
+ e−iφ

(
ψBm,n+1 + ψBm−1,n + ψBm+1,n−1

)) .
(4.1)

Here, t and t′ ∈ R are hopping amplitudes between nearest-neighbours and next-nearest-neighbours in
the lattice, while V ∈ R is a potential difference between sublattices, and φ ∈ [0, 2π) is the complex
phase of the next-nearest-neighbour hopping. Nearest-neighbour and next-nearest-neighbour hoppings
are shown in Fig. 5. When t′ 6= 0 and φ /∈ {0, π}, the next-nearest-neighbour hoppings model a periodic
non-zero magnetic flux through the material, whose average over any unit cell is zero.

The bulk Hamiltonian HB (4.1) is invariant under translations with respect to both components
of m, and can therefore be diagonalised via the Fourier transform [2, 77, 96]. Let Γ∗ := [0, 2π)2, then

we write elements of L2(Γ∗;C2) as ψ̂ : k 7→ ψ̂(k), where k := (k1, k2) and ψ̂(k) =
(
ψ̂A(k), ψ̂B(k)

)>
.

We introduce the Fourier transform F : `2(Z2;C2)→ L2(Γ∗;C2) and its inverse

(Fψ) (k) :=
∑

m∈Z2

e−ik·mψm,
(
F−1ψ̂

)
m

:=
1

|Γ∗|

∫
Γ∗
eik·mψ̂(k) dk. (4.2)

Under the transformation (4.2), the operator (4.1) takes the form [62]((
FHBF−1

)
ψ̂
)

(k) = ĤB(k)ψ̂(k),

ĤB(k) :=

(
V + t′eiφ

(
eik2 + e−ik1 + ei(k1−k2)

)
+ c.c. t

(
1 + e−ik1 + e−ik2

)
t
(
1 + eik1 + eik2

)
−V + t′eiφ

(
e−ik2 + eik1 + ei(k2−k1)

)
+ c.c.

)
,

(4.3)

where +c.c. means add the complex conjugate of the term immediately before. Let E±(k) denote the
ordered eigenvalues of ĤB(k), known as the Bloch band functions. The spectrum of HB is then

Sp(HB) = Sp− ∪ Sp+, Sp± :=
⋃

k∈Γ∗

E±(k), (4.4)

where E±(k) is given by an explicit formula (B.1). The associated (non-normalisable) eigenfunctions
of HB are plane wave-like, given explicitly by Φ±(k) : m 7→ Φ±,m(k), where

Φ±,m(k) := eik·mΦ̂±(k), (4.5)

and Φ̂±(k) denotes an associated eigenvector of ĤB(k) with eigenvalue E±(k).

4.2 The periodic edge Haldane model

We model electrons at an edge (specifically, a zig-zag edge) of the material as elements ψ in the Hilbert
space H := `2(N × Z;C2). The Hamiltonian is again given by (4.1), but we now impose a Dirichlet
boundary condition

ψ−1,n = 0, n ∈ Z. (4.6)

We denote the Hamiltonian (4.1) subject to the boundary condition (4.6) by HE .
The edge Hamiltonian HE is invariant under translations with respect to n, so it is natural to take

a partial Fourier transform. Let L2([0, 2π); `2(N;C2)) denote the space of functions ψ̃ : k 7→ ψ̃(k),

where ψ̃(k) : m 7→ ψ̃m(k) and ψ̃m(k) =
(
ψ̃Am(k), ψ̃Bm(k)

)>
, such that

∫ 2π

0

∑∞
m=0 |ψ̃m(k)|2 dk <∞. We

introduce the partial Fourier transform G : `2(N× Z;C2)→ L2([0, 2π); `2(N;C2)) and its inverse

(Gψ)m (k) :=
∑
n∈Z

e−iknψm,
(
G−1ψ̃

)
m

:=
1

2π

∫ 2π

0

eiknψ̃m(k) dk. (4.7)

14



The action of the operator HE under the transformation (4.7) is then((
GHEG−1

)
ψ̃
)
m

(k) =
(
ĤE(k)ψ̃(k)

)
m
, (4.8)

where ĤE(k) is given by (B.3), subject to the boundary condition ψ̃−1(k) = 0. The spectrum of HE

is then
Sp(HE) =

⋃
k∈[0,2π)

Sp(ĤE(k)), (4.9)

and the associated eigenfunctions are plane wave-like parallel to the edge, given explicitly by Φ(k) :
m 7→ Φm(k), where

Φm(k) := eiknΦ̂m(k), (4.10)

and Φ̂(k) : m 7→ Φ̂m(k) denotes any eigenfunction of ĤE(k).
Note that, unlike ĤB(k), the Bloch-reduced operator in this case, ĤE(k), generally cannot be

diagonalised explicitly. However, we can nonetheless make some general observations. By the Weyl
criterion (see Theorem 5.10 of [68]), we clearly have that8

Sp(HB) ⊂ Sp(HE). (4.11)

However, equality does not hold in general, because HE may have additional spectrum due to edge
states: (non-normalisable) eigenfunctions (4.10) of HE arising from the truncation (4.6) that decay
rapidly away from the edge [59, 64, 67]. Edge states are closely tied to topological properties of the
Haldane model and are discussed in more detail in Section 4.5.

4.3 Modeling defects and disorder

We model onsite disorder by adding an additional potential term

(Vdψ)m =

(
V Amψ

A
m

V BmψBm

)
(4.12)

to HB and HE , where the V υm are independently drawn from a uniform distribution with mean 0 and
width w

V υm ∼ U(0, w), υ ∈ {A,B}, m ∈ Z2. (4.13)

Clearly, we have ‖Vd‖ ≤ w/2, where ‖ · ‖ denotes the operator norm. Note that in this work, we
only compute physical properties for individual realisations of disorder; we do not attempt to compute
statistical properties over many realisations. We model missing atom defects by setting the wave-
function ψ equal to zero at the missing sites. We write the Hamiltonians HB and HE with defects
and/or disorder as HB,d and HE,d, respectively. Note that HB,d and HE,d cannot be Bloch reduced.
To compute their spectral properties, we must work with the infinite-dimensional operators directly.

4.4 Bulk Hall conductance

Physically speaking, eigenfunctions of the operators HB , HE , HB,d, and HE,d correspond to states that
can be occupied by electrons, with energies given by the associated eigenvalues. At zero temperature,
there exists a threshold such that every state with energy below the threshold, and no state with
energy above the threshold, is occupied by an electron. This threshold is known as the Fermi level.
In what follows, we assume that the bands Sp− and Sp+ of HB are separated by a gap, and that the
addition of defects and disorder does not close this gap, so that HB and HB,d have a common gap ∆.
We assume further that the Fermi level lies in ∆. Under these assumptions, HB and HB,d describe
(bulk) insulators.

To build intuition, we focus first on the case without defects or disorder. The bulk conductance
measures the current excited in the bulk of a material by an applied electric field. The linear coefficient
of the conductance can be calculated analytically through linear response theory and is known as the
Kubo formula [2,102]. The part of the conductance parallel to the field vanishes in insulators, but the

8Suppose λ ∈ Sp(HB). Then there exists a sequence {fn} ∈ `2(Z2;C2) such that ‖fn‖ = 1 and ‖(HB − λ)fn‖ → 0
as n → ∞. But since HE and HB act identically for m > 0, and since HB is periodic, we can always translate the fn
to generate a sequence {gn} ∈ `2(N× Z;C2) such that ‖gn‖ = 1 and ‖(HE − λ)gn‖ → 0, and hence λ ∈ Sp(HE).
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conductance may have a non-zero transverse (Hall) component. In natural units, and in the limit of
zero frequency and dissipation, this component takes the form [112],

σB =
i

2π

∫
Γ∗

〈Φ̂−(k)|∂k1
ĤB(k)|Φ̂+(k)〉〈Φ̂+(k)|∂k2

ĤB(k)|Φ̂−(k)〉 − (1↔ 2)

(E+(k)− E−(k))2
dk, (4.14)

where (1 ↔ 2) is shorthand for the term immediately before, with 1 replaced everywhere by 2, and
vice versa. After a series of manipulations [112], we find

σB =
i

2π

∫
Γ∗
∂k1

〈
Φ̂−(k)

∣∣∣ ∂k2Φ̂−(k)
〉
− ∂k2

〈
Φ̂−(k)

∣∣∣ ∂k1Φ̂−(k)
〉

dk. (4.15)

The integrand on the right-hand side is the Berry curvature [15] of the − band, and its integral over
the Brillouin zone must be an integer multiple of 2π [62, 88,112]. Thus we have

σB = c−, (4.16)

where c− is an integer known as the Chern number. The Chern number, being an integer, cannot
change value continuously as model parameters are varied and hence remains fixed as long as the bulk
gap does not close. The Haldane phase diagram describes the values the Chern number can take as
the model parameters are varied, and can be calculated analytically when the model is periodic [62].
Whenever the Hall conductance is non-zero, we say the model is in its topological phase.

We now consider the case of defects and/or disorder, which prevent Bloch reduction. A convenient
expression of the Kubo formula is [4, 48]

σB = −2πiTr {PB [[PB ,Λ1], [PB ,Λ2]]} , (4.17)

where Tr denotes the trace in `2(Z2;C2), PB denotes the spectral projection for the part of the
spectrum of HB,d below ∆, Λ1 and Λ2 denote characteristic functions for the sets {m ∈ Z2 : m < 0}
and {m ∈ Z2 : n < 0}, respectively. Note that the operator on the right-hand side of (4.17) is not
obviously trace-class. To see that it is, note that Combes–Thomas estimates [41] imply that [PB ,Λ1]
acts trivially on sites away from the line m = 0, while [PB ,Λ2] acts trivially on sites away from the
line n = 0. It follows that the operator on the right-hand side of (4.17) acts trivially on sites away
from the origin and is hence trace-class.

Finally, although we have so far assumed a spectral gap for HB,d in this section, we expect that
definition (4.17) remains valid and is an integer, even when HB,d has no spectral gap, but does exhibit
dynamical (Anderson) localisation in a spectral interval, following [48] who proved this in the setting
of the quantum Hall effect. Our computational methods do not rely on the existence of a spectral gap,
and can be used in this setting as well.

4.5 Edge states, edge conductance, and edge wave-packets

Throughout this section, we continue to assume that HB and HB,d have a common gap ∆. Recall
that it does not follow that ∆ is a spectral gap of HE or HE,d, because edge states with energies in
the gap may occur.

To build intuition, we again start by considering the periodic setting. Edge states of HE are
extensions (4.10) of bound (normalisable) states associated to discrete eigenvalues E(k) of the operators
ĤE(k) acting on `2(N;C2). As k varies through the interval [0, 2π), these eigenvalues sweep out
intervals rank∈[0,2π)E(k) in the spectrum of HE (4.9). The maps E : k 7→ E(k) are known as the
dispersion relations of the edge states. Superposing edge states with k values near to some k0 yields
localised wave-packets that propagate along the edge with group velocity given by E′(k0) [67,73,103].

The current carried by edge states with energies in ∆ is measured by the edge conductance. More
precisely, let ∆′ denote any subinterval of ∆, and let χ∆′ denote the characteristic function for the
interval ∆′. The projection onto edge modes with energies in ∆′ is then given by PE := χ∆′(HE). In
natural units, the edge conductance can then be defined by [73,103]

σE =
1

|∆′|

∫ 2π

0

T̃r
{
PE∂kĤE(k)

}
dk, (4.18)

where T̃r denotes the trace in `2(N;C2). In the limit where |∆′| → 0 so that χ∆′
|∆′| → δλ for some

λ ∈ ∆, σE can be computed analytically as follows. Let ν denote the number of edge state dispersion
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relations that cross λ, assigning +1 to those whose slopes are positive, and −1 to those whose slopes
are negative. Then

σE = ν. (4.19)

The principle of bulk-edge correspondence [59, 67, 73, 103] states that σB = σE , and hence the integer
ν equals the bulk Chern number c− (4.16). A simple consequence of bulk-edge correspondence is that,
since λ ∈ ∆ was arbitrary, the edge Hamiltonian HE must have spectrum filling the whole bulk gap
∆ whenever the bulk Chern number is non-zero9.

In the presence of defects and/or disorder, a convenient expression for the edge conductance in an
interval ∆′ ⊂ ∆ (we assume ∆ is again a gap for HB,d) is

σE =
−2πi

|∆′|
Tr {PE [HE,d,Λ1]} , (4.20)

where Tr denotes the trace in `2(N×Z;C2), PE = χ∆′(HE,d), and Λ1 again denotes the characteristic
function for the set {m ∈ Z2 : m < 0}; note that m is the co-ordinate parallel to the edge. Just as with
(4.17), it is not immediately obvious that the trace on the right-hand side of (4.20) is well-defined.
That it is follows from decay of the matrix elements of PE away from the edge, and of [HE,d,Λ1] away
from the line m = 0 [48,73,74,103].

Note that, just like the bulk conductance, the edge conductance can be defined and is expected to
be quantised, even when HB,d has no spectral gap, but does exhibit dynamical (Anderson) localisation.
The definition of the edge conductance in this setting has to be slightly modified from (4.20), however
[48]. Our computational methods can easily be generalised to this setting.

In the presence of defects and/or disorder, the Bloch decomposition (4.9) is no longer valid. It
follows that it no longer makes sense to form edge wave-packets by superposing edge states with nearby
wavenumbers, or calculate their group velocities from the edge state dispersion relation. However, the
persistence of the edge conductance in this regime suggests that localised initial data with spectral
measure concentrated in the bulk gap will still propagate along the edge coherently. This remarkable
behaviour has been observed numerically (see, for example, [5, 86]), and even experimentally across
various model systems [43,94,108,115]. Such initial data, that we again refer to as edge wave-packets,
can be obtained by multiplying approximate edge states, i.e., approximate eigenfunctions of HE,d with
energies in the bulk gap, by a smooth decaying function such as a Gaussian.

4.6 Precise statement of TI physical properties to compute

We can now re-state the computational problems (PA)–(PD) referred to in the introduction more
precisely.

(PA) Numerically compute the bulk and edge conductances, defined for HB,d and HE,d through
formulas (4.17) and (4.20), respectively.

(PB) Numerically compute the edge states of HE and their associated dispersion relations E : k 7→
E(k) by computing the discrete eigenvalues and associated bound states of the Bloch-reduced
operators ĤE(k) (B.3).

(PC) Numerically compute approximate edge states and edge wave-packets (defined by multi-
plying approximate edge states by a smooth, decaying function) of HE,d, and their spectral
measures.

(PD) Numerically compute the dynamics of edge wave-packets of HE,d.

5 Results

In this section, we illustrate the utility of our methods by giving several numerical results.

9The spectrum filling the bulk gap is actually absolutely continuous, even in the presence of disorder; see [18].
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Figure 6: Topological phase plot for HB,d (left panel) with uniform disorder of width w = 0.2 (see Sec-
tion 4.3). The bulk conductance σB(HB,d) (see Eq. (4.17)) switches between −1 (black), 0 (blue), and
+1 (white) as the model parameters V and φ are varied (the parameters t and t′ are fixed at 1 and 0.2,
respectively). The phase plot for HB is identical apart from small discrepancies caused by numerical
under-resolution along the topological phase boundary; the difference |σB(HB,d)− σB(HB)| is shown
in the right panel. On the left panel we overlay the curves ±3

√
3t′ sinφ which mark the boundaries of

the phase regions computed in the periodic case by Haldane [62].

5.1 Bulk and edge conductances

We begin with the trace formulas for the bulk and edge conductances in Sections 4.4 and 4.5, re-
spectively. When it is necessary to distinguish between the bulk conductances for HB and HB,d, we
write σB(HB) and σB(HB,d), respectively. The trace class operators in (4.20) and (4.17) have rapidly
decaying diagonal elements; we compute them explicitly by applying the operators to unit vectors and
taking inner products. In particular, the spectral projectors are applied using Algorithm 3.

The computational results for conductance reported in this section used the first 200 diagonal
elements to approximate traces to an estimated accuracy of ≤ 10−3 based on diagonal decay rates.
The spectral projections are computed using a second-order rational kernel with smoothing parameter
0.05, and the semicircle contour integral in (3.12) is approximated with a 16-point Gauss–Legendre
quadrature rule. The resolvent is applied adaptively using a maximum rectangular truncation size of
5401×5000 for the bulk computations and 32679×32000 for the edge computations, respectively. The
larger truncation size was necessary for the edge resolvent due to continuous spectrum associated with
extended edge-states near the end of the contour in the bulk gap. For both bulk and edge computations,
the resolvent is typically applied accurately at quadrature nodes further from the spectrum with
significantly smaller truncation sizes than the maximum truncation parameter (see Fig. 3).

In the left panel of Fig. 6, we show results of numerically computing the bulk Hall conductance of
the Haldane model with disorder HB,d. In this experiment, the parameters t = 1, t′ = 0.2, and the
disorder width w = 2 are fixed, while V and φ vary. The right panel of Fig. 6 shows the difference
between the phase diagram in the left panel and that of HB , the bulk Haldane model without disorder.
The small difference is concentrated around phase transitions where the spectral gap closes and may
be due to numerical under-resolution since smoothed spectral measures can converge more slowly when
the contour passes near endpoints of the spectrum [37]. This supports the stability of the Haldane
model’s bulk Hall conductance in the face of disorder. The computational results are in excellent
agreement with the phase diagram computed analytically in Haldane’s original work [62].

The bulk Hall conductance of HB is plotted as a function of V in the left panel of Fig. 7 and
compared with the edge conductance σE (see (4.20)). The parameters t = 1, t′ = 0.2, and φ = π/2
are fixed in this computation. As V is increased from 0 to 2, both the bulk and edge conductance
exhibit a topological phase transition, and switch from 1 to 0. When a uniform random potential
with w = 1.8 (see Section 4.3) is added to HB , the spectral gap shrinks. However, the additional
spectrum is typically highly localised and we expect that it does not contribute to the conductance.
The right panel of Fig. 7 demonstrates that σB remains stable even as the Fermi level varies through a
spectral gap and a so-called “mobility gap”,10 where the Hamiltonian has spectrum but the associated

10Here we use the convenient terminology “mobility gap” to refer to an interval where the Hamiltonian has spectrum
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Figure 7: The Bulk and Edge Hamiltonians with parameters t = 1, t′ = 0.2, and φ = π/2 exhibit
a topological phase transition as V is increased from 0 to 2, during which both the bulk and edge
conductance (see (4.17)) switch from 1 to 0 (left panel). When a uniform random potential with
w = 1.8 (see Section 4.3) is added to HB , σB remains stable as the Fermi level is varied through
the spectral gap and regions of the spectrum exhibiting localised eigenstates that do not support
conduction (right panel) [48].

spectral projection does not contribute to the Hall conductance [48]. Approximate eigenstates of HB,d

associated with two spectral regimes are plotted and compared with approximate eigenstates of HB

in Fig. 8. The states associated with the mobility gap are highly localised and do not contribute to
conductance (see (8), bottom), while the states corresponding to points in the spectrum of HB are not
localised (see Fig. 8, top). These states were computed using Algorithm 1 with a residual criterion
(see (3.2)) of 0.05 and a maximum truncation size of 20785× 20000.

5.2 Edge states at a periodic edge and their dispersion relations

We now show results of computing edge states and their dispersion relations, as discussed in Section 4.5.
To do this, we compute the spectrum and associated eigenfunctions (when the spectrum is discrete)
of the infinite-dimensional operators ĤE(k) (B.3) using the methods of Section 3.1.

We start by computing the spectrum of the operators ĤE(k) (B.3) for k ∈ [0, 2π), showing the
results in Fig. 9. We select the parameters t = 1, t′ = 0.1, φ = π/2 and V = 0.2, for which the
model is in its topological phase and hence edge states must occur. The spectrum consists of two
parts. The first part is the spectrum of HB (4.1) after Bloch-reduction with respect to one of the
quasi-momenta, and is marked in black on Fig. 9. The second, additional, part of the spectrum arises
from the Dirichlet boundary condition at the edge (4.6), and is marked in blue on Fig. 9. For any
fixed k, this spectrum is discrete, with an associated eigenfunction that decays into the bulk. The
associated eigenfunctions of these eigenvalues are known as edge states. When extended according to
(4.10) they become non-normalisable eigenfunctions of HE that extend parallel to the edge. We plot
an extended edge state, corresponding to the green star marked in Fig. 9, in the left panel of Fig. 10.
Before extension to the whole lattice, the state was computed using a 202×200-dimensional truncation
matrix and has a residual of less than 4× 10−16.

5.3 Approximate edge states at a non-periodic edge

Next, we show results of computing approximate edge states for non-periodic edges. Since the edge
Hamiltonian cannot be Bloch reduced, we must compute edge states through the infinite-dimensional
Hamiltonian directly. Since the spectrum associated to edge states is absolutely continuous [18], we
restrict attention to computing approximate edge states using the methods of Section 3.1.

Our first experiment seeks to answer the question: What happens to the edge state in Fig. 9 if we
remove a group of sites along the edge? More specifically, what is the form of the approximate edge

but the associated spectral projection does not contribute to conduction. We are not aware of any rigorous result proving
existence of such a regime for the Haldane model, although such a regime is known to occur in models of the quantum
Hall effect [55].
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Figure 8: Approximate eigenstate of HB with parameters t = 1, t′ = 0.2, φ = π/2 associated with
point −1.5 in Sp(HB) (top left). The approximate eigenstate has rotational symmetry because we have
ordered the basis by positional radius from an origin. Approximate eigenstates of HB,d with w = 1.8
associated with points −1.5 (top right) and −0.6 (bottom) in Sp(HB,d). We show a truncated square
portion of the computed approximate state in each case.
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Figure 9: Plot of the spectra of the Bloch-reduced edge Hamiltonian operators ĤE(k) (B.3) as a
function of k ∈ [0, 2π). The spectrum of HE (4.6) is the union of these spectra. The black portion of
the plot corresponds to the spectrum of the bulk Hamiltonian HB (4.1) after Bloch-reduction in the
direction parallel to the edge. The blue portion corresponds to spectrum resulting from the Dirichlet
boundary condition at the edge (4.6). The green star corresponds to the edge state in Fig. 10 (left).
Note that we choose to consider an edge state whose energy is close to the bulk spectrum, which
makes coupling of the edge state to bulk modes possible in Fig. 15 and Fig. 16. For each value of k we
adaptively increased the truncation size until the error in (3.2) was below the chosen tolerance 0.01.
The maximum truncation size of the (sparse) matrix needed in the computation was 2004× 2000.

Edge State (no defect) Edge State (with defect)

Figure 10: Left: Absolute value of the approximate eigenstate (periodically continued to the whole
lattice) of the edge Hamiltonian corresponding to the green star in Fig. 9. We have truncated the
lattice to show only a finite portion. Right: An edge state at the energy of the green star when we
have an additional defect of missing sites.
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Figure 11: Using the method of Section 3.3, we can compute spectral projections onto an interval ∆
of edge states of HE and HE,d, where HE,d has sites removed from the edge, to visualise how the
whole interval of edge states responds to the perturbation. The selected parameters are t = 1, t′ = 0.1,
φ = π/2 and V = 0.2. Here, we compute the spectral projections onto edge states associated with the
interval [−0.1, 0.05] and plot the difference of the diagonal entries of these projections. We see that
the defect only affects the projection locally, i.e., near the missing atoms.

state of the edge Hamiltonian with the defect HE,d, with the same energy as that exact edge state?
This mode is computed using a 101171×99965-dimensional truncation matrix and is shown in the right
panel of Fig. 10 with residual bounded by 10−3. The size of the matrix is larger than in Section 5.2,
owing to the fact that we cannot take advantage of periodicity to use a one-dimensional Hamiltonian.
Similarly, the residual is larger since we must compute an edge state that does not decay parallel to
the edge through the infinite-dimensional Hamiltonian directly. The approximate edge state simply
snakes around the defect. Away from the defect, the approximate edge state of HE,d is essentially
identical to the exact edge state of HE . This is quite a general phenomenon: in Fig. 11, we compare
the diagonal entries of the spectral projections onto an interval of edge states of the edge Hamiltonians
with and without missing atoms. We find that the difference in the projections decays rapidly away
from the defect.

Our second experiment considers the same question, but in this case the perturbation is no longer
a local defect of the edge, but a random onsite potential (4.12) added to every site with w = 1. This
potential represents a non-compact perturbation of HE . We plot the value of the specific realisation of
the random potential used for our experiment in the left panel of Fig. 12. In the right panel of Fig. 12
we plot the approximate edge state computed using a 101206× 100000-dimensional truncation matrix
and with a residual bounded by 10−3. We find that the approximate edge state persists again, despite
the perturbation.

5.4 Edge wave-packets and spectral measure

We now compute edge wave-packets and investigate their spectral measures using the methods of
Section 3.2. We start by computing the spectral measure of the approximate edge state in the right
panel of Fig. 10. This is depicted in blue in Fig. 13, where we used a sixth-order kernel with smoothing
parameter ε = 0.01. The truncation parameter is selected adaptively for each spectral parameter as
outlined in Section 3.2, and the maximum truncation size used was 302049 × 299979. Again, due
to the adaptive nature of computing the resolvent, the resolvent is applied accurately at many shifts
with significantly smaller truncation sizes than the maximum truncation parameter. We see that,
as expected, the spectral measure is heavily weighted around the energy at which we computed the
approximate edge state. Next, we look at the spectral measure when we create a wave packet out of
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Random Potential Perturbed Edge State

Figure 12: Left: Specific realisation of the random potential (4.12), added at every site. Right: The
approximate edge state of HE,d with the same energy as edge state shown in left panel of Fig. 10.

this approximate eigenstate. To create the wave-packet, we multiply the approximate eigenstate by a
Gaussian centred away from the defect. This multiplication is equivalent to convolving the approximate
edge state by a Gaussian in momentum space. Therefore, the spectral measure of the wave-packet will
be spread out compared to the spectral measure of the approximate edge state. The orange part of
the plot confirms this expected behaviour. We have repeated this process for the state shown in the
right panel of Fig. 12, but we omit these results since they are similar to those shown in Fig. 13.

We can probe how the spectral properties of the edge Hamiltonian change when the random po-
tential (4.12) is added by computing the spectral measures of a delta function at a single site on the
edge11, with and without the random potential. The results are shown in Fig. 14 for t = 1, t′ = 0.1,
φ = π/2, V = 0.2 and w = 1. Again we used a sixth-order kernel with smoothing parameter ε = 0.01.
The truncation parameter is selected adaptively for each spectral parameter as outlined in Section 3.2,
and the maximum truncation size used was 101206 × 100000. Again, due to the adaptive nature of
computing the resolvent, the resolvent is applied accurately at many shifts with significantly smaller
truncation sizes than the maximum truncation parameter. We observe that the potential causes the
spectral measure to become significantly more singular in the bulk spectrum, while the edge spectrum
changes shape but remains smooth. This is consistent with absolute continuity of the edge spectral
measure [18], but we are not aware of work that explains the behaviour of the bulk spectral measure.

5.5 Time propagation of edge wave-packets

Finally, we look at the time propagation of wave packets along the edge for t = 1, t′ = 0.1, φ = π/2
and V = 0.2. We begin with a wave packet produced as in the previous subsection – by computing
an approximate edge state and multiplying by a Gaussian far from (above) the defect. Due to the
positive slope of the edge spectrum in Fig. 9, we expect that the edge states will move down the
edge. Additionally, since the edge states of the edge Hamiltonian with sites removed are similar to
the unperturbed edge state, we expect them to behave similarly. Lastly, by looking at the spectral
measure of a wave packet in the previous subsection, we expect that some of the density of the wave
packet will be lost to the bulk. However, most of it will continue along the edge.

We compute the time evolution with a relative `2 error bound of 10−5. The truncation parameter is
selected adaptively, as outlined in Section 3.4, and the maximum truncation size used was 50808×49965.
Again, due to the adaptive nature of computing the resolvent, the resolvent is applied accurately at
many shifts with significantly smaller truncation sizes than the maximum truncation parameter. Fig. 15
shows the results. In the beginning, we observe part of the wave packet propagating into the bulk. This

11The spectral measure for edge wave-packets with added random disorder behave similarly to Fig. 13.
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Figure 13: The (smoothed) spectral measure of an approximate eigenstate and a wave packet. The
spectrum of the Hamiltonian is plotted at the bottom with vertical grey lines added for clarity. The
approximate state was computed at the green energy. Notice the log scale on the vertical axis. The
spectral measure of the edge wave-packet is much more spread out, as expected, with non-trivial
support on the bulk spectrum.
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Figure 14: The (smoothed) spectral measure of a site along the zig-zag edge. The boundaries of the
edge spectrum of the Hamiltonian without the external potential are shown as vertical grey lines added
for clarity. Notice that the addition of the random potential causes a more singular spectral measure
on the bulk spectrum, but the spectral measure on the edge spectrum remains smooth.
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t = 0 t = 10 t = 20 t = 30 t = 40

t = 160 t = 175 t = 190 t = 205 t = 220

Figure 15: Time propagation of a wave packet. Top left is the initial state (a wave packet far away
from a defect). The images go forward in time as we move to the right. We observe the wave-packet
clearly losing mass to bulk modes. Then we fast forward to the bottom left (and move our camera
down) to see the remaining wave packet just starting to hit the defect. The wave packet then crawls
around the defect as we go to the right. Note that (essentially) no further mass is lost to bulk modes
as the wave-packet propagates around the defect.

t = 0 t = 10 t = 20 t = 30 t = 40

t = 160 t = 175 t = 190 t = 205 t = 220

Figure 16: The propagation of a wave packet in a system with a random perturbation to the external
potential at every site. Again, top left is the initial state and time goes forward as we move to the
right. Then we fast forward (and move our camera down) to get to the bottom left picture. What is
left of the wave packet then continues to propagate. Just as in Fig. 15, we observe loss of mass to bulk
modes at the beginning of the simulation, and very little afterwards.
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propagation is consistent with our computation of the spectral measure in Fig. 13, that showed that
the wave packet has non-trivial spectral support among bulk modes. Interestingly, the remaining wave
packet remains very coherent as it propagates around the defect, with little further coupling to the
bulk. This is consistent with our computation of an approximate edge state of the model with defect,
Fig. 10, that showed the edge state snaking around the defect similarly to the edge state without a
defect, and with our computation of the spectral measure in Fig. 13, that showed that the wave packet
is primarily concentrated among such edge states.

We perform a similar test with a Hamiltonian that has disorder everywhere, for which the maximum
truncation size used was 50843×50000. Again, due to the adaptive nature of computing the resolvent,
the resolvent is applied accurately at many shifts with significantly smaller truncation sizes than the
maximum truncation parameter. We add a random potential described in Section 5.2 at each site with
w = 1. Fig. 16 shows the results. Again, we observe part of the wave packet propagating to the bulk
and then generally coherent propagation along the edge.

6 Conclusion

The development of a rigorous framework for computing spectral properties of infinite-dimensional
operators [23] is opening up new avenues for principled computational exploration of physical phe-
nomenon. These techniques work adaptively with the resolvent operator to approximate spectra,
eigenstates, spectral measures, and functions of operators (i.e., functional calculus). They bear sim-
ilarities to established contour integral and filter techniques for finite-dimensional spectral computa-
tions, but introduce careful regularisation and refinement to achieve convergence and avoid instability
in the infinite-dimensional setting. Consequently, these methods can probe truly infinite-dimensional
phenomena like the continuous spectrum, the associated projection-valued measures, and more. More-
over, these methods form part of a wider programme on the foundations of computations that measures
the intrinsic difficulty of computational problems and provides proofs of the optimality of algorithms.
This is crucial for infinite-dimensional spectral computations since not all problems can be solved.
Classifications often tells us precisely the assumptions we need to make computations possible.

In this work, we have demonstrated how such techniques can be used to compute important phys-
ical properties of topological insulators. The use of methods that reliably handle infinite-dimensional
operators with continuous spectrum is crucial in this context because of the remarkable electronic
transport properties associated with the edges of topological insulators. When modeling an edge, a
supercell approximation could be made in the direction parallel to the edge, but not in the direction
transverse to the edge. To close the system at the boundary facing the physical edge, it is common
to simply create a second, artificial, edge, which can distort the spectrum and corrupt physical quan-
tities. The methods of the present work deal directly with the infinite-dimensional Hamiltonian for
straightforward computations with strong theoretical approximation guarantees.

We have so far restricted our attention to the Haldane model, the prototypical model of the simplest
class of topological insulators: that of (two-dimensional) Chern insulators. It would be very interesting
to apply the methods of the present work to models of other classes of topological insulators, especially
those more immediately relevant to experiments, such as time-reversal symmetric “Z2” topological in-
sulators in two and three dimensions [52, 72]. Like Chern insulators, such systems host “topologically
protected” edge states, but their physics is richer. While edge wave-packets of Chern insulators propa-
gate only in one direction, those of Z2 TIs can propagate in any direction along the edge (for 2D TIs),
or over the surface (for 3D TIs), of the material. The propagation of such wave-packets is robust to
defects and disorder, in the sense that scattering into counter-propagating modes is forbidden, as long
as these perturbations do not break time-reversal symmetry12. Another potential extension would
be to the continuum Schrödinger equations, or Maxwell equations, that model photonic analogs of
topological insulators [93, 95]. Although the computations in each of these cases, especially in higher
dimensions, would be more intensive than the computations of the present work, the basic structure of
our algorithms could be applied with minimal modification (in the case of continuum operators, after
imposing a suitable discretisation).

As the resolvent-based approach to spectral computations are used to explore infinite-dimensional
models with increasingly rich physics, one will no doubt encounter more exotic and challenging spectral
problems. For example, further exploration of disordered materials may require grappling with regions

12It is important here that this time-reversal symmetry is Fermionic, in the sense that the operator Φ defining the
symmetry satisfies Φ2 = −1.
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of dense pure point spectrum in the mobility gap regime, or singular continuous spectral measures. Such
systems are highly singular and may present a variety of numerical challenges for the resolvent-based
framework; they are ripe for a cross pollination of ideas between communities in physics, mathematical
analysis, and numerical analysis. The authors look forward to such fascinating developments ahead.

A Convergence for smoothed projection-valued measures

In this appendix, we prove Theorem 3.2. We begin by establishing convergence and calculating the
endpoint contributions cl and cr for rational kernels with conjugate pole pairs.

Proposition A.1. Given a projection-valued measure E (see (3.3)) and mth order kernel K with
conjugate pole pairs (see (3.8)), then for any [a, b] ⊂ R, we have that

lim
ε→0+

∫ b

a

[Kε ∗ E ](x) dx = E((a, b)) + clE({a}) + crE({b}),

where cl = π−1
∑m
j=1 βj(π − arg(aj)) + iγj log |aj | and cr = π−1

∑m
j=1 βj arg(aj)− iγj log |aj |.

Proof. First, integrate both sides of (3.10) over the interval, substitute the resolvent identity in (3.4)
on the right-hand side, and apply Fubini’s theorem to obtain∫ b

a

[Kε ∗ E ](x) dx =
−1

2πi

∫
Sp(H)

∫ b

a

m∑
j=1

[
αj

λ− (x− εaj)
− ᾱj
λ− (x− εāj)

]
dxdE(λ).

To establish the theorem, we take the limit ε → 0 and apply the dominated convergence theorem to
interchange the limit and the outer integral. This is permissible due to the decay condition in part
(iii) of Theorem 3.1. We claim that, as ε→ 0, the inner integral converges to −2πi when λ ∈ (a, b), 0
when λ 6∈ [a, b], and (−2πi)cl or −(2πi)cr when λ = a or λ = b, respectively.

We compute the inner integral directly by integrating the sum term by term, so that∫ b

a

m∑
j=1

[
αj

λ− (x− εaj)
− ᾱj
λ− (x− εāj)

]
dx =

m∑
j=1

[ᾱj log (λ− (x− εāj))− αj log (λ− (x− εaj))]
∣∣b
a
.

Using the identity log(z) = log |z|+ i arg(z) to simplify, we find that the right-hand side is equal to

2

m∑
j=1

Im(αj) [log |λ− b+ εaj | − log |λ− a+ εaj |]− iRe(αj) [arg(λ− b+ εaj)− arg(λ− a+ εaj)] .

(A.1)
To calculate the limit, note that the first row of (3.7) states that

∑m
j=1 αj = 1. In particular,∑m

j=1 Re(αj) = 1 and
∑m
j=1 Im(αj) = 0. Then, the right-hand terms involving arg evaluate to

lim
ε→0

m∑
j=1

Re(αj) [arg(λ− b+ εaj)− arg(λ− a+ εaj)] =


π, a < λ < b,∑m
j=1 Re(αj)(π − arg(aj)), λ = a,∑m
j=1 Re(αj) arg(aj), λ = b,

0, otherwise.

(A.2)
On the other hand, the left-hand terms involving logarithms vanish when λ 6= a and λ 6= b, that is,

lim
ε→0

m∑
j=1

Im(αj) [log |λ− b+ εaj | − log |λ− a+ εaj |] = [log |λ− b| − log |λ− a|]
m∑
j=1

Im(αj) = 0. (A.3)

Finally, when λ = b we expand log |εaj | = log |ε|+ log |aj | and perform a similar calculation to obtain

lim
ε→0

m∑
j=1

Im(αj) [log |εaj | − log |b− a+ εaj |] =

m∑
j=1

Im(αj) log |aj |. (A.4)

We omit the analogous calculation for λ = a, which only differs by a minus sign. Collecting the results
in (A.1), (A.2), (A.3) and (A.4) establishes the claim and concludes the proof the proposition.
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In practice, we usually employ symmetric rational kernels whose poles have reflection symmetry
over the imaginary axis. In this case, the residues are symmetric over the real axis, and the constants
cl and cr simplify considerably. These statements are made precise in the next two lemmas.

Lemma A.2. If the poles satisfy am+1−j = −āj, then the residues satisfy αm+1−j = ᾱj.

Proof. We proceed by calculating the residues directly from the Vandermonde system in (3.7). By
Cramer’s rule, αj = det(Vj)/det(V ), where V is the transposed Vandermonde matrix and Vj is identical
except that the jth column is replaced by the unit vector on the right-hand side of (3.7). We claim
that det(V ) is real and det(Vm+1−j) = det(Vj), which together imply that αm+1−j = ᾱj .

The determinant of V is given by the well-known formula det(V ) =
∏

1≤i<j≤m(aj − ai). Pairing
conjugate terms and noting that (am+1−i−am+1−j) = (āj− āi) by the reflection symmetry hypothesis,
we find that the determinant is real because

det(V ) =
∏

1≤i<j≤m

(aj − ai) =
∏

1≤i<j≤dm/2e

(aj − ai)(am+1−i − am+1−j) =
∏

1≤i<j≤dm/2e

|aj − ai|2.

To calculate the determinant of Vj , note that a Laplace expansion down the jth column yields

det(Vj) = (−1)j−1

∣∣∣∣∣∣∣
a1 . . . aj−1 aj+1 . . . am
...

...
...

...
am−1

1 . . . am−1
j−1 am−1

j+1 . . . am−1
m

∣∣∣∣∣∣∣ = (−1)j−1
∏

1≤i≤m,
i 6=j

ai
∏

1≤i<k≤m,
i,k 6=j

(ak − ai).

(A.5)
The second equality follows by factoring the poles a1, . . . , aj−1, aj+1, . . . am out of their respective
columns and applying the formula for the determinant of the resulting (m−1)× (m−1) Vandermonde
system (note that the indices are 1, . . . , j − 1, j + 1, . . . ,m). Since the poles are distinct, we may write

∏
1≤i<k≤m,
i,k 6=j

(ak − ai) = det(V )

 ∏
1≤i<j

(aj − ai)
∏

j<i≤m

(ai − aj)

−1

. (A.6)

Applying the reflection symmetry hypothesis and re-indexing with i′ = m+ 1− i, we calculate that∏
1≤i<j

(aj − ai)
∏

j<i≤m

(ai − aj) =
∏

1≤i′<m+1−j

(ām+1−j − āi′)
∏

m+1−j<i′≤m

(āi′ − ām+1−j). (A.7)

Since det(V ) is real-valued, it follows that
∏

1≤i<k≤m,
i,k 6=j

(ak − ai) =
∏

1≤i<k≤m,
i,k 6=m+1−j

(ak − ai). Similarly,∏
1≤i≤m,
i 6=j

ai = (aj)
−1

∏
1≤i≤m

ai = (−ām+1−j)
−1

∏
1≤i≤m

(−ām+1−i)
−1 = (−1)m+1

∏
1≤i≤m,
i 6=m+1−j

āi. (A.8)

Compiling the calculations in (A.5), (A.6), (A.7), and (A.8) establishes the claim, as we conclude that

det(Vj) = (−1)j−1
∏

1≤i≤m,
i 6=j

ai
∏

1≤i<k≤m,
i,k 6=j

(ak − ai) = (−1)m−j
∏

1≤i≤m,
i 6=m+1−j

āi
∏

1≤i<k≤m,
i,k 6=m+1−j

(ak − ai) = det(Vm+1−j).

Therefore, Cramer’s rule implies that the residues satisfy αm+1−j = ᾱj , for each j = 1, . . . ,m.

With the conjugate symmetry of the residues in hand, we can now show that the constants in The-
orem A.1 simplify significantly for symmetric kernels. Recall that

∑m
j=1 βj = 1 and

∑m
j=1 γj = 0.

Lemma A.3. If the poles satisfy am+1−j = −āj, then cl = cr = 1/2 in Theorem A.1.

Proof. To begin, note that symmetry of the residues over the real axis in Theorem A.2 implies that
γm+1−j = −γj , while the symmetry of the poles over the imaginary axis implies that log |aj | =
log |am+1−j |. Therefore, the logarithmic terms in cl and cr vanish because13

m∑
j=1

γj log |aj | =
bm/2c∑
j=1

(γj log |aj |+ γm+1−j log |am+1−j |) = 0.

13When m is odd, the relation γm+1−j = −γj holds for j = dm/2e, so that γdm/2e = 0.
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Furthermore, the pole symmetries am+1−j = −āj imply that arg(am+1−j) = π − arg(aj), while the
residue symmetries also imply that βm+1−j = βj . Therefore, we find that

cl = π−1
m∑
j=1

βj (π − arg(aj)) = π−1
m∑
j=1

βj arg(aj) = cr. (A.9)

Now, observe that βj arg(aj) + βm+1−j arg(am+1−j) = πβj . For even m, we calculate that

m∑
j=1

βj arg(aj) =

m/2∑
j=1

(βj arg(aj) + βm+1−j arg(am+1−j)) = π

m/2∑
j=1

βj =
π

2
, (A.10)

The last equality follows from the fact that 2
∑m/2
j=1 βj =

∑m
j=1 βj = 1 when m is even. Analogously

for odd m, we obtain
m∑
j=1

βj arg(aj) =
π

2
βdm/2e + π

bm/2c∑
j=1

βj =
π

2
. (A.11)

Here, we have used that βdm/2e + 2
∑bm/2c
j=1 βj =

∑m
j=1 βj = 1 when m is odd. Plugging (A.10) and

(A.11) into (A.9) demonstrates that cl = cr = 1/2, which concludes the proof.

B Haldane model details

In this section, we fill in some details omitted in the discussion in Section 4. The explicit formula for
the bulk band functions of HB(k) is

E±(k) = f(k)±
√
g1(k) + g2(k), (B.1)

where

f(k) := 2t′ cos(φ) [cos(k1) + cos(k2) + cos(k1 − k2)]

g1(k) := |t|2
(
|1 + cos(k1) + cos(k2)|2 + | sin(k1) + sin(k2)|2

)
g2(k) := |V + 2t′ sin(φ)(sin(k1)− sin(k2)− sin(k1 − k2))|2.

(B.2)

The explicit action of the Bloch-reduced edge Hamiltonian HE(k) in `2(N;C2) is(
ĤE(k)ψ̃(k)

)
m

:=

t

(
(1 + e−ik2)ψ̃Bm(k) + ψ̃Bm−1(k)

(1 + eik2)ψ̃Am(k) + ψ̃Am+1(k)

)
+ V

(
ψ̃Am(k)

−ψ̃Bm(k)

)

+ t′

eiφ (eik2 ψ̃Am(k) + ψ̃Am−1(k) + e−ik2 ψ̃Am+1(k)
)

+ e−iφ
(
e−ik2 ψ̃Am(k) + ψ̃Am+1(k) + eik2 ψ̃Am−1(k)

)
eiφ
(
e−ik2 ψ̃Bm(k) + ψ̃Bm+1(k) + eik2 ψ̃Bm−1(k)

)
+ e−iφ

(
eik2 ψ̃Bm(k) + ψ̃Bm−1(k) + e−ik2 ψ̃Bm+1(k)

) ,

(B.3)

subject to the boundary condition ψ−1(k) = 0.
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